JP2003075751A - Tandem scanning optical system - Google Patents

Tandem scanning optical system

Info

Publication number
JP2003075751A
JP2003075751A JP2001268291A JP2001268291A JP2003075751A JP 2003075751 A JP2003075751 A JP 2003075751A JP 2001268291 A JP2001268291 A JP 2001268291A JP 2001268291 A JP2001268291 A JP 2001268291A JP 2003075751 A JP2003075751 A JP 2003075751A
Authority
JP
Japan
Prior art keywords
optical system
scanning
scanning direction
sub
tandem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001268291A
Other languages
Japanese (ja)
Other versions
JP4576778B2 (en
Inventor
Hiroki Kinoshita
博喜 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2001268291A priority Critical patent/JP4576778B2/en
Publication of JP2003075751A publication Critical patent/JP2003075751A/en
Application granted granted Critical
Publication of JP4576778B2 publication Critical patent/JP4576778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-priced tandem scanning optical system having excellent image surface performance. SOLUTION: This scanning optical system is equipped with a scanning system which dividedly guides four laser beams (LY, LM, LC and LB) deflected by a polygon mirror (1) to four photoreceptors (IY, IM, IC and IB) and scans to form an image on the respective photoreceptors (IY, IM, IC and IB). The scanning system has 1st optical systems (11 and 12) arranged in common to the four laser beams (LY, LM, LC and LB) deflected on the same polygon surface (S) of the mirror (1), and four 2nd optical systems (21Y, 21M, 21C and 21B) arranged corresponding to the four laser beams (LY, LM, LC and LB) passing through the 1st optical systems (11 and 12). The 1st optical systems (11 and 12) have at least one free curved surface non-axially-symmetric in a main scanning direction, and the 2nd optical systems (21Y, 21M, 21C and 21B) have at least one free curved surface non-axially-symmetric in a subscanning direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はタンデム走査光学系
に関するものであり、例えばカラーレーザープリンタ,
カラーデジタル複写機等の画像形成装置において、複数
のレーザー光束を走査しながら複数の被走査面上に画像
を露光記録するタンデム用の走査光学系に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tandem scanning optical system, for example, a color laser printer,
The present invention relates to a tandem scanning optical system for exposing and recording an image on a plurality of scanned surfaces while scanning a plurality of laser beams in an image forming apparatus such as a color digital copying machine.

【0002】[0002]

【従来の技術】レーザー走査によりカラー画像を形成す
る場合、通常、4つの感光体(例えば、Y:イエロー,
M:マゼンタ,C:シアン,B:ブラックの各色用の感
光体)が必要である。4つの感光体に対して画像記録を
行うタンデム用の走査光学系としては、4本のレーザー
光束を副走査方向に異なる角度でポリゴンミラーに入射
させ、その後で副走査方向に光路分離を行うタンデム走
査光学系が知られている。例えば特開平11−6475
4号公報では、1つのポリゴンミラーと2つのfθレン
ズを備え、各fθレンズを2つの光学系に分けてその間
で光路分離を行うタイプのタンデム走査光学系が提案さ
れている。また特開平8−122673号公報では、1
つのポリゴンミラーと1つのfθレンズを備え、fθレ
ンズの後ろで光路分離を行うタイプのタンデム走査光学
系が提案されている。
2. Description of the Related Art Usually, when a color image is formed by laser scanning, four photoconductors (for example, Y: yellow,
(M: magenta, C: cyan, B: black photoconductors for each color) are required. A tandem scanning optical system for recording an image on four photoconductors is a tandem system in which four laser beams are incident on a polygon mirror at different angles in the sub-scanning direction, and then optical paths are separated in the sub-scanning direction. Scanning optics are known. For example, JP-A-11-6475
Japanese Patent Publication No. 4 has proposed a tandem scanning optical system of one polygon mirror and two fθ lenses, each fθ lens being divided into two optical systems to perform optical path separation between them. Further, in JP-A-8-122673, 1
There has been proposed a tandem scanning optical system of a type that includes one polygon mirror and one fθ lens and performs optical path separation behind the fθ lens.

【0003】[0003]

【発明が解決しようとする課題】特開平11−6475
4号公報で提案されているタンデム走査光学系では、2
つのfθレンズが必要となるのでコストが高くなる。そ
の技術の延長でタンデム走査光学系を1つのfθレンズ
で構成したとしても、光路分離後の光学系が2種類必要
となるため、やはりコスト高となる。また、このタンデ
ム走査光学系ではfθレンズが回転対称な面のみで構成
されているため、副走査方向への入射角度が大きくなっ
た場合、収差を十分に補正することができず、高い性能
を確保することができないという問題もある。
[Patent Document 1] Japanese Patent Application Laid-Open No. 11-6475
In the tandem scanning optical system proposed in Japanese Patent Publication No.
The cost increases because two fθ lenses are required. Even if the tandem scanning optical system is configured by one fθ lens by the extension of the technique, two types of optical systems after the optical path separation are required, which also increases the cost. Further, in this tandem scanning optical system, since the fθ lens is composed only of rotationally symmetric surfaces, when the incident angle in the sub-scanning direction becomes large, aberration cannot be sufficiently corrected, and high performance is obtained. There is also the problem that it cannot be secured.

