JP2003088092A - Superconducting generator - Google Patents

Superconducting generator

Info

Publication number
JP2003088092A
JP2003088092A JP2001277773A JP2001277773A JP2003088092A JP 2003088092 A JP2003088092 A JP 2003088092A JP 2001277773 A JP2001277773 A JP 2001277773A JP 2001277773 A JP2001277773 A JP 2001277773A JP 2003088092 A JP2003088092 A JP 2003088092A
Authority
JP
Japan
Prior art keywords
winding
superconducting
winding shaft
shaft
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001277773A
Other languages
Japanese (ja)
Other versions
JP3930277B2 (en
Inventor
Kiyoshi Yamaguchi
潔 山口
Kazumasa Ide
一正 井出
Shigenobu Mori
誉延 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001277773A priority Critical patent/JP3930277B2/en
Publication of JP2003088092A publication Critical patent/JP2003088092A/en
Application granted granted Critical
Publication of JP3930277B2 publication Critical patent/JP3930277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To make compact in size a superconducting generator. SOLUTION: The superconducting generator can be made compact in size without increasing the magnetomotive force of field winding by employing a magnetic body in the winding shaft of a rotor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導発電機に係
り、特に超電導の界磁巻線が取り付けられる巻線軸の材
質を磁性体とした超電導発電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting power generator, and more particularly to a superconducting power generator having a magnetic material for a winding shaft to which a superconducting field winding is attached.

【0002】[0002]

【従来の技術】これまでの超電導発電機の超電導界磁巻
線は、例えば特開平10−127043号公報等に記載
のように非磁性高強度材からなる巻線軸に取り付けられ
ていた。
2. Description of the Related Art The superconducting field winding of a conventional superconducting generator has been attached to a winding shaft made of a non-magnetic high strength material as described in, for example, Japanese Patent Laid-Open No. 10-127043.

【0003】[0003]

【発明が解決しようとする課題】極低温で十分な強度と
靭性を持ち、超電導発電機の超電導界磁巻線の巻線軸に
適する高強度材としては非磁性のA286合金や極低温
で弱い磁性を持つインコネル材が知られている。超電導
発電機の回転子は巻線軸以外の部分も非磁性の材料で作
られており、空隙巻線となっている電機子巻線と合わせ
て磁気シールド内径部が全て磁気的な空隙となる構成で
ある。低リアクタンスの発電機となって系統安定度が向
上するなどの利点があるが、空隙磁束を増加させること
による更なる小型化の面では限界に達していた。
As a high strength material having sufficient strength and toughness at extremely low temperatures and suitable for the winding axis of the superconducting field winding of a superconducting generator, a non-magnetic A286 alloy or a weak magnetic material at extremely low temperatures is used. Inconel material with is known. The rotor of the superconducting generator is made of non-magnetic material in the parts other than the winding axis as well, and the magnetic shield inner diameter is entirely magnetic with the armature winding, which is a void winding. Is. Although it has advantages such as a low reactance generator and improved system stability, it has reached the limit in terms of further miniaturization by increasing the air gap magnetic flux.

【0004】本発明の目的とするところは、上記の問題
点に鑑み、極低温で巻線軸の靭性が保たれ、かつ界磁巻
線の起磁力を上げずに空隙磁束を増加できる超電導発電
機を提供することにある。
In view of the above problems, the object of the present invention is to maintain the toughness of the winding shaft at an extremely low temperature and to increase the air gap magnetic flux without increasing the magnetomotive force of the field winding. To provide.

【0005】[0005]

【課題を解決するための手段】本発明は、界磁巻線が備
わる巻線軸を超伝導状態の温度で十分な靭性と磁性を有
する磁性金属で形成したことを特徴とする。
The present invention is characterized in that a winding shaft provided with a field winding is formed of a magnetic metal having sufficient toughness and magnetism at a temperature in a superconducting state.

