JP2003080033A - Method for denitrifying exhaust gas and system therefor - Google Patents

Method for denitrifying exhaust gas and system therefor

Info

Publication number
JP2003080033A
JP2003080033A JP2001272245A JP2001272245A JP2003080033A JP 2003080033 A JP2003080033 A JP 2003080033A JP 2001272245 A JP2001272245 A JP 2001272245A JP 2001272245 A JP2001272245 A JP 2001272245A JP 2003080033 A JP2003080033 A JP 2003080033A
Authority
JP
Japan
Prior art keywords
exhaust gas
denitration
catalyst
combustion exhaust
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001272245A
Other languages
Japanese (ja)
Inventor
Katsumi Noji
勝己 野地
Kozo Iida
耕三 飯田
Shigeru Nojima
野島  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001272245A priority Critical patent/JP2003080033A/en
Publication of JP2003080033A publication Critical patent/JP2003080033A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PROBLEM TO BE SOLVED: To carry out effective denitration with little nitrous oxide as a by- product even in the low temperature region of about 100-300 deg.C when NOx is removed from exhaust gas. SOLUTION: In a method for denitrating NOx-containing exhaust gas, the proportion of NO2 contained in the exhaust gas is increased with an oxidizing agent or an oxidation catalyst, an organic nitrogen compound having a nitrile group is added as a reducing agent to the exhaust gas and denitration by reduction of the NOx is carried out in the presence of a denitration catalyst in the temperature region of 100-300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼排ガス中の窒
素酸化物を除去する排ガス脱硝方法及びそのシステムに
関し、更に詳しくは、燃焼排ガス、例えば船舶用ディー
ゼル機関の排ガス中に含まれる窒素酸化物(NOx)
を、触媒及び還元剤を用いて除去する排ガス脱硝方法及
びそのシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas denitration method and system for removing nitrogen oxides in combustion exhaust gas, and more particularly, to nitrogen oxides contained in combustion exhaust gas, for example, exhaust gas of a marine diesel engine. (NOx)
The present invention relates to an exhaust gas denitration method and system for removing carbon dioxide using a catalyst and a reducing agent.

【0002】[0002]

【従来の技術】周知の如く、船舶用ディーゼル機関の燃
焼排ガス中には一酸化窒素や二酸化窒素等の窒素酸化物
が含まれているが、従来より燃焼排ガス中の窒素酸化物
を触媒及び還元剤を用いて無害な窒素(N)と水に分
解処理することが行われていた。
2. Description of the Related Art As is well known, flue gas of marine diesel engines contains nitrogen oxides such as nitric oxide and nitrogen dioxide. The agent was used to decompose into harmless nitrogen (N 2 ) and water.

【0003】従来、炭化水素やアルコール等を還元剤と
して触媒存在下、燃焼排ガス中の一酸化炭素(NO)や
二酸化炭素(NO)を窒素に還元処理する脱硝方法で
は、脱硝触媒として、ゼオライトにPt,Cu等の金属
を担持させたものや、アルミナにCu,Co等の金属を
担持させたものが用いられてきた。これらの触媒を用い
て、燃焼排ガス中に含まれる炭化水素や、新たに排ガス
中に注入した炭化水素、アルコール等を還元剤として、
燃焼排ガス中の一酸化窒素と二酸化窒素を窒素に還元し
て脱硝処理を行っていた。
Conventionally, in the denitration method of reducing carbon monoxide (NO) or carbon dioxide (NO 2 ) in combustion exhaust gas to nitrogen in the presence of a catalyst using hydrocarbons or alcohols as a reducing agent, zeolite is used as a denitration catalyst. There have been used those in which metals such as Pt and Cu are supported, and those in which metals such as Cu and Co are supported on alumina. Using these catalysts, hydrocarbons contained in the combustion exhaust gas, hydrocarbons newly injected into the exhaust gas, alcohol, etc. as a reducing agent,
Nitrogen monoxide and nitrogen dioxide in flue gas were reduced to nitrogen for denitration.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した炭化
水素やアルコール等を還元剤とした脱硝処理では、各々
の触媒が脱硝反応に対して高い活性を示す固有の温度域
を持っているため、脱硝触媒の入口における排ガスの温
度がこの範囲を外れると、排ガス中の一酸化窒素及び二
酸化窒素ははほとんど除去されなくなる。
However, in the above-mentioned denitration treatment using hydrocarbons, alcohols, etc. as a reducing agent, each catalyst has its own temperature range in which it exhibits high activity for the denitration reaction. When the temperature of the exhaust gas at the inlet of the denitration catalyst deviates from this range, nitric oxide and nitrogen dioxide in the exhaust gas are hardly removed.

【0005】また、ニトリル基を有する有機窒素化合物
を還元剤として使用する場合、下記反応式に夫々示すよ
うに、地球温暖化の要因の一つである亜酸化窒素(N
O)が副生するという問題があった。
When an organic nitrogen compound having a nitrile group is used as a reducing agent, nitrous oxide (N 2) which is one of the factors of global warming is shown in the following reaction formulas.
O) was a by-product.

【0006】 NO+CHCN+O→NO+CO+HO 本発明は上記の課題を解決するためになされたもので、
窒素酸化物を含む燃焼排ガスの脱硝方法において、燃焼
排ガスに含まれる二酸化窒素の割合を酸化剤あるいは酸
化触媒にて増加させた後、燃焼排ガスに有機窒素化合物
を還元剤として添加し、脱硝触媒の存在下、該窒素酸化
物の還元による脱硝処理を行うことにより、低温域での
窒素酸化物の除去ができると共に、亜酸化窒素の副生を
低減できる排ガス脱硝方法を提供することを目的とす
る。
NO + CH 3 CN + O 2 → N 2 O + CO 2 + H 2 O The present invention has been made to solve the above problems.
In the method for denitration of combustion exhaust gas containing nitrogen oxides, after increasing the ratio of nitrogen dioxide contained in the combustion exhaust gas with an oxidizing agent or an oxidation catalyst, an organic nitrogen compound is added to the combustion exhaust gas as a reducing agent to remove the denitration catalyst. An object of the present invention is to provide an exhaust gas denitration method capable of removing nitrogen oxides in a low temperature range and reducing byproduct of nitrous oxide by performing a denitration treatment by reducing the nitrogen oxides in the presence. .

【0007】また、本発明は、窒素酸化物を含む燃焼排
ガスの脱硝方法において、燃焼排ガスに含まれる二酸化
窒素の割合を酸化剤あるいは酸化触媒にて増加させる酸
化手段と、この酸化手段の後流側に配置され、燃焼排ガ
スにニトリル基を有する有機窒素化合物を還元剤として
添加し、100℃〜300℃の温度域にて脱硝触媒の存
在下、該窒素酸化物の還元による脱硝処理を行う脱硝手
段とを具備した構成にすることにより、上記と同様、低
温域での窒素酸化物の除去ができると共に、亜酸化窒素
の副生を低減できる排ガス脱硝システムを提供すること
を目的とする。
Further, according to the present invention, in a method for denitrifying combustion exhaust gas containing nitrogen oxides, an oxidizing means for increasing the ratio of nitrogen dioxide contained in the combustion exhaust gas with an oxidant or an oxidation catalyst, and a downstream of this oxidizing means. Denitration by adding organic nitrogen compound having a nitrile group to the combustion exhaust gas as a reducing agent and performing denitration treatment by reducing the nitrogen oxides in the presence of a denitration catalyst in a temperature range of 100 ° C to 300 ° C. It is an object of the present invention to provide an exhaust gas denitration system capable of removing nitrogen oxides in a low temperature range and reducing byproduct of nitrous oxide by adopting the configuration including the means.

【0008】[0008]

【課題を解決するための手段】本願第1の発明は、窒素
酸化物を含む燃焼排ガスの脱硝方法において、燃焼排ガ
スに含まれる二酸化窒素の割合を酸化剤あるいは酸化触
媒にて増加させた後、燃焼排ガスに有機窒素化合物を還
元剤として添加し、脱硝触媒の存在下、該窒素酸化物の
還元による脱硝処理を行うことを特徴とする排ガス脱硝
方法である。
According to a first aspect of the present invention, in a method for denitrifying combustion exhaust gas containing nitrogen oxides, after increasing the ratio of nitrogen dioxide contained in the combustion exhaust gas with an oxidant or an oxidation catalyst, An exhaust gas denitration method is characterized in that an organic nitrogen compound is added to a combustion exhaust gas as a reducing agent, and denitration treatment is performed by reducing the nitrogen oxide in the presence of a denitration catalyst.

【0009】本願第2の発明は、窒素酸化物を含む燃焼
排ガスの脱硝を行う脱硝システムにおいて、燃焼排ガス
に含まれる二酸化窒素の割合を酸化剤あるいは酸化触媒
にて増加させる酸化手段と、この酸化手段の後流側に配
置され、燃焼排ガスにニトリル基を有する有機窒素化合
物を還元剤として添加し、100℃〜300℃の温度域
にて脱硝触媒の存在下、該窒素酸化物の還元による脱硝
処理を行う脱硝手段とを具備することを特徴とする排ガ
ス脱硝システムである。
A second aspect of the present invention is a denitration system for denitration of combustion exhaust gas containing nitrogen oxides, and an oxidizing means for increasing the proportion of nitrogen dioxide contained in the combustion exhaust gas with an oxidizing agent or an oxidation catalyst, and this oxidation. The organic nitrogen compound having a nitrile group is added as a reducing agent to the combustion exhaust gas, which is disposed on the downstream side of the means, and denitration is performed by reducing the nitrogen oxides in the presence of a denitration catalyst in a temperature range of 100 ° C to 300 ° C. An exhaust gas denitration system characterized by comprising denitration means for performing treatment.

【0010】[0010]

【発明の実施の形態】本発明に係る排ガス脱硝方法及び
システムについて説明する。なお、本発明は以下の実施
の形態に限定されるものではない。炭化水素(HC)に
よる脱硝反応では、一般に下記の反応が進行する。 NO+HC+O→N+CO+HO …(1) HC+O→CO+HO …(2) 例えば、エンジンからの排ガス中には炭化水素成分も含
まれており、そのまま還元剤として利用する方法が考え
られるが、排ガス中のハイドロカーボンの量は非常に少
なく、還元剤を積極的に添加して、触媒と還元剤との組
合せにより効率的な脱硝を行わせる必要がある。また、
それには上記(1)の正反応を促進し、上記(2)の副
反応を抑制する還元剤が要求され、単に添加する炭化水
素が多いだけでは、燃焼するだけの反応(2)が進行し
てしまう。そこで、(1)式において、酸素が存在する
状態においてもNOを窒素ガスに還元する正反応を促進
するように、触媒及び炭化水素である還元剤を選定す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An exhaust gas denitration method and system according to the present invention will be described. The present invention is not limited to the embodiments below. In the denitration reaction by hydrocarbon (HC), the following reactions generally proceed. NO + HC + O 2 → N 2 + CO 2 + H 2 O (1) HC + O 2 → CO 2 + H 2 O (2) For example, the exhaust gas from the engine also contains a hydrocarbon component and is used as it is as a reducing agent. Although a method can be considered, the amount of hydrocarbons in the exhaust gas is very small, and it is necessary to positively add a reducing agent and perform efficient denitration by combining the catalyst and the reducing agent. Also,
It requires a reducing agent that promotes the positive reaction of the above (1) and suppresses the side reaction of the above (2), and the reaction (2) that only burns proceeds by simply adding a large amount of hydrocarbons. Will end up. Therefore, in the formula (1), the catalyst and the reducing agent which is a hydrocarbon are selected so as to promote the positive reaction of reducing NO to nitrogen gas even in the presence of oxygen.

【0011】本発明において、還元剤として添加する有
機窒素化合物としては、アセトニトリル、アクリロニト
リル、ベンゾニトリル、プロピオニトリル等のニトリル
系の有機窒素化合物が挙げられる。これらの有機窒素化
合物を用いれば、250℃程度の低温域でも、排ガス中
からNOxを効果的に除去できる。還元剤としてニトリ
ル系化合物が優れるのは、上記(1)式の反応におい
て、ニトリル基が反応中間体としてNOの還元反応を促
進しているためと考えられる。従って、還元剤としてニ
トリル基を有するような化合物、例えばアセトニトリル
等を添加することが好ましい。
In the present invention, examples of the organic nitrogen compound added as the reducing agent include nitrile organic nitrogen compounds such as acetonitrile, acrylonitrile, benzonitrile, and propionitrile. By using these organic nitrogen compounds, NOx can be effectively removed from the exhaust gas even in a low temperature range of about 250 ° C. It is considered that the reason why the nitrile compound is excellent as the reducing agent is that the nitrile group promotes the reduction reaction of NO as a reaction intermediate in the reaction of the above formula (1). Therefore, it is preferable to add a compound having a nitrile group, such as acetonitrile, as a reducing agent.

【0012】本発明において、酸化剤としては、HCl
,HClO,HClO,HClO,H
の少なくともいずれか一つが挙げられる。また、酸
化触媒としては、Al,SiO,ZrO,T
iO,メタロシリケート及びゼオライトからなる群よ
り選ばれる少なくとも1種の担体に、MnO,Ag
O,CO,CoO,In,Mn,C
eO,Ce,RuO,Pt,Ru,Rh,I
r,Ag及びPdからなる群より選ばれる少なくとも1
種の活性種を担持させたものが挙げられる。
In the present invention, the oxidizing agent is HCl.
OFour, HClOThree, HClOTwo, HClO, HTwoOTwo
OThreeAt least one of the above. Also acid
As the oxidization catalyst, AlTwoOThree, SiOTwo, ZrOTwo, T
iOTwo, A group consisting of metallosilicates and zeolites
At least one carrier selected from among MnOTwo, Ag Two
O, COThreeOFour, CoO, InTwoOThree, MnTwoOThree, C
eOTwo, CeTwoOThree, RuOTwo, Pt, Ru, Rh, I
at least 1 selected from the group consisting of r, Ag and Pd
The thing carrying the active species of a seed | species is mentioned.