【0004】特開平8−122673号公報で提案され
ているタンデム走査光学系では、ポリゴンミラーが1
つ、fθレンズが1つであり、しかもfθレンズが光路
分離前の1つの光学系のみで構成されているためコスト
は安くなる。しかし、fθレンズを光路分離前の光学系
1つのみで構成すると、タンデム走査光学系の副走査倍
率が高倍になる。副走査倍率が高いと、ポリゴンミラー
の不具合(例えば加工誤差によるポリゴン面の出入り,
面倒れ等)の影響が像面上で拡大されてしまうため、良
好な像面性能を維持することが困難になる。
In the tandem scanning optical system proposed in Japanese Patent Application Laid-Open No. 8-122673, the polygon mirror has one
The cost is low because there is one fθ lens and the fθ lens is composed of only one optical system before the optical path separation. However, if the fθ lens is composed of only one optical system before optical path separation, the sub-scanning magnification of the tandem scanning optical system becomes high. If the sub-scanning magnification is high, the polygon mirror malfunctions (for example, the polygon surface goes in and out due to processing errors,
The influence of (face tilt etc.) is magnified on the image plane, and it becomes difficult to maintain good image plane performance.

【0005】本発明はこのような状況に鑑みてなされた
ものであって、その目的は、良好な像面性能を有する低
コストなタンデム走査光学系を提供することにある。
The present invention has been made in view of such circumstances, and an object thereof is to provide a low-cost tandem scanning optical system having good image plane performance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明のタンデム走査光学系は、複数の光源
と、各光源からの光束を偏向させる単一の偏向手段と、
その偏向手段で偏向した複数の光束を各光源に対応する
複数の被走査面に分けて導くとともに各被走査面上で結
像走査させる走査系と、を備えたタンデム走査光学系で
あって、前記走査系が、前記偏向手段の同一面で偏向し
た複数の光束に対して共通に配置された第1光学系と、
その第1光学系を通過した複数の光束に対応するように
複数配置された第2光学系と、を有し、前記第1光学系
が主走査方向に非軸対称な自由曲面を少なくとも1面有
し、第2光学系が副走査方向に非軸対称な自由曲面を少
なくとも1面有することを特徴とする。
In order to achieve the above object, the tandem scanning optical system of the first invention comprises a plurality of light sources, and a single deflecting means for deflecting a light beam from each light source.
A tandem scanning optical system comprising: a scanning system that guides a plurality of light beams deflected by the deflecting means separately to a plurality of scanned surfaces corresponding to each light source, and performs an image scanning on each scanned surface, A first optical system in which the scanning system is commonly arranged for a plurality of light beams deflected on the same surface of the deflecting means;
A plurality of second optical systems arranged so as to correspond to a plurality of light beams that have passed through the first optical system, wherein the first optical system has at least one free-form surface that is non-axisymmetric in the main scanning direction. And the second optical system has at least one free-form surface that is non-axisymmetric in the sub-scanning direction.

【0007】第2の発明のタンデム走査光学系は、上記
第1の発明の構成において、前記光源からの複数の光束
が、前記偏向手段に対して各々副走査方向に異なる角度
で入射することを特徴とする。
In the tandem scanning optical system of the second invention, in the configuration of the first invention, a plurality of light beams from the light source are incident on the deflecting means at different angles in the sub-scanning direction. Characterize.

【0008】第3の発明のタンデム走査光学系は、上記
第2の発明の構成において、前記偏向手段に対する全て
の光束の入射位置が副走査方向に略一致していることを
特徴とする。
A tandem scanning optical system of a third invention is characterized in that, in the structure of the second invention, the incident positions of all the light beams on the deflecting means are substantially coincident with each other in the sub-scanning direction.

【0009】第4の発明のタンデム走査光学系は、上記
第1の発明の構成において、前記第2光学系での副走査
方向の光束通過位置が、副走査方向の光束入射角度によ
って異なることを特徴とする。
In the tandem scanning optical system of the fourth invention, in the structure of the first invention, the light beam passing position in the sub-scanning direction in the second optical system differs depending on the light beam incident angle in the sub-scanning direction. Characterize.

【0010】第5の発明のタンデム走査光学系は、上記
第4の発明の構成において、前記第2光学系を構成して
いるレンズ面が、異なる副走査方向の光束入射角度に対
して1つの面形状から成ることを特徴とする。
In the tandem scanning optical system of the fifth invention, in the structure of the fourth invention, the lens surface constituting the second optical system has one lens surface for different light beam incident angles in the sub-scanning direction. It is characterized by having a surface shape.

