JP2003087078A - Crystal vibrator structure - Google Patents

Crystal vibrator structure

Info

Publication number
JP2003087078A
JP2003087078A JP2001271133A JP2001271133A JP2003087078A JP 2003087078 A JP2003087078 A JP 2003087078A JP 2001271133 A JP2001271133 A JP 2001271133A JP 2001271133 A JP2001271133 A JP 2001271133A JP 2003087078 A JP2003087078 A JP 2003087078A
Authority
JP
Japan
Prior art keywords
crystal
hole
axis
housing
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001271133A
Other languages
Japanese (ja)
Inventor
Izumi Yamamoto
泉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2001271133A priority Critical patent/JP2003087078A/en
Publication of JP2003087078A publication Critical patent/JP2003087078A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem of many variations being generated in the value of wiring resistance and wiring being disconnected, if worst comes to worst because portions of discontinued metal film or thin metal film are formed, due to an etching residue inside a through-hole, when making the through-hole on a case made of a crystal to establish continuity between the inner and outer portions. SOLUTION: The through-hole is made into a polygonal, form and respective inner side faces constituting the polygon of the through-hole are made to be perpendicular with respect to X-axis of the crystal. Since etching rate is smaller in an X-axis than in a Z-axis, the etching progresses mostly in the X-axis, and a shape having no etching residues can be obtained. Thus, the variations in the resistance value of wiring can be reduced, and disconnections can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、時計や移動体通信
機の基準信号源として用いられる水晶振動子を筐体に収
納した水晶振動子構造体に関する。詳しくは、水晶振動
子を収納する筐体を水晶で構成した水晶振動子構造体で
あり、筐体に水晶振動子と外部との導通をとるための貫
通孔を有した水晶振動子構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal oscillator structure in which a crystal oscillator used as a reference signal source for a timepiece or a mobile communication device is housed. More specifically, the present invention relates to a crystal unit structure in which a housing for storing a crystal unit is made of crystal, and the body has a through hole for establishing electrical continuity between the crystal unit and the outside. .

【0002】[0002]

【従来の技術】時計や移動体通信機の基準信号源として
2本の振動する脚を持った、いわゆる音叉型の水晶振動
子が広く用いられている。このような水晶振動子は振動
による空気との摩擦によって性能が落ちるため、真空雰
囲気で用いる必要があり気密封止できる筐体に収納され
た状態で用いられる。最も広く用いられているのは図1
6に示すような筐体を金属からなる円筒で構成した円筒
型水晶振動子構造体31である。内部にある水晶振動子
と外部との導通は底面部に設けられたリード線33を介
して行われる。リード線33は筐体の底部において貫通
しており、筐体の内部と外部とを導通している。貫通部
はガラスよって埋められており、絶縁を図ると同時に気
密性が保たれている。このような円筒型水晶振動子構造
体31は図17の様にリード線33が回路基板35に接
続された上で横に寝かされるようにして使用される。時
計や移動体通信機の小型化薄型化の要請から水晶振動子
構造体にも薄型化が求められており、その要請に対し、
上記円筒形状では部品の高さが円筒の径によって決まり
それ以上は小さくできなかった。この課題に対し様々な
提案がなされているが、特開昭56−44213号公報
では水晶振動子と一体に周囲を囲む枠(以下、水晶振動
子枠板1と称する)を製作し、図18の様に水晶振動子
枠板1を別に製作した上部筐体9および下部筐体11で
挟み込むことにより水晶振動子構造体を得る技術が開示
されている。この構造によれば、水晶振動子構造体を薄
くすることが出来る。該公報では内部の水晶振動子の電
極、即ち内部電極と筐体外部にあり回路基板と接続する
ために用いる外部電極23との導通は筐体に開けられた
貫通孔3によってなしている。該公報には貫通孔3の内
部の金属膜の形成方法についての詳しい記載はないが、
実際には真空蒸着によって形成する。また該公報には貫
通孔3の形状等に関する詳しい記述は無く、図には円形
に記載されているのみである。該公報では筐体の材料の
一つとして水晶を用いることが記述されている。
2. Description of the Related Art A so-called tuning fork type crystal oscillator having two vibrating legs is widely used as a reference signal source for a timepiece and a mobile communication device. The performance of such a crystal oscillator deteriorates due to friction with air due to vibration, and thus it is necessary to use it in a vacuum atmosphere and used in a state where it is housed in a hermetically sealed case. Figure 1 is the most widely used
6 is a cylindrical crystal resonator structure 31 in which the casing shown in 6 is made of a metal cylinder. Conduction between the crystal unit inside and the outside is performed through the lead wire 33 provided on the bottom surface. The lead wire 33 penetrates at the bottom of the housing, and electrically connects the inside and the outside of the housing. The penetrating part is filled with glass, and at the same time airtightness is maintained while achieving insulation. Such a cylindrical crystal oscillator structure 31 is used such that the lead wire 33 is connected to the circuit board 35 and then laid down sideways as shown in FIG. Due to the demand for miniaturization and thinning of watches and mobile communication devices, the quartz crystal structure is also required to be thin.
In the above cylindrical shape, the height of the component is determined by the diameter of the cylinder and cannot be made smaller than that. Although various proposals have been made for this problem, in Japanese Patent Laid-Open No. 56-44213, a frame surrounding the crystal unit (hereinafter, referred to as the crystal unit frame plate 1) is manufactured and shown in FIG. As described above, a technique for obtaining a crystal resonator structure by sandwiching the crystal resonator frame plate 1 between the separately manufactured upper housing 9 and lower housing 11 is disclosed. According to this structure, the crystal resonator structure can be thinned. In this publication, the electrodes of the internal crystal unit, that is, the internal electrodes and the external electrodes 23 which are outside the housing and are used for connecting to the circuit board are electrically connected by the through holes 3 formed in the housing. Although there is no detailed description on the method of forming the metal film inside the through hole 3 in this publication,
Actually, it is formed by vacuum evaporation. Further, this publication does not have a detailed description of the shape of the through hole 3 and the like, and only the circular shape is shown in the drawing. The publication describes the use of quartz as one of the materials for the housing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の技術では、筐体を水晶とした場合その異方性か
ら、エッチングマスクがたとえ円形でも貫通孔の内部で
は結晶面の違いにより円形とはならず、結果として貫通
孔内部に残滓が出来、蒸着の際、影となる部分が現れ金
属膜が連続しない部分や薄い部分が生じ、そのため配線
抵抗値にばらつきが多く、最悪の場合金属膜が切れ断線
してしまうという課題があった。また、貫通孔が小さ
く、また深いとエッチング液が浸入し難いので、筐体の
外形部分のエッチングが終了しても貫通孔のエッチング
が終了せず、貫通孔の内部にエッチング残滓が生じ、そ
のため金属膜が連続しない部分や薄い部分が生じ、配線
抵抗値にばらつきが多く、最悪の場合金属膜が切れ断線
してしまうという課題があった。
However, in the above-mentioned conventional technique, when the case is made of quartz, due to the anisotropy, even if the etching mask is circular, the inside of the through hole is not circular due to the difference of crystal planes. As a result, a residue is formed inside the through hole, a shadowed portion appears during vapor deposition, and a portion where the metal film is not continuous or a thin portion is generated. There was a problem of breaking the wire. Further, if the through hole is small and deep, it is difficult for the etching solution to enter.Therefore, the etching of the through hole does not end even after the etching of the outer shape of the housing is completed, and an etching residue is generated inside the through hole. There is a problem that the metal film has a discontinuous portion or a thin portion, the wiring resistance value varies widely, and in the worst case, the metal film is cut and broken.

【0004】上記課題を解決するため、本発明の目的
は、筐体に設ける貫通孔の内部のエッチング残滓を無く
し、金属膜が連続しない部分や薄い部分を生じさせず、
配線抵抗値のばらつきが少なく、断線することのない水
晶振動子構造体を提供することにある。
In order to solve the above-mentioned problems, an object of the present invention is to eliminate etching residues inside the through holes provided in the housing, to prevent the metal film from forming a discontinuous portion or a thin portion,
It is an object of the present invention to provide a crystal resonator structure in which variations in wiring resistance values are small and disconnection does not occur.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明による水晶振動子構造体は水晶振動子と該水
晶振動子を内部に収納し気密封止するための筐体からな
る水晶振動子構造体であって、該筐体は水晶からなり、
該筐体内部と外部とを結ぶ貫通孔を有し、該貫通孔の断
面形状は略多角形であり、該多角形を構成する内側面の
それぞれが水晶の結晶軸のX軸に対して略垂直であるこ
とを特徴とする。
In order to achieve the above object, a crystal resonator structure according to the present invention is a crystal composed of a crystal resonator and a casing for housing the crystal resonator therein and hermetically sealing it. A vibrator structure, wherein the housing is made of crystal,
There is a through hole that connects the inside and the outside of the housing, and the cross-sectional shape of the through hole is a substantially polygonal shape, and each of the inner side surfaces forming the polygonal shape is substantially with respect to the X axis of the crystal axis of quartz. It is characterized by being vertical.

【0006】本発明による水晶振動子構造体は、前記多
角形が略三角形であり、前記貫通孔には該三角形を構成
する3つの内側面があり、該内側面のそれぞれに直交す
る水晶の結晶軸のX軸の向きが貫通孔の内側が負、外側
が正であることを特徴とする。
In the crystal resonator structure according to the present invention, the polygonal shape is a substantially triangular shape, the through hole has three inner side surfaces forming the triangle, and a crystal of quartz crystal orthogonal to each of the inner side surfaces. The X-axis of the shaft is characterized in that the inside of the through hole is negative and the outside is positive.

【0007】本発明による水晶振動子構造体は、前記多
角形が略六角形であることを特徴とする。
The crystal unit structure according to the present invention is characterized in that the polygon is substantially hexagonal.

【0008】本発明による水晶振動子構造体は、前記貫
通孔の開口面積が前記筐体の内部に接する部分より、該
筐体の外部に接する部分を大きくしたことを特徴とす
る。
The crystal resonator structure according to the present invention is characterized in that an opening area of the through hole is larger in a portion in contact with the outside of the casing than in a portion in contact with the inside of the casing.

【0009】[0009]

【発明の実施の形態】以下、本発明による実施の形態を
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0010】(実施例1)図1から図3は本発明による
水晶振動子構造体の形態を示す図である。図1は本発明
による水晶振動子構造体の斜視図である。図2は本発明
による水晶振動子構造体を構成する部品の一つである水
晶振動子枠板1の斜視図である。図3は本発明による水
晶振動子構造体の貫通孔3を通る断面図である。本発明
による水晶振動子構造体は水晶振動子5とそれを支える
枠部7とからなる水晶振動子枠板1と水晶振動子枠板1
を枠部7で挟持する上部筐体9および下部筐体11とか
らなる。図1では貫通孔3を見やすくするために上部筐
体9を下に描き、下部筐体11を上に描いている。実際
には下部筐体側を回路基板側に付着して実装される。
(Embodiment 1) FIGS. 1 to 3 are views showing a form of a crystal resonator structure according to the present invention. FIG. 1 is a perspective view of a crystal resonator structure according to the present invention. FIG. 2 is a perspective view of a crystal unit frame plate 1 which is one of the components constituting the crystal unit structure according to the present invention. FIG. 3 is a sectional view through the through hole 3 of the crystal unit structure according to the present invention. The crystal unit structure according to the present invention includes a crystal unit frame plate 1 and a crystal unit frame plate 1 each including a crystal unit 5 and a frame portion 7 supporting the crystal unit 5.
It is composed of an upper casing 9 and a lower casing 11 which sandwich the frame 7 with the frame 7. In FIG. 1, the upper housing 9 is drawn below and the lower housing 11 is drawn above so that the through hole 3 can be easily seen. Actually, the lower housing side is attached to the circuit board side for mounting.

