JP2003088365A - MODIFIED alpha-GLUCOSIDASE AND METHOD FOR PRODUCING OLIGOSACCHARIDE - Google Patents

MODIFIED alpha-GLUCOSIDASE AND METHOD FOR PRODUCING OLIGOSACCHARIDE

Info

Publication number
JP2003088365A
JP2003088365A JP2001286286A JP2001286286A JP2003088365A JP 2003088365 A JP2003088365 A JP 2003088365A JP 2001286286 A JP2001286286 A JP 2001286286A JP 2001286286 A JP2001286286 A JP 2001286286A JP 2003088365 A JP2003088365 A JP 2003088365A
Authority
JP
Japan
Prior art keywords
glucosidase
amino acid
ser
modified
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001286286A
Other languages
Japanese (ja)
Other versions
JP4012383B2 (en
Inventor
Masaya Chiba
誠哉 千葉
Atsuo Kimura
淳夫 木村
Haruhide Mori
春英 森
Masayuki Okuyama
正幸 奥山
Takehiro Unno
剛裕 海野
Takeshi Yamamoto
健 山本
Mikio Yamamoto
幹男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Original Assignee
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Maize Products Co Ltd, Nihon Shokuhin Kako Co Ltd filed Critical Japan Maize Products Co Ltd
Priority to JP2001286286A priority Critical patent/JP4012383B2/en
Publication of JP2003088365A publication Critical patent/JP2003088365A/en
Application granted granted Critical
Publication of JP4012383B2 publication Critical patent/JP4012383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a modified α-glucosidase hydrolyzing α-glycoside bond, of which hydrolyzing activity is weakened or substantially extinguished, while maintaining its rearrangement activity, and a method for producing an oligosaccharide exhibiting a high disaccharide derivative yield by using the modified enzyme. SOLUTION: This α-glucosidase is derived from Schizosaccharmoyces pombe, and modified so as to decrease the hydrolyzing activity by <=1/10,000 as compared with that of the α-glucosidase by substituting the 481st asparagic acid in the amino acid sequence with e.g. glycine. The method for producing the oligosaccharide by performing a reaction of a glycoside derivative with a β- glucosyl fluoride in the presence of the α-glucosidase is also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、実質的に加水分解
活性を示さないように改変したα−グルコシダーゼ、お
よびこの改変したα−グルコシダーゼを用いたオリゴ糖
の製造方法に関する。
TECHNICAL FIELD The present invention relates to an α-glucosidase modified so as not to substantially exhibit hydrolytic activity, and a method for producing an oligosaccharide using the modified α-glucosidase.

【0002】[0002]

【従来の技術】α−グルコシダーゼは、微生物から動植
物まで広く天然界に存在する酵素であり、基質の非還元
性末端のα−グルコシド結合を水解してα−D−グルコ
ースを生成する酵素である。このα−グルコシダーゼ
は、B.ヘンリサット(B. Henrissat)による酵素の一次
配列による分類では、ファミリー13とファミリー31
とに分類されている(B. Henrissat, Biochem. J. : 28
0, 309-316(1991))。また、千葉らは、α−グルコシ
ダーゼの基質特異性に着目し、ファミリー1とファミリ
ー2に分類している(Chiba et al., Biosci. Biotech.
Biochem. : 61, 1233-1239 (1997))。
BACKGROUND ART α-Glucosidase is an enzyme widely existing in the natural world from microorganisms to animals and plants, and is an enzyme that hydrolyzes an α-glucoside bond at the non-reducing end of a substrate to produce α-D-glucose. . This α-glucosidase is classified into family 13 and family 31 according to the primary sequence of the enzyme by B. Henrissat.
(B. Henrissat, Biochem. J.: 28
0, 309-316 (1991)). Chiba et al. Have focused on the substrate specificity of α-glucosidase and classified it into family 1 and family 2 (Chiba et al., Biosci. Biotech.
Biochem .: 61, 1233-1239 (1997)).

【0003】[0003]

【発明が解決しようとする課題】α−グルコシダーゼ
は、水解(加水分解)反応のみならず、糖転移反応をも
触媒し、様々なオリゴ糖や配糖体の酵素合成にも用いら
れている。しかし、糖転移反応により生成されたオリゴ
糖は、再度α−グルコシダーゼの基質となって水解され
るために、生成されるオリゴ糖は糖転移反応の進行に伴
い増加するものの、ある極大値をとった後に減少してい
く。そのために、あるオリゴ糖を糖転移反応により合成
しようとしても30〜50%程度が限度であった。上記
の現象は、糖転移反応を用いてオリゴ糖を合成する際
に、α−グルコシダーゼのみならず、β−グルコシダー
ゼをはじめとする様々なグリコシダーゼで認められる。
[Alpha] -Glucosidase catalyzes not only the hydrolysis (hydrolysis) reaction but also the transglycosylation reaction and is also used for the enzymatic synthesis of various oligosaccharides and glycosides. However, the oligosaccharide produced by the transglycosylation reaction becomes a substrate for α-glucosidase again and is hydrolyzed, so that the oligosaccharide produced increases with the progress of the transglycosylation reaction, but has a certain maximum value. Then decreases. Therefore, even if it is attempted to synthesize a certain oligosaccharide by a transglycosylation reaction, the limit is about 30 to 50%. The above phenomenon is observed not only in α-glucosidases but also in various glycosidases including β-glucosidases when synthesizing oligosaccharides using a transglycosylation reaction.

【0004】このような状況の中で、マケンジー(Macke
nzie)らとワン(Wang)らは、アグロバクテリウム属(Agro
bacterium sp.)の生産するβ−グルコシダーゼについ
て、活性解離基の一つで解離型のカルボキシル基である
グルタミン酸358をアラニンに置換した改変酵素を調
製し、α−グルコシルアジドやα−グルコシルフロライ
ドをグルコシル供与体として、β−グルコシド結合を有
するオリゴ糖の合成を報告している(Mackenzie et a
l., J. Am. Chem. Soc. : 116, 11594-11595 (1994),W
ang et al., J. Am. Chem. Soc. : 120, 5583-5584 (19
98))。メイヤー(Mayer)らは、グルタミン酸358をセ
リンに置換した改変酵素を調製し、α−グルコシルフロ
ライド及びα−ガラクトシルフロライドをグリコシル供
与体として、β−グリコシド結合を有するオリゴ糖の合
成を行っている(Mayer et al., FEBS Letters : 466,
40-44 (2000))。モラッシ(Moracci)らも、マケンジー
(Mackenzie)らとワン(Wang)らと同様な結果を、スルホ
ロバス・ソルファタリカス(Sulfolobus solfataricus)
起源のβ−グリコシダーゼの改変酵素(グルタミン酸3
87→グリシン)とα−グルコシルアジドやα−グルコ
シルフロライドを用いて報告している。
In this situation, Mackenzie (Macke
nzie) and Wang et al.
For β-glucosidase produced by (bacterium sp.), a modified enzyme was prepared by substituting alanine for glutamic acid 358, which is a dissociative carboxyl group as one of the active dissociative groups, to prepare α-glucosyl azide and α-glucosyl fluoride. As a glucosyl donor, we have reported the synthesis of oligosaccharides with β-glucosidic bonds (Mackenzie et a
l., J. Am. Chem. Soc .: 116, 11594-11595 (1994), W
ang et al., J. Am. Chem. Soc .: 120, 5583-5584 (19
98)). Mayer et al. Prepared a modified enzyme in which glutamic acid 358 was replaced with serine, and α-glucosyl fluoride and α-galactosyl fluoride were used as glycosyl donors to synthesize an oligosaccharide having a β-glycoside bond. (Mayer et al., FEBS Letters: 466,
40-44 (2000)). Morakci et al., Mackenzie
(Mackenzie) et al. (Wang) et al. With similar results, Sulfolobus solfataricus (Sulfolobus solfataricus)
Original β-glycosidase modifying enzyme (glutamic acid 3
87 → glycine) and α-glucosyl azide or α-glucosyl fluoride.

【0005】しかしながら、これらの酵素はいずれもβ
−グリコシド結合を加水分解する酵素であり、α−グリ
コシド結合を加水分解する酵素ではこのような改変酵素
は知られていなかった。また、マケンジー(Mackenzie)
らとワン(Wang)ら、及びモラッシ(Moracci)らが得た改
変酵素を用いてオリゴ糖を合成した際のグルコシル供与
体は、いずれもα−グルコシド型のものであり、生成さ
れるオリゴ糖はβ−グルコシド結合を有するオリゴ糖に
限られていた。
However, all of these enzymes are β
An enzyme that hydrolyzes a glycoside bond, and such an enzyme that hydrolyzes an α-glycoside bond has not been known. Also, Mackenzie
All of the glucosyl donors used in the synthesis of oligosaccharides using the modified enzymes obtained by Wara et al., And Moracci et al. Are α-glucoside type, and the oligosaccharides produced are Was limited to oligosaccharides with β-glucosidic bonds.

【0006】また、これらのオリゴ糖の生成率が80%
以上となり得ることが、米国特許第5,716,812
号に示されている。しかるに、ここで示された生成率
は、オリゴ糖混合物としての数値であり、2糖類誘導体
としての生成率は最大でも54%でしかなかった。これ
に対して、2糖類誘導体の生成率を上昇させるために
は、α−ガラクトシルフロライドなどの糖鎖の再延長を
起こさないグリコシル供与体を用いることが必要であ
る。しかし、再延長を起こさないグリコシル供与体を用
いると、得られるオリゴ糖がヘテロオリゴ糖になるとい
う問題点があった。
The production rate of these oligosaccharides is 80%.
What can be said is US Pat. No. 5,716,812.
No. However, the production rate shown here is a numerical value as an oligosaccharide mixture, and the production rate as a disaccharide derivative was only 54% at the maximum. On the other hand, in order to increase the production rate of the disaccharide derivative, it is necessary to use a glycosyl donor such as α-galactosyl fluoride that does not cause re-extension of the sugar chain. However, when a glycosyl donor that does not cause re-extension is used, the resulting oligosaccharide is a heterooligosaccharide.

【0007】そこで本発明の目的は、α−グリコシド結
合を加水分解する酵素であって、転移反応活性は維持し
つつ、水解(加水分解)反応を弱めたか、あるいは実質
的に消滅させた改変酵素を提供することにある。さらに
本発明は、このような改変酵素を用いて、2糖類誘導体
の生成率が高い、オリゴ糖の製造方法を提供することに
ある。
Therefore, an object of the present invention is an enzyme which hydrolyzes an α-glycoside bond, and a modified enzyme which weakens or substantially eliminates a hydrolysis (hydrolysis) reaction while maintaining a transfer reaction activity. To provide. Further, the present invention is to provide a method for producing an oligosaccharide having a high production rate of a disaccharide derivative using such a modified enzyme.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
α−グルコシダーゼについて鋭意研究し、通常水解反応
に必須である解離型カルボキシル基を含むアミノ酸を、
側鎖にカルボキシル基を含まないアミノ酸に置換し、水
解活性を示さないように改変したα−グルコシダーゼを
見出し、さらにこの改変したα−グルコシダーゼとグル
コシル供与体としてβ−グルコシルフロライドを用いた
オリゴ糖の製造方法を見出し、本発明を完成するに至っ
た。ここで、「水解活性を示さない」とは、改変前の酵
素をマルトースやp-フェニルα−グルコシド等を基質と
して生成するグルコース量と比較して、生成するグルコ
ース量が10000分の1以下であることを示す。
Therefore, the present inventors have
Diligently researching α-glucosidase, and finding an amino acid containing a dissociative carboxyl group, which is usually essential for the hydrolysis reaction,
Substitution with an amino acid that does not contain a carboxyl group in the side chain, found a modified α-glucosidase so as not to show hydrolytic activity, further oligosaccharides using the modified α-glucosidase and β-glucosyl fluoride as a glucosyl donor The present invention has been completed by discovering a manufacturing method of. Here, "does not show hydrolytic activity" means that the amount of glucose produced is 1 / 10,000 or less when the enzyme before modification is compared with the amount of glucose produced using maltose or p-phenyl α-glucoside as a substrate. Indicates that there is.