【0006】こうすることにより、超電導界磁巻線の起
磁力を上げずに空隙の磁束密度を上げることが出来る。
また極低温で靭性が低下しないので、丈夫でコンパクト
な超電導発電機が実現できる。
By doing so, the magnetic flux density of the air gap can be increased without increasing the magnetomotive force of the superconducting field winding.
In addition, since the toughness does not deteriorate at extremely low temperatures, a robust and compact superconducting generator can be realized.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る回転電機の実
施の形態を実施例の図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a rotary electric machine according to the present invention will be described below with reference to the drawings of the embodiments.

【0008】なお、従来例を挙げて比較しながら説明す
る。
A conventional example will be described in comparison.

【0009】図1は第1の実施例である超電導発電機を
示す。超電導発電機は超電導の界磁巻線5を回転子部分
に持ち、該超電導の界磁巻線の非常に大きな起磁力によ
り電機子巻線2の部分に大きな磁束密度を生じることが
できる。そのため、電機子巻線2は空隙巻線なってい
る。回転子において超電導の界磁巻線5は巻線軸6に取
り付けられている。この他、回転子はダンパ巻線機能を
有し、電機子巻線からの高周波磁束をシールドする常温
ダンパ3とラジエーションシールド機能を有し、電機子
巻線からの低周波磁束をシールドできる低温ダンパ4な
らびに超電導の界磁巻線の冷却に用いる液体ヘリウム
(冷媒)を有する液体ヘリウム貯槽7を有する。固定子
は界磁磁束のヨークとなり、外部への磁束のシールド機
能を有する磁気シールド1がある。このような構成にお
いて、超電導発電機回転子の巻線軸に磁性体を使用した
発電機である。
FIG. 1 shows a superconducting generator which is a first embodiment. The superconducting generator has a superconducting field winding 5 in the rotor portion, and a very large magnetomotive force of the superconducting field winding can generate a large magnetic flux density in the armature winding 2. Therefore, the armature winding 2 is a void winding. In the rotor, the superconducting field winding 5 is attached to the winding shaft 6. In addition, the rotor has a damper winding function, a room temperature damper 3 for shielding high frequency magnetic flux from the armature winding and a radiation shield function, and a low temperature damper capable of shielding low frequency magnetic flux from the armature winding. 4 and a liquid helium storage tank 7 having liquid helium (refrigerant) used for cooling the superconducting field winding. The stator serves as a yoke for field magnetic flux, and there is a magnetic shield 1 having a function of shielding magnetic flux to the outside. In such a configuration, the superconducting generator rotor uses a magnetic material for the winding shaft of the rotor.

【0010】更に詳しく説明する。回転子は、回転軸、
円盤状の支持円板、円筒状の常温ダンパ3を有しする。
常温ダンパ3の内部空間に収まるように巻線軸6は置か
れる。常温ダンパ3は回転子の回転軸に設けられた円盤
状の支持円板に取り付けられる。巻線軸6の外周と常温
ダンパ3の内周との間には、低温ダンパ4が配置され
る。
A more detailed description will be given. The rotor is the axis of rotation,
It has a disk-shaped support disk and a cylindrical room-temperature damper 3.
The winding shaft 6 is placed so as to fit in the internal space of the room temperature damper 3. The room temperature damper 3 is attached to a disk-shaped support disk provided on the rotating shaft of the rotor. A low temperature damper 4 is arranged between the outer circumference of the winding shaft 6 and the inner circumference of the room temperature damper 3.

【0011】低温ダンパ4の内周と巻線軸6の外周との
間には、冷媒用カバーが備わる。巻線軸6の外周側に
は、界磁巻線5が埋め込むように備えられ、内側には液
体ヘリウム貯槽7(ボア)が設けられる。巻線軸6の外
周側両端側には円筒部が設けられ、先端は前記支持円板
に接合している。支持円板側は常温、ボア側は極低温で
あるので、円筒部は先端側と付け根側では極めて大きな
温度勾配になる。
A coolant cover is provided between the inner circumference of the low temperature damper 4 and the outer circumference of the winding shaft 6. A field winding 5 is provided so as to be embedded on the outer peripheral side of the winding shaft 6, and a liquid helium storage tank 7 (bore) is provided inside thereof. Cylindrical portions are provided on both outer peripheral side ends of the winding shaft 6, and the tip ends are joined to the support disk. Since the supporting disk side is at room temperature and the bore side is at extremely low temperature, the cylindrical portion has an extremely large temperature gradient between the tip side and the root side.

【0012】液体ヘリウム貯槽7(ボア)に溜まるよう
に回転軸の供給孔から供給された冷媒は、ボアから界磁
巻線5の埋め込み部分に通ずる連通孔より界磁巻線5に
供給され、界磁巻線5を冷却する。界磁巻線5を冷却し
た冷媒が外部に漏れないように冷媒用カバーが備わって
いるのである。冷媒用カバー内の冷媒は、冷媒回収用流
路を経由して回収される。
The refrigerant supplied from the supply hole of the rotary shaft so as to be stored in the liquid helium storage tank 7 (bore) is supplied to the field winding 5 from the communication hole communicating with the embedded portion of the field winding 5 from the bore, The field winding 5 is cooled. A coolant cover is provided to prevent the coolant that has cooled the field winding 5 from leaking to the outside. The refrigerant in the refrigerant cover is recovered via the refrigerant recovery channel.

【0013】図2は従来の界磁巻線の巻線軸に非磁性体
を用いた超電導発電機を示す。
FIG. 2 shows a conventional superconducting generator using a non-magnetic material for the winding axis of the field winding.

【0014】この従来の超電導発電機は、巻線軸8が非
磁性体で形成されているところ以外は、図1に示す実施
例とほぼ同じ構成を有している。
This conventional superconducting generator has substantially the same construction as that of the embodiment shown in FIG. 1 except that the winding shaft 8 is made of a non-magnetic material.

【0015】これらの発電機(本実施例と従来例)の磁
束密度分について、200MWの出力容量を持つ非磁性
巻線軸の超電導発電機を基にした検討結果を以下に示
す。
Regarding the magnetic flux density of these generators (the present embodiment and the conventional example), the results of the examination based on a non-magnetic winding shaft superconducting generator having an output capacity of 200 MW are shown below.

【0016】非磁性巻線軸を持つ発電機と同じ体格の磁
性巻線軸超電導発電機は表1に示すように起磁力を非磁
性巻線軸の場合の75%にすることができる。起磁力
は、定格電流で決まる。75%の数値は定格電流より求
めたものである。磁性巻線軸超電導発電機の起磁力を非
磁性巻線軸超電導発電機と同じにすると表1に示すよう
に200MW発電機出力を130%の260MWにする
ことができる。
As shown in Table 1, the magnetic winding shaft superconducting generator having the same size as the generator having the non-magnetic winding shaft can bring the magnetomotive force to 75% of that of the non-magnetic winding shaft. The magnetomotive force is determined by the rated current. The value of 75% is obtained from the rated current. When the magnetomotive force of the magnetic winding shaft superconducting generator is made the same as that of the non-magnetic winding shaft superconducting generator, as shown in Table 1, the 200 MW generator output can be increased to 130 MW, 260 MW.

【0017】[0017]

【表1】 図3(従来例)は非磁性巻線軸を用いた200MW超電
導発電機の定格出力時の磁束密度分布を示す。図4(本
発明の実施例)は同じ体格の超電導発電機で磁性巻線軸
を用いて200MWを出力した場合である。図5(本発
明の実施例)は同じ体格の超電導発電機で磁性巻線軸を
用い、非磁性巻線軸200MW超電導発電機と同じ起磁
力を与えた場合の磁束密度分布を示す。図3、4、5は
有限要素法による計算結果であり、表1に示す結果をこ
れら計算によって得た。
[Table 1] FIG. 3 (conventional example) shows a magnetic flux density distribution at the rated output of a 200 MW superconducting generator using a non-magnetic winding shaft. FIG. 4 (embodiment of the present invention) is a case where 200 MW is output using a magnetic winding shaft in a superconducting generator of the same size. FIG. 5 (embodiment of the present invention) shows a magnetic flux density distribution when a magnetic winding shaft is used in a superconducting power generator of the same size and a magnetomotive force is applied to the nonmagnetic winding shaft 200 MW superconducting power generator. 3, 4 and 5 are the calculation results by the finite element method, and the results shown in Table 1 were obtained by these calculations.