【0011】水晶振動子枠板1、上部筐体9および下部
筐体11はそれぞれ水晶から構成され、フッ酸とフッ化
アンモニウム水溶液を混合した液体を用いたエッチング
加工によって形成される。本発明の水晶振動子枠板1、
上部筐体9および下部筐体11は同じ結晶方位を有する
水晶からなる。これは熱膨張による接合部13への影響
を軽減するためである。本発明の水晶振動子構造体では
水晶振動子5の脚の幅方向は水晶の結晶軸のX軸方向に
一致している。脚の伸びている方向および厚み方向は、
それぞれ水晶の結晶軸のY軸およびZ軸に一致させた状
態からX軸を回転軸として角度θ回転した方向である。
θは0〜5°である。水晶振動子枠板1は上述したよう
に水晶振動子とそれを支える枠部7で構成される。枠部
7と水晶振動子5は水晶振動子5の基部でつながった構
造をしている。水晶振動子5と枠部7は一体であり、一
枚の水晶板からエッチング加工により形成される。水晶
振動子5には振動を励起するための電極即ち内部電極1
5が設けられている。枠部7には封止用金属膜17が施
されており上部筐体9および下部筐体11とを接合し気
密封止することに用いられる。下部筐体11には水晶振
動子5の内部電極15を筐体の外部に導くための2つの
貫通孔3が設けられている。貫通孔3の内側面19には
真空蒸着などにより金属膜からなる接続電極21が形成
されており、筐体内部の水晶振動子5に設けられた内部
電極15と下部筐体11の外側に形成された外部電極2
3とを導通している。図4は下部筐体11の貫通孔3付
近の拡大図である。貫通孔3の形状は略三角形であり、
三角形の各辺は水晶の結晶軸のX軸に対して略垂直であ
る。貫通孔3の形状をこのようにした理由は以下の通り
である。
The crystal resonator frame plate 1, the upper casing 9 and the lower casing 11 are each made of quartz and are formed by etching using a liquid in which hydrofluoric acid and an ammonium fluoride aqueous solution are mixed. Crystal oscillator frame plate 1 of the present invention,
The upper housing 9 and the lower housing 11 are made of quartz having the same crystal orientation. This is to reduce the influence of thermal expansion on the joint 13. In the crystal resonator structure of the present invention, the width direction of the legs of the crystal resonator 5 coincides with the X-axis direction of the crystal axis of the crystal. The direction in which the legs extend and the thickness direction,
The directions are rotated by an angle θ with the X axis as the axis of rotation from the state in which they are aligned with the Y axis and the Z axis of the crystal axis of the crystal.
θ is 0 to 5 °. The crystal oscillator frame plate 1 is composed of the crystal oscillator and the frame portion 7 supporting the crystal oscillator as described above. The frame 7 and the crystal unit 5 are connected at the base of the crystal unit 5. The crystal unit 5 and the frame 7 are integrated, and are formed by etching from a single crystal plate. The crystal oscillator 5 has electrodes for exciting vibration, that is, the internal electrode 1
5 are provided. The frame portion 7 is provided with a sealing metal film 17 and is used for joining the upper casing 9 and the lower casing 11 and hermetically sealing them. The lower housing 11 is provided with two through holes 3 for guiding the internal electrodes 15 of the crystal unit 5 to the outside of the housing. A connection electrode 21 made of a metal film is formed on the inner side surface 19 of the through hole 3 by vacuum deposition or the like, and is formed outside the inner electrode 15 provided on the crystal unit 5 inside the housing and the lower housing 11. External electrode 2
3 and 3 are conducted. FIG. 4 is an enlarged view of the vicinity of the through hole 3 of the lower housing 11. The shape of the through hole 3 is a substantially triangular shape,
Each side of the triangle is substantially perpendicular to the X axis of the crystal axis of quartz. The reason why the shape of the through hole 3 is set as described above is as follows.

【0012】水晶は三方晶系に属する異方性の単結晶で
ありエッチング速度が方位により著しく異なる。Z軸方
向のエッチング速度はX軸の負方向からのエッチング速
度より100倍程度の速度を持っている。従って、図5
のように本発明で用いる水晶板25にX軸方向に垂直に
X軸の正側を保護するようにCrを下地としてAuを付
着した膜からなるマスク27を形成してエッチングする
と、エッチングはX軸の負方向からはほとんど進行せず
Z軸方向に進行し結果として図6に示すような残滓がな
く厚み方向の形状が一定した断面形状ができあがる。ま
た、水晶はZ軸を対称軸とする三回対称の結晶であり、
Z軸の周りにX軸は120°ごとに3本存在し、それぞ
れが同等である。従って3本のそれぞれのX軸に対し垂
直な線で3角形を作ることができる。図7のようにこの
3角形をマスク27としてX軸の負方向を貫通孔3の中
心側にしてエッチングを行うと貫通孔3の内側面は厚み
方向に対し真っ直ぐに切れるので、残滓のない貫通孔3
を得ることができ、貫通孔3の内面に接続電極21を真
空蒸着した時に連続しない部分や薄い部分あるは断線な
どが生じることが無くて良い。
Quartz is an anisotropic single crystal that belongs to the trigonal system, and the etching rate varies significantly depending on the orientation. The etching rate in the Z-axis direction is about 100 times faster than the etching rate in the negative X-axis direction. Therefore, FIG.
As described above, when the quartz plate 25 used in the present invention is etched by forming a mask 27 made of a film on which Au is attached with Cr as a base so as to protect the positive side of the X axis perpendicular to the X axis direction, the etching is There is almost no progress from the negative direction of the axis, and the progress is in the Z-axis direction. As a result, a cross-sectional shape having no debris and a uniform shape in the thickness direction is formed as shown in FIG. Further, the crystal is a three-fold symmetric crystal having the Z axis as the axis of symmetry,
There are three X-axes every 120 ° around the Z-axis and they are equivalent. Therefore, a triangle can be made with a line perpendicular to each of the three X-axes. As shown in FIG. 7, when the triangle 27 is used as the mask 27 and etching is performed with the negative direction of the X-axis being the center side of the through hole 3, the inner surface of the through hole 3 is cut straight in the thickness direction, so there is no residue. Hole 3
Therefore, when the connection electrode 21 is vacuum-deposited on the inner surface of the through hole 3, a discontinuous portion, a thin portion, or a disconnection does not occur.

【0013】X軸の正方向からのエッチング速度はX軸
の負方向からのエッチング速度より速いので図8に示す
ような突出部29が生じるが、その程度はZ軸方向のエ
ッチング速度との差に比べて小さいので、X軸の正方向
を貫通3孔の中心側にすることも可能であるが、X軸の
負方向を貫通孔の中心側にして貫通孔3を形成した方が
エッチング残滓をより少なくすることができるので望ま
しい。以上の様な理由により貫通孔3の形状は略三角形
であり、三角形の各辺は水晶の結晶軸のX軸に対して略
垂直にするのである。
Since the etching rate from the positive direction of the X-axis is faster than the etching rate from the negative direction of the X-axis, a protrusion 29 as shown in FIG. 8 is formed, but the extent of this difference is different from the etching rate in the Z-axis direction. Since it is smaller than the above, it is possible to set the positive direction of the X-axis to the center side of the through-hole 3, but it is better to form the through-hole 3 with the negative direction of the X-axis toward the center of the through-hole. Is desirable because it can be reduced. For the above reasons, the shape of the through hole 3 is substantially triangular, and each side of the triangle is substantially perpendicular to the X axis of the crystal axis of quartz.

【0014】上記のようにX軸の負方向からのエッチン
グ速度とX軸の正方向からのエッチング速度は異なり、
X軸の負方向を貫通孔3の中心側にして貫通孔3を形成
した場合とX軸の正方向を貫通孔3の中心側にして貫通
孔3を形成した場合とで貫通孔3の内面形状は異なる
が、その差は軽微である。そこで、図9のようにX軸の
負方向を貫通孔3の中心側にした貫通孔3と、X軸の正
方向を貫通孔3の中心側にした貫通孔3とを組み合わせ
ても良い。また、同一の貫通孔3にX軸の負方向を貫通
孔3の中心側にした内側面とX軸の正方向を貫通孔3の
中心側にした内側面の双方があっても構わないので、例
えば図10に示すような六角形や、図11に示すような
五角形、あるいは図12または図13に示すような四角
形としても構わない。この内、六角形は円に最も近く対
称性が良いので、小型化により限られた面積に貫通孔3
を設ける必要がある場合に有用である。
As described above, the etching rate from the negative X-axis direction and the etching rate from the positive X-axis direction are different,
The inner surface of the through hole 3 when the through hole 3 is formed with the negative direction of the X axis being the center side of the through hole 3 and when the through hole 3 is formed with the positive direction of the X axis being the center side of the through hole 3. The shape is different, but the difference is slight. Therefore, as shown in FIG. 9, the through hole 3 in which the negative direction of the X axis is the center side of the through hole 3 and the through hole 3 in which the positive direction of the X axis is the center side of the through hole 3 may be combined. Further, the same through hole 3 may have both an inner side surface with the negative direction of the X axis being the center side of the through hole 3 and an inner side surface with the positive direction of the X axis being the center side of the through hole 3. For example, it may be a hexagon as shown in FIG. 10, a pentagon as shown in FIG. 11, or a quadrangle as shown in FIG. 12 or 13. Of these, the hexagon is the closest to a circle and has good symmetry, so the size of the through hole 3
Is useful when it is necessary to provide.

【0015】これまで記したように本実施例における水
晶振動子構造体は筐体内部と外部との導通を図る貫通孔
3の内面にエッチング残滓による突出部を生じることが
ないので断線が発生することがなく、また安定した配線
抵抗値を持った水晶振動子構造体を提供することができ
る。
As described above, in the crystal resonator structure according to the present embodiment, since the protrusion due to the etching residue is not formed on the inner surface of the through hole 3 for establishing the conduction between the inside and the outside of the housing, the disconnection occurs. It is possible to provide a crystal resonator structure that does not have a stable wiring resistance value.

【0016】本実施の形態では下部筐体11に二つの貫
通孔3を設けた例を示したが、貫通孔3の断面形状が重
要なのであって、貫通孔3の位置や数には関係なく本発
明の効果が得られることは、これまでの説明で明らかで
ある。従って、上部筐体9に貫通孔3を二つ設けても良
いし、上部筐体9および下部筐体11のそれぞれに貫通
孔3を設けても良いことは言うまでもないことである。
In the present embodiment, an example in which the two through holes 3 are provided in the lower housing 11 has been shown, but the sectional shape of the through holes 3 is important, regardless of the position or number of the through holes 3. It is clear from the above description that the effects of the present invention can be obtained. Therefore, it goes without saying that two through holes 3 may be provided in the upper housing 9 or the through holes 3 may be provided in each of the upper housing 9 and the lower housing 11.

【0017】(実施例2)図14、図15は本発明によ
る他の実施の形態を示す図であり、筐体に開ける貫通孔
3の開口面積を筐体の内部に接する側より筐体の外部の
側を大きくした例である。図14は下部筐体11の貫通
孔3付近の拡大図、図15は下部筐体11を図14のA
−A位置で切った時の断面図である。本発明のように貫
通孔3の開口面積に差をつけると、筐体の外部に接する
部分のエッチングは貫通孔3が大きいのでエッチング液
が良く浸入し速く進み、筐体の内部からのエッチングが
遅くても貫通孔3のエッチングは終了しエッチング残滓
が生じることなく、断線の発生を防ぐことができる。
(Embodiment 2) FIGS. 14 and 15 are views showing another embodiment of the present invention, in which the opening area of the through-hole 3 formed in the housing is larger than that of the housing which is in contact with the inside of the housing. This is an example in which the outside is enlarged. 14 is an enlarged view of the vicinity of the through hole 3 of the lower housing 11, and FIG. 15 shows the lower housing 11 in FIG.
It is sectional drawing when it cut | disconnects in a -A position. When the opening areas of the through holes 3 are made different as in the present invention, the etching of the portion in contact with the outside of the housing is large because the through holes 3 are large, so that the etching solution penetrates well and progresses quickly, and etching from inside the housing is prevented. Even at the latest, the etching of the through holes 3 is completed, etching residue does not occur, and the occurrence of disconnection can be prevented.

【0018】貫通孔3の形状は略多角形であり、多角形
の各辺は水晶の結晶軸のX軸に対して略垂直である。こ
の理由は前述した通りである。
The shape of the through hole 3 is substantially polygonal, and each side of the polygon is substantially perpendicular to the X axis of the crystal axis of quartz. The reason for this is as described above.

【0019】[0019]

【発明の効果】以上に記したように、本発明の水晶振動
子構造体は、筐体に開けた貫通孔の内面にエッチング残
滓による突出部を生じることがなく、金属膜が連続しな
い部分や薄い部分、あるいは断線することがなく、安定
した配線抵抗を得ることができると同時に安定した配線
容量を得ることができ、共振周波数が安定してバラツキ
の少ない水晶振動子構造体を得ることができるという効
果がある。
As described above, according to the crystal resonator structure of the present invention, there is no protrusion due to etching residue on the inner surface of the through hole formed in the housing, and the metal film is not continuous. It is possible to obtain a stable wiring resistance at the same time without obtaining a thin portion or disconnection, and at the same time, to obtain a stable wiring capacitance, and to obtain a crystal resonator structure in which the resonance frequency is stable and variation is small. There is an effect.

【0020】[0020]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水晶振動子構造体の斜視図であ
る。
FIG. 1 is a perspective view of a crystal unit structure according to the present invention.

【図2】本発明による水晶振動子構造体を構成する部品
の一つである水晶振動子枠板の斜視図である。
FIG. 2 is a perspective view of a crystal unit frame plate, which is one of the components constituting the crystal unit structure according to the present invention.

【図3】本発明による水晶振動子構造体の貫通孔を通る
断面図である。
FIG. 3 is a cross-sectional view through a through hole of a crystal resonator structure according to the present invention.

【図4】本発明による水晶振動子構造体における下部筐
体の貫通孔付近の拡大図である。
FIG. 4 is an enlarged view of the vicinity of a through hole of a lower housing in the crystal unit structure according to the present invention.

【図5】水晶板のエッチングの異方性を説明するための
図である。
FIG. 5 is a diagram for explaining anisotropy of etching of a quartz plate.

【図6】水晶板のエッチングの異方性を説明するための
図であり、水晶板をX軸の負方向からエッチングした時
の断面形状を示す図である。
FIG. 6 is a diagram for explaining the etching anisotropy of the crystal plate, showing the cross-sectional shape when the crystal plate is etched from the negative direction of the X axis.

【図7】本発明の水晶振動子構造体における貫通孔の形
状を説明する図である。
FIG. 7 is a diagram illustrating a shape of a through hole in the crystal resonator structure of the present invention.

【図8】水晶板のエッチングの異方性を説明するための
図であり、水晶板をX軸の正方向からエッチングした時
の断面形状を示す図である。
FIG. 8 is a diagram for explaining the anisotropy of etching of the crystal plate, showing the cross-sectional shape when the crystal plate is etched from the positive direction of the X axis.

【図9】本発明による水晶振動子構造体における下部筐
体の貫通孔付近の拡大図である。
FIG. 9 is an enlarged view of the vicinity of the through hole of the lower housing in the crystal unit structure according to the present invention.

【図10】本発明による水晶振動子構造体の貫通孔の形
状を示す図である。
FIG. 10 is a diagram showing a shape of a through hole of the crystal unit structure according to the present invention.

【図11】本発明による水晶振動子構造体の貫通孔の形
状を示す図である。
FIG. 11 is a view showing a shape of a through hole of the crystal unit structure according to the present invention.

【図12】本発明による水晶振動子構造体の貫通孔の形
状を示す図である。
FIG. 12 is a view showing a shape of a through hole of the crystal resonator structure according to the present invention.

【図13】本発明による水晶振動子構造体の貫通孔の形
状を示す図である。
FIG. 13 is a view showing a shape of a through hole of the crystal unit structure according to the present invention.

【図14】本発明による他の実施の形態を示す図であ
り、下部筐体の貫通孔付近の拡大図である。
FIG. 14 is a view showing another embodiment of the present invention, and is an enlarged view of the vicinity of the through hole of the lower housing.

【図15】本発明による他の実施の形態を示す図であ
り、下部筐体の貫通孔付近の断面図である。
FIG. 15 is a view showing another embodiment according to the present invention, which is a cross-sectional view near the through hole of the lower housing.

【図16】従来の円筒型水晶振動子構造体を示す図であ
る。
FIG. 16 is a diagram showing a conventional cylindrical crystal unit structure.

【図17】従来の円筒型水晶振動子構造体の実装状態を
示す図である。
FIG. 17 is a view showing a mounted state of a conventional cylindrical crystal unit structure.

【図18】従来の水晶振動子構造体を示す図である。FIG. 18 is a diagram showing a conventional crystal resonator structure.

【符号の説明】[Explanation of symbols]

1 水晶振動子枠板 3 貫通孔 5 水晶振動子 7 枠部 9 上部筐体 11 下部筐体 13 接合部 15 内部電極 17 封止用金属膜 19 内側面 21 接続電極 23 外部電極 25 水晶板 27 マスク 29 突出部 31 円筒型水晶振動子構造体 33 リード線 1 Crystal oscillator frame plate 3 through holes 5 Crystal unit 7 frame 9 Upper case 11 Lower case 13 joints 15 internal electrodes 17 Metal film for sealing 19 Inside 21 Connection electrode 23 External electrode 25 crystal plate 27 masks 29 Projection 31 Cylindrical crystal unit 33 lead wire

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動子と該水晶振動子を内部に収納
し気密封止するための筐体からなる水晶振動子構造体で
あって、該筐体は水晶からなり、該筐体の内部と外部と
を結ぶ貫通孔を有し、該貫通孔の断面形状は略多角形で
あり、該多角形を構成する内側面のそれぞれが水晶の結
晶軸のX軸に対して略垂直であることを特徴とする水晶
振動子構造体。
1. A crystal resonator structure comprising a crystal resonator and a housing for housing the crystal resonator therein and hermetically sealing the crystal resonator, wherein the housing is made of crystal and the inside of the housing is provided. Has a through hole connecting the outside and the outside, and the cross-sectional shape of the through hole is substantially polygonal, and each of the inner side surfaces forming the polygon is substantially perpendicular to the X axis of the crystal axis of quartz. A crystal unit structure characterized by.
【請求項2】 前記多角形は略三角形であって、前記貫
通孔は該三角形を構成する3つの内側面を有し、該内側
面のそれぞれに直交する水晶の結晶軸のX軸の向きは、
前記貫通孔の内側から外側に向かっていることを特徴と
する請求項1に記載の水晶振動子構造体。
2. The polygon is a substantially triangular shape, the through hole has three inner side surfaces forming the triangle, and the direction of the X axis of the crystal axis of the quartz crystal orthogonal to each of the inner side surfaces is ,
The crystal unit structure according to claim 1, wherein the crystal unit structure extends from the inside to the outside of the through hole.
【請求項3】 前記多角形は、略六角形であることを特
徴とする請求項1に記載の水晶振動子構造体。
3. The crystal resonator structure according to claim 1, wherein the polygon is a substantially hexagon.
【請求項4】 外部に面する側の貫通孔の開口面積は、
前記水晶振動子に面する側の貫通孔の開口面積よりも大
きくしたことを特徴とする請求項1から請求項3のいず
れか一に記載の水晶振動子構造体。
4. The opening area of the through hole on the side facing the outside is
The crystal resonator structure according to any one of claims 1 to 3, wherein the opening area of the through hole on the side facing the crystal resonator is made larger.
JP2001271133A 2001-09-07 2001-09-07 Crystal vibrator structure Pending JP2003087078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271133A JP2003087078A (en) 2001-09-07 2001-09-07 Crystal vibrator structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271133A JP2003087078A (en) 2001-09-07 2001-09-07 Crystal vibrator structure

Publications (1)

Publication Number Publication Date
JP2003087078A true JP2003087078A (en) 2003-03-20

Family

ID=19096679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271133A Pending JP2003087078A (en) 2001-09-07 2001-09-07 Crystal vibrator structure

Country Status (1)

Country Link
JP (1) JP2003087078A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074793A (en) * 2004-09-03 2006-03-16 Eta Sa Manufacture Horlogere Suisse Compact crystal resonator
JP2007097042A (en) * 2005-09-30 2007-04-12 Kyocera Kinseki Corp Quartz crystal vibration plate
JP2009171080A (en) * 2008-01-15 2009-07-30 Nippon Dempa Kogyo Co Ltd Crystal device and manufacturing method for crystal device
JP2010147824A (en) * 2008-12-19 2010-07-01 Kyocera Kinseki Corp Quartz vibrator
JP2011217040A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method of manufacturing tuning fork type quartz piece
JP2011217041A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method for manufacturing tuning fork type crystal piece
JP2011217039A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method of manufacturing tuning fork type quartz piece
JP2015076651A (en) * 2013-10-07 2015-04-20 京セラクリスタルデバイス株式会社 Method for manufacturing crystal oscillation element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074793A (en) * 2004-09-03 2006-03-16 Eta Sa Manufacture Horlogere Suisse Compact crystal resonator
JP4646744B2 (en) * 2004-09-03 2011-03-09 イーティーエー エスエー マニュファクチュア ホルロゲア スイス Small crystal resonator
JP2007097042A (en) * 2005-09-30 2007-04-12 Kyocera Kinseki Corp Quartz crystal vibration plate
JP2009171080A (en) * 2008-01-15 2009-07-30 Nippon Dempa Kogyo Co Ltd Crystal device and manufacturing method for crystal device
JP4647671B2 (en) * 2008-01-15 2011-03-09 日本電波工業株式会社 Quartz device and method of manufacturing quartz device
US7932662B2 (en) 2008-01-15 2011-04-26 Nihon Dempa Kogyo Co., Ltd. Crystal devices and methods for manufacturing same
JP2010147824A (en) * 2008-12-19 2010-07-01 Kyocera Kinseki Corp Quartz vibrator
JP2011217040A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method of manufacturing tuning fork type quartz piece
JP2011217041A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method for manufacturing tuning fork type crystal piece
JP2011217039A (en) * 2010-03-31 2011-10-27 Kyocera Kinseki Corp Method of manufacturing tuning fork type quartz piece
JP2015076651A (en) * 2013-10-07 2015-04-20 京セラクリスタルデバイス株式会社 Method for manufacturing crystal oscillation element

Similar Documents

Publication Publication Date Title
US7061167B2 (en) Tuning-fork-type piezoelectric vibrating reed and tuning-fork-type piezoelectric vibrator
US8569938B2 (en) Tuning fork quartz crystal resonator including recess on base
JPH1041772A (en) Manufacture of crystal vibrator
JP2003087078A (en) Crystal vibrator structure
JP5158706B2 (en) Quartz crystal manufacturing method, crystal oscillator and electronic component
JPH04322507A (en) Method of processing crystal resonator
US11824512B2 (en) Piezoelectric resonator device
JP5130952B2 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
CN107534431B (en) Crystal oscillator and method for manufacturing same
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP6794941B2 (en) Crystal diaphragm and crystal vibration device
JP2003017976A (en) Piezoelectric substrate, piezoelectric vibrating element, piezoelectric device and piezoelectric substrate base material
JP7056531B2 (en) Crystal diaphragm and crystal vibration device
US11411549B2 (en) Crystal resonator plate and crystal resonator device
TWI757459B (en) Tuning fork type piezoelectric vibrating piece and tuning fork type piezoelectric vibrator using the same
JP3864056B2 (en) Crystal oscillator
JP2003133894A (en) Quartz vibrator structure
JP6624803B2 (en) AT-cut crystal blank and crystal oscillator
TWI824438B (en) Crystal oscillator and manufacturing method thereof
JP6794938B2 (en) Crystal diaphragm and crystal vibration device
JP2003133893A (en) Quartz vibrator structure
WO2023145626A1 (en) Piezoelectric element, piezoelectric device and piezoelectric wafer
WO2024024614A1 (en) Quartz crystal vibration plate and quartz crystal vibration device
TWI817286B (en) Piezoelectric vibration device
JP2002252545A (en) Surface-mounted quartz oscillator