【0009】上記本発明の目的を達成する本発明は、以
下の通りである。 [請求項1]配列表の配列番号2に示されたアミノ酸配
列を有するα−グルコシダーゼであって、前記アミノ酸
配列の481番目のアスパラギン酸を、加水分解活性が
配列番号2に示されたアミノ酸配列を有するα−グルコ
シダーゼに比較して10000分の1以下に低下するよ
うに他のアミノ酸に置換したことを特徴とする改変α−
グルコシダーゼ。 [請求項2]481番目のアスパラギン酸を側鎖にカル
ボキシル基を含まないアミノ酸に置換した請求項1に記
載の改変α−グルコシダーゼ。 [請求項3]側鎖にカルボキシル基を含まないアミノ酸
がグリシンまたはアラニンである請求項2に記載の改変
α−グルコシダーゼ。 [請求項4]配列表の配列番号2に示されたアミノ酸配
列を有するα−グルコシダーゼであって、前記アミノ酸
配列の481番目のアスパラギン酸をグリシンに置換し
たことを特徴とする改変α−グルコシダーゼ。 [請求項5]前記アミノ酸配列において1若しくは複数
のアミノ酸がさらに置換、欠失、挿入若しくは付加され
たアミノ酸配列を有する請求項4に記載の改変α−グル
コシダーゼ。 [請求項6]ジゾサッカロミセスポンベ(Schizosaccha
romyces pombe)由来のα−グルコシダーゼであって、
該α−グルコシダーゼの活性解離基のうち解離型カルボ
キシル基を含むアミノ酸を、加水分解活性が野生型の酵
素に比較して10000分の1以下に低下するように側
鎖にカルボキシル基を含まないアミノ酸に置換したこと
を特徴とする改変α−グルコシダーゼ。 [請求項7]活性解離基のうち解離型カルボキシル基を
含むアミノ酸が、配列表の配列番号2に示されたアミノ
酸配列の481番目のアスパラギン酸に相当するアミノ
酸である請求項6に記載の改変α−グルコシダーゼ。 [請求項8]側鎖にカルボキシル基を含まないアミノ酸
がグリシンまたはアラニンである請求項6または7に記
載の改変α−グルコシダーゼ。 [請求項9]請求項1〜8のいずれか1項に記載のα−
グルコシダーゼの存在下、グリコシド誘導体とβ−グル
コシルフロライドを反応させることを含むオリゴ糖の製
造方法。 [請求項10]グリコシド誘導体が、pNP−β−グルコ
シド、pNP−α−キシロシド、pNP−α−マンノシド、pN
P-α−マルトシドである請求項9に記載の製造方法。 [請求項11]オリゴ糖が2糖類誘導体である請求項9
または10に記載の製造方法。
The present invention which achieves the above-mentioned object of the present invention is as follows. [Claim 1] An α-glucosidase having the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing, wherein the 481st aspartic acid in the amino acid sequence is hydrolyzed with the amino acid sequence represented by SEQ ID NO: 2. Modified α-characterized by substituting with another amino acid so that it is reduced to 1 / 10,000 or less as compared with α-glucosidase having
Glucosidase. [Claim 2] The modified α-glucosidase according to claim 1, wherein the 481st aspartic acid is substituted with an amino acid having no carboxyl group in the side chain. [Claim 3] The modified α-glucosidase according to claim 2, wherein the amino acid containing no carboxyl group in the side chain is glycine or alanine. [Claim 4] An α-glucosidase having the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing, wherein the 481st aspartic acid in the amino acid sequence is replaced with glycine. [Claim 5] The modified α-glucosidase according to claim 4, which has an amino acid sequence in which one or more amino acids are further substituted, deleted, inserted or added in the amino acid sequence. [Claim 6] Schizosaccha
romyces pombe) -derived α-glucosidase,
Among the active dissociative groups of the α-glucosidase, an amino acid containing a dissociative carboxyl group has an amino acid containing no carboxyl group in its side chain so that the hydrolysis activity is reduced to 1 / 10,000 or less as compared with the wild-type enzyme. A modified α-glucosidase, characterized in that [Claim 7] The modification according to claim 6, wherein the amino acid containing a dissociative carboxyl group among the active dissociative groups is an amino acid corresponding to the 481st aspartic acid in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. α-glucosidase. [8] The modified α-glucosidase according to [6] or [7], wherein the amino acid containing no carboxyl group in the side chain is glycine or alanine. [Claim 9] [alpha]-according to any one of claims 1-8.
A method for producing an oligosaccharide, which comprises reacting a glycoside derivative with β-glucosyl fluoride in the presence of glucosidase. [Claim 10] The glycoside derivative is pNP-β-glucoside, pNP-α-xyloside, pNP-α-mannoside, pN.
The method according to claim 9, which is P-α-maltoside. [Claim 11] The oligosaccharide is a disaccharide derivative.
Or the manufacturing method according to 10.

【0010】[0010]

【発明の実施の態様】請求項1に記載された本発明の第
1の態様の改変α−グルコシダーゼは、配列表の配列番
号2に示されたアミノ酸配列を有するα−グルコシダー
ゼであって、前記アミノ酸配列の481番目のアスパラ
ギン酸を、加水分解活性が配列番号2に示されたアミノ
酸配列を有するα−グルコシダーゼに比較して1000
0分の1以下に低下するように他のアミノ酸に置換した
ことを特徴とする。アミノ酸が改変されていない配列番
号2に示されたアミノ酸配列を有するα−グルコシダー
ゼは、ジゾサッカロミセスポンベ(Schizosaccharomyce
s pombe)由来のα−グルコシダーゼである。そして、
配列番号2に示されたアミノ酸配列の481番目のアス
パラギン酸を他のアミノ酸に置換する。アミノ酸の置換
は、加水分解活性が配列番号2に示されたアミノ酸配列
を有するα−グルコシダーゼに比較して10000分の
1以下に低下するようにおこなう。具体的には、481
番目のアスパラギン酸を側鎖にカルボキシル基を含まな
いアミノ酸に置換する。そして、側鎖にカルボキシル基
を含まないアミノ酸は、例えば、グリシンまたはアラニ
ンであることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The modified α-glucosidase according to the first aspect of the present invention described in claim 1 is an α-glucosidase having the amino acid sequence represented by SEQ ID NO: 2 in the Sequence Listing, The aspartic acid at position 481 of the amino acid sequence was compared with that of α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2 for hydrolyzing activity to be 1000.
It is characterized in that it was replaced with another amino acid so as to be reduced to 1/0 or less. The α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2 in which the amino acid is not modified is a diazosaccharomyces pombe (Schizosaccharomyce pombe).
α-glucosidase derived from S. pombe). And
The aspartic acid at position 481 of the amino acid sequence shown in SEQ ID NO: 2 is replaced with another amino acid. The amino acid substitution is performed so that the hydrolysis activity is reduced to 1 / 10,000 or less as compared with α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2. Specifically, 481
The second aspartic acid is replaced with an amino acid containing no carboxyl group in the side chain. Then, the amino acid having no carboxyl group in the side chain can be, for example, glycine or alanine.

【0011】本発明のα−グルコシダーゼは、配列表の
配列番号2に示されたアミノ酸配列を有するα−グルコ
シダーゼであって、前記アミノ酸配列の481番目のア
スパラギン酸をグリシンに置換したことを特徴とする。
The α-glucosidase of the present invention is an α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2 of the Sequence Listing, wherein the 481st aspartic acid in the amino acid sequence is replaced with glycine. To do.

【0012】請求項6に記載の本発明の第2の態様の改
変α−グルコシダーゼは、ジゾサッカロミセスポンベ
(Schizosaccharomyces pombe)由来のα−グルコシダ
ーゼであって、該α−グルコシダーゼの活性解離基のう
ち解離型カルボキシル基を含むアミノ酸を、加水分解活
性が野生型の酵素に比較して10000分の1以下に低
下するように側鎖にカルボキシル基を含まないアミノ酸
に置換したことを特徴とする。
[0012] The modified α-glucosidase of the second aspect of the present invention according to claim 6 is an α-glucosidase derived from Schizosaccharomyces pombe, wherein among the active dissociative groups of the α-glucosidase, It is characterized in that an amino acid containing a dissociated carboxyl group is substituted with an amino acid containing no carboxyl group in its side chain so that the hydrolysis activity is reduced to 1 / 10,000 or less as compared with the wild-type enzyme.

【0013】本発明の第2の態様の改変α−グルコシダ
ーゼでは、基礎とするα−グルコシダーゼは、配列番号
2に示されたアミノ酸配列を有するα−グルコシダーゼ
に限らず、ジゾサッカロミセスポンベ(Schizosaccharo
myces pombe)由来のα−グルコシダーゼであればよ
い。そして、ジゾサッカロミセスポンベ(Schizosaccha
romyces pombe)由来のα−グルコシダーゼの活性解離
基のうち解離型カルボキシル基を含むアミノ酸を側鎖に
カルボキシル基を含まない他のアミノ酸で置換する。他
のアミノ酸で置換するアミノ酸は、例えば、配列表の配
列番号2に示されたアミノ酸配列の481番目のアスパ
ラギン酸に相当するアミノ酸である。配列表の配列番号
2に示されたアミノ酸配列を有するα−グルコシダーゼ
も、ジゾサッカロミセスポンベ(Schizosaccharomyces
pombe)由来のα−グルコシダーゼであることから、配
列表の配列番号2に示されたアミノ酸配列を有するα−
グルコシダーゼ以外のジゾサッカロミセスポンベ(Schi
zosaccharomyces pombe)由来のα−グルコシダーゼ
も、配列表の配列番号2に示されたアミノ酸配列と高い
相同性を有し、配列表の配列番号2に示されたアミノ酸
配列の481番目のアスパラギン酸に相当するアミノ酸
は容易に見い出すことができる。
In the modified α-glucosidase according to the second aspect of the present invention, the basic α-glucosidase is not limited to the α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2, but it is not limited to Dizosaccharomyces pombe (Schizosaccharo).
Any α-glucosidase derived from myces pombe) may be used. And, Zizosaccharomyces pombe (Schizosaccha
Among the active dissociative groups of α-glucosidase derived from romyces pombe), an amino acid containing a dissociative carboxyl group is replaced with another amino acid having no carboxyl group in its side chain. The amino acid substituted with another amino acid is, for example, the amino acid corresponding to the 481st aspartic acid in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. The α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing is also a dizosaccharomyces pombe (Schizosaccharomyces pombe).
Since it is an α-glucosidase derived from pombe), α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing
Dizosaccharomyces pombe other than glucosidase (Schi
α-glucosidase derived from zosaccharomyces pombe) also has a high homology with the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing and corresponds to the 481st aspartic acid in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. The amino acid to be used can be easily found.

【0014】アミノ酸の置換は、加水分解活性が野生型
の酵素、即ち、野生型のジゾサッカロミセスポンベ(Sc
hizosaccharomyces pombe)由来のα−グルコシダーゼ
に比較して10000分の1以下に低下するようにおこ
なう。また、側鎖にカルボキシル基を含まないアミノ酸
は、例えば、グリシンまたはアラニンであることができ
る。
Amino acid substitution is carried out by using a wild-type enzyme having a hydrolytic activity, that is, wild-type dizosaccharomyces pombe (Sc
hizosaccharomyces pombe) -derived α-glucosidase is reduced to 1 / 10,000 or less. Further, the amino acid having no carboxyl group in the side chain can be, for example, glycine or alanine.

【0015】上記本発明の改変酵素の調製法は常法によ
り調製することができる。例えば、配列番号2に示され
たアミノ酸配列を有するα−グルコシダーゼ遺伝子、ま
たは、ジゾサッカロミセスポンベ(Schizosaccharomyce
s pombe)由来のα−グルコシダーゼ遺伝子に、目標と
する解離型カルボキシル基を有するアミノ酸残基をポイ
ントミュテーションにより他のアミノ酸に置換すること
により調製できる。改変酵素は、これらの改変酵素を、
微生物を培養することにより調製し、その上清もしくは
菌体破砕物としても利用可能であるが、必要に応じて各
種クロマトグラフィーにて精製して用いることもでき
る。
The modified enzyme of the present invention can be prepared by a conventional method. For example, an α-glucosidase gene having the amino acid sequence shown in SEQ ID NO: 2 or a dizosaccharomyces pombe (Schizosaccharomyce
It can be prepared by substituting the target amino acid residue having a dissociative carboxyl group with another amino acid by point mutation in the α-glucosidase gene. Modification enzymes, these modification enzymes,
It can be prepared by culturing a microorganism, and can be used as a supernatant or a crushed product of the cells, but if necessary, it can be purified by various chromatography and used.

【0016】ジゾサッカロミセスポンベ(Schizosaccha
romyces pombe)由来のα−グルコシダーゼは、すでに
その精製方法や酵素化学的諸性質、糖転移反応について
千葉らにより報告されている(Chiba et al., Agric. B
iol. Chem. : 29, 540-547 (1965)、Chiba et al., Agr
ic. Biol. Chem. : 30, 536-540 (1966))。また、その
遺伝子も取得されており、活性解離基の同定も行なわれ
ている(日本農芸化学会誌72巻、1998年度大会講
演要旨集p.134)。このジゾサッカロミセスポンベ(Schi
zosaccharomyces pombe)由来のα−グルコシダーゼの改
変酵素の取得方法の具体例は、後述する実施例に示す。
Schizosaccha
The α-glucosidase derived from romyces pombe) has already been reported by Chiba et al. for its purification method, enzymatic chemical properties, and glycosyl transfer reaction (Chiba et al., Agric. B.
iol. Chem .: 29, 540-547 (1965), Chiba et al., Agr
ic. Biol. Chem .: 30, 536-540 (1966)). In addition, the gene has been obtained and the active dissociative group has been identified (Agricultural Chemical Society of Japan, Vol. 72, 1998 Annual Meeting Abstracts p.134). This Dizo Saccharomyces pombe (Schi
A specific example of the method for obtaining a modified enzyme of α-glucosidase derived from zosaccharomyces pombe) will be shown in Examples described later.

【0017】本発明は、上記本発明の改変α−グルコシ
ダーゼの存在下、グリコシド誘導体とβ−グルコシルフ
ロライドを反応させることを含むオリゴ糖の製造方法を
包含する。上記製造方法に使用されるβ−グルコシルフ
ロライドは、グルコシル供与体であって、これまでにも
酵素反応機構の解明を目的として利用されている。その
調製方法についてはペンタアセチルD−グルコースに無
水弗化水素を反応させて、2,3,4,6−テトラアセチル−
D−グルコシルフロライドを調製し、これから結晶化、
シリカゲルカラム、TLCなどを用いてα−体とβ−体を
分離し、ナトリウムメトキサイドを用いて脱アセチルし
て調製する方法や(Arch. Biolchem. Biophys.: 142, 3
82-393 (1971))、N−グルコシルトリアゾール誘導体を
用いる方法(Carbhydr. Res. : 327, 5-14 (2000))等
がある。また、試薬としてシグマアルドリッチジャパン
(株)より販売されている。
The present invention includes a method for producing an oligosaccharide, which comprises reacting a glycoside derivative with β-glucosyl fluoride in the presence of the modified α-glucosidase of the present invention. The β-glucosyl fluoride used in the above production method is a glucosyl donor and has been used so far for the purpose of elucidating the enzyme reaction mechanism. Regarding its preparation method, pentaacetyl D-glucose was reacted with anhydrous hydrogen fluoride to prepare 2,3,4,6-tetraacetyl-
D-glucosyl fluoride was prepared and crystallized from this.
A method in which α-form and β-form are separated using a silica gel column, TLC, etc., and deacetylated using sodium methoxide to prepare (Arch. Biolchem. Biophys .: 142, 3
82-393 (1971)) and a method using an N-glucosyltriazole derivative (Carbhydr. Res .: 327, 5-14 (2000)). Also, as a reagent, Sigma-Aldrich Japan
Sold by Co., Ltd.