【0011】第6の発明のタンデム走査光学系は、上記
第1の発明の構成において、前記第2光学系が主走査方
向に軸対称であることを特徴とする。
A tandem scanning optical system of a sixth invention is characterized in that, in the configuration of the first invention, the second optical system is axially symmetrical in the main scanning direction.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施したタンデム
走査光学系を、図面を参照しつつ説明する。図1はタン
デム走査光学系の一実施の形態を模式的に示す副走査断
面図であり、これをスルー系(光路の折り返しが無い状
態)で示したものが図2の主走査断面図と図3の副走査
断面図である。図1〜図3中、1はポリゴンミラー、Sは
ポリゴン面(つまりミラー面から成る偏向反射面)、Wは
ポリゴンウィンドウ、2Y,2M,2Cは光路分離用ミラー、3
Y,3M,3C,3Bは折り返しミラー、4は光源、5はコリメータ
レンズ、6はシリンダレンズ、11は第1レンズ、12は第
2レンズ、21Y,21M,21C,21Bは第3レンズ、IY,IM,IC,IB
は被走査面を構成する感光体(Y:イエロー,M:マゼ
ンタ,C:シアン,B:ブラックの各色用の感光体)、L
Y,LM,LC,LBはレーザー光束であり、AXは第1,第2レン
ズ(11,12)から成る第1光学系の光軸(仮想)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A tandem scanning optical system embodying the present invention will be described below with reference to the drawings. FIG. 1 is a sub-scan sectional view schematically showing an embodiment of a tandem scanning optical system, and a through system (a state in which an optical path is not folded) showing this is a main scanning sectional view and a diagram of FIG. 3 is a sub-scanning sectional view of FIG. In FIGS. 1 to 3, 1 is a polygon mirror, S is a polygon surface (that is, a deflecting / reflecting surface composed of a mirror surface), W is a polygon window, 2Y, 2M, 2C are optical path separating mirrors, 3
Y, 3M, 3C and 3B are folding mirrors, 4 is a light source, 5 is a collimator lens, 6 is a cylinder lens, 11 is a first lens, 12 is a second lens, 21Y, 21M, 21C and 21B are third lenses, IY , IM, IC, IB
Is a photoconductor that constitutes the surface to be scanned (Y: yellow, M: magenta, C: cyan, B: photoconductor for each color of black), L
Y, LM, LC and LB are laser beams, and AX is an optical axis (virtual) of the first optical system including the first and second lenses (11, 12).

【0013】図2及び図3では、図1中のミラー(2Y,2
M,2C;3Y,3M,3C,3B)を図示省略しており、図1及び図3
では、図2中のポリゴンミラー(1)より前の光学構成を
図示省略している。また、図3では4本のレーザー光束
(LY,LM,LC,LB)のうちの2本(LM,LY)のみを示しており、
他の2本(LB,LC)は図示省略している。このタンデム走
査光学系では、副走査方向の斜入射角度を±の振り分け
としているため(後述する表6参照。)、残りの2本のレ
ーザー光束(LB,LC)は光軸(AX)に対して鏡像の関係にな
っている。なお、図2,図3中のX,Y,Zは互いに直
交する方向を示しており、ポリゴンミラー(1)の回転軸
に対して平行な方向をZ方向とし、感光体(IY,IM,IC,I
B)上での主走査方向をY方向とし、光軸(AX)に対して平
行な方向をX方向としている。また、主走査方向はレー
ザー光束(LY,LM,LC,LB)が各感光体(IY,IM,IC,IB)を走査
する方向であり、副走査方向は主走査方向に対して垂直
な方向である。
2 and 3, the mirrors (2Y, 2
(M, 2C; 3Y, 3M, 3C, 3B) are omitted in FIG.
Then, the optical configuration before the polygon mirror (1) in FIG. 2 is omitted in the drawing. In addition, in FIG. 3, four laser beams
Only 2 (LM, LY) of (LY, LM, LC, LB) are shown,
The other two (LB, LC) are not shown. In this tandem scanning optical system, since the oblique incident angle in the sub-scanning direction is divided into ± (see Table 6 described later), the remaining two laser light beams (LB, LC) are relative to the optical axis (AX). It is a mirror image relationship. It should be noted that X, Y and Z in FIGS. 2 and 3 indicate directions orthogonal to each other, and the direction parallel to the rotation axis of the polygon mirror (1) is the Z direction, and the photoconductors (IY, IM, IC, I
The main scanning direction on B) is the Y direction, and the direction parallel to the optical axis (AX) is the X direction. The main scanning direction is the direction in which the laser beam (LY, LM, LC, LB) scans each photoconductor (IY, IM, IC, IB), and the sub-scanning direction is the direction perpendicular to the main scanning direction. Is.

【0014】この実施の形態のタンデム走査光学系は、
図2に示すように、レーザー光束(LY,LM,LC,LB)を1本
ずつ射出する4つの光源(4)と、コリメータレンズ(5),
シリンダレンズ(6)等から成る光源光学系と、各光源(4)
から発せられた計4本のレーザー光束(LY,LM,LC,LB)を
偏向させる単一のポリゴンミラー(1)と、を備えてい
る。各光源(4)から発せられたレーザー光束(LY,LM,LC,L
B)は、コリメータレンズ(5)とシリンダレンズ(6)でそれ
ぞれビーム整形された後、光路合成用ミラー(不図示)で
主走査方向に光路合成される。ビーム整形の結果、各レ
ーザー光束(LY,LM,LC,LB)は、主走査方向については略
平行光となり、副走査方向についてはポリゴンミラー
(1)のポリゴン面(S)近傍で集光することになる。ビーム
整形及び光路合成された4本のレーザー光束(LY,LM,LC,
LB)は、ポリゴンミラー(1)において同一位置にある1つ
のポリゴン面(S)で同時に偏向反射される。このときポ
リゴン面(S)には、4本のレーザー光束(LY,LM,LC,LB)が
副走査方向に互いに異なる角度で入射して、互いに異な
る角度で偏向反射される。
The tandem scanning optical system of this embodiment is
As shown in Fig. 2, four light sources (4) that emit laser beams (LY, LM, LC, LB) one by one, a collimator lens (5),
Light source optical system consisting of cylinder lens (6) and each light source (4)
It is equipped with a single polygon mirror (1) for deflecting a total of four laser beams (LY, LM, LC, LB) emitted from. Laser beam emitted from each light source (4) (LY, LM, LC, L
B) is beam-shaped by the collimator lens (5) and the cylinder lens (6), respectively, and then is subjected to optical path synthesis in the main scanning direction by an optical path synthesis mirror (not shown). As a result of beam shaping, each laser beam (LY, LM, LC, LB) becomes a substantially parallel light in the main scanning direction and a polygon mirror in the sub scanning direction.
The light will be condensed near the polygon surface (S) of (1). 4 laser beams (LY, LM, LC,
LB) is simultaneously deflected and reflected by one polygon surface (S) at the same position on the polygon mirror (1). At this time, four laser beams (LY, LM, LC, LB) are incident on the polygonal surface (S) at different angles in the sub-scanning direction, and are deflected and reflected at different angles.