【0018】200MW級の超電導発電機の超電導界磁
巻線を取り付ける巻線軸のボア径は強度の面から通常3
00mm以上にする。600MW機では通常350mm
以上にする。したがって、ボア径を250mm〜300
mmとすれば磁性巻線軸の磁路の断面積が増えて空隙磁
束を更に増加できる。ボア内部は超電導界磁巻線の冷却
に使われる液体冷媒である液体ヘリウムの貯槽として使
われる。図6に第2の実施例である超電導発電機を示
す。界磁巻線端部は、巻線軸の軸線方向に沿うように配
置されている界磁巻線の直線部分とは違って界磁磁束の
磁路を確保する必要が無いので、この部分のボア径を強
度的に許容できる範囲で大きくとり、液体ヘリウム貯槽
としての機能を充実させることができる。言い換える
と、ボアは界磁巻線の直線部分が配置されるボアの中央
部が小径で、両端側が大径になっているのである。
The bore diameter of the winding shaft to which the superconducting field winding of the 200 MW class superconducting generator is attached is usually 3 in terms of strength.
It is set to 00 mm or more. 350 mm for 600 MW machine
More than that. Therefore, the bore diameter is 250 mm to 300
If it is set to mm, the cross-sectional area of the magnetic path of the magnetic winding shaft is increased, and the air gap magnetic flux can be further increased. The inside of the bore is used as a storage tank for liquid helium, which is a liquid refrigerant used to cool the superconducting field winding. FIG. 6 shows a superconducting generator which is a second embodiment. Unlike the linear portion of the field winding, which is arranged along the axial direction of the winding axis, it is not necessary to secure the magnetic flux path of the field magnetic flux at the end of the field winding. The diameter can be made as large as possible in terms of strength, and the function as a liquid helium storage tank can be enhanced. In other words, the bore has a small diameter in the central portion of the bore where the linear portion of the field winding is arranged, and has a large diameter on both end sides.

【0019】通常発電機の回転子に用いる磁性材料は極
低温で靭性が著しく低下するので超電導発電機の超電導
界磁巻線の巻線軸として用いることができない。磁性の
巻線軸材として13mass%Niと3mass%Mo
系の鉄基合金を用いると十分な靭性と強度があり磁性巻
線軸を持つ超電導界磁巻線が可能になる。この金属材料
は、常温でも靭性と強度に優れ、強磁性も保持される。
The magnetic material usually used for the rotor of a generator cannot be used as a winding shaft of a superconducting field winding of a superconducting generator because its toughness is remarkably reduced at extremely low temperatures. 13 mass% Ni and 3 mass% Mo as magnetic winding shaft materials
The use of the iron-based alloys of the series enables superconducting field windings having sufficient toughness and strength and having a magnetic winding axis. This metallic material has excellent toughness and strength even at room temperature, and retains ferromagnetism.

【0020】13mass%Niと3mass%Mo系
の鉄基合金の実施例について更に詳しく以下に説明す
る。小規模インゴットによる基礎的な検討を実施した。
Examples of iron-based alloys containing 13 mass% Ni and 3 mass% Mo will be described in more detail below. A basic study was conducted using a small ingot.

【0021】既存材料で一般のロータシャフト材に使用
されているNiCrMoV系の低合金鋼は強磁性材料で
あるが、極低温では脆性が顕著となるため超電導発電機
の巻線軸材には適してない。しかしNi量の多いマルテ
ンサイト系のFe−Ni基合金は強磁性と低温靭性を共
に満足する可能性がある。このため13mass%Ni
と3mass%Mo系鉄基合金を製作し、室温から極低
温の温度範囲で引張特性および磁気特性を測定した。
NiCrMoV low alloy steel, which is an existing material and is used as a general rotor shaft material, is a ferromagnetic material. However, brittleness becomes remarkable at extremely low temperatures, so it is suitable for a winding shaft material of a superconducting generator. Absent. However, a martensitic Fe-Ni-based alloy containing a large amount of Ni may satisfy both ferromagnetism and low temperature toughness. Therefore, 13 mass% Ni
And a 3 mass% Mo-based iron-based alloy were manufactured, and tensile properties and magnetic properties were measured in the temperature range from room temperature to extremely low temperature.

【0022】本発明の実施例に係る13mass%Ni
と3mass%Mo系鉄基合金はAl(アルミニュー
ム)の含有量が少ないことと、微量のZrとMgを含む
ことを特徴としている。Alは低温靭性を損なうため
0.020mass%以下としている。ZrとMgは脱
酸、脱硫元素であり、合金の鍛造性と溶接性の向上に効
果が大きいため各々最大0.05mass%まで添加し
ている。超電導発電機の巻線軸のような大型鍛造品は鍛
造割れを生じやすいが、ZrとMgを添加した13ma
ss%Niと3mass%Mo系鉄基合金は鍛造割れを
生じにくい。また巻線軸は低温ダンパなど他の部品との
溶接個所が多数あるが、ZrとMgを添加した13ma
ss%Niと3mass%Mo系鉄基合金は溶接割れを
生じにくい。また本発明の13mass%Niと3ma
ss%Mo系鉄基合金はCを最大0.10mass%ま
で許容できるため溶製時にカーボンが残留してもよいこ
とが特徴である。
13 mass% Ni according to an embodiment of the present invention
The 3 mass% Mo-based iron-based alloys are characterized by a low Al (aluminum) content and a small amount of Zr and Mg. Since Al impairs the low temperature toughness, it is set to 0.020 mass% or less. Zr and Mg are deoxidizing and desulfurizing elements, and since they are effective in improving the forgeability and weldability of the alloy, they are added up to 0.05 mass% each. Large forged products such as winding shafts of superconducting generators are prone to forge cracking, but 13 ma with Zr and Mg added
The ss% Ni and 3 mass% Mo-based iron-based alloy is less likely to cause forging cracks. In addition, the winding shaft has many welding points with other parts such as low temperature dampers, but 13 ma with Zr and Mg added
The ss% Ni and 3 mass% Mo-based iron-based alloy is less likely to cause weld cracking. Further, according to the present invention, 13 mass% Ni and 3 ma
The ss% Mo-based iron-based alloy is characterized by allowing carbon to remain at the time of smelting, since C can be allowed up to 0.10 mass% at the maximum.

【0023】表2は本発明の実施例に係る13mass
%Niと3mass%Mo系鉄基合金と、比較材に挙げ
た従来例に係るインコネルの化学成分を示す。30kg
真空溶解後で作製したインゴットを平角形状に熱間鍛造
し、熱処理を与えてから試験片を採取して特性を測定し
た。本発明の実施例に係る材料には900℃焼入れの熱
処理を与え、比較材には980℃×1h溶体化および8
45℃×3h+720℃×8h+620℃×8h時効の
熱処理を与えた。
Table 2 shows 13 mass according to the embodiment of the present invention.
% Ni and 3 mass% Mo-based iron-based alloy, and the chemical components of Inconel according to the conventional example given as a comparative material are shown. 30 kg
The ingot produced after vacuum melting was hot-forged into a rectangular shape, heat-treated, and then a test piece was sampled to measure its characteristics. The material according to the example of the present invention was subjected to heat treatment of 900 ° C. quenching, and the comparative material was solution treated at 980 ° C. × 1 h and 8 hours.
A heat treatment of 45 ° C. × 3 h + 720 ° C. × 8 h + 620 ° C. × 8 h was applied.

【0024】[0024]

【表2】 図7は本発明の実施例に係る材料N1、図8は本発明の
実施例に係る材料N2の引張特性を示す。図9は本発明
の実施例に係る材料N1、図10は本発明の実施例に係
る材料N2、図11は比較材に挙げた従来例に係るイン
コネルの磁気特性を示す。13mass%Niと3ma
ss%Mo系鉄基合金は室温で引張0.2%耐力600
MPaと4Kで伸び20%を示し、室温から5Kの温度
範囲でインコネルよりも強い強磁性を示している。この
結果から13mass%Niと3mass%Mo系鉄基
合金は巻線軸に適した強磁性・高強度・高靭性材料にあ
ることが明らかである。この13mass%Niと3m
ass%Mo系鉄基合金は従来界磁巻線取付軸に用いら
れているA286合金やインコネルよりもNi量が少な
いことから材料費が安いという特長がある。
[Table 2] FIG. 7 shows the tensile properties of the material N1 according to the embodiment of the present invention, and FIG. 8 shows the tensile properties of the material N2 according to the embodiment of the present invention. 9 shows the magnetic characteristics of the material N1 according to the example of the present invention, FIG. 10 shows the material N2 of the example of the present invention, and FIG. 11 shows the magnetic characteristics of Inconel according to the conventional example given as a comparative material. 13 mass% Ni and 3 ma
ss% Mo-based iron-based alloy has a tensile strength of 0.2% at room temperature of 600
It exhibits an elongation of 20% at MPa and 4K, and exhibits stronger ferromagnetism than Inconel in the temperature range of room temperature to 5K. From this result, it is clear that the 13 mass% Ni and 3 mass% Mo-based iron-based alloys are ferromagnetic, high strength and high toughness materials suitable for the winding axis. This 13 mass% Ni and 3 m
The ass% Mo-based iron-based alloy has a feature that the material cost is low because the amount of Ni is smaller than that of the A286 alloy and Inconel which are conventionally used for the field winding mounting shaft.

【0025】[0025]

【発明の効果】以上説明した本発明に係る超電導発電機
によれば、超電導界磁巻線に性能上の負担を掛けること
なく空隙磁束を増加させて、超電導発電機の小型化が可
能である。
According to the superconducting generator according to the present invention described above, it is possible to reduce the size of the superconducting generator by increasing the air gap magnetic flux without imposing a performance burden on the superconducting field winding. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示す第1の実施例に係るも
ので、超電導発電機の構成を示す図。
FIG. 1 is a diagram illustrating a configuration of a superconducting generator according to a first example illustrating an embodiment of the present invention.

【図2】従来例に係る超電導発電機の構成を示す図。FIG. 2 is a diagram showing a configuration of a superconducting generator according to a conventional example.

【図3】従来例に係る非磁性巻線軸を用いた200MW
超電導発電機の定格出力時の磁束密度分布を示す図であ
る。
FIG. 3 200 MW using a non-magnetic winding shaft according to a conventional example
It is a figure which shows the magnetic flux density distribution at the time of a rated output of a superconducting generator.

【図4】本発明の実施例に係るもので、図3と同じ体格
の超電導発電機で磁性巻線軸を用いて200MWを出力
した場合の磁束密度分布を示す図である。
FIG. 4 is a diagram showing a magnetic flux density distribution when 200 MW is output using a magnetic winding shaft in a superconducting generator having the same size as that of FIG. 3, according to an embodiment of the present invention.

【図5】本発明の実施例に係るもので、図3と同じ体格
の超電導発電機で磁性巻線軸を用い、非磁性巻線軸20
0MW超電導発電機と同じ起磁力を与えた場合の磁束密
度分布を示す図である。
FIG. 5 relates to an embodiment of the present invention, in which a magnetic winding shaft is used in a superconducting generator having the same size as in FIG. 3, and a non-magnetic winding shaft 20 is used.
It is a figure which shows the magnetic flux density distribution when the same magnetomotive force is given as a 0 MW superconducting generator.

【図6】本発明の実施形態を示す第2の実施例に係るも
ので、超電導発電機の構成を示す図である。
FIG. 6 relates to a second example showing an embodiment of the present invention and is a diagram showing a configuration of a superconducting generator.

【図7】本発明の実施例に係るもので、材料N1の引張
特性を示す。
FIG. 7 relates to an example of the present invention and shows the tensile properties of material N1.

【図8】本発明の実施例に係るもので、材料N2の引張
特性を示す図である。
FIG. 8 is a diagram related to the example of the present invention and showing the tensile properties of the material N2.

【図9】本発明の実施例に係るもので、材料N1の磁気
特性を示す図である。
FIG. 9 is a diagram showing a magnetic characteristic of the material N1 according to the example of the present invention.

【図10】本発明の実施例に係るもので、材料N2の磁
気特性を示す図である。
FIG. 10 is a diagram showing a magnetic characteristic of the material N2 according to the example of the present invention.

【図11】比較材として挙げた従来例に係るインコネル
の磁気特性を示す図である。
FIG. 11 is a diagram showing magnetic characteristics of Inconel according to a conventional example given as a comparative material.

【符号の説明】[Explanation of symbols]

1…磁気シールド、2…空隙電機子巻線、3…常温ダン
パ、4…低温ダンパ、5…超電導界磁巻線、6…磁性巻
線軸、7…液体ヘリウム貯槽、8…非磁性巻線軸。
1 ... Magnetic shield, 2 ... Air gap armature winding, 3 ... Room temperature damper, 4 ... Low temperature damper, 5 ... Superconducting field winding, 6 ... Magnetic winding axis, 7 ... Liquid helium storage tank, 8 ... Nonmagnetic winding axis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 誉延 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H655 BB01 BB04 BB09 CC02 CC15 DD03 DD12 EE29    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mori Yoshinobu             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F term (reference) 5H655 BB01 BB04 BB09 CC02 CC15                       DD03 DD12 EE29

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】巻線軸に取り付けられる界磁巻線を冷媒で
冷やして超伝導状態を保つ超電導発電機にあって、 超伝導状態の温度で十分な靭性と磁性を有する磁性金属
で前記巻線軸を形成したことを特徴とする超電導発電
機。
1. A superconducting generator for maintaining a superconducting state by cooling a field winding attached to a winding shaft with a refrigerant, wherein the winding shaft is made of a magnetic metal having sufficient toughness and magnetism at a temperature of the superconducting state. Is a superconducting generator.
【請求項2】請求項1に記載されたものにあって、 前記巻線軸は13mass%Niと3mass%Mo系
の鉄基合金を含む金属材料を用いることを特徴とする超
電導発電機。
2. The superconducting generator according to claim 1, wherein the winding shaft is made of a metal material containing an iron-based alloy of 13 mass% Ni and 3 mass% Mo.
【請求項3】請求項1または2に記載されたものにあっ
て、 前記巻線軸の内側に前記冷媒が溜まるボアを設け、前記
巻線軸の軸線方向に沿うように配置されている前記界磁
巻線の直線部分に対応するところのボア中央部の径を2
50mm〜300mmにしたことを特徴とする超電導発
電機。
3. The field magnet according to claim 1 or 2, wherein a bore for accumulating the refrigerant is provided inside the winding shaft, and the bore is arranged along an axial direction of the winding shaft. The diameter of the central part of the bore corresponding to the straight part of the winding is 2
A superconducting generator characterized by having a thickness of 50 mm to 300 mm.
【請求項4】請求項3に記載されたものにあって、 前記ボアの両端側径を前記ボア中央部の径よりも大きく
したことを特徴とする超電導発電機。
4. The superconducting generator according to claim 3, wherein the diameter of both ends of the bore is larger than the diameter of the central portion of the bore.
【請求項5】電機子巻線が備わる固定子としての磁気シ
ールドと、界磁巻線が備わる回転子と、該回転子の回転
軸と、該回転軸に設けられ、かつ界磁巻線が備えられる
巻線軸と、該巻線軸の内側に設けられ、かつ前記界磁巻
線を冷却する冷媒が溜まるボアとを有し、前記巻線軸を
超伝導状態の温度で十分な靭性と磁性を有する磁性金属
で形成したことを特徴とする超電導発電機。
5. A magnetic shield as a stator provided with an armature winding, a rotor provided with a field winding, a rotating shaft of the rotor, and a field winding provided on the rotating shaft. It has a winding shaft provided, and a bore provided inside the winding shaft and in which a coolant for cooling the field winding is accumulated, and the winding shaft has sufficient toughness and magnetism at a temperature in a superconducting state. A superconducting generator characterized by being formed of magnetic metal.
【請求項6】電機子巻線が備わる固定子としての磁気シ
ールドと、界磁巻線が備わる回転子と、該回転子の回転
軸と、該回転軸に設けられ、かつ界磁巻線が備えられる
巻線軸と、該巻線軸の内側に設けられ、かつ前記界磁巻
線を冷却する冷媒が溜まるボアとを有し、前記巻線軸を
超伝導状態の温度および常温で十分な靭性と磁性を有す
る磁性金属で形成したことを特徴とする超電導発電機。
6. A magnetic shield as a stator provided with an armature winding, a rotor provided with a field winding, a rotation shaft of the rotor, and a field winding provided on the rotation shaft. The winding shaft has a winding shaft and a bore provided inside the winding shaft and in which a coolant for cooling the field winding is accumulated. The winding shaft has sufficient toughness and magnetic properties at superconducting temperature and room temperature. A superconducting power generator characterized by being formed from a magnetic metal having
JP2001277773A 2001-09-13 2001-09-13 Superconducting generator Expired - Lifetime JP3930277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277773A JP3930277B2 (en) 2001-09-13 2001-09-13 Superconducting generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277773A JP3930277B2 (en) 2001-09-13 2001-09-13 Superconducting generator

Publications (2)

Publication Number Publication Date
JP2003088092A true JP2003088092A (en) 2003-03-20
JP3930277B2 JP3930277B2 (en) 2007-06-13

Family

ID=19102246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277773A Expired - Lifetime JP3930277B2 (en) 2001-09-13 2001-09-13 Superconducting generator

Country Status (1)

Country Link
JP (1) JP3930277B2 (en)

Also Published As

Publication number Publication date
JP3930277B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP3551973B2 (en) High strength iron-cobalt-vanadium alloy articles
JP6929005B2 (en) Ultra-low cobalt iron-cobalt magnetic alloy
JPH09285050A (en) Dynamo-electric machine
JP5954865B2 (en) Motor rotor support and manufacturing method thereof
US4642495A (en) Electric rotary machine having superconducting rotor
JP2007174805A (en) Magnetic adjuster rotary machine
GB1595707A (en) Ferrous alloys
CA2290578A1 (en) High strength, ductile, co-fe-c soft magnetic alloy
Krings et al. Characteristics comparison and selection guide for magnetic materials used in electrical machines
EP0505085B2 (en) Steel for rotor shafts of electric machines
JP5448979B2 (en) Steel plate for rotor core of IPM motor, manufacturing method thereof, and rotor core of IPM motor
JP6339768B2 (en) Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof
JP3930277B2 (en) Superconducting generator
JP3458598B2 (en) Rotor wedge for rotating electric machine, method of manufacturing the same, and rotating electric machine using the same
JP5954864B2 (en) Motor rotor support and manufacturing method thereof
CN101676428B (en) Material for generator rotor shafts
JP4188761B2 (en) Rotor shaft material and superconducting rotating electric machine using the same
BRPI0906592B1 (en) FE-CO ALLOY FOR LARGE DYNAMIC ELECTROMAGNETIC ACTIVATION
JP2012177188A (en) Rotor core for permanent magnet motor
JP2988109B2 (en) Rotor shaft for rotating electric machine and rotating electric machine using the same
EP0331740A1 (en) MAGNETIC CORE MATERIAL FOR HIGH FREQUENCY MADE OF Fe-Co BASE ALLOY
JP3036372B2 (en) Rotor material for eddy current type reduction gear and manufacturing method thereof
JPWO2018216603A1 (en) Proportional solenoid, method of manufacturing the same, and method of controlling characteristics of proportional solenoid
JP3670034B2 (en) Stepping motor using soft magnetic stainless steel and manufacturing method of stator yoke used therefor
JPS6379933A (en) Ni-base alloy and its production and rotary electric damper and retaining ring made of ni-base alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6