【0018】グリコシド誘導体は、グルコシル受容体で
あり、グリコシド誘導体としては、特に限定はない。例
えば、非還元性末端側にグリコシル残基を有するもので
あれば良いが、より好ましくはpNP−グリコシドのよう
なアグリコンを有するグリコシドが好ましい。グリコシ
ド誘導体としては、上記以外に例えば、pNP−β−グル
コシド、pNP−α−キシロシド、pNP−α−マンノシド、
pNP-α−マルトシドを挙げることができる。
The glycoside derivative is a glucosyl acceptor, and the glycoside derivative is not particularly limited. For example, a glycoside having a glycosyl residue on the non-reducing terminal side may be used, but a glycoside having an aglycone such as pNP-glycoside is more preferable. As the glycoside derivative, other than the above, for example, pNP-β-glucoside, pNP-α-xyloside, pNP-α-mannoside,
Mention may be made of pNP-α-maltoside.

【0019】反応の条件は、例えば、以下のようするこ
とができる。 (1)グリコシド誘導体とβ−グルコシルフロライドのモ
ル比の範囲 グリコシド誘導体とβ−グルコシルフロライドのモル比
は、特に限定されるものではないが、グルコシル供与体
であるβ−グルコシルフロライドのモル比が高い方が好
ましく、例えば、1:3〜1:10などのモル比で反応
を行なえばよい。
The reaction conditions can be as follows, for example. (1) Range of molar ratio of glycoside derivative and β-glucosylfluoride The molar ratio of glycoside derivative and β-glucosylfluoride is not particularly limited, but the molar ratio of β-glucosylfluoride that is a glucosyl donor is not limited. The higher the ratio is, the better, for example, the reaction may be performed at a molar ratio of 1: 3 to 1:10.

【0020】(2)グリコシド誘導体またはβ−グルコシ
ルフロライドに対する改変α−グルコシダーゼ量の範囲 グリゴシド誘導体またはβ−グルコシルフロライドに対
する改変α−グルコシダーゼの添加量は、特に限定され
るものではなく、ごく少量の改変グルコシダーゼを含む
反応液でもその反応条件を調整することにより所望の反
応生成物を得ることができる。
(2) Range of modified α-glucosidase amount relative to glycoside derivative or β-glucosylfluoride The addition amount of the modified α-glucosidase relative to the glycoside derivative or β-glucosylfluoride is not particularly limited and is very small. A desired reaction product can be obtained by adjusting the reaction conditions even in the reaction solution containing the modified glucosidase of.

【0021】(3)反応液液中のグリコシド誘導体とβ−
グルコシルフロライドの濃度 反応液中のグリコシド誘導体とβ−グルコシルフロライ
ドの濃度は、グリコシド誘導体、β−グルコシルフロラ
イドが溶解する濃度であれば特に限定されるものではな
い。
(3) β- and glycoside derivative in the reaction solution
Concentration of glucosylfluoride The concentration of the glycoside derivative and β-glucosylfluoride in the reaction solution is not particularly limited as long as the concentration of the glycoside derivative and β-glucosylfluoride is dissolved.

【0022】(4)反応温度及び時間 反応温度は10℃〜60℃が好ましく、さらに好ましく
は、20℃〜30℃が好ましい。反応時間は特に限定さ
れるものではない。 (5)生成物の精製方法 成物の精製方法は、ゲルろ過、イオン交換、吸着などの
クロマトグラフィーや有機溶媒や塩類を用いた沈殿法な
ど従来より知られている糖質の精製方法を用いることが
できる。
(4) Reaction temperature and time The reaction temperature is preferably 10 ° C to 60 ° C, more preferably 20 ° C to 30 ° C. The reaction time is not particularly limited. (5) Purification method of product As the purification method of the product, a conventionally known method for purifying sugars such as chromatography such as gel filtration, ion exchange, and adsorption, or a precipitation method using an organic solvent or salts is used. be able to.

【0023】[0023]

【実施例】以下に本発明を、実施例を挙げて具体的に説
明するが、本発明は以下の実施例に限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0024】実施例1:改変酵素の調製α−グルコシダーゼの活性測定法 α−グルコシダーゼの活性測定は、以下の方法によって
行った。即ち、氷冷した試験管に0.1M酢酸緩衝液(pH4.5
) 200μlおよび50mM 酢酸緩衝液(pH4.5),0.05% トリト
ン(Triton) X-100に溶解した酵素溶液100μl を加え、3
5℃にて3分間保持した後、0.5%マルトース 200μlを添
加することにより反応開始とした。一定時間反応させた
後、2M Tris−HCl緩衝液(pH7.0)を1ml加え反応を停止し
た。基質のマルトースより遊離したグルコースをグルコ
スタット(Glucostat)試薬(グルコースAR−II発色剤、和
光純薬工業(株)製)にて発色させた後、波長505nmの吸収
を測定することによりグルコース量を定量した。なお、
1分間に1μmolの基質を加水分解する酵素活性を酵素1単
位と定義する。
Example 1: Preparation of modified enzyme Method for measuring activity of α-glucosidase The activity of α-glucosidase was measured by the following method. That is, 0.1M acetate buffer (pH 4.5
) Add 200 μl and 100 μl of enzyme solution dissolved in 50 mM acetate buffer (pH 4.5), 0.05% Triton X-100, and add 3
After holding at 5 ° C for 3 minutes, 200 µl of 0.5% maltose was added to start the reaction. After reacting for a certain period of time, 1 ml of 2M Tris-HCl buffer (pH 7.0) was added to stop the reaction. Glucose released from the substrate maltose glucostat (Glucostat) reagent (glucose AR-II color developing agent, manufactured by Wako Pure Chemical Industries, Ltd.) After the color was developed, the glucose content was measured by measuring the absorption at a wavelength of 505 nm. It was quantified. In addition,
Enzyme activity that hydrolyzes 1 μmol of substrate per minute is defined as 1 unit of enzyme.

【0025】SPG (G2444C)の作成 SPG (G2444C)を図5に示すスキームに従って作成した。
変異酵素発現ベクター構築をする際、変異の導入された
DNA断片をベクターへ戻す操作が煩雑であるため、配列
番号1に示すジゾサッカロミセスポンベ(Schizosaccharo
myces pombe)由来のα−グルコシダーゼ cDNAの2444番
目の塩基をアミノ酸置換の起こらないサイレント変異に
より(469Ser TCG(TCC)グアニンからシトシンに変換す
ることで、BamHI認識部位をメガプライマー PCR法によ
り変異を導入し設けた。即ちファーストPCRとして、ジ
ゾサッカロミセスポンベ(Schizosaccharomycespombe)の
cDNAのEcoRV (1224 nt)からPstI (2546 nt)のDNA断片
をブルースクリプト(Bluescript) II KS (ストラタジー
ン(STRATAGENE))にサブクローニングしたプラスミド10n
gを鋳型として、ポリメラーゼ1単位(東洋紡製、KOD DN
A polymerase)、プライマーにはBam (5'- ct ttt gga
tcg aat ggt act gt、 センスプライマー)、M13 リバー
ス(reverse)ユニバーサルプライマーをそれぞれ20pmol
用い、ポリメラーゼに添付されている緩衝液を用いて、
98 ℃、10秒間−53 ℃、2秒間− 74℃、30秒間の反応を
20サイクルを行った。PCR産物をQIAクイックPCR
精製キット(QIAquick PCR purification kit)(キアゲン
(QIAGEN))を用い精製し、メガプライマーとした。
Preparation of SPG (G2444C) SPG (G2444C) was prepared according to the scheme shown in FIG.
Mutation was introduced when constructing a mutant enzyme expression vector
Since the operation of returning the DNA fragment to the vector is complicated, the dizosaccharomyces pombe (Schizosaccharo
A mutation was introduced at the BamHI recognition site by the megaprimer PCR method by converting the 2444th base of the α-glucosidase cDNA derived from (myces pombe) by a silent mutation (469Ser TCG (TCC) guanine to cytosine by a silent mutation that does not cause amino acid substitution. In other words, as a first PCR, the number of Diazosaccharomyces pombe (Schizosaccharomyces pombe)
Plasmid 10n obtained by subcloning the PstI (2546 nt) DNA fragment from the cDNA EcoRV (1224 nt) into Bluescript II KS (Stratagene).
1 unit of polymerase using g as a template (TOYOBO, KOD DN
A polymerase), Bam (5'-ct ttt gga
20 pmol each of tcg aat ggt act gt, sense primer) and M13 reverse universal primer
Using the buffer provided with the polymerase,
Reaction at 98 ℃, 10 seconds −53 ℃, 2 seconds −74 ℃, 30 seconds
Twenty cycles were performed. QIA Quick PCR for PCR products
Purification kit (QIAquick PCR purification kit)
(QIAGEN)) and used as a mega primer.

【0026】セカンドPCRは、ポリメラーゼ1単位(東洋
紡製、KOD DNAポリメラーゼ)、鋳型としてEcoRVからPs
tIのDNA断片をブルースクリプト(Bluescript) II KS
(ストラタジーン(STRATAGENE))にサブクローニングした
ものを10 ng、メガプライマーとしてファーストPCR反応
液9μl、ポリメラーゼに添付されている緩衝液を用いて
94 ℃, 1分間−74℃, 2分間の反応を5サイクル行った。
74℃のときアンチセンスプライマーとして、プライマー
M13 ?20ユニバーサルプライマー20 pmolを加え、94
℃, 30 秒間−55 ℃, 30秒間− 74 ℃, 1分間の反応を2
0サイクルを行った。その結果、得られた増幅断片の変
異の導入、即ちBamHIサイトの導入をシーケンスにより
確認した。BamHIサイトの導入された断片をBglII (1415
nt)とPstIでジゾサッカロミセスポンベ(Schizosacchar
omyces pombe)由来のα−グルコシダーゼのcDNAに戻
し、これをSPG (G2444C)と名付けた。サイレント変異に
よる発現への影響のないことをジゾサッカロミセスポン
ベ(Schizosaccharomyces pombe)での発現系の粗抽出液
のmaltase活性で確認した(SPG/pYES形質転換体 2.6 U/
mg、SPG (G2444C)/pYES形質転換体 2.5 U/mg)。
In the second PCR, 1 unit of polymerase (TOYOBO, KOD DNA polymerase) is used, and EcoRV to Ps is used as a template.
Bluescript II KS of tI DNA fragment
10 ng of the subcloned (Stratagene), 9 μl of the fast PCR reaction solution as a mega primer, and the buffer solution attached to the polymerase
Five cycles of reaction at 94 ° C for 1 minute and -74 ° C for 2 minutes were performed.
As an antisense primer at 74 ℃,
M13? Add 20 pmol of 20 universal primer and add 94
Reaction at -55 ° C for 30 seconds, -74 ° C for 30 seconds, 1 minute
0 cycles were performed. As a result, introduction of mutation of the obtained amplified fragment, that is, introduction of BamHI site was confirmed by sequence. BglHI (1415
nt) and PstI for Zizosaccharomyces pombe (Schizosacchar
The cDNA of α-glucosidase derived from omyces pombe) was reverted to SPG (G2444C). It was confirmed by the maltase activity of the crude extract of the expression system in Schizosaccharomyces pombe that the silent mutation had no effect on the expression (SPG / pYES transformant 2.6 U /
mg, SPG (G2444C) / pYES transformant 2.5 U / mg).

【0027】D481G変異型酵素の作成 D481G変異型酵素は、SPG (G2444C)のDNA断片の一部(Ba
mHI,2439 nt ? EcoRI, 3315 nt)をベクター ブルース
クリプト(Bluescript) II SK (ストラタジーン(STRATAG
ENE))のBamHIとEcoRIサイトに連結したプラスミドBamHI
? EcoRI / SKを鋳型として、メガプライマー法により
作成した。即ち、ファーストPCRとしてプラスミドBamHI
? EcoRI / SK 10ngを鋳型として、ポリメラーゼ1単位
(東洋紡製、KOD DNA ポリメラーゼ)、センスプライマ
ーM13 reverseユニバーサルプライマー(g gaa aca gct
atg acc atg)20 pmol、アンチセンスプライマーD481G
(5'-cgc aga acg agc tcg gtt cgt tca ttc cag tcc a
aa t) 20 pmolにポリメラーゼに添付されている緩衝液
を用いて、98 ℃, 10秒間−55℃, 2秒間− 74℃, 30秒
間の反応を20サイクルを行った。尚、プライマーD481G
は、配列番号2(一次配列)の481番目のアスパラギン酸
をグリシンに変換するよう、配列番号1(cDNA塩基配列)
の2479番目のアデニンをグアニンに変換するようにアン
チセンスに設計した。得られた173 bpの増幅断片は、Q
IAクイックPCR精製キット(QIAquick PCR purifica
tion kit)(キアゲン(QIAGEN))を用い精製した。精製し
た増幅断片は、配列番号1(cDNA塩基配列)から予想され
るプライマーの位置関係と一致し、その塩基配列が、配
列番号2(一次配列) の481番目のアスパラギン酸をグ
リシンに変換するよう変換されていたため、メガプライ
マーとした。
Preparation of D481G mutant enzyme The D481G mutant enzyme is a part of the DNA fragment of SPG (G2444C) (Ba
mHI, 2439 nt? EcoRI, 3315 nt) Vector Bluescript II SK (Stratagene (STRATAG
ENE)) BamHI and plasmid BamHI linked to EcoRI site
? It was prepared by the megaprimer method using EcoRI / SK as a template. That is, the plasmid BamHI is used as the first PCR.
? EcoRI / SK 10 ng as a template, 1 unit of polymerase (Toyobo, KOD DNA polymerase), sense primer M13 reverse universal primer (g gaa aca gct
atg acc atg) 20 pmol, antisense primer D481G
(5'-cgc aga acg agc tcg gtt cgt tca ttc cag tcc a
aat) 20 pmol of the buffer attached to the polymerase was used to perform 20 cycles of reaction at 98 ° C for 10 seconds at -55 ° C for 2 seconds at -74 ° C for 30 seconds. In addition, primer D481G
Is SEQ ID NO: 1 (cDNA nucleotide sequence) so that the 481st aspartic acid of SEQ ID NO: 2 (primary sequence) is converted to glycine.
Was designed to convert the adenine at position 2479 into guanine. The 173 bp amplified fragment obtained was Q
IA Quick PCR Purification Kit (QIAquick PCR purifica
purification kit (QIAGEN). The purified amplified fragment matches the positional relationship of the primer expected from SEQ ID NO: 1 (cDNA nucleotide sequence), and the nucleotide sequence converts the aspartic acid at position 481 of SEQ ID NO: 2 (primary sequence) into glycine. Since it was converted, it was used as a mega primer.