【0015】ポリゴンミラー(1)で偏向反射された4本
のレーザー光束(LY,LM,LC,LB)は、ポリゴンウィンドウ
(W)を通過した後、第1,第2光学系等から成る走査系
に入射する。第1光学系は第1レンズ(11)と第2レンズ
(12)とから成っており、同一のポリゴン面(S)で偏向し
た4本のレーザー光束(LY,LM,LC,LB)に対して共通に配
置されている。一方、第2光学系は第3レンズ(21Y,21
M,21C,21B)のみから成っており、第1光学系(11,12)を
通過した計4本のレーザー光束(LY,LM,LC,LB)に対応す
るように光源(4)毎に配置されている。このタンデム走
査光学系では、1つの光源(4)から1本のレーザー光束
(LY,LM,LC,LB)が射出するので、レーザー光束(LY,LM,L
C,LB)毎に第2光学系(21Y,21M,21C,21B)が配置されるこ
とになる。
The four laser beams (LY, LM, LC, LB) deflected and reflected by the polygon mirror (1) are the polygon window.
After passing through (W), it enters the scanning system including the first and second optical systems. The first optical system is the first lens (11) and the second lens
(12) and are arranged in common for the four laser beams (LY, LM, LC, LB) deflected by the same polygonal surface (S). On the other hand, the second optical system is the third lens (21Y, 21Y
M, 21C, 21B) only, and each light source (4) corresponds to a total of four laser beams (LY, LM, LC, LB) that have passed through the first optical system (11, 12). It is arranged. In this tandem scanning optical system, one laser beam from one light source (4)
Since (LY, LM, LC, LB) is emitted, the laser beam (LY, LM, L
The second optical system (21Y, 21M, 21C, 21B) is arranged for each C, LB).

【0016】第1光学系(11,12)を通過した4光束(LY,L
M,LC,LB)のうち、レーザー光束(LB)は折り返しミラー(3
B)で反射された後、第3レンズ(21B)を通って感光体(I
B)上で結像する。レーザー光束(LC)は光路分離用ミラー
(2C),折り返しミラー(3C)の順で反射された後、第3レ
ンズ(21C)を通って感光体(IC)上で結像する。レーザー
光束(LM)は光路分離用ミラー(2M),折り返しミラー(3M)
の順で反射された後、第3レンズ(21M)を通って感光体
(IM)上で結像する。レーザー光束(LY)は光路分離用ミラ
ー(2Y),折り返しミラー(3Y)の順で反射された後、第3
レンズ(21Y)を通って感光体(IY)上で結像する。
The four light beams (LY, L) that have passed through the first optical system (11,12)
Of the M, LC, LB), the laser beam (LB) is the folding mirror (3
After being reflected by (B), it passes through the third lens (21B) and the photoconductor (I
B) Image on top. Laser beam (LC) is a mirror for optical path separation
After being reflected in order of (2C) and the folding mirror (3C), an image is formed on the photoconductor (IC) through the third lens (21C). Laser light flux (LM) is a mirror for optical path separation (2M), folding mirror (3M)
After being reflected in this order, the photoconductor passes through the third lens (21M).
Image on (IM). The laser beam (LY) is reflected in the order of the optical path separation mirror (2Y) and the folding mirror (3Y), then the third
An image is formed on the photoconductor (IY) through the lens (21Y).

【0017】以上のようにして、走査系は光路分離用ミ
ラー(2Y,2M,2C)で4本のレーザー光束(LY,LM,LC,LB)を
各光源(4)に対応する4つの感光体(IY,IM,IC,IB)に1本
ずつ分けて導くとともに、第1〜第3レンズ(11;12;21
Y,21M,21C,21B)から成る第1,第2光学系で、各レーザ
ー光束(LY,LM,LC,LB)をスポット状に集光させて感光体
(IY,IM,IC,IB)に対する露光走査を行う。なお、この実
施の形態では1つの光源が1本のレーザー光束を射出
し、1つの感光体に対する露光走査を1本のレーザー光
束で行う構成になっているが、これに限らない。例え
ば、2本以上のレーザー光束を射出するマルチビームタ
イプの光源を用いて、1つの感光体に対する露光走査を
2本以上のレーザー光束で行う構成にしてもよい。
As described above, the scanning system uses the optical path separation mirrors (2Y, 2M, 2C) to transmit the four laser beams (LY, LM, LC, LB) to the four photosensitizers corresponding to the respective light sources (4). While guiding one by one to the body (IY, IM, IC, IB), the first to third lenses (11; 12; 21
Y, 21M, 21C, 21B) first and second optical system, each laser beam (LY, LM, LC, LB) is focused in a spot shape
The exposure scan for (IY, IM, IC, IB) is performed. In addition, in this embodiment, one light source emits one laser light beam, and exposure scanning for one photoconductor is performed by one laser light beam, but the present invention is not limited to this. For example, a multi-beam type light source that emits two or more laser light beams may be used, and exposure scanning for one photoconductor may be performed with two or more laser light beams.

【0018】表1〜表6に、この実施の形態のコンスト
ラクションデータを示す。表1中の面頂点座標と表2中
の偏芯ベクトルデータ(ティルト偏芯しているもののみ
記す。)は、スルー系のレーザー光束(LY,LM)に対応した
ものであり(図3)、光軸(AX)方向をX方向、主走査方向
をY方向、副走査方向をZ方向とするグローバル座標系
(X,Y,Z)におけるローカル座標系(x,y,z)の原
点及びベクトルで各光学面(面頂点基準)の配置を表して
いる{なお、()内に数値が記載されている心厚は偏芯を
考慮しないときの直線距離である。}。また、表1中の
曲率半径の欄に「自由曲面」と記載されている光学面
は、その面形状が以下の式(FS)によって表現される自由
曲面である。用いられている自由曲面の自由曲面係数C
ijを表3〜表5に示す(ただし、E-n=×10-nである。)。
Tables 1 to 6 show construction data of this embodiment. The surface vertex coordinates in Table 1 and the eccentricity vector data in Table 2 (only those with tilt eccentricity are shown) correspond to the through system laser light flux (LY, LM) (Fig. 3). , A global coordinate system in which the optical axis (AX) direction is the X direction, the main scanning direction is the Y direction, and the sub-scanning direction is the Z direction.
The origin of the local coordinate system (x, y, z) in (X, Y, Z) and the vector represent the arrangement of each optical surface (reference to the vertex of the surface) {Note that the numerical values are given in (). The core thickness is a linear distance when eccentricity is not taken into consideration. }. The optical surface described as "free curved surface" in the column of radius of curvature in Table 1 is a free curved surface whose surface shape is expressed by the following formula (FS). Free-form surface coefficient C of free-form surface used
ij is shown in Tables 3 to 5 (where En = × 10 −n ).

【0019】[0019]

【数1】 [Equation 1]

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】第1光学系を構成している第1レンズ(11)
は、その両面が主走査方向に非軸対称な自由曲面で構成
されている。つまり、第4面と第5面を構成している自
由曲面が、副走査方向には光軸(AX)に対して対称になっ
ている(奇数次項が無い)のに対し、主走査方向には光軸
(AX)に対して非対称になっている(奇数次項がある)。ま
た、第2光学系を構成している第2レンズ(21Y,21M,21
C,21B)は、そのポリゴンミラー(1)側の面が副走査方向
に非軸対称な自由曲面で構成されている。つまり、第8
面を構成している自由曲面が、主走査方向には光軸(AX)
に対して対称になっている(奇数次項が無い)のに対し、
副走査方向には光軸(AX)に対して非対称になっている
(奇数次項がある)。このように、第1光学系が主走査方
向に非軸対称な自由曲面を少なくとも1面有し、第2光
学系が副走査方向に非軸対称な自由曲面を少なくとも1
面有することが望ましい。これにより、ポリゴンミラー
(1)の不具合があっても良好な像面性能を維持すること
ができるとともに、タンデム走査光学系の低コスト化を
達成することができる。これを以下に詳しく説明する。
First lens (11) constituting the first optical system
Is composed of free-form surfaces, both surfaces of which are non-axisymmetric in the main scanning direction. In other words, the free-form surface forming the fourth surface and the fifth surface is symmetrical with respect to the optical axis (AX) in the sub-scanning direction (there is no odd-order item), but in the main scanning direction. Is the optical axis
It is asymmetric with respect to (AX) (there is an odd order term). In addition, the second lens (21Y, 21M, 21
C, 21B) has a surface on the polygon mirror (1) side which is a free-form surface that is non-axisymmetric in the sub-scanning direction. That is, the eighth
The free-form surface forming the surface is the optical axis (AX) in the main scanning direction.
Is symmetric with respect to (no odd-order terms),
Asymmetric with respect to the optical axis (AX) in the sub-scanning direction
(There is an odd order term). Thus, the first optical system has at least one free-form surface that is non-axisymmetric in the main scanning direction, and the second optical system has at least one free-form surface that is non-axisymmetric in the sub-scanning direction.
It is desirable to have a face. This allows the polygon mirror
Even if the problem (1) occurs, good image plane performance can be maintained, and cost reduction of the tandem scanning optical system can be achieved. This will be described in detail below.

【0027】図1及び表6に示すように、光路分離用ミ
ラー(2Y,2M,2C)で4本のレーザー光束(LY,LM,LC,LB)を
光路分離するには、4本のレーザー光束(LY,LM,LC,LB)
をポリゴンミラー(1)に対して各々副走査方向に異なる
角度で入射させればよい。そして、レーザー光束(LY,L
M,LC,LB)の光路を副走査方向に分離しやすくするには、
ポリゴンミラー(1)に対する副走査方向の斜入射角度を
大きくすればよい。その結果、走査系に対する副走査方
向の斜入射角度が大きくなっても、副走査方向に非軸対
称な面を走査系内に配置することにより、良好な像面性
能を得ることが可能である。また、主走査方向に非軸対
称な面を走査系内に配置することにより、ポリゴン反射
点移動に起因する性能劣化(像面のうねり等)を補正する
ことが可能である。
As shown in FIG. 1 and Table 6, four laser beams (LY, LM, LC, LB) are separated by four laser beams by the optical path separation mirrors (2Y, 2M, 2C). Luminous flux (LY, LM, LC, LB)
May be incident on the polygon mirror (1) at different angles in the sub-scanning direction. And the laser beam (LY, L
To make it easier to separate the optical path of (M, LC, LB) in the sub-scanning direction,
The oblique incident angle in the sub-scanning direction with respect to the polygon mirror (1) may be increased. As a result, even if the oblique incidence angle in the sub-scanning direction with respect to the scanning system becomes large, good image plane performance can be obtained by disposing a surface that is not axially symmetric in the sub-scanning direction in the scanning system. . Also, by disposing a surface that is not axially symmetric in the main scanning direction in the scanning system, it is possible to correct performance deterioration (image surface waviness and the like) due to polygon reflection point movement.

【0028】副走査倍率を低倍とするためには、本実施
の形態のように光路分離位置の後に第2光学系を設けれ
ばよいが、主走査方向に非軸対称な面を第2光学系に配
置すると、光源数に応じた種類(例えば、副走査方向の
入射角度が±で振り分けになっている場合の種類数は光
源数の1/2になる。)のレンズが第2光学系に必要と
なってしまう。つまり、4個必要な第3レンズ(21Y,21
M,21C,21B)を1種類のレンズで構成することができなく
なり、コストが高くなってしまう。
In order to make the sub-scanning magnification low, a second optical system may be provided after the optical path separating position as in the present embodiment, but a second non-axisymmetric surface in the main scanning direction is used as the second optical system. When arranged in the optical system, a lens of a type according to the number of light sources (for example, the number of types when the incident angle in the sub-scanning direction is divided by ± is 1/2 of the number of light sources) is the second optical element. It becomes necessary for the system. In other words, the third lens (21Y, 21
(M, 21C, 21B) cannot be composed of one type of lens, resulting in high cost.

【0029】そこで、主走査方向に非軸対称な面を第1
光学系に配置するとともに、副走査方向の異なる入射角
度に対しても1つの面形状で定義される1種類のレンズ
で第2光学系を構成することが望ましい。走査系内の非
軸対称な面を、主走査方向については第1光学系、副走
査方向については第2光学系に設け、かつ、第2光学系
の構成レンズ面を1つの面形状で定義すれば、第1光学
系を全レーザー光束(LY,LM,LC,LB)に対して共通の光学
系にすることができ、また、第2光学系を全レーザー光
束(LY,LM,LC,LB)に対して1種類のレンズで構成するこ
とができる。
Therefore, the first surface is a non-axisymmetric surface in the main scanning direction.
It is desirable that the second optical system is arranged in the optical system and is composed of one type of lens defined by one surface shape even for different incident angles in the sub-scanning direction. A non-axisymmetric surface in the scanning system is provided in the first optical system in the main scanning direction and in the second optical system in the sub scanning direction, and the constituent lens surfaces of the second optical system are defined by one surface shape. By doing so, the first optical system can be a common optical system for all laser light fluxes (LY, LM, LC, LB), and the second optical system can be used for all laser light fluxes (LY, LM, LC, LB). LB) can be configured with one type of lens.

【0030】図3は、レンズ面の面形状が1つの第3レ
ンズ(21Y,21M)に対し、2本のレーザー光束(LY,LM)が異
なる入射角で異なる位置に入射している様子を示してい
る。このように、第2光学系での副走査方向の光束通過
位置が、副走査方向の光束入射角度によって異なること
が望ましく、第2光学系を構成しているレンズ面が、異
なる副走査方向の光束入射角度に対して1つの面形状か
ら成ることが望ましい。光束通過位置が異なる光学構成
にすることにより、各レーザー光束(LY,LM,LC,LB)に対
する性能の確保が可能となり、レンズ面の面形状を1つ
にすることにより、製造上の低コスト化が可能となる。
FIG. 3 shows a state in which two laser beams (LY, LM) are incident on different positions at different incident angles with respect to the third lens (21Y, 21M) having one lens surface shape. Shows. As described above, it is desirable that the light beam passage position in the sub-scanning direction in the second optical system be different depending on the light beam incident angle in the sub-scanning direction, and the lens surface forming the second optical system is different in the sub-scanning direction. It is desirable to have one surface shape with respect to the light beam incident angle. By using an optical configuration in which the light flux passage positions are different, it is possible to secure performance for each laser light flux (LY, LM, LC, LB), and by using a single lens surface shape, it is possible to reduce manufacturing costs. Can be realized.

【0031】前述したように本実施の形態では副走査方
向の斜入射角度を±の振り分け(表6,図3)としている
ため、第1レンズ(11)の面形状を副走査方向には軸対称
としているが、斜入射角度の条件によっては第1レンズ
(11)の面形状を副走査方向に非軸対称にしてもよい。た
だし、第2光学系は主走査方向に軸対称であることが望
ましい。全レーザー光束(LY,LM,LC,LB)に対して同じ種
類の第3レンズ(21Y,21M,21C,21B)を使えるようにする
には、第2光学系を主走査方向に軸対称とすることが必
然となる。
As described above, in this embodiment, since the oblique incident angle in the sub-scanning direction is divided into ± (Table 6, FIG. 3), the surface shape of the first lens (11) is axial in the sub-scanning direction. It is symmetrical, but depending on the oblique incident angle condition, the first lens
The surface shape of (11) may be non-axisymmetric in the sub-scanning direction. However, it is desirable that the second optical system be axially symmetric in the main scanning direction. In order to use the same type of third lens (21Y, 21M, 21C, 21B) for all laser beams (LY, LM, LC, LB), make the second optical system axially symmetric in the main scanning direction. It becomes inevitable.

【0032】また、ポリゴンミラー(1)に対する全ての
レーザー光束(LY,LM,LC,LB)の入射位置を、副走査方向
に略一致させることが望ましい。図1や表6に示すよう
に、ポリゴンミラー(1)への副走査方向の入射位置(すな
わちポリゴン反射点位置)を全レーザー光束(LY,LM,LC,L
B)で略同じにすることにより、ポリゴンミラー(1)を副
走査方向に薄型化することができる。ポリゴンミラー
(1)において必要な厚みを薄くすることにより、低コス
トのポリゴンミラー(1)の使用が可能となる。
Further, it is desirable that the incident positions of all the laser light fluxes (LY, LM, LC, LB) on the polygon mirror (1) are substantially matched in the sub-scanning direction. As shown in FIG. 1 and Table 6, the incident position in the sub-scanning direction (that is, the polygon reflection point position) on the polygon mirror (1) is determined by the total laser beam (LY, LM, LC, L).
By making the same in B), the polygon mirror (1) can be thinned in the sub-scanning direction. Polygon mirror
By reducing the thickness required in (1), it becomes possible to use the low-cost polygon mirror (1).

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、ポ
リゴンミラーの不具合等があっても良好な像面性能を維
持する、低コストなタンデム走査光学系を実現すること
ができる。
As described above, according to the present invention, it is possible to realize a low-cost tandem scanning optical system that maintains good image plane performance even if there is a defect in the polygon mirror.

【図面の簡単な説明】[Brief description of drawings]

【図1】タンデム走査光学系の一実施の形態を示す副走
査断面図。
FIG. 1 is a sub-scanning sectional view showing an embodiment of a tandem scanning optical system.

【図2】図1のタンデム走査光学系をスルー系で示す主
走査断面図。
FIG. 2 is a main-scan sectional view showing the tandem scanning optical system of FIG. 1 as a through system.

【図3】図1のタンデム走査光学系をスルー系で示す副
走査断面図。
FIG. 3 is a sub-scanning sectional view showing the tandem scanning optical system of FIG. 1 as a through system.

【符号の説明】[Explanation of symbols]

1 …ポリゴンミラー(偏向手段) S …ポリゴン面 4 …光源 11 …第1レンズ(第1光学系の一部,走査系の一部) 12 …第2レンズ(第1光学系の一部,走査系の一部) 21Y,21M,21C,21B …第3レンズ(第2光学系,走査系の
一部) IY,IM,IC,IB …感光体(被走査面) 2Y,2M,2C …光路分離用ミラー 3Y,3M,3C,3B …折り返しミラー LY,LM,LC,LB …レーザー光束 AX …第1光学系の光軸
1 ... Polygon mirror (deflecting means) S ... Polygon surface 4 ... Light source 11 ... First lens (part of first optical system, part of scanning system) 12 ... Second lens (part of first optical system, scanning) 21Y, 21M, 21C, 21B ... 3rd lens (second optical system, part of scanning system) IY, IM, IC, IB ... Photoreceptor (scanned surface) 2Y, 2M, 2C ... Optical path Separation mirrors 3Y, 3M, 3C, 3B ... Folding mirrors LY, LM, LC, LB ... Laser beam AX ... Optical axis of the first optical system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の光源と、各光源からの光束を偏向
させる単一の偏向手段と、その偏向手段で偏向した複数
の光束を各光源に対応する複数の被走査面に分けて導く
とともに各被走査面上で結像走査させる走査系と、を備
えたタンデム走査光学系であって、 前記走査系が、前記偏向手段の同一面で偏向した複数の
光束に対して共通に配置された第1光学系と、その第1
光学系を通過した複数の光束に対応するように複数配置
された第2光学系と、を有し、前記第1光学系が主走査
方向に非軸対称な自由曲面を少なくとも1面有し、第2
光学系が副走査方向に非軸対称な自由曲面を少なくとも
1面有することを特徴とするタンデム走査光学系。
1. A plurality of light sources, a single deflecting means for deflecting the light flux from each light source, and a plurality of light fluxes deflected by the deflecting means are separately guided to a plurality of scanned surfaces corresponding to the respective light sources. A tandem scanning optical system comprising: a scanning system for image-forming scanning on each surface to be scanned, wherein the scanning system is arranged in common for a plurality of light beams deflected on the same surface of the deflecting means. First optical system and its first
A plurality of second optical systems arranged so as to correspond to a plurality of light beams that have passed through the optical system, wherein the first optical system has at least one free-form surface that is non-axisymmetric in the main scanning direction, Second
A tandem scanning optical system, wherein the optical system has at least one free-form surface that is non-axisymmetric in the sub-scanning direction.
【請求項2】 前記光源からの複数の光束が、前記偏向
手段に対して各々副走査方向に異なる角度で入射するこ
とを特徴とする請求項1記載のタンデム走査光学系。
2. The tandem scanning optical system according to claim 1, wherein a plurality of light beams from the light source are incident on the deflecting means at different angles in the sub-scanning direction.
【請求項3】 前記偏向手段に対する全ての光束の入射
位置が副走査方向に略一致していることを特徴とする請
求項2記載のタンデム走査光学系。
3. The tandem scanning optical system according to claim 2, wherein the incident positions of all the light beams on the deflecting unit are substantially coincident with each other in the sub-scanning direction.
【請求項4】 前記第2光学系での副走査方向の光束通
過位置が、副走査方向の光束入射角度によって異なるこ
とを特徴とする請求項1記載のタンデム走査光学系。
4. The tandem scanning optical system according to claim 1, wherein the light beam passage position in the sub-scanning direction in the second optical system differs depending on the light beam incident angle in the sub-scanning direction.
【請求項5】 前記第2光学系を構成しているレンズ面
が、異なる副走査方向の光束入射角度に対して1つの面
形状から成ることを特徴とする請求項4記載のタンデム
走査光学系。
5. The tandem scanning optical system according to claim 4, wherein the lens surface forming the second optical system has one surface shape for different light beam incident angles in the sub-scanning direction. .
【請求項6】 前記第2光学系が主走査方向に軸対称で
あることを特徴とする請求項1記載のタンデム走査光学
系。
6. The tandem scanning optical system according to claim 1, wherein the second optical system is axially symmetric in the main scanning direction.
JP2001268291A 2001-09-05 2001-09-05 Tandem scanning optical system Expired - Fee Related JP4576778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268291A JP4576778B2 (en) 2001-09-05 2001-09-05 Tandem scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268291A JP4576778B2 (en) 2001-09-05 2001-09-05 Tandem scanning optical system

Publications (2)

Publication Number Publication Date
JP2003075751A true JP2003075751A (en) 2003-03-12
JP4576778B2 JP4576778B2 (en) 2010-11-10

Family

ID=19094297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268291A Expired - Fee Related JP4576778B2 (en) 2001-09-05 2001-09-05 Tandem scanning optical system

Country Status (1)

Country Link
JP (1) JP4576778B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361941A (en) * 2003-05-15 2004-12-24 Pentax Corp Scanning optical system
US7023595B2 (en) 2003-05-15 2006-04-04 Pentax Corporation Scanning optical system
US7133177B2 (en) 2005-02-28 2006-11-07 Brother Kagyo Kabushiki Kaisha Optical scanner and image forming apparatus
US7375869B2 (en) 2004-12-13 2008-05-20 Pentax Corporation Tandem type scanning optical system
JP2020187177A (en) * 2019-05-10 2020-11-19 シャープ株式会社 Optical scanning device and image forming device having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073778A (en) * 1996-06-13 1998-03-17 Canon Inc Scanning optical device and laser beam printer device
JPH1152265A (en) * 1997-07-30 1999-02-26 Nippon Hikyumen Lens Kk Scanning optical system
JP2001004951A (en) * 1999-06-24 2001-01-12 Minolta Co Ltd Laser scanner
JP2001033724A (en) * 1999-07-22 2001-02-09 Minolta Co Ltd Laser scanner
JP2001228427A (en) * 2000-02-16 2001-08-24 Fuji Xerox Co Ltd Optical scanner and image forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073778A (en) * 1996-06-13 1998-03-17 Canon Inc Scanning optical device and laser beam printer device
JPH1152265A (en) * 1997-07-30 1999-02-26 Nippon Hikyumen Lens Kk Scanning optical system
JP2001004951A (en) * 1999-06-24 2001-01-12 Minolta Co Ltd Laser scanner
JP2001033724A (en) * 1999-07-22 2001-02-09 Minolta Co Ltd Laser scanner
JP2001228427A (en) * 2000-02-16 2001-08-24 Fuji Xerox Co Ltd Optical scanner and image forming device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361941A (en) * 2003-05-15 2004-12-24 Pentax Corp Scanning optical system
US7023595B2 (en) 2003-05-15 2006-04-04 Pentax Corporation Scanning optical system
JP4565890B2 (en) * 2003-05-15 2010-10-20 Hoya株式会社 Scanning optical system
US7375869B2 (en) 2004-12-13 2008-05-20 Pentax Corporation Tandem type scanning optical system
US7133177B2 (en) 2005-02-28 2006-11-07 Brother Kagyo Kabushiki Kaisha Optical scanner and image forming apparatus
JP2020187177A (en) * 2019-05-10 2020-11-19 シャープ株式会社 Optical scanning device and image forming device having the same
JP7330751B2 (en) 2019-05-10 2023-08-22 シャープ株式会社 OPTICAL SCANNER AND IMAGE FORMING APPARATUS INCLUDING THE SAME

Also Published As

Publication number Publication date
JP4576778B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JPH06265810A (en) Reflection type scanning optical system
JPH08220440A (en) Optical scanning device, image forming device and image reading device
JPH08136840A (en) Optical scanner
JP2007079513A (en) Optical scanner
JP4027761B2 (en) Scanning optical system
JP2012093772A (en) Optical scanner
JP2007140418A (en) Light scanning device and scanning optical system
JPH08136839A (en) Optical scanner
JP2003057585A (en) Laser scanner
JP4120311B2 (en) Tandem laser scanner
JP4576778B2 (en) Tandem scanning optical system
JP2007079514A (en) Optical scanner
JP4548160B2 (en) Optical scanning device
JP3533902B2 (en) Scan lens system
JP4715418B2 (en) Optical scanning apparatus and image forming apparatus
JP4374813B2 (en) Temperature-compensated tandem scanning optical system
JP4107123B2 (en) Tandem laser scanner
JPH11153764A (en) Optical scanner
JP5050682B2 (en) Optical scanning device
JP2006323278A (en) Optical scanner
JP2008112105A (en) Optical scanner
JP5787661B2 (en) Scanning optical device and image forming apparatus using the same
JP5098136B2 (en) Optical scanning device
JP5098491B2 (en) Optical scanning device
JP6794127B2 (en) Optical scanning device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees