JP2003079626A - Brain function analysis method and system based on ultrasonic doppler method - Google Patents

Brain function analysis method and system based on ultrasonic doppler method

Info

Publication number
JP2003079626A
JP2003079626A JP2001273303A JP2001273303A JP2003079626A JP 2003079626 A JP2003079626 A JP 2003079626A JP 2001273303 A JP2001273303 A JP 2001273303A JP 2001273303 A JP2001273303 A JP 2001273303A JP 2003079626 A JP2003079626 A JP 2003079626A
Authority
JP
Japan
Prior art keywords
brain
ultrasonic
brain function
subject
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001273303A
Other languages
Japanese (ja)
Other versions
JP2003079626A5 (en
Inventor
Nobuhiko Hatanaka
伸彦 畑中
Hironobu Tokuno
博信 徳野
Masahiko Takada
昌彦 高田
Atsushi Nanbu
篤 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Institute of Medical Science
Japan Science and Technology Agency
Original Assignee
Tokyo Metropolitan Institute of Medical Science
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Institute of Medical Science, Japan Science and Technology Corp filed Critical Tokyo Metropolitan Institute of Medical Science
Priority to JP2001273303A priority Critical patent/JP2003079626A/en
Publication of JP2003079626A publication Critical patent/JP2003079626A/en
Publication of JP2003079626A5 publication Critical patent/JP2003079626A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0808Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain

Abstract

PROBLEM TO BE SOLVED: To provide a brain function analysis method and system based on an ultrasonic Doppler method by which one can observe a relation between a sensory stimulus (input) or a behavior (output) and a local brain activity (internal state) and dynamic time changes of their interactions. SOLUTION: The skull is partially removed and the velocity of bloodstream in tiny arteries of the brain is measured from the surface of the dura mater with an ultrasonic probe 6. Doppler sound data are turned into a waveform with a time-frequency analyzer, and peak values in all phases of the waveforms are traced. A plurality of results of task trials is added, percent changes of peak values at rest and at work are computed, and on the basis of data obtained, percent changes of bloodstream are plotted in color on a tomogram, and the tomogram is three-dimensionally reconstructed, using computer graphics software to obtain a functional image of the brain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波ドプラー法
を応用した脳機能解析方法及びその脳機能解析システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brain function analysis method applying the ultrasonic Doppler method and a brain function analysis system thereof.

【0002】[0002]

【従来の技術】脳機能に応じて変化する血流や代謝を画
像として捉える方法は以前より研究され、いくつもの測
定方法が開発され研究されてきた。特に、研究の進んで
いるものにfMRI(機能的核磁気共鳴画像装置)、P
ET(陽電子放射型断層撮影装置)〔文献1:Med
Phys 1987 Nov;14(6):p.903
〜913、文献2:Neurosci Lett 19
84,Jul 27;48(2):p.115〜12
0)〕が挙げられる。これらは脳のながで活動により代
謝が上昇したところを見いだすことができた。
2. Description of the Related Art Methods for capturing blood flow and metabolism, which change according to brain function, as images have been studied, and several measurement methods have been developed and studied. In particular, fMRI (Functional Magnetic Resonance Imaging), P
ET (Positron Emission Tomography) [Reference 1: Med
Phys 1987 Nov; 14 (6): p. 903
913, Reference 2: Neurosci Lett 19
84, Jul 27; 48 (2): p. 115-12
0)]. These were able to find the place where metabolism increased due to activity in the brain.

【0003】[0003]

【発明が解決しようとする課題】脳機能の解析には、出
来るだけ広範囲で時間的、空間的分解能が高いものが理
想的である。なぜなら、高等な動物を用いた方が、より
人間へフィードバックしやすい研究となるが、高等で複
雑な脳を持つ動物ほどその脳の個体差が大きく、被検体
相互間の比較が厳密性を欠くというジレンマがある。そ
のため、脳の全体的な位置関係から被検体相互間の比較
を行うことが必要であるからである。
For the analysis of brain function, it is ideal to analyze the brain function as widely as possible and with high temporal and spatial resolution. This is because using higher animals makes it easier to give feedback to humans, but animals with higher and more complicated brains have larger individual differences in their brains, and comparisons between subjects lack rigor. There is a dilemma. Therefore, it is necessary to compare the subjects with each other from the overall positional relationship of the brain.

【0004】しかしながら、上記のfMRI、PETの
ような方法では、脳全体を観察できるという利点はある
が、時間分解能が低く、このためにある作業を行う前と
後のような評価しかできなかった。最近fMRIでは、
時間分解能を向上させるための試みがなされているが
〔文献3:J Comput Assist Tomo
gr 2001 Jan;25(1):p.113〜1
20〕、この方法だと空間分解能が著しく低下してしま
う。現在まで、覚醒下の被検体を1mm単位での空間分
解能を持ち、0.1秒単位での時間分解能を持つ脳機能
測定システムはなかった。
However, the methods such as fMRI and PET described above have the advantage that the whole brain can be observed, but the time resolution is low, and for this reason, only evaluations before and after performing a certain work can be performed. . Recently in fMRI,
Attempts have been made to improve the time resolution [Reference 3: J Comput Assist Tomo].
gr 2001 Jan; 25 (1): p. 113-1
20], with this method, the spatial resolution is significantly reduced. To date, there has been no brain function measurement system that has a spatial resolution in a unit of 1 mm and a temporal resolution in a unit of 0.1 seconds for an awake subject.

【0005】さらに、両方法とも撮像時間が長く、運動
課題を実行中の被検体の機能解析には体動(体が動くこ
と)の影響が完全に除けるかどうかの疑問も残る。ま
た、システム自体も非常に高価で、またメインテナンス
にかかる費用も高額となる。
Furthermore, both methods have a long imaging time, and it remains a question whether or not the influence of body movement (movement of the body) can be completely eliminated in the functional analysis of the subject performing the exercise task. In addition, the system itself is very expensive, and the maintenance cost is high.

【0006】よって、脳研究の今後の飛躍のためには、
広範囲な観察ができ、十分な空間的、時間的分解能を持
つ新しい解析システムが求められていた。
Therefore, for future leap in brain research,
A new analysis system that can observe a wide range and has sufficient spatial and temporal resolution has been demanded.

【0007】本発明は、上記状況に鑑みて、感覚刺激
(入力)や行動(出力)と局所脳活動(内部状態)の間
の関係や、それらの相互作用のダイナミックな時間変化
を観察することができる超音波ドプラー法を応用した脳
機能解析方法及び脳機能解析システムを提供することを
目的とする。
In view of the above situation, the present invention observes the relationship between sensory stimulus (input) or action (output) and local brain activity (internal state), and the dynamic temporal change of their interaction. It is an object of the present invention to provide a brain function analysis method and a brain function analysis system that apply the ultrasonic Doppler method.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕超音波ドプラー法を応用した脳機能解析方法にお
いて、頭蓋骨を部分的に除去し、硬膜表面から超音波プ
ローブにより脳の微小動脈における血流速度を測定し、
ドプラー音データを時間−周波数分析器を用いて波形化
し、この波形化された各位相のピーク値をトレースし、
複数のトライアルの結果を加算し、平静時と活動時にお
けるピーク値の変化率を算出し、得られたデータに基づ
き、断層画像上に血流変化の割合をカラープロットし、
前記断層画像をコンピュータグラフィックソフトを用い
て三次元再構築し、脳の機能画像を得ることを特徴とす
る。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides [1] a brain function analysis method to which an ultrasonic Doppler method is applied, in which a skull is partially removed and a superficial surface of a dura mater is superposed. Measuring the blood flow velocity in the micro-arteries of the brain with an ultrasonic probe,
Doppler sound data is converted into a waveform using a time-frequency analyzer, and the peak value of each phase thus converted is traced.
The results of multiple trials were added together, the rate of change in peak value during calmness and activity was calculated, and based on the obtained data, the rate of blood flow change was color plotted on the tomographic image,
It is characterized in that the tomographic image is three-dimensionally reconstructed using computer graphic software to obtain a functional image of the brain.

【0009】〔2〕超音波ドプラー法を応用した脳機能
解析システムにおいて、被検体の脳に対応する頭蓋骨切
除部に配置される超音波プローブと、前記被検体を所定
の位置に拘束するための定位装置と、前記被検体へ指示
を与える手段と、前記指示に反応して信号を出力する入
力手段と、前記被検体へ指示を出し、入力手段からの信
号を取り込む課題制御装置と、前記超音波プローブから
の出力信号を取り込む超音波装置と、この超音波装置か
らの出力信号と、前記課題制御装置からの課題イベント
信号とを取り込む脳機能データ解析器とを具備すること
を特徴とする。
[2] In a brain function analysis system to which the ultrasonic Doppler method is applied, an ultrasonic probe placed at a skull excision portion corresponding to the brain of the subject and a subject for restraining the subject at a predetermined position. A localization device, means for giving an instruction to the subject, input means for outputting a signal in response to the instruction, a task control device for giving an instruction to the subject and taking in a signal from the input means, It is characterized by comprising an ultrasonic device for taking in an output signal from the ultrasonic probe, and a brain function data analyzer for taking in an output signal from the ultrasonic device and a task event signal from the task control device.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0011】図1は本発明の実施例を示す脳機能解析シ
ステムの模式図である。
FIG. 1 is a schematic diagram of a brain function analysis system showing an embodiment of the present invention.

【0012】この図において、1は被検体としてのサ
ル、2はそのサル(被検体)1を所定の位置に拘束する
ための定位装置、3は前記被検体1へ指示を与える手段
としての表示パネル、4は前記指示に反応して信号を出
力するための入力装置(キースイッチ)、5は前記被検
体1への課題を与えるための制御用コンピュータ(制御
用PC)、6は超音波プローブ、7は超音波装置、8は
超音波装置7からの出力信号と、前記制御用PC5から
の課題イベント信号とを取り込む脳機能データ解析用コ
ンピュータ(解析用PC)である。
In this figure, 1 is a monkey as a subject, 2 is a localization device for restraining the monkey (subject) 1 at a predetermined position, and 3 is a display as means for giving an instruction to the subject 1. Panel 4 is an input device (key switch) for outputting a signal in response to the instruction, 5 is a control computer (control PC) for giving a task to the subject 1, and 6 is an ultrasonic probe. , 7 is an ultrasonic device, and 8 is a brain function data analyzing computer (analyzing PC) for taking in the output signal from the ultrasonic device 7 and the task event signal from the controlling PC 5.

【0013】その脳機能データ解析用PC8は、図2
(a)に示すように、超音波装置7からの出力であるサ
ウンド信号を取込み、図2(b)に示すように、時間−
周波数解析を行い、図2(c)に示すように、その位相
波形のピーク値のトレースを行い、図2(d)に示すよ
うに、複数の試行の結果(ここでは20試行から50試
行)を加算し、平静時と活動時におけるピーク値の変化
率を算出する。なお、一連のサルのボタン押し行動を一
試行と言っている。
The brain function data analysis PC 8 is shown in FIG.
As shown in FIG. 2A, a sound signal output from the ultrasonic device 7 is taken in, and as shown in FIG.
Frequency analysis is performed, the peak value of the phase waveform is traced as shown in FIG. 2C, and the results of a plurality of trials (here, 20 to 50 trials) are shown in FIG. 2D. Is added to calculate the rate of change in peak value during rest and during activity. A series of monkey button-pressing actions is called a trial.

【0014】以下、その脳機能データ解析について図1
及び図2を参照しながら詳細に説明する。
The analysis of the brain function data will be described below with reference to FIG.
And, it will be described in detail with reference to FIG.

【0015】実験には、3頭のニホンザル(メス、体重
4.8〜5.6kg)を用いた。サルはモンキーチェア
ーに座っていられるようにトレーニングされ、続いて本
格的な運動課題のトレーニングを行った。
Three Japanese macaques (female, weighing 4.8 to 5.6 kg) were used in the experiment. The monkeys were trained to sit in a monkey chair and then trained on a full-scale motor task.

【0016】使用した運動課題は、遅延期間付き右手、
左手、両手の3種類のボタン押し分別課題であった。
The exercise task used was the right hand with a delay period,
There were three types of button separation tasks for the left hand and both hands.

【0017】サル1の前方40cmのところに表示パネ
ル3があり、2つの手がかり刺激用LED3Aと1つの
行動開始刺激用LED3Bとの合計3つのLEDが逆三
角形に並んでいる。各LEDの間隔は2.5cmで、課
題提供中サルが目を動かさないでよいように設計されて
いる。左右のLED3Aが片側だけ点灯した場合はそれ
ぞれ左右のどちらかのキースイッチ4を押させる手がか
り刺激となり、手がかり刺激用LED3Aの両方が点灯
すれば、両方のキースイッチ4を押す手がかり刺激とな
っている。運動課題中に両上肢遠位のみの運動にとどめ
るため、肩、背中、上腕肘を固定する固定装置をモンキ
ーチェアー上に作製し使用した。
A display panel 3 is located 40 cm in front of the monkey 1, and a total of three LEDs, that is, two clue stimulating LEDs 3A and one action start stimulating LED 3B are arranged in an inverted triangle. The distance between each LED is 2.5 cm, and it is designed so that the monkey does not move its eyes during the assignment. When the left and right LEDs 3A are lit only on one side, it is a clue stimulus that pushes either the left or right key switch 4, and when both of the clue stimulus LEDs 3A are lit, it is a clue stimulus that pushes both key switches 4. . In order to limit the movement to only the distal upper limbs during the exercise task, a fixation device for fixing the shoulder, back, and upper arm and elbow was prepared and used on a monkey chair.

【0018】キースイッチ4はストロークが1.6mm
のプッシュスイッチでモンキーチェアー上のサル固定装
置の先端にサルの体軸と平行に取り付けた。
The key switch 4 has a stroke of 1.6 mm.
It was attached to the tip of the monkey fixing device on the monkey chair in parallel with the monkey's body axis with the push switch of.

【0019】運動課題を時間軸上で説明すると、手がか
り刺激が2秒間点灯した後、ランダムな遅延期間の後
に、LEDが点灯する〔図3及び図4参照、詳細は後
述〕。
Explaining the exercise task on the time axis, after the cue stimulus lights for 2 seconds, the LED lights up after a random delay period (see FIGS. 3 and 4, details will be described later).

【0020】サルが正しいボタンを行動開始刺激の点灯
から1秒以内に押したとき、報酬としてフルーツジュー
スがサルに与えられる。両手でのボタン押し時の左右の
タイミングのずれは200ms以内で許容される。行動
開始刺激の前にサルがボタンを押した場合、サルが指示
されているのと違うボタンを押した場合、サルがどのボ
タンも押さなかった場合、サルに誤答を知らせる電子ベ
ル音を聞かせた。
When the monkey presses the correct button within 1 second after the action start stimulus lights up, fruit juice is given to the monkey as a reward. The left / right timing deviation when pressing the buttons with both hands is allowed within 200 ms. If the monkey presses a button before the action-initiating stimulus, if the monkey presses a button different from the one indicated, or if the monkey does not press any button, the monkey will hear a bell sound that informs them of the wrong answer. It was

【0021】1頭目は、3種類の分別において各トライ
アルがランダムに提示されても90%以上の成功率に達
したときに左右の分別を覚えたと判断し、脳定位固定装
置にセットするための手術を行った。
The first head is to set the brain stereotaxic apparatus by judging that the left and right classifications are learned when the success rate of 90% or more is reached even if the trials are randomly presented in the three kinds of classifications. I had an operation.

【0022】2頭目、3頭目は学習による変化を観察す
るために成功率が90%になる前に手術を行った。塩酸
ケタミンとキシラジンの筋肉内注射をし、その後ペント
バルビタールを静脈内注射し、全身麻酔を行った。頭蓋
骨を広く露出し、ステンレス製のネジを埋めてアンカー
とし、10%クエン酸で表面処理を行い、4−META
系の接着性レジンを用いて骨との接着性を増した後、ア
クリルレジンで完全に覆った。さらにその上に頭部固定
用の2つのパイプをステレオ固定面が再現できるように
10cmの間隔で前後に平行に装着した。
For the second and third animals, surgery was performed before the success rate reached 90% in order to observe changes due to learning. An intramuscular injection of ketamine hydrochloride and xylazine followed by an intravenous injection of pentobarbital was performed for general anesthesia. The skull is exposed widely, the stainless steel screw is buried, it is used as an anchor, and the surface treatment is performed with 10% citric acid. 4-META
An adhesive resin of the system was used to increase adhesion to the bone and then completely covered with acrylic resin. Furthermore, two pipes for fixing the head were mounted parallel to the front and back at intervals of 10 cm so that the stereo fixed surface could be reproduced.

【0023】術後サルが回復した後、サルが問題なく運
動課題を施工するのを確認し、超音波ドップラー法でデ
ータを取るために頭蓋骨の上部1/3に渡る部分除去
(およそ6cm×6cm、サル頭蓋骨の上部1/3)を
行った。除去後同部はアクリルレジンとデルリン樹脂に
て方形のチャンバーをつくった。疼痛緩和のための鎮痛
剤と感染予防のために抗菌剤の投与を行った。
After the post-operative monkey was recovered, it was confirmed that the monkey performed a motor task without any problem, and a partial removal over the upper 1/3 of the skull (about 6 cm × 6 cm) was performed to obtain data by the ultrasonic Doppler method. , The upper 1/3 of the monkey skull). After the removal, a rectangular chamber was made of acrylic resin and Delrin resin in the same area. An analgesic for pain relief and an antibacterial agent for prevention of infection were administered.

【0024】超音波ドップラー法での超音波プローブ6
によるデータ採取は、ステレオ装置用マニピュレーター
に固定用アタッチメントを製作し、ステレオ面が出せる
ようにして行った。これにより再現性が確保され、同じ
部位での経時的、経日的な測定が可能となった。
Ultrasonic probe 6 by ultrasonic Doppler method
The data was collected by using a manipulator for a stereo device to manufacture a fixing attachment so that the stereo surface could be exposed. As a result, reproducibility was secured and it became possible to measure the same site over time and over time.

【0025】さらに、得たデータがキースイッチ4を押
す上肢遠位屈伸筋群だけに限局されているのを確認する
ために運動課題施行中に表面電極を用い、左右上肢遠位
の屈筋群、伸筋群、上肢近位屈筋群、伸筋群、広背筋、
前鋸筋、脊椎周囲の筋群を測定した。得た筋電図は、運
動課題のイベントに合わせて加算し問題ないことを確認
した。
Further, in order to confirm that the obtained data is confined only to the upper extremity flexor-extensor group that presses the key switch 4, the surface electrodes are used during the exercise task and the left and right upper extremity distal flexor groups are used. Extensor group, upper limb proximal flexor group, extensor group, latissimus dorsi,
The serratus anterior muscle and the muscle groups around the spine were measured. The obtained electromyogram was added according to the event of the exercise task, and it was confirmed that there was no problem.

【0026】超音波装置7にはGE medical社
製LOGIQ 700 MRを使用した。まず、チャン
バー内に生理食塩水を満たし、マニピュレーターに装着
した超音波プローブ6をチャンバー内に挿入し、前額断
面画像を得る。断面像はチャンバーの前縁を利用して毎
回同じ面が出るようにした。また、超音波ドップラー法
での血流情報は、その血管の走行方向に依存して得られ
る強度を変化させるため、垂直に、あるいは補足運動野
(SMA)の場合は、データを採取する半球の反対側へ
10度傾けて固定された。
As the ultrasonic device 7, a LOGIQ 700 MR manufactured by GE medical was used. First, the chamber is filled with physiological saline, and the ultrasonic probe 6 attached to the manipulator is inserted into the chamber to obtain a frontal cross-sectional image. The cross-sectional image was made to show the same surface every time using the front edge of the chamber. In addition, the blood flow information obtained by the ultrasonic Doppler method changes the intensity obtained depending on the running direction of the blood vessel. Therefore, vertically or in the case of the supplementary motor area (SMA), the blood flow information of the hemisphere is collected. It was fixed by tilting 10 degrees to the opposite side.

【0027】通常の全額断の観察には、プローブからの
超音波出力は13MHzを使用したが、高周波数での観
察は浅いところでは空間分解能が上昇し、観察精度が上
がるが、深部まで到達しにくい性質がある。今回は大脳
皮質を観察したため装置の持つ最高周波数を使用した。
Although the ultrasonic output from the probe was 13 MHz for the normal observation of total cutting, the observation at a high frequency increased the spatial resolution and the observation accuracy in a shallow place, but reached the deep portion. It has a difficult property. Since the cerebral cortex was observed this time, the highest frequency of the device was used.

【0028】カラーフロー表示下でデータを採取する領
域を決定するが、このときの超音波プローブ6からの周
波数は7.5MHzで、時間分解能を上げるためにfr
ame averageは使用しなかった。装置上で脳
表から脳皮質内に入る微小血管を観察できるためこの操
作は簡便であった。
The area from which data is to be collected is determined under the color flow display. The frequency from the ultrasonic probe 6 at this time is 7.5 MHz, and fr is used to increase the time resolution.
No average average was used. This operation was simple because it was possible to observe the microvessels entering the cortex from the surface of the brain on the device.

【0029】データの採取はパワードップラーモードで
行った。LOGIQ 700 MRではパワードップラ
ーモード時に空間分解能を上げるため2次元アレイ発信
を行う。このときの超音波プローブからの周波数は
6.2MHzで固定されている。wall filte
rは、vscale ratio 1/4モードで16
Hzを使用し、Velocity scaleは適宜調
整したが、皮質内の微小な血管の流速値は低いので概ね
最も低い3cm/sを使用した。
Data was collected in the power Doppler mode. In the LOGIQ 700 MR, two-dimensional array transmission is performed in order to improve the spatial resolution in the power Doppler mode. The frequency from the ultrasonic probe 6 at this time is fixed at 6.2 MHz. wall fille
r is 16 in vscale ratio 1/4 mode
Although Hz was used and Velocity scale was adjusted appropriately, 3 cm / s, which is generally the lowest, was used because the flow velocity value of minute blood vessels in the cortex is low.

【0030】そこで、超音波装置7であるLOGIQ
700 MRより出る音信号〔図2(a)参照〕を解析
用PC8にA/Dボードを使用して取込み、JTFA解
析〔図2(b)参照〕し、変化が明確になる閾値で切り
出した曲線を一施行のデータとした。解析した曲線は拍
動性の流速を示すデータである。脳皮質の酸素要求度
は、一回の拍動の最高値(Vmax)に示される(do
ppe J Neurosci methods 19
97 75 147−54 Neuroimage 1
998 7 4pt2 S448)ため、得られた曲線
のピーク値をプログラム上でトレース〔図2(c)参
照〕した。さらに、より特徴を明確にし、ノイズを軽減
するために同じ閾値で解析し、トレースした曲線を課題
イベントにあわせて加算した。さらに、他の領域からの
データと比較するために、インストラクションシグナル
が出る前の0.5秒間をコントロールピリオドとしてそ
の平均値に対する増減の割合を時間軸上のすべての点で
算出した〔図2(d)参照〕。
Therefore, the LOGIQ which is the ultrasonic device 7 is used.
A sound signal emitted from 700 MR [see FIG. 2 (a)] was taken into the analysis PC 8 using an A / D board, subjected to JTFA analysis [see FIG. 2 (b)], and cut out at a threshold value at which a change becomes clear. The curve is the data for one implementation. The analyzed curve is data showing pulsatile flow velocity. Oxygen demand of the cerebral cortex is shown at the maximum value (Vmax) of one beat (do)
ppe J Neurosci methods 19
97 75 147-54 Neuroimage 1
998 7 4pt2 S448), the peak value of the obtained curve was traced on a program [see FIG. 2 (c)]. Furthermore, in order to further clarify the characteristics and reduce noise, analysis was performed with the same threshold value, and the traced curve was added according to the task event. Furthermore, in order to compare with the data from other regions, the rate of increase / decrease with respect to the average value was calculated at all points on the time axis, using 0.5 seconds before the instruction signal as a control period [Fig. See d)].

【0031】本発明の脳機能解析システムを用いて運動
課題の遂行中のサルの大脳皮質から血流変化を記録する
ことを行った。つまり、遅延付き両手ボタン押し分別運
動課題をサルに訓練し、一次運動野、一次体性感覚野、
補足運動野、運動前野背側部、および運動前野腹側部で
課題に応答した血流変化を超音波ドプラー法により解析
した。
Using the brain function analysis system of the present invention, changes in blood flow were recorded from the cerebral cortex of the monkey during the performance of the exercise task. In other words, we train monkeys to perform a delayed two-handed push-button segregation task,
Changes in blood flow in the supplementary motor cortex, dorsal part of premotor cortex and ventral part of premotor cortex were analyzed by ultrasonic Doppler method.

【0032】図3は本発明の実施例を示す脳機能解析シ
ステムによる各運動領域におけるL(左)−R(右)−
B(両方)判別課題における両方(左,右)施行時のコ
ントロール期間に対する血流速の増加量(Vmax)を
示す図であり、図3(a)にはその一次運動野、図3
(b)にはその一次体性感覚野、図3(c)には補足運
動野、図3(d)にはその運動前野背側部、図3(e)
にはその運動前野腹側部のそれぞれの血流速の増加量
(Vmax)を示している。
FIG. 3 shows L (left) -R (right) -in each movement region by a brain function analysis system showing an embodiment of the present invention.
It is a figure which shows the increase amount (Vmax) of the blood flow velocity with respect to the control period at the time of performing both (left, right) in B (both) discrimination task, and FIG.
FIG. 3 (b) shows the primary somatosensory area, FIG. 3 (c) shows the supplementary motor area, FIG. 3 (d) shows the dorsal part of the premotor area, and FIG. 3 (e).
Shows the increase amount (Vmax) of the blood flow velocity on the ventral side of the pre-exercise field.

【0033】図4は本発明の実施例を示す脳機能解析シ
ステムによる各運動領域におけるL(左)−R(右)−
B(両方)判別課題における同側(左)施行時のコント
ロール期間に対する血流速の増加量(Vmax)を示す
図であり、図4(a)にはその一次運動野、図4(b)
にはその一次体性感覚野、図4(c)には補足運動野、
図4(d)にはその運動前野背側部、図4(e)にはそ
の運動前野腹側部のそれぞれの血流速の増加量(Vma
x)を示している。
FIG. 4 shows L (left) -R (right) -in each movement region by the brain function analysis system showing the embodiment of the present invention.
It is a figure which shows the increase amount (Vmax) of the blood flow velocity with respect to the control period at the time of performing the same side (left) in B (both) discrimination task, FIG.4 (a) is the primary motor area, FIG.4 (b).
In the primary somatosensory area, in FIG. 4 (c) the supplementary motor area,
FIG. 4 (d) shows the dorsal part of the pre-motor area, and FIG. 4 (e) shows the increase amount of the blood flow velocity of the ventral side of the pre-motor field (Vma).
x) is shown.

【0034】(1)一次運動野では運動実行に関連した
血流増加が反対側性及び両側性に認められた。
(1) In the primary motor cortex, an increase in blood flow associated with exercise execution was observed bilaterally and bilaterally.

【0035】(2)補足運動野では手がかり刺激と運動
実行の両方に関連した二相性の血流増加が同側性、反対
側性、及び両側性に認められた。
(2) In the supplementary motor cortex, a biphasic increase in blood flow associated with both cue stimulation and exercise execution was observed ipsilaterally, contralaterally, and bilaterally.

【0036】(3)運動前野では、課題に応答した血流
変化が少なく、また、一次体性感覚野における血流増加
は一次運動野のそれに比べて潜時が長かった。
(3) In the premotor cortex, there was little change in blood flow in response to the task, and the increase in blood flow in the primary somatosensory cortex had a longer latency than that in the primary motor cortex.

【0037】(4)補足運動野で学習初期にみとめられ
た手がかり刺激に関連した血流増加は、学習成立時には
減弱した。
(4) The increase in blood flow associated with the clue stimulus found in the early stage of learning in the supplementary motor area was attenuated when the learning was established.

【0038】(5)一日のうちで遅延付き分別課題から
単純な遅延なし課題に移行させた場合にも、補足運動野
で認められる手がかり刺激に関連した血流増加は徐々に
減弱、消失した。
(5) Even when the separation task with delay was changed to a simple task without delay in one day, the increase in blood flow associated with the cues stimulated in the supplementary motor cortex gradually diminished and disappeared. .

【0039】これらの図から明らかなように、本発明に
よれば、大脳皮質から血流速を感覚刺激(入力)や行動
(出力)と局所脳活動(内部状態)の間の関係や、それ
らの相互作用のダイナミックな時間変化を観察すること
ができた。
As is clear from these figures, according to the present invention, the relationship between the blood flow velocity from the cerebral cortex, the relationship between sensory stimulation (input) or behavior (output) and local brain activity (internal state), and those We were able to observe the dynamic temporal changes of the interactions of the.

【0040】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention, and these modifications are not excluded from the scope of the present invention.

【0041】[0041]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described in detail above, according to the present invention, the following effects can be achieved.

【0042】(A)超音波ドプラー法を応用して脳血流
を直接モニターすることにより、脳の機能的イメージン
グを行うことができる。
(A) The functional imaging of the brain can be performed by directly monitoring the cerebral blood flow by applying the ultrasonic Doppler method.

【0043】(B)超音波ドプラー機能を備えた超音波
画像診断装置を用いて、脳血流の速度変化を直接モニタ
ーすることにより、従来のfMRI法やPET法に比べ
て、より高い時間分解能と空間分解能を有するだけでな
く、コスト面や操作性、汎用性の点からも優れた脳機能
解析システムを得ることができる。
(B) By using an ultrasonic imaging apparatus having an ultrasonic Doppler function to directly monitor the change in cerebral blood flow velocity, a higher time resolution than that of the conventional fMRI method or PET method is obtained. It is possible to obtain a brain function analysis system not only having high spatial resolution but also excellent in terms of cost, operability, and versatility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す脳機能解析システムの模
式図である。
FIG. 1 is a schematic diagram of a brain function analysis system showing an embodiment of the present invention.

【図2】本発明の実施例を示す脳機能解析システムの各
部の信号波形を示す図である。
FIG. 2 is a diagram showing a signal waveform of each part of the brain function analysis system showing the embodiment of the present invention.

【図3】本発明の実施例を示す脳機能解析システムによ
る各運動領域におけるL(左)−R(右)−B(両方)
判別課題における両方(左,右)施行時のコントロール
期間に対する血流速の増加量(Vmax)を示す図であ
る。
FIG. 3 is an L (left) -R (right) -B (both) in each movement region by the brain function analysis system showing the embodiment of the present invention.
It is a figure which shows the increase amount (Vmax) of the blood flow velocity with respect to the control period at the time of performing both (left, right) in a discrimination task.

【図4】本発明の実施例を示す脳機能解析システムによ
る各運動領域におけるL(左)−R(右)−B(両方)
判別課題における同側(左)施行時のコントロール期間
に対する血流速の増加量(Vmax)を示す図である。
FIG. 4 is an L (left) -R (right) -B (both) in each movement region according to the brain function analysis system showing the embodiment of the present invention.
It is a figure which shows the increase amount (Vmax) of the blood flow velocity with respect to the control period at the time of performing the same side (left) in a discrimination task.

【符号の説明】[Explanation of symbols]

1 被検体としてのサル 2 定位装置 3 表示パネル 4 入力装置(キースイッチ) 5 制御用コンピュータ(制御用PC) 6 超音波プローブ 7 超音波装置 8 脳機能データ解析用コンピュータ(解析用PC) 1 Monkey as a subject 2 Localization device 3 display panel 4 Input device (key switch) 5 Control computer (control PC) 6 Ultrasonic probe 7 Ultrasonic device 8 Brain function data analysis computer (analysis PC)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳野 博信 東京都国立市東4−13−57 (72)発明者 高田 昌彦 東京都国分寺市北町2−31−16 (72)発明者 南部 篤 東京都国分寺市内藤2−9−23 メゾン竹 内101 Fターム(参考) 4C017 AA11 AB10 AC23 4C301 CC01 DD01 DD02 EE11 JB23 JB29 KK02 KK12 KK16 KK22 4C601 DD03 DE01 EE09 JB34 JB35 JB36 JB45 JC25 KK02 KK18 KK19 KK21 KK23 KK24    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hironobu Tokuno             4-13-57 East, Kunitachi, Tokyo (72) Inventor Masahiko Takada             2-31-16 Kitamachi, Kokubunji, Tokyo (72) Inventor Atsushi Nanbu             Maison Bamboo 2-9-23 Wisteria, Kokubunji, Tokyo             Of which 101 F-term (reference) 4C017 AA11 AB10 AC23                 4C301 CC01 DD01 DD02 EE11 JB23                       JB29 KK02 KK12 KK16 KK22                 4C601 DD03 DE01 EE09 JB34 JB35                       JB36 JB45 JC25 KK02 KK18                       KK19 KK21 KK23 KK24

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)頭蓋骨を部分的に除去し、硬膜表面
から超音波プローブにより脳の微小動脈における血流速
度を測定し、(b)ドプラー音データを時間−周波数分
析器を用いて波形化し、(c)該波形化された各位相の
ピーク値をトレースし、(d)複数のトライアルの結果
を加算し、(e)平静時と活動時におけるピーク値の変
化率を算出し、(f)得られたデータに基づき、断層画
像上に血流変化の割合をカラープロットし、(g)前記
断層画像をコンピュータグラフィックソフトを用いて三
次元再構築し、脳の機能画像を得ることを特徴とする超
音波ドプラー法を応用した脳機能解析方法。
1. (a) The skull is partially removed, the blood flow velocity in the cerebral microarteries is measured from the dura surface with an ultrasonic probe, and (b) the Doppler sound data is used with a time-frequency analyzer. (C) Trace the peak value of each of the waveformd phases, (d) Add the results of multiple trials, and (e) Calculate the rate of change of the peak value at rest and during activity. , (F) Color plotting the rate of blood flow change on the tomographic image based on the obtained data, and (g) three-dimensionally reconstructing the tomographic image using computer graphic software to obtain a functional image of the brain. A method for analyzing brain function applying the ultrasonic Doppler method, which is characterized in that
【請求項2】(a)被検体の脳に対応する頭蓋骨切除部
に配置される超音波プローブと、(b)前記被検体を所
定の位置に拘束するための定位装置と、(c)前記被検
体へ指示を与える手段と、(d)前記指示に反応して信
号を出力する入力手段と、(e)前記被検体へ指示を出
し、入力手段からの信号を取り込む課題制御装置と、
(f)前記超音波プローブからの出力信号を取り込む超
音波装置と、(g)該超音波装置からの出力信号と、前
記課題制御装置からの課題イベント信号とを取り込む脳
機能データ解析器とを具備することを特徴とする超音波
ドプラー法を応用した脳機能解析システム。
2. An (a) ultrasonic probe arranged in a craniotomy portion corresponding to the brain of the subject, (b) a localization device for restraining the subject in a predetermined position, and (c) the above. Means for giving an instruction to the subject, (d) an input means for outputting a signal in response to the instruction, and (e) a task control device for issuing an instruction to the subject and taking in a signal from the input means,
(F) an ultrasonic device that captures the output signal from the ultrasonic probe; and (g) a brain function data analyzer that captures the output signal from the ultrasonic device and the task event signal from the task control device. A brain function analysis system applying the ultrasonic Doppler method, which is characterized by being provided.
JP2001273303A 2001-09-10 2001-09-10 Brain function analysis method and system based on ultrasonic doppler method Pending JP2003079626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273303A JP2003079626A (en) 2001-09-10 2001-09-10 Brain function analysis method and system based on ultrasonic doppler method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273303A JP2003079626A (en) 2001-09-10 2001-09-10 Brain function analysis method and system based on ultrasonic doppler method

Publications (2)

Publication Number Publication Date
JP2003079626A true JP2003079626A (en) 2003-03-18
JP2003079626A5 JP2003079626A5 (en) 2008-11-20

Family

ID=19098535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273303A Pending JP2003079626A (en) 2001-09-10 2001-09-10 Brain function analysis method and system based on ultrasonic doppler method

Country Status (1)

Country Link
JP (1) JP2003079626A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055826A1 (en) * 2003-12-12 2005-06-23 Kurume University Intracerebral blood flow measuring device
EP1614385A1 (en) * 2004-07-08 2006-01-11 Hitachi Ltd. Optical measurement system for living bodies and method thereof
US7421377B2 (en) 2006-09-05 2008-09-02 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for supressing noise in a doppler system
US7699779B2 (en) 2003-05-19 2010-04-20 Hitachi, Ltd. Ultrasonic treatment equipment
WO2012131418A1 (en) 2011-03-30 2012-10-04 Centre National De La Recherche Scientifique - Cnrs - Method for ultrasound functional imaging, man-machine interface method and apparatus using such methods
JP2018517513A (en) * 2015-06-16 2018-07-05 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Detection apparatus and related imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871058A (en) * 1994-09-06 1996-03-19 Toshiba Corp Magnetic resonance imaging apparatus
JPH08117227A (en) * 1994-10-26 1996-05-14 Olympus Optical Co Ltd Ultrasonic diagnostic device
JPH10328189A (en) * 1997-05-29 1998-12-15 Matsushita Electric Ind Co Ltd Ultrasonic blood flow measuring instrument
JPH1152060A (en) * 1997-08-05 1999-02-26 Hamamatsu Photonics Kk Method for evaluating neurergic drug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871058A (en) * 1994-09-06 1996-03-19 Toshiba Corp Magnetic resonance imaging apparatus
JPH08117227A (en) * 1994-10-26 1996-05-14 Olympus Optical Co Ltd Ultrasonic diagnostic device
JPH10328189A (en) * 1997-05-29 1998-12-15 Matsushita Electric Ind Co Ltd Ultrasonic blood flow measuring instrument
JPH1152060A (en) * 1997-08-05 1999-02-26 Hamamatsu Photonics Kk Method for evaluating neurergic drug

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699779B2 (en) 2003-05-19 2010-04-20 Hitachi, Ltd. Ultrasonic treatment equipment
WO2005055826A1 (en) * 2003-12-12 2005-06-23 Kurume University Intracerebral blood flow measuring device
EP1614385A1 (en) * 2004-07-08 2006-01-11 Hitachi Ltd. Optical measurement system for living bodies and method thereof
US7285790B2 (en) 2004-07-08 2007-10-23 Hitachi, Ltd. Optical measurement system for living bodies and method thereof
US7421377B2 (en) 2006-09-05 2008-09-02 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for supressing noise in a doppler system
WO2012131418A1 (en) 2011-03-30 2012-10-04 Centre National De La Recherche Scientifique - Cnrs - Method for ultrasound functional imaging, man-machine interface method and apparatus using such methods
JP2018517513A (en) * 2015-06-16 2018-07-05 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Detection apparatus and related imaging method
JP2021192786A (en) * 2015-06-16 2021-12-23 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Detection device and related imaging method
JP7015694B2 (en) 2015-06-16 2022-02-03 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Detection device and operation method of detection device
JP7138215B2 (en) 2015-06-16 2022-09-15 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Detection device and associated imaging method

Similar Documents

Publication Publication Date Title
Calabrò et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial
Gerloff et al. Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences.
Ranganathan et al. From mental power to muscle power—gaining strength by using the mind
Patuzzo et al. Modulation of motor cortex excitability in the left hemisphere during action observation: a single-and paired-pulse transcranial magnetic stimulation study of self-and non-self-action observation
US20170169714A1 (en) Methods and Systems for Cognitive Training Using High Frequency Heart Rate Variability
US8938289B2 (en) Motor training with brain plasticity
Patterson II et al. Task-independent functional brain activity correlation with skin conductance changes: an fMRI study
Fontani et al. Effect of mental imagery on the development of skilled motor actions
Leeb et al. Walking through a virtual city by thought
Fisher et al. Real-time detection and monitoring of acute brain injury utilizing evoked electroencephalographic potentials
Rosler Transcranial magnetic brain stimulation: a tool to investigate central motor pathways
JP2003079626A (en) Brain function analysis method and system based on ultrasonic doppler method
JP6755507B2 (en) How to operate the brain activity training system and the brain activity training system
Li et al. Effects of Ordered Grasping Movement on Brain Function in the Performance Virtual Reality Task: A Near-Infrared Spectroscopy Study
Caruso et al. Cerebral hemodynamic changes during motor imagery and passive robot-assisted movement of the lower limbs
JP2014023866A (en) Brain activity state analyzer, brain activity state analyzing method and brain activity state analyzing program
RU2644295C1 (en) Method for motion activity recovery of upper and lower human limbs
Ammar et al. Unveiling the acute neurophysiological responses to strength training: An exploratory study on novices performing weightlifting bouts with different motor learning models
Patel Virtual Reality and Robotic Based Training for the Upper Limb in the Acute and Early Sub-acute Periods Post-stroke
Meško et al. The effect of listening to techno music on reaction times to visual stimuli
Yoxon Movement Imagery-Dependent Neuroplasticity can be predicted by Motor System Activation and Behavioural Assessments
JP2004321211A (en) Virtual movement device, method and program for fmri environment using biosignal
Bae et al. Development and validation of immersive hand rehabilitation system using a VR rhythm game with vibrotactile feedback: an fNIRS pilot study
Chakraborty et al. Biofeedback: Can it be used as an Assessment Tool?
Butt Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726