【0028】セカンドPCRは、ポリメラーゼ1単位(東
洋紡製、KOD DNAポリメラーゼ)、鋳型としてBamHI ?
EcoRI / SKを10 ng、メガプライマーとしてファーストP
CR反応液9μl、ポリメラーゼに添付されている緩衝液を
用いて94 ℃, 1分間−74℃,2分間の反応を5サイクル行
った。74℃のときアンチセンスプライマーとして、プラ
イマーM13 ?20ユニバーサルプライマー(gta aaa cga
cgg cca gt)20 pmolを加え、94 ℃、30 秒間−55 ℃、
30秒間− 74 ℃、1分間の反応を20サイクルを行った。
その結果、得られた1084bpの増幅断片は、配列番号1(c
DNA塩基配列)から予想されるプライマーの位置関係と一
致し、その塩基配列が、配列番号2(一次配列)の481番
目のアスパラギン酸をグリシンに変換するようシーケン
スにより確認されたため、変異型ジゾサッカロミセスポ
ンベ(Schizosaccharomyces pombe)由来のα−グルコシ
ダーゼのcDNA断片と同定した。このcDNA断片と、ベクタ
ーpPICZA(インビトロゲン(Invitrogen)製)のAOX1プロ
モーター下流に野生型ジゾサッカロミセスポンベ(Schiz
osaccharomyces pombe)由来のα−グルコシダーゼのcDN
Aが連結されたプラスミドSPG / pPICZのcDNA部分のBamH
IからEcoRI部分を入れ替えることで、D481G変異型酵素
発現ベクターSPG (D481G) / pPICZを得た。
In the second PCR, 1 unit of polymerase (manufactured by Toyobo, KOD DNA polymerase) and BamHI?
10 ng of EcoRI / SK, Fast P as mega primer
Using the CR reaction solution (9 µl) and the buffer solution attached to the polymerase, 94 ° C, 1 minute-74 ° C, 2 minutes reaction was performed for 5 cycles. At 74 ° C, primer M13? 20 universal primer (gta aaa cga
cgg cca gt) 20 pmol, 94 ℃, 30 seconds at −55 ℃,
Twenty cycles of 1 minute reaction at −74 ° C. for 30 seconds were performed.
As a result, the obtained amplified fragment of 1084 bp was SEQ ID NO: 1 (c
DNA sequence) and the nucleotide sequence was confirmed to convert the aspartic acid at position 481 of SEQ ID NO: 2 (primary sequence) into glycine. It was identified as a cDNA fragment of α-glucosidase derived from Saccharomyces pombe. This cDNA fragment and the vector pPICZA (manufactured by Invitrogen) were placed downstream of the AOX1 promoter in the wild type Dizosaccharomyces pombe (Schiz
cDN of α-glucosidase from osaccharomyces pombe)
BamH of cDNA part of plasmid SPG / pPICZ with A ligation
By replacing the EcoRI part from I, a D481G mutant enzyme expression vector SPG (D481G) / pPICZ was obtained.

【0029】形質転換体の培養及び酵素の誘導 発現ベクターpPICZA(インビトロゲン(Invitrogen)製)
のAOX1プロモーター下流に野生型α−グルコシダーゼの
cDNA断片を連結したプラスミドSPG / pPICZと変異型α
−グルコシダーゼのcDNA断片を連結したプラスミドSPG
(D481G) / pPICZをピチア・パストリス(Pichia pastori
s)GS115株へ電気穿孔法によって導入し、ゼオシン(zeoc
in)耐性を選択マーカーとしてそれぞれ形質転換体wt SP
G / PPとd481g SPG / PPを得た。
Culture of transformant and induction of enzyme Expression vector pPICZA (manufactured by Invitrogen)
Of the wild-type α-glucosidase downstream of the AOX1 promoter of
Plasmid SPG / pPICZ ligated with cDNA fragment and mutant α
-A plasmid SPG ligated with a glucosidase cDNA fragment
(D481G) / pPICZ to Pichia pastori (Pichia pastori
s) was introduced into GS115 strain by electroporation, and zeocin (zeoc
in) Resistance as a selection marker Transformants wt SP
G / PP and d481g SPG / PP were obtained.

【0030】それぞれの形質転換体の種菌体は、2mlのB
MGY培地[1% バクト酵母抽出物(Bacto yeast extract)
(ディフコ(Difco))、2% バクトペプトン(Bacto pepton
e) (ディフコ(Difco))、100mM リン酸カルシウム緩衝液
pH6.0, 1.34% 酵母にトロゲン塩基(yeast nitrogen ba
se)(ディフコ(Difco))、 0.00004% ビオチン、1%グリ
セロール]に植菌し、30℃で20時間振盪培養して得た。
この種菌体800 μlを800mlのBMGY培地に植菌後、30℃で
24時間振盪培養し、菌体濁度(600nm)が8.8になったとこ
ろで、25℃にて1,500×g、5分間遠心分離することによ
り集菌し、その一部を1LのBMMY誘導培地[1% バクト酵
母抽出物(Bacto yeast extract)、2% ポリペプトン(pol
ypeptone)、100mM リン酸カルシウム緩衝液 pH6.0、1.3
4% 酵母ニトロゲン塩基(yeast nitrogen base)、0.0000
4% ビオチン、1%メタノール]に移し、組換え酵素の誘
導を行った。なお、BMMY誘導培地に植え換えた直後の菌
体濁度(600nm)は3.5であった。24時間ごとに終濃度0.5
%になるよう培地にメタノールを添加し、102時間誘導培
養を行った。その後、4℃にて5,500×g、5 分間遠心分
離により培養上清を回収した。このときの菌体濁度(600
nm)は15.8であった。形質転換体wt SPG / PPの培養上清
の活性は、全活性900 U、比活性11.8 U / mgであったの
に対して、形質転換体d481g SPG / PPの培養上清には活
性が見られなかった。なお、タンパク質の定量をブラッ
ドフォード(Bradford)法によって行った。
The inoculum of each transformant was 2 ml of B
MGY medium [1% Bacto yeast extract]
(Difco), 2% Bacto pepton
e) (Difco), 100 mM calcium phosphate buffer
pH6.0, 1.34% Yeast nitrogen ba
se) (Difco), 0.00004% biotin, 1% glycerol], and cultured by shaking at 30 ° C. for 20 hours.
After inoculating 800 μl of this inoculum into 800 ml of BMGY medium,
After culturing with shaking for 24 hours, when the cell turbidity (600 nm) reached 8.8, the cells were collected by centrifugation at 25 ° C for 1,500 xg for 5 minutes, and a part of them was collected in 1 L of BMMY induction medium [1 % Bacto yeast extract, 2% polypeptone (pol
ypeptone), 100 mM calcium phosphate buffer pH 6.0, 1.3
4% yeast nitrogen base, 0.0000
4% biotin, 1% methanol] to induce the recombinant enzyme. The cell turbidity (600 nm) immediately after transplanting to the BMMY induction medium was 3.5. Final concentration 0.5 every 24 hours
Methanol was added to the medium so that the concentration became 100%, and induction culture was performed for 102 hours. Then, the culture supernatant was recovered by centrifugation at 4,500 xg for 5 minutes at 4 ° C. Cell turbidity at this time (600
nm) was 15.8. The activity of the transformant wt SPG / PP culture supernatant was 900 U in total activity and 11.8 U / mg in specific activity, whereas the activity was found in the culture supernatant of transformant d481g SPG / PP. I couldn't do it. The protein was quantified by the Bradford method.

【0031】酵素の精製方法 形質転換体wt SPG / PPおよびd481g SPG / PPの培養上
清925 mlに、あらかじめ−20℃に冷やしておいた1,850
mlのエタノールを攪拌しながら徐々に加え、エタノール
沈殿を行った。得られた沈殿を4℃にて15,000×g、30分
間遠心分離することにより回収し、約100 mlの溶解用緩
衝液(500 mM 酢酸緩衝液 (pH 4.5))を加え、一晩攪拌
し沈殿を溶解した。溶解後4℃にて15,000×g、30分間の
遠心分離により上清を回収した。残った沈殿へ再度溶解
用緩衝液約30 mlを添加攪拌し、同様に遠心分離を行い
上清を回収した。得られた2つのエタノール沈殿溶解液
をそれぞれ20 mM 酢酸緩衝液 (pH 4.5)に対して透析し
た。野生型酵素の回収した溶解液には、560単位の活性
を回収し、比活性は53.8 単位/mgであった。タンパク質
の定量をブラッドフォード(Bradford)法により行った。
また、変異型酵素は、活性は確認されなかったが、SDS
−PAGEにより予想された180 kDaのタンパク質が存在す
ることを確認し、タンパク量 約12 mgであった。これら
を粗酵素液とした。
Method for Purifying Enzyme 925 ml of the culture supernatant of transformants wt SPG / PP and d481 g SPG / PP was previously cooled to −20 ° C.
Ethanol precipitation was carried out by gradually adding ml of ethanol while stirring. The resulting precipitate was recovered by centrifugation at 15,000 xg for 30 minutes at 4 ° C, added with about 100 ml of lysis buffer (500 mM acetate buffer (pH 4.5)), and stirred overnight to allow precipitation. Was dissolved. After dissolution, the supernatant was recovered by centrifugation at 15,000 xg for 30 minutes at 4 ° C. About 30 ml of the lysis buffer was added again to the remaining precipitate, and the mixture was stirred and centrifuged in the same manner to collect the supernatant. Each of the obtained two ethanol precipitate dissolution solutions was dialyzed against a 20 mM acetate buffer solution (pH 4.5). 560 units of activity were recovered in the recovered lysate of the wild-type enzyme, and the specific activity was 53.8 units / mg. Protein quantification was performed by the Bradford method.
The activity of the mutant enzyme was not confirmed, but SDS
-It was confirmed by PAGE that the expected protein of 180 kDa was present, and the protein amount was about 12 mg. These were used as crude enzyme solutions.

【0032】得られた野生型の粗酵素液を20 mM 酢酸緩
衝液 (pH 4.5)で平衡化したDEAE−セファロース(Sephar
ose) CL-6Bカラム(φ 1.8 x 30 cm, 76 ml)に供し吸
着させた。0〜1 MのNaCl直線濃度勾配により溶出を行う
ことにより、陰イオン交換カラムクロマトグラフィーを
行った。21 mlの活性画分を回収し2 mlにまで濃縮し、5
0 mM NaClを含む50 mM 酢酸緩衝液 (pH 4.5)に対して透
析した。次に、50 mMNaClを含む50 mM 酢酸緩衝液(pH
4.5)で平衡化したSepharose 6Bカラム(φ 1.6 x 102 c
m, 204 ml)に濃縮・透析した酵素溶液を供しゲル濾過
カラムクロマトグラフィーを行った。得られた20 mlの
活性画分を回収し、20 mM 酢酸緩衝液 (pH 4.5)に対し
て透析した。透析した酵素溶液を20 mM 酢酸緩衝液(pH
4.5)で平衡化したDEAE−セファロース(Sepharose) CL-6
Bカラム(φ 1.4 x 9 cm, 14 ml)に吸着させ、0〜0.6
MのNaCl直線濃度勾配により溶出を行うことにより、再
度陰イオン交換カラムクロマトグラフィー行った。この
とき、タンパク質の溶出パタンは連続した二つのピーク
として得られた。活性画分は1つめのピークに含まれ、
後半のピークは夾雑タンパクを含むことをSDS-PAGEによ
り確認した。後半のピーク由来の夾雑タンパクを除くた
め、活性画分の頂点から前半を比活性を指標に3ml回収
した。この精製酵素画分は、204単位の活性を回収し、
比活性は104 U/mg、回収率23%であった。また、変異型
の粗酵素液は、野生型酵素と同様なカラムクロマトグラ
フィーにより精製を行い、3 mgを回収した。ただし、酵
素活性がないため精製の指標はSDS−PAGEにより行っ
た。なお、いずれの酵素の精製にも、特に記載がない限
りタンパク質はUV法により定量した。
The obtained wild-type crude enzyme solution was equilibrated with 20 mM acetate buffer (pH 4.5), and DEAE-Sepharose (Sepharose
ose) CL-6B column (φ 1.8 x 30 cm, 76 ml) for adsorption. Anion exchange column chromatography was performed by elution with a linear gradient of NaCl from 0 to 1 M. Collect 21 ml of the active fraction and concentrate to 2 ml.
It was dialyzed against 50 mM acetate buffer (pH 4.5) containing 0 mM NaCl. Next, 50 mM acetate buffer containing 50 mM NaCl (pH
4.5) equilibrated with Sepharose 6B column (φ 1.6 x 102 c
m, 204 ml) was provided with the concentrated and dialyzed enzyme solution and subjected to gel filtration column chromatography. The obtained 20 ml of active fraction was collected and dialyzed against 20 mM acetate buffer (pH 4.5). The dialyzed enzyme solution was added to 20 mM acetate buffer (pH
4.5) DEAE-Sepharose CL-6 equilibrated with
Adsorb to B column (φ 1.4 x 9 cm, 14 ml), 0 to 0.6
Anion exchange column chromatography was performed again by performing elution with a linear concentration gradient of M NaCl. At this time, the protein elution pattern was obtained as two consecutive peaks. The active fraction is contained in the first peak,
It was confirmed by SDS-PAGE that the peak in the latter half contained a contaminant protein. To remove contaminating proteins derived from the latter half of the peak, 3 ml was collected from the top of the active fraction using the specific activity as an index. This purified enzyme fraction recovered 204 units of activity,
The specific activity was 104 U / mg, and the recovery rate was 23%. The mutant crude enzyme solution was purified by the same column chromatography as the wild-type enzyme, and 3 mg was recovered. However, since there was no enzyme activity, purification was performed by SDS-PAGE. In the purification of any enzyme, protein was quantified by the UV method unless otherwise specified.