【0013】本発明において、脱硝処理を行う際に使用
される脱硝触媒としては、Al ,SiO,Zr
,TiO,メタロシリケート及びゼオライトから
なる群より選ばれる少なくとも1種の担体に、Pt,R
u,Rh,Ir,Pd,Cu,Co,Fe,Ag,M
n,Ni,Zn及びInからなる群より選ばれる少なく
とも1種の活性種を担持させたものが挙げられる。
In the present invention, used when performing denitration treatment
The denitration catalyst used is AlTwoO Three, SiOTwo, Zr
OTwo, TiOTwo, From metallosilicates and zeolites
At least one carrier selected from the group consisting of Pt and R
u, Rh, Ir, Pd, Cu, Co, Fe, Ag, M
less selected from the group consisting of n, Ni, Zn and In
Both include one carrying one active species.

【0014】本発明において、前記脱硝処理は100〜
300℃の温度域で行う。この理由は、100℃未満で
は脱硝処理ができず、300℃を超えると亜酸化窒素の
副生量が増加するからである。
In the present invention, the denitration treatment is 100 to
It is performed in the temperature range of 300 ° C. The reason for this is that denitrification treatment cannot be performed below 100 ° C., and if it exceeds 300 ° C., the amount of nitrous oxide by-product increases.

【0015】本発明において、前記二酸化窒素の割合
は、脱硝触媒入口において全NOx(NO+NO)の
8割以下にする。これは、二酸化窒素の割合が8割を超
えると、脱硝性能が低下するからである。なお、二酸化
窒素の割合は、より好ましくは6割以下にする。
In the present invention, the ratio of the nitrogen dioxide is 80% or less of the total NOx (NO + NO 2 ) at the denitration catalyst inlet. This is because if the proportion of nitrogen dioxide exceeds 80%, the denitration performance will be reduced. The ratio of nitrogen dioxide is more preferably 60% or less.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。 (実施例1) (触媒1の調製):まず、水ガラス1号(SiO:3
0%):5616gを水:5429gに溶解し、この溶
液を溶液Aとする。一方、水:4175gに硫酸アルミ
ニウム:718.9g、塩化第二鉄:110g、酢酸カ
ルシウム:47.2g、塩化ナトリウム:262g、濃
塩酸:2020gを溶解し、この溶液を溶液Bとする。
つづいて、溶液Aと溶液Bを一定割合で供給し、沈殿を
生成させ、十分攪拌してpH=8.0のスラリを得た。
次に、このスラリを20リットルのオートクレーブに仕
込み、さらにテトラプロピルアンモニウムプロマイドを
500g添加し、160℃にて72時間水熱合成を行
い、合成後水洗して乾燥させ、さらに500℃、3時間
焼成させ結晶性シリケート1を得た。この結晶性シリケ
ートは、酸化物のモル比で(結晶水を省く)下記の組成
式で表わされる。
EXAMPLES Examples of the present invention will be described below. (Example 1) (Preparation of catalyst 1): First, water glass No. 1 (SiO 2 : 3)
0%): 5616 g is dissolved in water: 5429 g, and this solution is referred to as solution A. On the other hand, aluminum sulfate: 718.9 g, ferric chloride: 110 g, calcium acetate: 47.2 g, sodium chloride: 262 g, concentrated hydrochloric acid: 2020 g are dissolved in water: 4175 g, and this solution is designated as solution B.
Subsequently, the solution A and the solution B were supplied at a constant ratio to form a precipitate, which was sufficiently stirred to obtain a slurry having a pH of 8.0.
Next, this slurry was charged into a 20-liter autoclave, 500 g of tetrapropylammonium bromide was further added, and hydrothermal synthesis was carried out at 160 ° C. for 72 hours, followed by washing with water and drying, and further firing at 500 ° C. for 3 hours. The crystalline silicate 1 was obtained. This crystalline silicate is represented by the following composition formula in terms of the oxide molar ratio (excluding the water of crystallization).

【0017】0.5NaO・0.5HO・(0.8AlO・0.2Fe
O・0.25CaO)・25SiO 上記結晶性シリケート1を4NのNHCl水溶液40
℃に3時間攪拌してNHイオン交換を実施した。次
に、イオン交換後、洗浄して100℃、24時間乾燥さ
せた後、400℃、3時間焼成してH型の結晶性シリケ
ート1を得た。
0.5Na 2 O ・ 0.5H 2 O ・ (0.8Al 2 O 3・ 0.2Fe
2 O 3 · 0.25CaO) · 25SiO 2 The above crystalline silicate 1 is a 4N NH 4 Cl aqueous solution 40
NH 4 ion exchange was carried out with stirring at ℃ for 3 hours. Next, after ion exchange, it was washed, dried at 100 ° C. for 24 hours, and then baked at 400 ° C. for 3 hours to obtain an H-type crystalline silicate 1.

【0018】(触媒化)まず、上記100gのH型の結
晶性シリケート1に対して、バインダとしてアルミナゾ
ル:3g、シリカゾル:55g(SiO:20g)及
び水:200g加え、十分攪拌を行いウォッシュコート
用スラリとした。つづいて、コージェライト製モノリス
基材(400セルの格子用)を上記スラリに浸漬し、取
り出した後、余分なスラリを吹きはらい200℃で乾燥
させた。ここで、コート量は基材1リットルあたり20
0g担持し、このコート物をハニカムコート物1とし
た。次に、塩化白金酸(HPtCl・HO:4.
39g/100cc:HO)に上記ハニカムコート物
1を浸漬し1時間含浸した後、基材の壁の付着した液を
ふきとり200℃で乾燥させた。更に、500℃で焼成
を行い、ハニカム触媒1を得た。
(Catalystization) First, to 100 g of the above H-type crystalline silicate 1, alumina sol: 3 g, silica sol: 55 g (SiO 2 : 20 g) and water: 200 g were added as a binder and sufficiently stirred to wash coat. For slurry. Subsequently, a cordierite monolith substrate (for a 400-cell grid) was immersed in the slurry and taken out, and then excess slurry was blown and dried at 200 ° C. Here, the coating amount is 20 per liter of the substrate.
0 g was carried, and this coated product was designated as honeycomb coated product 1. Next, chloroplatinic acid (H 2 PtCl 6 · H 2 O: 4.
The honeycomb coated article 1 was dipped in 39 g / 100 cc: H 2 O) and impregnated for 1 hour, and then the liquid adhering to the wall of the substrate was wiped off and dried at 200 ° C. Further, firing was performed at 500 ° C. to obtain a honeycomb catalyst 1.

【0019】(触媒2〜18の調製)上記ハニカム触媒
1の調製での結晶性シリケート1の合成法において、酢
酸カルシウムの代わりに塩化セリウム、塩化チタン、塩
化アンチモンを各々酸化物換算でFeと同じモル
数だけ添加した以外は、結晶性シリケート1と同様の操
作を繰り返して結晶性シリケート2〜4を調整した。こ
れらの結晶性シリケートの組成は、酸化物のモル比(脱
水された形態)で表わして下記の組成式で表わされる。 0.5NaO・0.5HO・(0.2FeO・0.8AlO・0.25M
O)・25SiO 但し、MはCe、Ti,Sbである。
(Preparation of Catalysts 2-18) In the method for synthesizing the crystalline silicate 1 in the preparation of the above-mentioned honeycomb catalyst 1, cerium chloride, titanium chloride, and antimony chloride were used instead of calcium acetate as Fe 2 O in terms of oxides. Crystalline silicates 2 to 4 were prepared by repeating the same operation as in crystalline silicate 1 except that the same molar number as 3 was added. The composition of these crystalline silicates is represented by the following composition formula in terms of the oxide molar ratio (dehydrated form). 0.5Na 2 O ・ 0.5H 2 O ・ (0.2Fe 2 O 3・ 0.8Al 2 O 3・ 0.25M
O) .25SiO 2 However, M is Ce, Ti, Sb.

【0020】上記結晶性シリケート2〜4を用いてハニ
カム触媒1と同様の方法でH型の結晶性シリケート2〜
4を得、このシリケートを更にハニカム触媒1の調製と
同様の工程にてコージェライト製モノリス基材にコート
してハニカムコート物2〜4を得た。次に、塩化白金酸
水溶液に浸漬しハニカム触媒1と同様の処理を行い、ハ
ニカム触媒2〜4を得た。
Using the above crystalline silicates 2 to 4, the H-type crystalline silicates 2 to 2 are processed in the same manner as the honeycomb catalyst 1.
No. 4 was obtained, and this silicate was further coated on a cordierite monolith substrate by the same steps as in the preparation of the honeycomb catalyst 1, to obtain honeycomb coated products 2 to 4. Next, it was immersed in a chloroplatinic acid aqueous solution and treated in the same manner as the honeycomb catalyst 1, to obtain honeycomb catalysts 2 to 4.

【0021】また、前記ハニカム触媒1の結晶性シリケ
ート1の代わりに、γ−Al、θ−Al
ZrO、TiO、TiO・ZrO、SiO
Al 、Al・TiO、SO/Zr
、SiO、Y型ゼオライト、X型ゼオライト、Z
SM−5型ゼオライト、モルデナイト及びシリカライト
を用いて触媒1と同様の方法にて白金を担持して、ハニ
カム触媒5〜18を得た。
Further, the crystalline silica of the honeycomb catalyst 1 is
Γ-Al instead ofTwoOThree, Θ-AlTwoOThree,
ZrOTwo, TiOTwo, TiOTwo・ ZrOTwo, SiOTwo
Al TwoOThree, AlTwoOThree・ TiOTwo, SOFour/ Zr
OTwo, SiOTwo, Y-type zeolite, X-type zeolite, Z
SM-5 type zeolite, mordenite and silicalite
Platinum is loaded in the same manner as catalyst 1 using
Cam catalysts 5 to 18 were obtained.

【0022】(触媒19〜22):さらに、触媒1の調
製法において結晶性シリケート1を用いて、塩化白金酸
の代わりに硝酸パラジウム、塩化ロジウム、塩化ルテニ
ウム、塩化イリジウムを触媒1と同様の方法により浸漬
させ、ハニカム触媒19〜22を得た。
(Catalysts 19 to 22): Further, in the preparation method of Catalyst 1, crystalline silicate 1 was used, and palladium nitrate, rhodium chloride, ruthenium chloride, and iridium chloride were used in the same manner as in Catalyst 1 in place of chloroplatinic acid. To obtain honeycomb catalysts 19 to 22.

【0023】(触媒23〜27):触媒1の調製法にお
いて結晶性シリケート1を用いて、塩化白金酸の代わり
に硝酸マンガン、硝酸銀、硝酸コバルト、塩化インジウ
ム及び硝酸セリウムを、各々の金属あるいは金属酸化物
が担体に対して1重量%になるように浸漬し、触媒1と
同様の方法により、ハニカム触媒23〜27を得た。
(Catalysts 23 to 27): In the preparation method of Catalyst 1, crystalline silicate 1 was used, and manganese nitrate, silver nitrate, cobalt nitrate, indium chloride and cerium nitrate were used in place of chloroplatinic acid, each metal or metal. The honeycomb catalysts 23 to 27 were obtained in the same manner as in the catalyst 1 by immersing the oxide in an amount of 1% by weight based on the carrier.

【0024】(触媒27〜40):前記ハニカム触媒1
の結晶性シリケート1の代わりに、γ−Al、θ
−Al、ZrO、TiO、TiO・ZrO
、SiO・Al、Al・TiO、S
/ZrO、SiO、Y型ゼオライト、X型ゼオ
ライト、ZSM−5型ゼオライト、モルデナイト及びシ
リカライトを用いて触媒1と同様の方法にて白金を担持
して、ハニカム触媒28〜41を得た。
(Catalyst 27-40): Honeycomb catalyst 1
In place of the crystalline silicate 1 of γ-Al 2 O 3 , θ
-Al 2 O 3, ZrO 2, TiO 2, TiO 2 · ZrO
2 , SiO 2 · Al 2 O 3 , Al 2 O 3 · TiO 2 , S
O 4 / ZrO 2 , SiO 2 , Y-type zeolite, X-type zeolite, ZSM-5 type zeolite, mordenite, and silicalite were used to carry platinum in the same manner as in Catalyst 1 to prepare honeycomb catalysts 28 to 41. Obtained.

【0025】(実施例2)実施例1により調製したハニ
カム触媒1〜41を用いて、それらのうち2種を図1の
ように直列に配置し、脱硝活性評価試験を行った。評価
条件は、ディーゼルエンジン排ガスを模擬したものであ
り、触媒A前段のガス条件を以下に記す。
Example 2 Using the honeycomb catalysts 1 to 41 prepared in Example 1, two of them were arranged in series as shown in FIG. 1 and a denitration activity evaluation test was conducted. The evaluation condition is a simulation of exhaust gas from a diesel engine, and the gas conditions before the catalyst A are described below.

【0026】<触媒A前段のガス条件>NO:1000
ppm、SO:1000ppm、O:15%、CO
:5%、HO:5%、N:バランス、GHSV:
5000h−1、ガス量110NL/h、 <その他> NO酸化触媒量:11.7cc、触媒層温度:250℃ 添加アセトニトリル:1600ppm 脱硝触媒量:11.7cc 触媒層温度:100℃、200℃、300℃ なお、脱硝率は下記式にて表される。 脱硝率(%)=(1−出口NOx濃度/入口NOx濃
度)×100 各ハニカム触媒を用いて活性評価結果を下記表1、2に
示す。
<Gas condition before catalyst A> NO: 1000
ppm, SO 2 : 1000 ppm, O 2 : 15%, CO
2 : 5%, H 2 O: 5%, N 2 : balance, GHSV:
5000h -1 , gas amount 110NL / h, <others> NO oxidation catalyst amount: 11.7cc, catalyst layer temperature: 250 ° C added acetonitrile: 1600ppm DeNOx catalyst amount: 11.7cc catalyst layer temperature: 100 ° C, 200 ° C, 300 C. The denitration rate is represented by the following formula. Denitration rate (%) = (1−outlet NOx concentration / inlet NOx concentration) × 100 Activity evaluation results are shown in Tables 1 and 2 below using each honeycomb catalyst.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】なお、表1では、酸化触媒Aとしてハニカ
ムの触媒23が選択され、脱硝触媒Bとしてハニカムの
触媒1〜22が選択される。また、表2では、酸化触媒
Aとしてハニカムの触媒24〜41が選択され、脱硝触
媒Bとしてハニカムの触媒1が選択される。
In Table 1, the honeycomb catalyst 23 is selected as the oxidation catalyst A, and the honeycomb catalysts 1 to 22 are selected as the denitration catalyst B. Further, in Table 2, the honeycomb catalysts 24 to 41 are selected as the oxidation catalyst A, and the honeycomb catalyst 1 is selected as the denitration catalyst B.

【0030】(実施例3)実施例2と同一の試験条件に
おいて、ハニカム触媒1及び23を用いて還元剤の種類
の影響を検討した。アセトニトリルの代わりに、アクリ
ロニトリル(CH CHCN)、ベンゾニトリル(C
CN)、プロピオンニトリル(C CN)を用
いてCl換算において3200ppmを添加して活性評
価試験を行った。下記表3は、その活性評価結果を示
す。
(Embodiment 3) Under the same test conditions as in Embodiment 2.
The type of reducing agent using honeycomb catalysts 1 and 23
I examined the effect of. Instead of acetonitrile,
Ronitrile (CH TwoCHCN), benzonitrile (C6
H5CN), propionnitrile (CTwoH 5CN)
The activity was evaluated by adding 3200 ppm in terms of Cl.
Value test was conducted. Table 3 below shows the activity evaluation results.
You

【0031】[0031]

【表3】 [Table 3]

【0032】(実施例4)図2のように酸化剤添加装置
1及び脱硝触媒Bを直列配置し、酸化剤の種類の影響を
検討した。酸化触媒の代わりに、添加酸化剤として、H
ClO,HClO,HClO,HClO,H
及びOを500ppm添加して活性評価試験を行っ
た。下記表4は、その活性評価結果を示す。但し、酸化
剤添加装置前段のガス条件は、下記のとおりである。
Example 4 As shown in FIG. 2, the oxidizing agent adding apparatus 1 and the denitration catalyst B were arranged in series, and the influence of the type of oxidizing agent was examined. As an added oxidant, instead of the oxidation catalyst, H
ClO 4 , HClO 3 , HClO 2 , HClO, H 2 O
2 and O 3 were added at 500 ppm and an activity evaluation test was conducted. Table 4 below shows the activity evaluation results. However, the gas conditions in the former stage of the oxidizing agent adding device are as follows.

【0033】<酸化剤添加装置前段のガス条件>NO:
1000ppm、SO:1000ppm、O:5
%、CO:5%、HO:5%、N:バランス、G
HSV:5000h−1、ガス量110NL/h、 <その他> 酸化剤添加後、アセトニトリルを1600ppm添加。 脱硝触媒量:11.7cc 触媒層温度:100℃、200℃、300℃ なお、脱硝率は下記式にて表される。 脱硝率(%)=(1−出口NOx濃度/入口NOx濃
度)×100
<Gas condition before oxidizer addition device> NO:
1000 ppm, SO 2 : 1000 ppm, O 2 : 5
%, CO 2 : 5%, H 2 O: 5%, N 2 : balance, G
HSV: 5000 h -1 , gas amount 110 NL / h, <Others> 1600 ppm of acetonitrile was added after the addition of the oxidizing agent. DeNOx catalyst amount: 11.7 cc Catalyst layer temperature: 100 ° C, 200 ° C, 300 ° C The denitration rate is represented by the following formula. Denitration rate (%) = (1-outlet NOx concentration / inlet NOx concentration) × 100

【0034】[0034]

【表4】 [Table 4]

【0035】上記表1、表2、表3、表4に記載された
試験結果より、脱硝触媒前段において、燃焼排ガスに含
まれる二酸化窒素の割合を酸化剤あるいは酸化触媒にて
増加させた後、炭化水素としてニトリル基を有する還元
剤を排ガス中に添加することにより、100〜300℃
の温度域にてNOをほとんど副生させずに、効率的に
NOxを除去することができることが判った。従って、
従来300℃程度の高温が必要であり、さらに亜酸化窒
素の副生が問題であった有機窒素化合物による脱硝方法
の問題を解決することができることが明らかになった。
From the test results shown in Table 1, Table 2, Table 3 and Table 4 above, after increasing the ratio of nitrogen dioxide contained in the combustion exhaust gas with the oxidizing agent or the oxidizing catalyst in the preceding stage of the denitration catalyst, By adding a reducing agent having a nitrile group as a hydrocarbon to the exhaust gas, 100 to 300 ° C
It was found that NOx can be efficiently removed with almost no N 2 O by-produced in the temperature range of 1. Therefore,
It has become clear that the problem of the denitration method using an organic nitrogen compound, which has conventionally required a high temperature of about 300 ° C. and the problem of by-product of nitrous oxide, can be solved.

【0036】図3は、本実施例に係る排ガス脱硝システ
ムの概略構成を示す。図3において、符番11は船舶用
ディーゼル機関等の燃焼機関を示す。この燃焼機関11
には、該燃焼機関11からの窒素酸化物を含む燃焼排ガ
スに含まれる二酸化窒素の割合を酸化剤(あるいは酸化
触媒)にて増加させる酸化装置12が接続されている。
この酸化装置12において例えばHClO等の酸化剤
が噴霧され、燃焼機関11から供給される燃焼排ガス中
のNOがNOに酸化される。
FIG. 3 shows a schematic structure of the exhaust gas denitration system according to this embodiment. In FIG. 3, reference numeral 11 indicates a combustion engine such as a marine diesel engine. This combustion engine 11
An oxidizer 12 for increasing the ratio of nitrogen dioxide contained in the combustion exhaust gas containing nitrogen oxides from the combustion engine 11 with an oxidant (or an oxidation catalyst) is connected to the.
In this oxidizing device 12, an oxidizing agent such as HClO 4 is sprayed, and NO in the combustion exhaust gas supplied from the combustion engine 11 is oxidized to NO 2 .

【0037】この酸化装置12の後流側には、内部に例
えばアルミナ(Al)に白金(Pt)を担持した
触媒が充填された脱硝装置13が配置されている。酸化
装置12側から供給される燃焼排ガスには脱硝装置13
の上流側でニトリル基を有する有機窒素化合物(CH
CN)が還元剤として添加され、脱硝装置13において
100℃〜300℃の温度域にて脱硝触媒の存在下、窒
素酸化物の還元による脱硝処理を行い、窒素(N)を
得る。
On the downstream side of the oxidizing device 12, there is arranged a denitration device 13 in which a catalyst, for example, alumina (Al 2 O 3 ) carrying platinum (Pt) is filled. The flue gas supplied from the oxidizer 12 side has a denitration device 13
Nitrogen compounds having a nitrile group on the upstream side of (CH 3
CN) is added as a reducing agent, and the denitration device 13 performs denitration treatment by reducing nitrogen oxides in the presence of a denitration catalyst in a temperature range of 100 ° C. to 300 ° C. to obtain nitrogen (N 2 ).

【0038】このように、本発明に係る排ガス脱硝シス
テムでは、燃焼機関11と脱硝装置13間に、燃焼排ガ
スに含まれる二酸化窒素の割合を酸化剤あるいは酸化触
媒にて増加させる酸化装置12を配置した構成になって
いるため、燃焼排ガスにCH CNを還元剤として添加
し、100℃〜300℃の温度域にて脱硝触媒の存在
下、該窒素酸化物の還元による脱硝処理を行うことによ
り、低温域で窒素酸化物の除去が可能となると共に、亜
酸化窒素の副生を低減でき、更には窒素酸化物除去の好
適温度域(特に下限値)を従来の下限値250℃から1
00℃と広げることができる。
Thus, the exhaust gas denitration system according to the present invention
In the system, the combustion exhaust gas is placed between the combustion engine 11 and the denitration device 13.
The ratio of nitrogen dioxide contained in oxygen
It has a structure in which an oxidizing device 12 for increasing the amount of medium is arranged.
Therefore, CH is added to the combustion exhaust gas. ThreeAdd CN as reducing agent
The presence of a denitration catalyst in the temperature range of 100 ° C to 300 ° C
By performing denitration treatment by reducing the nitrogen oxides,
This makes it possible to remove nitrogen oxides at low temperatures and
It is possible to reduce the by-product of nitric oxide, and it is also desirable to remove nitrogen oxides.
Appropriate temperature range (especially lower limit) from the conventional lower limit of 250 ℃ to 1
Can be extended to 00 ℃.

【0039】(比較例)上記実施例の触媒No.23を
脱硝触媒Bとしてのみ用いた場合(即ち、酸化触媒Aを
使用しない場合)、200℃では脱硝率10%、N
副生量80ppmであった。
(Comparative Example) Catalyst No. When 23 is used only as the denitration catalyst B (that is, when the oxidation catalyst A is not used), the denitration rate is 10% and N 2 O is 200 ° C.
The amount of by-product was 80 ppm.

【0040】[0040]

【発明の効果】以上詳記したように、本発明に係る排ガ
ス脱硝方法によれば、還元剤の効果により、燃焼排ガス
中の窒素酸化物を還元的に窒素と水に脱硝分解するのを
促進することができる。また、本発明方法によれば、デ
ィーゼルエンジンの排ガス等からNOxを除去する際
に、亜酸化窒素をほとんど副生させず、かつ、100〜
300℃程度の低温域においても、効果的な脱硝処理を
行うことができる。更に、従来と比べ、窒素酸化物除去
の好適温度を広げることができる。また、本発明に係る
排ガス脱硝システムにおいても、上記脱硝方法と同様な
効果が得られる。
As described in detail above, according to the exhaust gas denitration method of the present invention, the effect of the reducing agent promotes the denitrification decomposition of nitrogen oxides in the combustion exhaust gas into nitrogen and water. can do. Further, according to the method of the present invention, when removing NOx from the exhaust gas of a diesel engine or the like, nitrous oxide is hardly produced as a by-product, and
Effective denitration treatment can be performed even in a low temperature range of about 300 ° C. Further, the suitable temperature for removing nitrogen oxides can be widened as compared with the conventional case. Further, also in the exhaust gas denitration system according to the present invention, the same effect as the denitration method can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2に係る排ガス脱硝方法において、2種
類のハニカム触媒を用いて脱硝を行う場合の説明図。
FIG. 1 is an explanatory diagram in the case of performing denitration using two types of honeycomb catalysts in an exhaust gas denitration method according to a second embodiment.

【図2】実施例4に係る排ガス脱硝方法において、酸化
剤添加装置及び1種類のハニカム触媒を用いて脱硝を行
う場合の説明図。
FIG. 2 is an explanatory diagram in the case of performing denitration using an oxidizing agent addition device and one type of honeycomb catalyst in the exhaust gas denitration method according to Example 4.

【図3】本発明に係る排ガス脱硝システムの概略説明
図。
FIG. 3 is a schematic explanatory diagram of an exhaust gas denitration system according to the present invention.

【符号の説明】[Explanation of symbols]

1…酸化剤添加装置、 11…燃焼機関、 13…酸化装置、 14…脱硝装置。 1 ... Oxidizer addition device, 11 ... Combustion engine, 13 ... Oxidizer, 14 ... Denitration device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 29/44 B01J 29/88 A 29/88 F01N 3/08 B F01N 3/08 D G 3/10 A 3/10 3/28 301E 3/28 301 B01D 53/36 102G (72)発明者 野島 繁 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 3G091 AA04 AA18 AA28 AB02 AB04 BA04 BA14 BA39 CA16 CA21 FA02 FA04 FA12 FA13 FB02 FB10 FC04 FC07 GA06 GB01W GB01X GB05W GB06W GB07W GB09X GB10W GB10X GB16X HA10 4D048 AA06 AB01 AB02 AC03 BA02X BA03X BA06X BA07X BA08X BA11X BA17X BA28X BA30X BA31X BA32X BA33X BA34X BA36X BA37X BA41X BA41Y BB02 4G069 AA03 AA08 BA01B BA02B BA04B BA05B BA07B BC09B BC18B BC26B BC43B BC50B BC66B BC70B BC71B BC72B BC75B CA02 CA03 CA07 CA08 CA13 DA06 EA19 FA02 FA03 FB14 ZA03B ZA06B ZA11B ZA36B ZA37B ZB01 ZB06 ZB09 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 29/44 B01J 29/88 A 29/88 F01N 3/08 B F01N 3/08 DG 3/10 A 3/10 3/28 301E 3/28 301 B01D 53/36 102G (72) Inventor Shigeru Nojima 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute F-term (reference) 3G091 AA04 AA18 AA28 AB02 AB04 BA04 BA14 BA39 CA16 CA21 FA02 FA04 FA12 FA13 FB02 FB10 FC04 FC07 GA06 GB01W GB01X GB05W GB06W GB07W GB09X GB10W GB10X GB16X HA10 4D048 AA06 AB31 BAX BA31XXBAX BA31XXBAX BA07XBAX BA07X BA07X BA07X BA07X BA07X BB02 4G069 AA03 AA08 BA01B BA02B BA04B BA05B BA07B BC09B BC18B BC26B BC43B BC50B BC66B BC70B BC71B BC72B BC75B CA02 CA03 CA07 CA08 CA13 DA06 EA19 FA02 FA03 FB14 ZA03B ZA06B ZA11B ZA36B ZA37B ZB01 ZB06 ZB09

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を含む燃焼排ガスの脱硝方法
において、燃焼排ガスに含まれる二酸化窒素の割合を酸
化剤あるいは酸化触媒にて増加させた後、燃焼排ガスに
有機窒素化合物を還元剤として添加し、脱硝触媒の存在
下、該窒素酸化物の還元による脱硝処理を行うことを特
徴とする排ガス脱硝方法。
1. A method for denitrifying combustion exhaust gas containing nitrogen oxides, wherein the ratio of nitrogen dioxide contained in the combustion exhaust gas is increased by an oxidizing agent or an oxidation catalyst, and then an organic nitrogen compound is added as a reducing agent to the combustion exhaust gas. The exhaust gas denitration method is characterized by performing denitration treatment by reducing the nitrogen oxides in the presence of a denitration catalyst.
【請求項2】 前記有機窒素化合物は、ニトリル基を有
する有機窒素化合物であることを特徴とする請求項1記
載の排ガス脱硝方法。
2. The exhaust gas denitration method according to claim 1, wherein the organic nitrogen compound is an organic nitrogen compound having a nitrile group.
【請求項3】 前記脱硝触媒は、100〜300℃の温
度域にて使用されることを特徴とする請求項1記載の排
ガス脱硝方法。
3. The exhaust gas denitration method according to claim 1, wherein the denitration catalyst is used in a temperature range of 100 to 300 ° C.
【請求項4】 前記二酸化窒素の割合は、脱硝触媒入口
において全NOx(NO+NO)の8割以下にするこ
とを特徴とする請求項1記載の排ガス脱硝方法。
4. The exhaust gas denitration method according to claim 1, wherein the ratio of the nitrogen dioxide is 80% or less of the total NOx (NO + NO 2 ) at the denitration catalyst inlet.
【請求項5】 前記酸化剤は、HClO,HCl
,HClO,HClO,H22,Oの少なくと
もいずれか一つであることを特徴とする請求項1乃至請
求項4のいずれかに記載の排ガス脱硝方法。
5. The oxidizing agent is HClO 4 , HCl
The exhaust gas denitration method according to any one of claims 1 to 4, which is at least one of O 3 , HClO 2 , HClO, H 2 O 2 , and O 3 .
【請求項6】 前記酸化触媒は、Al,Si
,ZrO,TiO ,メタロシリケート及びゼオ
ライトからなる群より選ばれる少なくとも1種の担体
に、MnO,AgO,Co,CoO,In
,Mn,CeO,Ce,RuO
Pt,Ru,Rh,Ir,Ag及びPdからなる群より
選ばれる少なくとも1種の活性種を担持させたものであ
ることを特徴とする請求項1乃至請求項4のいずれかに
記載の排ガス脱硝方法。
6. The oxidation catalyst is AlTwoOThree, Si
OTwo, ZrOTwo, TiO Two, Metallosilicates and zeo
At least one carrier selected from the group consisting of lights
To MnOTwo, AgTwoO, CoThreeOFour, CoO, InTwo
OThree, MnTwoOThree, CeOTwo, CeTwoOThree, RuOTwo
From the group consisting of Pt, Ru, Rh, Ir, Ag and Pd
It carries at least one selected active species.
In any one of Claim 1 thru | or 4 characterized by the above-mentioned.
Exhaust gas denitration method described.
【請求項7】 前記有機窒素化合物は、アセトニトリ
ル、アクリロニトリル、ベンゾニトリル、プロピオニト
リルであることを特徴とする請求項1乃至請求項4のい
ずれかに記載の排ガス脱硝方法。
7. The exhaust gas denitration method according to any one of claims 1 to 4, wherein the organic nitrogen compound is acetonitrile, acrylonitrile, benzonitrile, or propionitrile.
【請求項8】 脱硝処理を行う際、脱硝触媒として、A
,SiO,ZrO,TiO,メタロシリ
ケート及びゼオライトからなる群より選ばれる少なくと
も1種の担体に、Pt,Ru,Rh,Ir,Pd,C
u,Co,Fe,Ag,Mn,Ni,Zn及びInから
なる群より選ばれる少なくとも1種の活性種を含有させ
たものであることを特徴とする請求項1乃至請求項4の
いずれかに記載の排ガス脱硝方法。
8. When performing denitration treatment, A is used as a denitration catalyst.
Pt, Ru, Rh, Ir, Pd, C on at least one carrier selected from the group consisting of 1 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , metallosilicate and zeolite.
5. At least one active species selected from the group consisting of u, Co, Fe, Ag, Mn, Ni, Zn and In is contained therein, according to any one of claims 1 to 4. Exhaust gas denitration method described.
【請求項9】 窒素酸化物を含む燃焼排ガスの脱硝を行
う脱硝システムにおいて、燃焼排ガスに含まれる二酸化
窒素の割合を酸化剤あるいは酸化触媒にて増加させる酸
化手段と、この酸化手段の後流側に配置され、燃焼排ガ
スにニトリル基を有する有機窒素化合物を還元剤として
添加し、100℃〜300℃の温度域にて脱硝触媒の存
在下、該窒素酸化物の還元による脱硝処理を行う脱硝手
段とを具備することを特徴とする排ガス脱硝システム。
9. In a denitration system for denitration of combustion exhaust gas containing nitrogen oxides, an oxidizing means for increasing the ratio of nitrogen dioxide contained in the combustion exhaust gas with an oxidizing agent or an oxidation catalyst, and a downstream side of the oxidizing means. Denitration means for performing denitration treatment by adding an organic nitrogen compound having a nitrile group to a combustion exhaust gas as a reducing agent and reducing the nitrogen oxide in the presence of a denitration catalyst in a temperature range of 100 ° C to 300 ° C. An exhaust gas denitration system comprising:
JP2001272245A 2001-09-07 2001-09-07 Method for denitrifying exhaust gas and system therefor Pending JP2003080033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272245A JP2003080033A (en) 2001-09-07 2001-09-07 Method for denitrifying exhaust gas and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272245A JP2003080033A (en) 2001-09-07 2001-09-07 Method for denitrifying exhaust gas and system therefor

Publications (1)

Publication Number Publication Date
JP2003080033A true JP2003080033A (en) 2003-03-18

Family

ID=19097647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272245A Pending JP2003080033A (en) 2001-09-07 2001-09-07 Method for denitrifying exhaust gas and system therefor

Country Status (1)

Country Link
JP (1) JP2003080033A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167628A (en) * 2004-12-16 2006-06-29 National Institute Of Advanced Industrial & Technology Reactor for decomposing/detoxifying chemical substance and detoxification reaction process
JP2007069130A (en) * 2005-09-07 2007-03-22 Mitsui Eng & Shipbuild Co Ltd Method for denitrating exhaust gas
CN103752322A (en) * 2014-01-02 2014-04-30 上海大学 Preparation method for cobalt-manganese oxide denitrified catalyst with cubic micro nano composite structure
CN103752321A (en) * 2014-01-02 2014-04-30 上海大学 Method for preparing hierarchical bimetallic composite oxide denitrification catalyst
CN103831096A (en) * 2014-03-13 2014-06-04 重庆大学 MnOOH nanorod denitration catalyst and preparation method thereof
CN104645974A (en) * 2015-01-29 2015-05-27 中国石油大学(北京) Catalyst for FCC regeneration flue gas denitration, preparation method and application thereof
CN104772037A (en) * 2015-03-25 2015-07-15 中国石油天然气股份有限公司 Method for purifying acrylonitrile apparatus absorbing tower tail gas by using Pd-CeO2/Me-SAPO molecular sieve
CN104772038A (en) * 2015-03-25 2015-07-15 中国石油天然气股份有限公司 Method for purifying acrylonitrile apparatus absorbing tower tail gas by using Pd-CeO2/Me-beta molecular sieve
WO2015149499A1 (en) * 2014-04-04 2015-10-08 同济大学 Low-temperature and highly efficient denitration catalyst and preparation method therefor
CN105195178A (en) * 2015-10-27 2015-12-30 江苏龙源催化剂有限公司 Integral denitration catalyst applicable to flue gas with high metal element content and preparation method thereof
CN106140147A (en) * 2015-04-01 2016-11-23 盐城工业职业技术学院 A kind of p nitro ethylbenzene aoxidizes p-nitroacetophenone catalyst processed and preparation method thereof
CN107126955A (en) * 2017-06-01 2017-09-05 重庆大学 A kind of base low-temperature sintered catalyst for denitrating flue gas of charcoal and preparation method
US10335776B2 (en) 2013-12-16 2019-07-02 Basf Corporation Manganese-containing diesel oxidation catalyst
US10864502B2 (en) 2013-12-16 2020-12-15 Basf Corporation Manganese-containing diesel oxidation catalyst
CN112536063A (en) * 2019-09-23 2021-03-23 中国石油化工股份有限公司 A method for treating a gas containing NOxAnd catalyst and system for exhaust gas of VOC

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167628A (en) * 2004-12-16 2006-06-29 National Institute Of Advanced Industrial & Technology Reactor for decomposing/detoxifying chemical substance and detoxification reaction process
JP2007069130A (en) * 2005-09-07 2007-03-22 Mitsui Eng & Shipbuild Co Ltd Method for denitrating exhaust gas
US10335776B2 (en) 2013-12-16 2019-07-02 Basf Corporation Manganese-containing diesel oxidation catalyst
US11896962B2 (en) 2013-12-16 2024-02-13 Basf Corporation Manganese-containing diesel oxidation catalyst
US11311865B2 (en) 2013-12-16 2022-04-26 Basf Corporation Manganese-containing diesel oxidation catalyst
US10864502B2 (en) 2013-12-16 2020-12-15 Basf Corporation Manganese-containing diesel oxidation catalyst
CN103752322A (en) * 2014-01-02 2014-04-30 上海大学 Preparation method for cobalt-manganese oxide denitrified catalyst with cubic micro nano composite structure
CN103752321A (en) * 2014-01-02 2014-04-30 上海大学 Method for preparing hierarchical bimetallic composite oxide denitrification catalyst
CN103831096A (en) * 2014-03-13 2014-06-04 重庆大学 MnOOH nanorod denitration catalyst and preparation method thereof
WO2015149499A1 (en) * 2014-04-04 2015-10-08 同济大学 Low-temperature and highly efficient denitration catalyst and preparation method therefor
US10179324B2 (en) 2014-04-04 2019-01-15 Tongji University Low-temperature and highly efficient denitration catalyst and corresponding method of preparation
CN104645974A (en) * 2015-01-29 2015-05-27 中国石油大学(北京) Catalyst for FCC regeneration flue gas denitration, preparation method and application thereof
CN104772038A (en) * 2015-03-25 2015-07-15 中国石油天然气股份有限公司 Method for purifying acrylonitrile apparatus absorbing tower tail gas by using Pd-CeO2/Me-beta molecular sieve
CN104772037A (en) * 2015-03-25 2015-07-15 中国石油天然气股份有限公司 Method for purifying acrylonitrile apparatus absorbing tower tail gas by using Pd-CeO2/Me-SAPO molecular sieve
CN106140147A (en) * 2015-04-01 2016-11-23 盐城工业职业技术学院 A kind of p nitro ethylbenzene aoxidizes p-nitroacetophenone catalyst processed and preparation method thereof
CN105195178A (en) * 2015-10-27 2015-12-30 江苏龙源催化剂有限公司 Integral denitration catalyst applicable to flue gas with high metal element content and preparation method thereof
CN107126955A (en) * 2017-06-01 2017-09-05 重庆大学 A kind of base low-temperature sintered catalyst for denitrating flue gas of charcoal and preparation method
CN112536063A (en) * 2019-09-23 2021-03-23 中国石油化工股份有限公司 A method for treating a gas containing NOxAnd catalyst and system for exhaust gas of VOC

Similar Documents

Publication Publication Date Title
JP3086015B2 (en) Exhaust gas purification catalyst
JP2003080033A (en) Method for denitrifying exhaust gas and system therefor
JPH08281107A (en) Catalyst for purifying exhaust gas
JP3276191B2 (en) Nitrogen oxide purification method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP3072520B2 (en) Exhaust gas purification catalyst
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP2002113331A (en) Method of denitration from exhaust gas and its system
JPH0671181A (en) Method for treating exhaust gas
JPH08215544A (en) Method for removing nitrogen oxide of diesel engine
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP3506392B2 (en) Exhaust gas purification catalyst using only hydrocarbons as reducing agents
JP3510908B2 (en) Exhaust gas purification catalyst
JP2605956B2 (en) Exhaust gas purification catalyst
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3271802B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH07136463A (en) Method for treating exhaust gas
JP3495542B2 (en) Sulfur trioxide reduction method
JPH08257407A (en) Catalyst for cleaning exhaust gas from internal combustion engine
JP3427422B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3482661B2 (en) Nitrogen oxide removal method
JP2001029748A (en) Method for purifying combustion exhaust gas
JP3395219B2 (en) Nitrogen oxide removal method
JP3295992B2 (en) Exhaust gas purification catalyst
JP2601018B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301