【0033】実施例2:オリゴ糖の調製 1Mの酢酸緩衝液(pH 4.5)0.1ml、260μ
Mの実施例1で調製した改変酵素0.5ml、10mM
pNP−α−グルコシド1ml、55mMβ−グルコシ
ルフロライド(シグマアルドリッチジャパン(株)製)
0.9mlを混合して、30℃にて2〜20時間反応を
行なった。このサンプルを、薄層クロマトグラフィーに
より分析した結果を図1に示した。薄層板はシリカゲル
60(メルク(Merck)社製)を用い、標準サンプル
としてグルコースおよびマルトオリゴ糖、pNP−グル
コシド及びpNP−マルトシドを、更にグルコシル供与
体として用いたβ−グルコシルフロライド、上記反応系
のうち改変酵素を除いたものとともに、反応液を添着
し、1-ブタノール:2-プロパノール:水=10:5:
4(v/v/v)の展開溶媒にて2回展開した後、アニスア
ルデヒド試薬を用いて発色させた。その結果、反応液に
おいてpNP−マルトシドとほぼ同様な位置に反応生成
物のスポットが認められた。そこで、この反応液をOD
Sカラム(YMC-Pack ODS-AP AP-303)を用いて、HPL
Cにて分析を行った。移動相には9%アセトニトリルを
用い、カラム温度50℃、流速1ml/minで、UV検
出器を用いて303nmにおける吸収を測定した。その
結果を図2に示した。反応液中には3つのピークが認め
られ、溶出順にピーク1〜3とした。
Example 2: Preparation of oligosaccharides 0.1 ml of 1M acetate buffer (pH 4.5), 260μ
M modified enzyme prepared in Example 1 of M 0.5 ml, 10 mM
1 ml of pNP-α-glucoside, 55 mM β-glucosyl fluoride (manufactured by Sigma-Aldrich Japan Co., Ltd.)
0.9 ml was mixed and reacted at 30 ° C. for 2 to 20 hours. The result of analyzing this sample by thin layer chromatography is shown in FIG. Silica gel 60 (manufactured by Merck) is used as the thin layer plate, β-glucosyl fluoride using glucose and maltooligosaccharides, pNP-glucoside and pNP-maltoside as standard samples, and β-glucosyl fluoride as the glucosyl donor, the above reaction system. The reaction solution was affixed together with the modified enzyme except that 1-butanol: 2-propanol: water = 10: 5:
After developing twice with a developing solvent of 4 (v / v / v), color was developed using an anisaldehyde reagent. As a result, a spot of the reaction product was observed in the reaction solution at a position almost similar to that of pNP-maltoside. Therefore, this reaction solution is OD
HPL using S column (YMC-Pack ODS-AP AP-303)
Analysis was performed at C. The mobile phase was 9% acetonitrile, and the absorption at 303 nm was measured by using a UV detector at a column temperature of 50 ° C. and a flow rate of 1 ml / min. The results are shown in Fig. 2. Three peaks were observed in the reaction solution, and the peaks were designated as peaks 1 to 3 in the order of elution.

【0034】オリゴ糖の解析 上記のHPLC分析で認められたピーク1〜3を分取
し、薄層クロマトグラフィーにより分析した結果を図3
に示した。薄層板はシリカゲル60(Merck社製)
を用い、標準サンプルとしてグルコースおよびマルトオ
リゴ糖、pNP−グルコシド、pNP−マルトシドおよ
びpNP−マルトトリオシドを、サンプルとしてピーク
1〜3を添着し、1-ブタノール:2-プロパノール:水
=10:5:4(v/v/v)の展開溶媒にて2回展開した
後、アニスアルデヒド試薬を用いて発色させた。その結
果、ピーク3はグルコシル受容体として用いたpNP−
グルコシドと、ピーク2はpNP−マルトシドとほぼ同
様な移動度を示した。ピーク1については標準サンプル
と一致する移動度を示すものはなかった。
Analysis of oligosaccharides Peaks 1 to 3 observed in the above HPLC analysis were collected and analyzed by thin layer chromatography.
It was shown to. Thin layer plate is silica gel 60 (Merck)
And glucose and maltooligosaccharides, pNP-glucoside, pNP-maltoside and pNP-maltotrioside as standard samples, peaks 1 to 3 were attached, and 1-butanol: 2-propanol: water = 10: 5: After developing twice with a developing solvent of 4 (v / v / v), color was developed using an anisaldehyde reagent. As a result, peak 3 was pNP- used as a glucosyl acceptor.
Glucoside and peak 2 showed almost the same mobility as pNP-maltoside. No peak 1 showed a mobility consistent with the standard sample.

【0035】ピーク1〜3のサンプルに、0.1%TF
Aを添加して、100℃にて3時間処理を行い、部分加
水分解したサンプルを上記と同様に薄層クロマトグラフ
ィーで分析した結果を図4に示した。薄層板はシリカゲ
ル60(Merck社製)を用い、標準サンプルとして
グルコースおよびマルトオリゴ糖、イソマルトース、p
NP−グルコシド、pNP−マルトシドおよびpNP−
マルトトリオシドを、サンプルとしてピーク1〜3を部
分加水分解したものを添着し、2−プロパノール:1−
ブタノール:水=12:3:4(v/v/v)の展開溶媒に
て添加した後、アニスアルデヒド試薬を用いて発色させ
た。その結果から、ピーク1はpNP−イソマルトシ
ド、ピーク2はpNP−マルトシド、ピーク3は未反応
のpNP−グルコシドと同定された。以上の構造解析よ
りピーク1から3の紫外部吸収と分子量の比率、実施例
2のHPLC分析より、オリゴ糖生成物の生成量を求め
た結果、その生成量は70%であった。
0.1% TF was added to the samples of peaks 1 to 3.
A was added and treated at 100 ° C. for 3 hours, and the partially hydrolyzed sample was analyzed by thin layer chromatography in the same manner as above, and the results are shown in FIG. Silica gel 60 (manufactured by Merck) is used as the thin layer plate, and glucose and maltooligosaccharide, isomaltose, p are used as standard samples.
NP-glucoside, pNP-maltoside and pNP-
As a sample, maltotrioside was partially hydrolyzed from peaks 1 to 3, and 2-propanol: 1-
After addition with a developing solvent of butanol: water = 12: 3: 4 (v / v / v), color was developed using an anisaldehyde reagent. From the results, peak 1 was identified as pNP-isomaltoside, peak 2 was identified as pNP-maltoside, and peak 3 was identified as unreacted pNP-glucoside. The ratio of the ultraviolet absorption of peaks 1 to 3 and the molecular weight was determined from the above structural analysis, and the amount of oligosaccharide product produced was determined from the HPLC analysis of Example 2. As a result, the amount produced was 70%.

【0036】図1は、反応液を薄層クロマトグラフィー
で分析したものであり、1がグルコースをマルトオリゴ
糖の標準サンプルを、2が反応液を、3が反応系から改
変酵素を除いた液を、4がグルコシル供与体として用い
たβ−グルコシルフロライドを、5がpNP−グルコシ
ドとpNP−マルトシドの標準サンプルを添着して分析
したものである。図2は、ODSカラムを用いてHPL
C分析を行った際の、クロマトグラムを示した。図3
は、ピーク1〜3を薄層クロマトグラフィーで分析した
ものであり、1がグルコースをマルトオリゴ糖の標準サ
ンプルを、2がピーク1を、3がピーク2を、4がピー
ク3を、5がpNP−グルコシド、pNP−マルトシド
とpNP−マルトトリオシドの標準サンプルを添着して
分析したものである。図4は、ピーク1〜3を部分加水
分解したものを薄層クロマトグラフィーで分析したもの
であり、1がグルコースをマルトオリゴ糖の標準サンプ
ルを、2がイソマルトースを、3がピーク1の部分加水
分解物を、4がピーク2の部分加水分解物を、5がピー
ク3の部分加水分解物を、6がpNP−グルコシドの部
分加水分解物を、7がpNP−マルトシドの部分加水分
解物を、8がpNP−マルトトリオシドの部分加水分解
物を、9がpNP−グルコシド、pNP−マルトシドp
NP−マルトトリオシドの標準サンプルを添着して分析
したものである。
FIG. 1 shows an analysis of the reaction solution by thin layer chromatography. 1 is a standard sample of glucose and maltooligosaccharide, 2 is a reaction solution, and 3 is a solution obtained by removing the modifying enzyme from the reaction system. 4 is the β-glucosyl fluoride used as the glucosyl donor, and 5 is the analysis by attaching a standard sample of pNP-glucoside and pNP-maltoside. Figure 2 shows the HPL using an ODS column.
The chromatogram when C analysis was performed is shown. Figure 3
Is a thin layer chromatography analysis of peaks 1 to 3, in which 1 is a standard sample of maltooligosaccharide containing glucose, 2 is peak 1, 3 is peak 2, 4 is peak 3 and 5 is pNP. -A standard sample of glucoside, pNP-maltoside and pNP-maltotrioside was attached and analyzed. FIG. 4 shows an analysis of thin-layer chromatography of partially hydrolyzed peaks 1 to 3, wherein 1 is a standard sample of maltooligosaccharide for glucose, 2 is isomaltose, and 3 is partial hydrolysis of peak 1. Decomposition products, 4 is a partial hydrolysis product of peak 2, 5 is a partial hydrolysis product of peak 3, 6 is a partial hydrolysis product of pNP-glucoside, 7 is a partial hydrolysis product of pNP-maltoside, 8 is a partial hydrolyzate of pNP-maltotrioside, 9 is pNP-glucoside, pNP-maltoside p
This is an analysis in which a standard sample of NP-maltotrioside was attached.

【0037】[0037]

【発明の効果】以上説明したように、本発明の改変酵素
を用いてβ−グルコシルフロライドをグルコシル供与体
として用いて、オリゴ糖が合成できることが明らかとな
り、この改変酵素は加水分解活性を示さないことから、
合成されたオリゴ糖は加水分解されることなく反応系に
蓄積される。このような反応によりオリゴ糖や配糖体を
合成させることは、工業的な利用価値も高いものであ
る。
As described above, it was revealed that oligosaccharides can be synthesized by using β-glucosyl fluoride as a glucosyl donor using the modifying enzyme of the present invention, and this modifying enzyme shows hydrolytic activity. Because there is no
The synthesized oligosaccharide is accumulated in the reaction system without being hydrolyzed. The synthesis of oligosaccharides and glycosides by such a reaction has high industrial utility value.

【配列表】 SEQUENCE LISTING <110> Nihon Shokuhin Kako Co., Ltd. <120> Modified α-glucosidase and a process for preparation oligo- sacch aride <130> A15089H <160> 5 <210> 1 <211> 4176 <212> DNA <213> Schizosaccharomyces pombe <400> 1 ataagtcaag tgaatacctc gcgccttttt ggttctaagt tttcatcaac ttttttgatc 60 cgaaatcttc cagtgtctgt actctatcgg taacacagtt gggtataact caatagtttt 120 catactgttt tctcctgtga ttacaccact ccctttatta aaaccaagca atatctgttc 180 cactagaaca gaagtgctct caaaccttcc acacctttaa tttattttgt taagttttga 240 ttctttgcta cttgtttttt tgtcctcccc ccacatccgc cttagtaagt ctccccacat 300 tgcaaaagaa acgagtcgat tgattccatc cccacgagaa aatcgatcca ttttccaacc 360 tatcgcccta ctttttttac aaaaaagtta ctaaacgttg ggtttgatta tctttttttt 420 tgcttttaga ttgattcgat tcgacttggc tttcaaaggc tttacccatc aaatcaatta 480 atcaaggctt ttcgcttcct cctcgttctt tgcaccttca agcgaacata cacttcgttt 540 tgcaaaaagt gctaagtaac acaagctaca aaagtttctc ccccactttt ataaggttcg 600 cttagccgct cttaattacg tcgttttgga cttgattggt taatcctacc tcttaccttt 660 ttttgggttt cgctcctttt taaaacgcgc gtttaaacaa accctttcaa gcttttcgtg 720 aaagagcttt tctttcctaa cttactatat atatacatac acacacacat atatatatat 780 ataacttttt atttatattg aaaaaaaaaa cttggacaag aaagtctaca attctattgt 840 tgtagttctt gcttaatttt ttgtctgtct cttaaaaccc tccttttctt tacgatttcg 900 cctctttaaa ccgcccttct attgccaaat tgcctatttg gttaatcttt tccattcttt 960 ttctctacga ttctttttag ttggtacttt gatttttctt aaaacttttt gatctctttt 1020 ttgttttttt tttaacgatg atgatttcta ctgcctacca atctctattt ttaactgctc 1080 tgttttcagc aatctcgatt gctgtcggta acgtctacca aactttaaat gtcattggtg 1140 atcgcaatgt cactatccct accaatggta tccctcaacg cttatccgta tatgacccat 1200 atcgcggtgt aaattgtcaa ggatatcaag ctgttaacat atctgagtca caaaatggcg 1260 ttactgccta tctcgcacta ctcggcgagc cttgctatgc ctatggtact gattacccat 1320 tgttgttcct caacgtcaca tatgaggaag ccgaccgagt tcatatatca atcaaagacg 1380 ctaataacac tcaattccaa tttaccagta ggaaagatct ttgggatgct cccttatatt 1440 caccttctta caataacaca aaccttctgt acaacttttc gtacaatgcc aatcctttcg 1500 aattttgggt tacacgtaag agcgatggtg aagttttatt tgatacacgc ggacagaaat 1560 tggttttcga agatcagtat attgagttaa ctactaatat ggttgaaaat tataatcttt 1620 atggtctcgc tgaaaccatc catggtttac gtctgggaaa taacttaacc cgtacctttt 1680 gggctaatga tgaagctagc cccgtggacc aaaacatgta cggaagtcat ccatactatt 1740 tagaacaaag atacaaggcg gatggtataa attcaacttt gaacgaaacc acttatactt 1800 cttcttctca tggtgttctt atgcttacag ctaatggaat ggatgttctt ttgcgccaag 1860 attatcttca gtatcgaatg atcggtggtg ttatcgacct ttttgtatac agtggtagca 1920 ctgagagtcc caaggagact gtcaagcaat tcgttcaatc cattggaaag cctgctatgc 1980 atcaatattg gacattgggt taccactcat gtcgttgggg ttacacaaat atcacagaaa 2040 tcatggacgt tcgtcaaaat tacattgatg cagacattcc agtggaaacc ttttggtctg 2100 atattgatta catggagaaa tatagagatt ttaccgttga ccctgtttct tattcaaagt 2160 cagatatgca aacatttttc agtgatttgg taagcaatca tcagcattac gttccaatca 2220 ttgatgctgc gatttatgcc gcaaacccct acaatcacac tgacgactct tattatccat 2280 actatgcagg cgttgaaaag gacattttct taaaaaatcc taatggaagt atctacattg 2340 gtgcggtttg gccaggattc actgctttcc ctgatttcac caatcccgat gtggttgact 2400 attggaaaga ctgtcttatc aaccttactt atgcttttgg atcgaatggt actgttccat 2460 tcagtggaat ttggactgat atgaacgaac cctcttcgtt ctgcgtgggc tcttgtggga 2520 gtgctatgat tgacttaaac cctgcagagc ccttggtcgg aatttcaaag cagtattcca 2580 tcccagaagg atttaacgtt tccaatgtga ctgagtatag ttctgcttac agtgcttcac 2640 ttagcaacta ctatgccact gcaacatcat cggtgttcca aattgtttca ccaactgcta 2700 ctccattagg tttgaagcca gattacaaca ttaactggcc cccttatgct attaacaatg 2760 aacaaggaaa tcatgatatt gccaatcaca ttgtaagccc caatgcgacc actcatgatg 2820 gaacccaacg ttacgatatt ttcaacatgt atggttatgg tgagacaaag gtctcatacg 2880 cagctctaac ccaaatttct cctaatgaac gaccctttat cttgagtcgt tctaccttct 2940 tgggatctgg agtctatggt gcacattggt tgggtgataa tcattctcta tggtctaaca 3000 tgttcttctc catttctgga atgatcgttt ttaacatgat gggtattcca atggtaggag 3060 ctgatgtttg tggtttcctt ggtgattcag atgaagaact ttgctctcgt tggatggcta 3120 tgggtgcttt ttcgccattc tatagaaatc ataacaacat ttaccaaatc tcacaagagc 3180 cctacacatg gtcttctgtt gctgaggcct cacgtcgtgc tatgtacatt cgttattctt 3240 tactccctta ctggtatact atcatggcta aggcatccca agatggcaca cctgccctac 3300 gtgctttgtt cgttgaattc cccaacgatc ctactctagc agacgttgac cgtcaattca 3360 tggtaggcga ctctctattg gtgacacctg tcttggagcc taatgttgaa tacgttcaag 3420 gtgttttccc tggtgacaac agcactgtat ggtatgactg gtacaaccac actgaaattg 3480 ttcgtcaata caacgaaaat gttactctgt acgctccttt ggaacacatc aatgtcgcta 3540 ttcgtggtgg tagtgttctt cccatgcaac aaccttcgct cactacttat gaaagtcgtc 3600 aaaatccatt caacctcctc gtcgctttgg atagagatgg ttctgctact ggtgagcttt 3660 accttgatga tggtgtttcc attgagctaa acgctacact ttccgttagc ttcacattta 3720 gtgatggtgt tttgagtgcc gttccaactg gcagctacga agttagccaa cccttggcca 3780 acgtaacgat ccttggtctc actgaatccc ctagttcaat caccttgaat ggacaaaacg 3840 tctcctcctt ccagtactct aacgatactg aggaattgct aattaccggt ctacagaaca 3900 ttacttcctc tggtgcattt gccaacagct ggaatcttac tttgtagtcg ctctcgcttc 3960 acccgatttt tcaccggcaa tccaggaacc gagcactaat taacagtcta gtttgttgca 4020 tctagcaact ctcgagatgc ttgtagtata tggaataaac ttacagtcat tgttagtcaa 4080 ttcaataaat aaactacttt ttctaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4140 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 4176 <210> 2 <211> 969 <212> amino acid <213> Schizosaccharomyces pombe <400> 2 Met Met Ile Ser Thr Ala Tyr Gln Ser Leu Phe Leu Thr Ala Leu Phe 1 5 10 15 Ser Ala Ile Ser Ile Ala Val Gly Asn Val Tyr Gln Thr Leu Asn Val 20 25 30 Ile Gly Asp Arg Asn Val Thr Ile Pro Thr Asn Gly Ile Pro Gln Arg 35 40 45 Leu Ser Val Tyr Asp Pro Tyr Arg Gly Val Asn Cys Gln Gly Tyr Gln 50 55 60 Ala Val Asn Ile Ser Glu Ser Gln Asn Gly Val Thr Ala Tyr Leu Ala 65 70 75 80 Leu Leu Gly Glu Pro Cys Tyr Ala Tyr Gly Thr Asp Tyr Pro Leu Leu 85 90 95 Phe Leu Asn Val Thr Tyr Glu Glu Ala Asp Arg Val His Ile Ser Ile 100 105 110 Lys Asp Ala Asn Asn Thr Gln Phe Gln Phe Thr Ser Arg Lys Asp Leu 115 120 125 Trp Asp Ala Pro Leu Tyr Ser Pro Ser Tyr Asn Asn Thr Asn Leu Leu 130 135 140 Tyr Asn Phe Ser Tyr Asn Ala Asn Pro Phe Glu Phe Trp Val Thr Arg 145 150 155 160 Lys Ser Asp Gly Glu Val Leu Phe Asp Thr Arg Gly Gln Lys Leu Val 165 170 175 Phe Glu Asp Gln Tyr Ile Glu Leu Thr Thr Asn Met Val Glu Asn Tyr 180 185 190 Asn Leu Tyr Gly Leu Ala Glu Thr Ile His Gly Leu Arg Leu Gly Asn 195 200 205 Asn Leu Thr Arg Thr Phe Trp Ala Asn Asp Glu Ala Ser Pro Val Asp 210 215 220 Gln Asn Met Tyr Gly Ser His Pro Tyr Tyr Leu Glu Gln Arg Tyr Lys 225 230 235 240 Ala Asp Gly Ile Asn Ser Thr Leu Asn Glu Thr Thr Tyr Thr Ser Ser 245 250 255 Ser His Gly Val Leu Met Leu Thr Ala Asn Gly Met Asp Val Leu Leu 260 265 270 Arg Gln Asp Tyr Leu Gln Tyr Arg Met Ile Gly Gly Val Ile Asp Leu 275 280 285 Phe Val Tyr Ser Gly Ser Thr Glu Ser Pro Lys Glu Thr Val Lys Gln 290 295 300 Phe Val Gln Ser Ile Gly Lys Pro Ala Met His Gln Tyr Trp Thr Leu 305 310 315 320 Gly Tyr His Ser Cys Arg Trp Gly Tyr Thr Asn Ile Thr Glu Ile Met 325 330 335 Asp Val Arg Gln Asn Tyr Ile Asp Ala Asp Ile Pro Val Glu Thr Phe 340 345 350 Trp Ser Asp Ile Asp Tyr Met Glu Lys Tyr Arg Asp Phe Thr Val Asp 355 360 365 Pro Val Ser Tyr Ser Lys Ser Asp Met Gln Thr Phe Phe Ser Asp Leu 370 375 380 Val Ser Asn His Gln His Tyr Val Pro Ile Ile Asp Ala Ala Ile Tyr 385 390 395 400 Ala Ala Asn Pro Tyr Asn His Thr Asp Asp Ser Tyr Tyr Pro Tyr Tyr 405 410 415 Ala Gly Val Glu Lys Asp Ile Phe Leu Lys Asn Pro Asn Gly Ser Ile 420 425 430 Tyr Ile Gly Ala Val Trp Pro Gly Phe Thr Ala Phe Pro Asp Phe Thr 435 440 445 Asn Pro Asp Val Val Asp Tyr Trp Lys Asp Cys Leu Ile Asn Leu Thr 450 455 460 Tyr Ala Phe Gly Ser Asn Gly Thr Val Pro Phe Ser Gly Ile Trp Thr 465 470 475 480 Asp Met Asn Glu Pro Ser Ser Phe Cys Val Gly Ser Cys Gly Ser Ala 485 490 495 Met Ile Asp Leu Asn Pro Ala Glu Pro Leu Val Gly Ile Ser Lys Gln 500 505 510 Tyr Ser Ile Pro Glu Gly Phe Asn Val Ser Asn Val Thr Glu Tyr Ser 515 520 525 Ser Ala Tyr Ser Ala Ser Leu Ser Asn Tyr Tyr Ala Thr Ala Thr Ser 530 535 540 Ser Val Phe Gln Ile Val Ser Pro Thr Ala Thr Pro Leu Gly Leu Lys 545 550 555 560 Pro Asp Tyr Asn Ile Asn Trp Pro Pro Tyr Ala Ile Asn Asn Glu Gln 565 570 575 Gly Asn His Asp Ile Ala Asn His Ile Val Ser Pro Asn Ala Thr Thr 580 585 590 His Asp Gly Thr Gln Arg Tyr Asp Ile Phe Asn Met Tyr Gly Tyr Gly 595 600 605 Glu Thr Lys Val Ser Tyr Ala Ala Leu Thr Gln Ile Ser Pro Asn Glu 610 615 620 Arg Pro Phe Ile Leu Ser Arg Ser Thr Phe Leu Gly Ser Gly Val Tyr 625 630 635 640 Gly Ala His Trp Leu Gly Asp Asn His Ser Leu Trp Ser Asn Met Phe 645 650 655 Phe Ser Ile Ser Gly Met Ile Val Phe Asn Met Met Gly Ile Pro Met 660 665 670 Val Gly Ala Asp Val Cys Gly Phe Leu Gly Asp Ser Asp Glu Glu Leu 675 680 685 Cys Ser Arg Trp Met Ala Met Gly Ala Phe Ser Pro Phe Tyr Arg Asn 690 695 700 His Asn Asn Ile Tyr Gln Ile Ser Gln Glu Pro Tyr Thr Trp Ser Ser 705 710 715 720 Val Ala Glu Ala Ser Arg Arg Ala Met Tyr Ile Arg Tyr Ser Leu Leu 725 730 735 Pro Tyr Trp Tyr Thr Ile Met Ala Lys Ala Ser Gln Asp Gly Thr Pro 740 745 750 Ala Leu Arg Ala Leu Phe Val Glu Phe Pro Asn Asp Pro Thr Leu Ala 755 760 765 Asp Val Asp Arg Gln Phe Met Val Gly Asp Ser Leu Leu Val Thr Pro 770 775 780 Val Leu Glu Pro Asn Val Glu Tyr Val Gln Gly Val Phe Pro Gly Asp 785 790 795 800 Asn Ser Thr Val Trp Tyr Asp Trp Tyr Asn His Thr Glu Ile Val Arg 805 810 815 Gln Tyr Asn Glu Asn Val Thr Leu Tyr Ala Pro Leu Glu His Ile Asn 820 825 830 Val Ala Ile Arg Gly Gly Ser Val Leu Pro Met Gln Gln Pro Ser Leu 835 840 845 Thr Thr Tyr Glu Ser Arg Gln Asn Pro Phe Asn Leu Leu Val Ala Leu 850 855 860 Asp Arg Asp Gly Ser Ala Thr Gly Glu Leu Tyr Leu Asp Asp Gly Val 865 870 875 880 Ser Ile Glu Leu Asn Ala Thr Leu Ser Val Ser Phe Thr Phe Ser Asp 885 890 895 Gly Val Leu Ser Ala Val Pro Thr Gly Ser Tyr Glu Val Ser Gln Pro 900 905 910 Leu Ala Asn Val Thr Ile Leu Gly Leu Thr Glu Ser Pro Ser Ser Ile 915 920 925 Thr Leu Asn Gly Gln Asn Val Ser Ser Phe Gln Tyr Ser Asn Asp Thr 930 935 940 Glu Glu Leu Leu Ile Thr Gly Leu Gln Asn Ile Thr Ser Ser Gly Ala 945 950 955 960 Phe Ala Asn Ser Trp Asn Leu Thr Leu 965 <210> 3 <211> 22 <212> DNA <213> Artificial <400> 3 cttttggatc gaatggtact gt 22 <210> 4 <211> 19 <212> DNA <213> Artificial <400> 4 ggaaacagct atgaccatg 19 <210> 5 <211> 37 <212> DNA <213> Artificial <400> 5 cgcagaacga gctcggttcg ttcattccag tccaaat 37[Sequence list]                         SEQUENCE LISTING <110> Nihon Shokuhin Kako Co., Ltd. <120> Modified α-glucosidase and a process for preparation oligo-sacch aride <130> A15089H <160> 5 <210> 1 <211> 4176 <212> DNA <213> Schizosaccharomyces pombe <400> 1 ataagtcaag tgaatacctc gcgccttttt ggttctaagt tttcatcaac ttttttgatc 60 cgaaatcttc cagtgtctgt actctatcgg taacacagtt gggtataact caatagtttt 120 catactgttt tctcctgtga ttacaccact ccctttatta aaaccaagca atatctgttc 180 cactagaaca gaagtgctct caaaccttcc acacctttaa tttattttgt taagttttga 240 ttctttgcta cttgtttttt tgtcctcccc ccacatccgc cttagtaagt ctccccacat 300 tgcaaaagaa acgagtcgat tgattccatc cccacgagaa aatcgatcca ttttccaacc 360 tatcgcccta ctttttttac aaaaaagtta ctaaacgttg ggtttgatta tctttttttt 420 tgcttttaga ttgattcgat tcgacttggc tttcaaaggc tttacccatc aaatcaatta 480 atcaaggctt ttcgcttcct cctcgttctt tgcaccttca agcgaacata cacttcgttt 540 tgcaaaaagt gctaagtaac acaagctaca aaagtttctc ccccactttt ataaggttcg 600 cttagccgct cttaattacg tcgttttgga cttgattggt taatcctacc tcttaccttt 660 ttttgggttt cgctcctttt taaaacgcgc gtttaaacaa accctttcaa gcttttcgtg 720 aaagagcttt tctttcctaa cttactatat atatacatac acacacacat atatatatat 780 ataacttttt atttatattg aaaaaaaaaa cttggacaag aaagtctaca attctattgt 840 tgtagttctt gcttaatttt ttgtctgtct cttaaaaccc tccttttctt tacgatttcg 900 cctctttaaa ccgcccttct attgccaaat tgcctatttg gttaatcttt tccattcttt 960 ttctctacga ttctttttag ttggtacttt gatttttctt aaaacttttt gatctctttt 1020 ttgttttttt tttaacgatg atgatttcta ctgcctacca atctctattt ttaactgctc 1080 tgttttcagc aatctcgatt gctgtcggta acgtctacca aactttaaat gtcattggtg 1140 atcgcaatgt cactatccct accaatggta tccctcaacg cttatccgta tatgacccat 1200 atcgcggtgt aaattgtcaa ggatatcaag ctgttaacat atctgagtca caaaatggcg 1260 ttactgccta tctcgcacta ctcggcgagc cttgctatgc ctatggtact gattacccat 1320 tgttgttcct caacgtcaca tatgaggaag ccgaccgagt tcatatatca atcaaagacg 1380 ctaataacac tcaattccaa tttaccagta ggaaagatct ttgggatgct cccttatatt 1440 caccttctta caataacaca aaccttctgt acaacttttc gtacaatgcc aatcctttcg 1500 aattttgggt tacacgtaag agcgatggtg aagttttatt tgatacacgc ggacagaaat 1560 tggttttcga agatcagtat attgagttaa ctactaatat ggttgaaaat tataatcttt 1620 atggtctcgc tgaaaccatc catggtttac gtctgggaaa taacttaacc cgtacctttt 1680 gggctaatga tgaagctagc cccgtggacc aaaacatgta cggaagtcat ccatactatt 1740 tagaacaaag atacaaggcg gatggtataa attcaacttt gaacgaaacc acttatactt 1800 cttcttctca tggtgttctt atgcttacag ctaatggaat ggatgttctt ttgcgccaag 1860 attatcttca gtatcgaatg atcggtggtg ttatcgacct ttttgtatac agtggtagca 1920 ctgagagtcc caaggagact gtcaagcaat tcgttcaatc cattggaaag cctgctatgc 1980 atcaatattg gacattgggt taccactcat gtcgttgggg ttacacaaat atcacagaaa 2040 tcatggacgt tcgtcaaaat tacattgatg cagacattcc agtggaaacc ttttggtctg 2100 atattgatta catggagaaa tatagagatt ttaccgttga ccctgtttct tattcaaagt 2160 cagatatgca aacatttttc agtgatttgg taagcaatca tcagcattac gttccaatca 2220 ttgatgctgc gatttatgcc gcaaacccct acaatcacac tgacgactct tattatccat 2280 actatgcagg cgttgaaaag gacattttct taaaaaatcc taatggaagt atctacattg 2340 gtgcggtttg gccaggattc actgctttcc ctgatttcac caatcccgat gtggttgact 2400 attggaaaga ctgtcttatc aaccttactt atgcttttgg atcgaatggt actgttccat 2460 tcagtggaat ttggactgat atgaacgaac cctcttcgtt ctgcgtgggc tcttgtggga 2520 gtgctatgat tgacttaaac cctgcagagc ccttggtcgg aatttcaaag cagtattcca 2580 tcccagaagg atttaacgtt tccaatgtga ctgagtatag ttctgcttac agtgcttcac 2640 ttagcaacta ctatgccact gcaacatcat cggtgttcca aattgtttca ccaactgcta 2700 ctccattagg tttgaagcca gattacaaca ttaactggcc cccttatgct attaacaatg 2760 aacaaggaaa tcatgatatt gccaatcaca ttgtaagccc caatgcgacc actcatgatg 2820 gaacccaacg ttacgatatt ttcaacatgt atggttatgg tgagacaaag gtctcatacg 2880 cagctctaac ccaaatttct cctaatgaac gaccctttat cttgagtcgt tctaccttct 2940 tgggatctgg agtctatggt gcacattggt tgggtgataa tcattctcta tggtctaaca 3000 tgttcttctc catttctgga atgatcgttt ttaacatgat gggtattcca atggtaggag 3060 ctgatgtttg tggtttcctt ggtgattcag atgaagaact ttgctctcgt tggatggcta 3120 tgggtgcttt ttcgccattc tatagaaatc ataacaacat ttaccaaatc tcacaagagc 3180 cctacacatg gtcttctgtt gctgaggcct cacgtcgtgc tatgtacatt cgttattctt 3240 tactccctta ctggtatact atcatggcta aggcatccca agatggcaca cctgccctac 3300 gtgctttgtt cgttgaattc cccaacgatc ctactctagc agacgttgac cgtcaattca 3360 tggtaggcga ctctctattg gtgacacctg tcttggagcc taatgttgaa tacgttcaag 3420 gtgttttccc tggtgacaac agcactgtat ggtatgactg gtacaaccac actgaaattg 3480 ttcgtcaata caacgaaaat gttactctgt acgctccttt ggaacacatc aatgtcgcta 3540 ttcgtggtgg tagtgttctt cccatgcaac aaccttcgct cactacttat gaaagtcgtc 3600 aaaatccatt caacctcctc gtcgctttgg atagagatgg ttctgctact ggtgagcttt 3660 accttgatga tggtgtttcc attgagctaa acgctacact ttccgttagc ttcacattta 3720 gtgatggtgt tttgagtgcc gttccaactg gcagctacga agttagccaa cccttggcca 3780 acgtaacgat ccttggtctc actgaatccc ctagttcaat caccttgaat ggacaaaacg 3840 tctcctcctt ccagtactct aacgatactg aggaattgct aattaccggt ctacagaaca 3900 ttacttcctc tggtgcattt gccaacagct ggaatcttac tttgtagtcg ctctcgcttc 3960 acccgatttt tcaccggcaa tccaggaacc gagcactaat taacagtcta gtttgttgca 4020 tctagcaact ctcgagatgc ttgtagtata tggaataaac ttacagtcat tgttagtcaa 4080 ttcaataaat aaactacttt ttctaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4140 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 4176 <210> 2 <211> 969 <212> amino acid <213> Schizosaccharomyces pombe <400> 2    Met Met Ile Ser Thr Ala Tyr Gln Ser Leu Phe Leu Thr Ala Leu Phe     1 5 10 15   Ser Ala Ile Ser Ile Ala Val Gly Asn Val Tyr Gln Thr Leu Asn Val                20 25 30   Ile Gly Asp Arg Asn Val Thr Ile Pro Thr Asn Gly Ile Pro Gln Arg            35 40 45   Leu Ser Val Tyr Asp Pro Tyr Arg Gly Val Asn Cys Gln Gly Tyr Gln        50 55 60   Ala Val Asn Ile Ser Glu Ser Gln Asn Gly Val Thr Ala Tyr Leu Ala    65 70 75 80   Leu Leu Gly Glu Pro Cys Tyr Ala Tyr Gly Thr Asp Tyr Pro Leu Leu                    85 90 95   Phe Leu Asn Val Thr Tyr Glu Glu Ala Asp Arg Val His Ile Ser Ile               100 105 110   Lys Asp Ala Asn Asn Thr Gln Phe Gln Phe Thr Ser Arg Lys Asp Leu           115 120 125   Trp Asp Ala Pro Leu Tyr Ser Pro Ser Tyr Asn Asn Thr Asn Leu Leu       130 135 140   Tyr Asn Phe Ser Tyr Asn Ala Asn Pro Phe Glu Phe Trp Val Thr Arg   145 150 155 160   Lys Ser Asp Gly Glu Val Leu Phe Asp Thr Arg Gly Gln Lys Leu Val                   165 170 175   Phe Glu Asp Gln Tyr Ile Glu Leu Thr Thr Asn Met Val Glu Asn Tyr               180 185 190   Asn Leu Tyr Gly Leu Ala Glu Thr Ile His Gly Leu Arg Leu Gly Asn           195 200 205   Asn Leu Thr Arg Thr Phe Trp Ala Asn Asp Glu Ala Ser Pro Val Asp       210 215 220   Gln Asn Met Tyr Gly Ser His Pro Tyr Tyr Leu Glu Gln Arg Tyr Lys   225 230 235 240   Ala Asp Gly Ile Asn Ser Thr Leu Asn Glu Thr Thr Tyr Thr Ser Ser                   245 250 255   Ser His Gly Val Leu Met Leu Thr Ala Asn Gly Met Asp Val Leu Leu               260 265 270   Arg Gln Asp Tyr Leu Gln Tyr Arg Met Ile Gly Gly Val Ile Asp Leu           275 280 285   Phe Val Tyr Ser Gly Ser Thr Glu Ser Pro Lys Glu Thr Val Lys Gln       290 295 300   Phe Val Gln Ser Ile Gly Lys Pro Ala Met His Gln Tyr Trp Thr Leu   305 310 315 320   Gly Tyr His Ser Cys Arg Trp Gly Tyr Thr Asn Ile Thr Glu Ile Met                   325 330 335   Asp Val Arg Gln Asn Tyr Ile Asp Ala Asp Ile Pro Val Glu Thr Phe               340 345 350   Trp Ser Asp Ile Asp Tyr Met Glu Lys Tyr Arg Asp Phe Thr Val Asp           355 360 365   Pro Val Ser Tyr Ser Lys Ser Asp Met Gln Thr Phe Phe Ser Asp Leu       370 375 380   Val Ser Asn His Gln His Tyr Val Pro Ile Ile Asp Ala Ala Ile Tyr   385 390 395 400   Ala Ala Asn Pro Tyr Asn His Thr Asp Asp Ser Tyr Tyr Pro Tyr Tyr                   405 410 415   Ala Gly Val Glu Lys Asp Ile Phe Leu Lys Asn Pro Asn Gly Ser Ile               420 425 430   Tyr Ile Gly Ala Val Trp Pro Gly Phe Thr Ala Phe Pro Asp Phe Thr           435 440 445   Asn Pro Asp Val Val Asp Tyr Trp Lys Asp Cys Leu Ile Asn Leu Thr       450 455 460   Tyr Ala Phe Gly Ser Asn Gly Thr Val Pro Phe Ser Gly Ile Trp Thr   465 470 475 480   Asp Met Asn Glu Pro Ser Ser Phe Cys Val Gly Ser Cys Gly Ser Ala                   485 490 495   Met Ile Asp Leu Asn Pro Ala Glu Pro Leu Val Gly Ile Ser Lys Gln               500 505 510   Tyr Ser Ile Pro Glu Gly Phe Asn Val Ser Asn Val Thr Glu Tyr Ser           515 520 525   Ser Ala Tyr Ser Ala Ser Leu Ser Asn Tyr Tyr Ala Thr Ala Thr Ser       530 535 540   Ser Val Phe Gln Ile Val Ser Pro Thr Ala Thr Pro Leu Gly Leu Lys   545 550 555 560   Pro Asp Tyr Asn Ile Asn Trp Pro Pro Tyr Ala Ile Asn Asn Glu Gln                   565 570 575   Gly Asn His Asp Ile Ala Asn His Ile Val Ser Pro Asn Ala Thr Thr               580 585 590   His Asp Gly Thr Gln Arg Tyr Asp Ile Phe Asn Met Tyr Gly Tyr Gly           595 600 605   Glu Thr Lys Val Ser Tyr Ala Ala Leu Thr Gln Ile Ser Pro Asn Glu       610 615 620   Arg Pro Phe Ile Leu Ser Arg Ser Thr Phe Leu Gly Ser Gly Val Tyr   625 630 635 640   Gly Ala His Trp Leu Gly Asp Asn His Ser Leu Trp Ser Asn Met Phe                   645 650 655   Phe Ser Ile Ser Gly Met Ile Val Phe Asn Met Met Gly Ile Pro Met               660 665 670   Val Gly Ala Asp Val Cys Gly Phe Leu Gly Asp Ser Asp Glu Glu Leu           675 680 685   Cys Ser Arg Trp Met Ala Met Gly Ala Phe Ser Pro Phe Tyr Arg Asn       690 695 700   His Asn Asn Ile Tyr Gln Ile Ser Gln Glu Pro Tyr Thr Trp Ser Ser   705 710 715 720   Val Ala Glu Ala Ser Arg Arg Ala Met Tyr Ile Arg Tyr Ser Leu Leu                   725 730 735   Pro Tyr Trp Tyr Thr Ile Met Ala Lys Ala Ser Gln Asp Gly Thr Pro               740 745 750   Ala Leu Arg Ala Leu Phe Val Glu Phe Pro Asn Asp Pro Thr Leu Ala           755 760 765   Asp Val Asp Arg Gln Phe Met Val Gly Asp Ser Leu Leu Val Thr Pro       770 775 780   Val Leu Glu Pro Asn Val Glu Tyr Val Gln Gly Val Phe Pro Gly Asp   785 790 795 800   Asn Ser Thr Val Trp Tyr Asp Trp Tyr Asn His Thr Glu Ile Val Arg                   805 810 815   Gln Tyr Asn Glu Asn Val Thr Leu Tyr Ala Pro Leu Glu His Ile Asn               820 825 830   Val Ala Ile Arg Gly Gly Ser Val Leu Pro Met Gln Gln Pro Ser Leu           835 840 845   Thr Thr Tyr Glu Ser Arg Gln Asn Pro Phe Asn Leu Leu Val Ala Leu       850 855 860   Asp Arg Asp Gly Ser Ala Thr Gly Glu Leu Tyr Leu Asp Asp Gly Val   865 870 875 880   Ser Ile Glu Leu Asn Ala Thr Leu Ser Val Ser Phe Thr Phe Ser Asp                   885 890 895   Gly Val Leu Ser Ala Val Pro Thr Gly Ser Tyr Glu Val Ser Gln Pro               900 905 910   Leu Ala Asn Val Thr Ile Leu Gly Leu Thr Glu Ser Pro Ser Ser Ile           915 920 925   Thr Leu Asn Gly Gln Asn Val Ser Ser Phe Gln Tyr Ser Asn Asp Thr       930 935 940   Glu Glu Leu Leu Ile Thr Gly Leu Gln Asn Ile Thr Ser Ser Gly Ala   945 950 955 960   Phe Ala Asn Ser Trp Asn Leu Thr Leu                   965 <210> 3 <211> 22 <212> DNA <213> Artificial <400> 3 cttttggatc gaatggtact gt 22 <210> 4 <211> 19 <212> DNA <213> Artificial <400> 4 ggaaacagct atgaccatg 19 <210> 5 <211> 37 <212> DNA <213> Artificial <400> 5 cgcagaacga gctcggttcg ttcattccag tccaaat 37

【図面の簡単な説明】[Brief description of drawings]

【図1】反応液を薄層クロマトグラフィーで分析した結
果を示す。
FIG. 1 shows the results of analysis of a reaction solution by thin layer chromatography.

【図2】ODSカラムを用いてHPLC分析を行った際
の、クロマトグラムを示した。
FIG. 2 shows a chromatogram when HPLC analysis was performed using an ODS column.

【図3】ピーク1〜3を薄層クロマトグラフィーで分析
した結果を示す。
FIG. 3 shows the results of analysis of peaks 1 to 3 by thin layer chromatography.

【図4】ピーク1〜3を部分加水分解したものを薄層ク
ロマトグラフィーで分析した結果を示す。
FIG. 4 shows the results of thin layer chromatography analysis of partially hydrolyzed peaks 1 to 3.

【図5】SPG (G2444C)の作成スキーム。FIG. 5 is a scheme for creating SPG (G2444C).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 春英 北海道札幌市東区北28条東3丁目 北光住 宅505−25 (72)発明者 奥山 正幸 北海道札幌市北区北9条西4丁目10 沢田 ビル303 (72)発明者 海野 剛裕 静岡県富士市中丸703−25 (72)発明者 山本 健 静岡県富士市今泉2954 (72)発明者 山本 幹男 静岡県富士市宮下110−23 Fターム(参考) 4B024 AA03 BA80 CA04 DA12 EA04 FA02 GA11 HA01 4B050 CC03 CC04 CC07 DD04 LL05 4B064 AF03 CA06 CA19 CC24 DA10 DA16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Haruhide Mori             Kitako 28, East 28, Higashi-ku, Sapporo, Hokkaido             Home 505-25 (72) Inventor Masayuki Okuyama             Hokkaido Kita-ku Kita-ku Kitajo Nishi 4-chome 10 Sawada             Building 303 (72) Inventor Takehiro Unno             703-25 Nakamaru, Fuji City, Shizuoka Prefecture (72) Inventor Ken Yamamoto             2954 Imaizumi, Fuji City, Shizuoka Prefecture (72) Inventor Mikio Yamamoto             110-23 Miyashita, Fuji City, Shizuoka Prefecture F-term (reference) 4B024 AA03 BA80 CA04 DA12 EA04                       FA02 GA11 HA01                 4B050 CC03 CC04 CC07 DD04 LL05                 4B064 AF03 CA06 CA19 CC24 DA10                       DA16

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】配列表の配列番号2に示されたアミノ酸配
列を有するα−グルコシダーゼであって、前記アミノ酸
配列の481番目のアスパラギン酸を、加水分解活性が
配列番号2に示されたアミノ酸配列を有するα−グルコ
シダーゼに比較して10000分の1以下に低下するよ
うに他のアミノ酸に置換したことを特徴とする改変α−
グルコシダーゼ。
1. An α-glucosidase having the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing, wherein the amino acid sequence shown in SEQ ID NO: 2 has a hydrolysis activity of 481st aspartic acid in the amino acid sequence. Modified α-characterized by substituting with another amino acid so that it is reduced to 1 / 10,000 or less as compared with α-glucosidase having
Glucosidase.
【請求項2】481番目のアスパラギン酸を側鎖にカル
ボキシル基を含まないアミノ酸に置換した請求項1に記
載の改変α−グルコシダーゼ。
2. The modified α-glucosidase according to claim 1, wherein the 481st aspartic acid is substituted with an amino acid having no carboxyl group in the side chain.
【請求項3】側鎖にカルボキシル基を含まないアミノ酸
がグリシンまたはアラニンである請求項2に記載の改変
α−グルコシダーゼ。
3. The modified α-glucosidase according to claim 2, wherein the amino acid having no carboxyl group in the side chain is glycine or alanine.
【請求項4】配列表の配列番号2に示されたアミノ酸配
列を有するα−グルコシダーゼであって、前記アミノ酸
配列の481番目のアスパラギン酸をグリシンに置換し
たことを特徴とする改変α−グルコシダーゼ。
4. An α-glucosidase having the amino acid sequence shown in SEQ ID NO: 2 of the Sequence Listing, wherein the 481 th aspartic acid in the amino acid sequence is replaced with glycine.
【請求項5】前記アミノ酸配列において1若しくは複数
のアミノ酸がさらに置換、欠失、挿入若しくは付加され
たアミノ酸配列を有する請求項4に記載の改変α−グル
コシダーゼ。
5. The modified α-glucosidase according to claim 4, which has an amino acid sequence in which one or more amino acids are further substituted, deleted, inserted or added in the amino acid sequence.
【請求項6】ジゾサッカロミセスポンベ(Schizosaccha
romyces pombe)由来のα−グルコシダーゼであって、
該α−グルコシダーゼの活性解離基のうち解離型カルボ
キシル基を含むアミノ酸を、加水分解活性が野生型の酵
素に比較して10000分の1以下に低下するように側
鎖にカルボキシル基を含まないアミノ酸に置換したこと
を特徴とする改変α−グルコシダーゼ。
6. A Schizosaccha pombe
romyces pombe) -derived α-glucosidase,
Among the active dissociative groups of the α-glucosidase, an amino acid containing a dissociative carboxyl group has an amino acid containing no carboxyl group in its side chain so that the hydrolysis activity is reduced to 1 / 10,000 or less as compared with the wild-type enzyme. A modified α-glucosidase, characterized in that
【請求項7】活性解離基のうち解離型カルボキシル基を
含むアミノ酸が、配列表の配列番号2に示されたアミノ
酸配列の481番目のアスパラギン酸に相当するアミノ
酸である請求項6に記載の改変α−グルコシダーゼ。
7. The modification according to claim 6, wherein the amino acid containing a dissociative carboxyl group among the active dissociative groups is an amino acid corresponding to the 481st aspartic acid in the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing. α-glucosidase.
【請求項8】側鎖にカルボキシル基を含まないアミノ酸
がグリシンまたはアラニンである請求項6または7に記
載の改変α−グルコシダーゼ。
8. The modified α-glucosidase according to claim 6 or 7, wherein the amino acid having no carboxyl group in the side chain is glycine or alanine.
【請求項9】請求項1〜8のいずれか1項に記載のα−
グルコシダーゼの存在下、グリコシド誘導体とβ−グル
コシルフロライドを反応させることを含むオリゴ糖の製
造方法。
9. α- according to any one of claims 1 to 8.
A method for producing an oligosaccharide, which comprises reacting a glycoside derivative with β-glucosyl fluoride in the presence of glucosidase.
【請求項10】グリコシド誘導体が、pNP−β−グルコ
シド、pNP−α−キシロシド、pNP−α−マンノシド、pN
P-α−マルトシドである請求項9に記載の製造方法。
10. The glycoside derivative is pNP-β-glucoside, pNP-α-xyloside, pNP-α-mannoside, pN.
The method according to claim 9, which is P-α-maltoside.
【請求項11】オリゴ糖が2糖類誘導体である請求項9
または10に記載の製造方法。
11. The oligosaccharide is a disaccharide derivative.
Or the manufacturing method according to 10.
JP2001286286A 2001-09-20 2001-09-20 Method for producing modified α-glucosidase and oligosaccharide Expired - Fee Related JP4012383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286286A JP4012383B2 (en) 2001-09-20 2001-09-20 Method for producing modified α-glucosidase and oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286286A JP4012383B2 (en) 2001-09-20 2001-09-20 Method for producing modified α-glucosidase and oligosaccharide

Publications (2)

Publication Number Publication Date
JP2003088365A true JP2003088365A (en) 2003-03-25
JP4012383B2 JP4012383B2 (en) 2007-11-21

Family

ID=19109300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286286A Expired - Fee Related JP4012383B2 (en) 2001-09-20 2001-09-20 Method for producing modified α-glucosidase and oligosaccharide

Country Status (1)

Country Link
JP (1) JP4012383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253302A (en) * 2004-03-04 2005-09-22 Nippon Shokuhin Kako Co Ltd Anomer retention type sugar hydrolase variant and method for producing the same
WO2012124520A1 (en) 2011-03-16 2012-09-20 天野エンザイム株式会社 Modified αlpha-glucosidase and applications of same
CN114230621A (en) * 2021-12-28 2022-03-25 中国海洋大学 N-acetylglucosaminyl glyceride and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253302A (en) * 2004-03-04 2005-09-22 Nippon Shokuhin Kako Co Ltd Anomer retention type sugar hydrolase variant and method for producing the same
JP4537733B2 (en) * 2004-03-04 2010-09-08 日本食品化工株式会社 Anomer-retaining sugar hydrolase mutant and method for producing the same
WO2012124520A1 (en) 2011-03-16 2012-09-20 天野エンザイム株式会社 Modified αlpha-glucosidase and applications of same
US9493753B2 (en) 2011-03-16 2016-11-15 Amano Enzyme Inc. Modified α-glucosidase and applications of same
US9650619B2 (en) 2011-03-16 2017-05-16 Amano Enzyme Inc. Modified alpha-glucosidase and applications of same
CN114230621A (en) * 2021-12-28 2022-03-25 中国海洋大学 N-acetylglucosaminyl glyceride and preparation method thereof

Also Published As

Publication number Publication date
JP4012383B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US5925749A (en) Carboxymethyl cellulase from Thermotoga maritima
KR101200571B1 (en) Ginsenoside glycosidase from terrabacter sp and use thereof
KR101098027B1 (en) Ginsenoside glycosidase from Rhodanobacter ginsenosidimutans KCTC22231T and use thereof
CN110438136A (en) The gene of beta-glucosidase and its mutant, amino acid sequence and application
EP2100966A1 (en) Mutants of glycoside hydrolases and uses thereof for synthesizing complex oligosaccharides and disaccharide intermediates
JP4784224B2 (en) Glycosyl transfer method and glycosyltransferase
CN112094835B (en) Application of beta-glucosidase mutant
JP4012383B2 (en) Method for producing modified α-glucosidase and oligosaccharide
Mukai et al. Cyclic tetrasaccharide-synthesizing enzymes from Arthrobacter globiformis A19
JP2003210182A (en) Thermophilic endoglucanase
CN103602646B (en) The beta-glucoside enzyme mutant that a kind of optimal reactive temperature improves and application thereof
JP5383175B2 (en) Novel β-fructofuranosidase, production method thereof and use thereof
JPH11318441A (en) Ultra heat-resistant and ultra acid-resistant amylopullulanase
KR101978565B1 (en) Pullulan degrading enzyme from Ruminococcus bromii and use thereof
KR101638334B1 (en) Cyclodextrin glucanotransferase mutants and method for preparation of l-ascorbic acid derivative using the same
US5989882A (en) Processes for preparing acarviosyl transferase and for using it in the conversion of acarbose homologues into acarbose, for the preparation of acarbose homologues
EP1767645B1 (en) Transglycosylation method and method for producing glycoprotein
JP4311799B2 (en) β-primeverosidase gene
WO2020090734A1 (en) Maltotriose-generating amylase
KR101374748B1 (en) Method for producing catechin derivatives by using amylosucrase and catechin derivatives obtained therefrom
CN116042554A (en) Dextran monooxygenase with high enzymatic activity and high thermal stability, and preparation method and application thereof
KR20100083467A (en) Glucanase from thermophile, thermotoga lettingae tmo baa-301 and its production
KR20110128168A (en) An alpha-xylosidase mutants modified at their proton-donor/acceptor catalyst and high efficiency transglycosylation with the same
KR20020029138A (en) Recombinant enzyme from Thermus caldophilus GK24 strain and process for preparation of ginsenoside Rd using the same
JP2003250559A (en) Gene encoding new enzyme catalyzing sugar-transferring reaction, and method for producing the enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

R150 Certificate of patent or registration of utility model

Ref document number: 4012383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees