JP2003075680A - Welding type optical fiber coupler - Google Patents

Welding type optical fiber coupler

Info

Publication number
JP2003075680A
JP2003075680A JP2001269168A JP2001269168A JP2003075680A JP 2003075680 A JP2003075680 A JP 2003075680A JP 2001269168 A JP2001269168 A JP 2001269168A JP 2001269168 A JP2001269168 A JP 2001269168A JP 2003075680 A JP2003075680 A JP 2003075680A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber coupler
fusion
coupler
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001269168A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tomikawa
義弘 富川
Chika Konakyu
千賀 粉究
Kazunori Senda
和憲 千田
Hidenobu Nagahama
秀信 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP2001269168A priority Critical patent/JP2003075680A/en
Publication of JP2003075680A publication Critical patent/JP2003075680A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fusion spliced optical fiber coupler having the ability of controlling a branching ratio after fusion splicing and drawing, particularly, a variable broadband branching ratio coupler that has the same ability while holding nondependency on a wavelength, and also to provide the manufacturing method. SOLUTION: In manufacturing a fusion spliced optical coupler by the melting and drawing method, a curved deflection part 4 is formed in an optical fiber fusion spliced part 3, after the fusion splicing/drawing of a plurality of optical fibers 1a, 1b, by reducing by a prescribed distance inversely to the drawing direction. Accordingly, a fusion spliced optical fiber coupler is provided which is formed with a curved deflection in the fusion spliced part of more than one optical fibers. This fusion spliced optical fiber coupler is fixed in a protective storing unit 10, in a fashion that the fixed point on both sides or one side is freely movable, or that the deflection part is electrically or mechanically extendible/contractible, so that the branching ratio can be arbitrarily controlled even after the disposition of the coupler in the protective storing unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、融着型光ファイバ
カプラ、その製造方法及び保護収容具内への固定方法に
関し、さらに詳しくは、融着・延伸後に分岐比を制御で
きる分岐比可変型の光ファイバカプラ技術に開する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fusion splicing type optical fiber coupler, a method for manufacturing the same, and a method for fixing the splicing member in a protective container. Open to fiber optic coupler technology.

【0002】[0002]

【従来の技術】光ファイバカブラは、2本の光ファイバ
のコアを近接させ、エバネッセント結合を利用して光の
分岐・合流・分波・合波などの機能を実現するものであ
る。その手法には、光ファイバの側面をコア近傍まで研
磨し重ね合わせる研磨法と、複数の光ファイバを並列に
又はねじって接触させた状態で、加熱溶融させて軸線方
向に延伸する溶融延伸法があるが、偏波保持型ファイバ
を用いた偏波保持型カプラなどの特殊な用途を除き、溶
融延伸法による光ファイバカプラ(融着型光ファイバカ
プラ)が普及している。
2. Description of the Related Art An optical fiber cab is a device that realizes functions such as branching, merging, demultiplexing, and combining of light by using evanescent coupling by bringing two optical fiber cores close to each other. The method includes a polishing method in which the side surface of the optical fiber is polished to the vicinity of the core and overlapped with each other, and a melt drawing method in which a plurality of optical fibers are brought into contact with each other in parallel or twisted to be melted by heating and stretched in the axial direction. However, except for special applications such as a polarization-maintaining coupler using a polarization-maintaining fiber, an optical fiber coupler (fusion-type optical fiber coupler) based on the melt drawing method is widely used.

【0003】融着型光ファイバカプラでは、延伸により
コアが細くなった部分でコアヘの光の閉じ込めが弱くな
る。この時拡がった光の分布が並列に融着されたもう一
方の光ファイバに重なった時、光のエネルギーの一部が
他方に移り、分岐・合流という機能が生まれる。また、
延伸されエバネッセント結合が発生する領域が長いと、
伝搬する光のパワーが両ファイバ間を移動する現象が発
生する。光ファイバを伝搬する光の拡がり及び伝搬速度
が波長によって異なるため、光の波長によって分岐状態
が異なり、分波・合波機能が得られる。また、光パワー
を1:1の比率に分岐する3dBカプラをツリー状に融
着接続していくことにより、m×n(mは1又は2、n
は4,8,16・・・)スターカプラを形成することが
できる。
In a fusion splicing type optical fiber coupler, the confinement of light to the core is weakened at the portion where the core is thinned by stretching. At this time, when the spread light distribution overlaps with the other optical fiber fused in parallel, a part of the light energy is transferred to the other optical fiber, and functions of branching and merging are created. Also,
If the area that is stretched and evanescent bond occurs is long,
A phenomenon occurs in which the power of propagating light moves between both fibers. Since the spread and propagation speed of the light propagating through the optical fiber differ depending on the wavelength, the branching state differs depending on the wavelength of the light, and the demultiplexing / multiplexing function can be obtained. In addition, by fusion-splicing a 3 dB coupler that branches the optical power at a ratio of 1: 1 in a tree shape, m × n (m is 1 or 2, n
4, 8, 16 ...) Star couplers can be formed.

【0004】分岐用光ファイバカプラは、光信号の分
岐、モニタリング、光アンプ等に使用されるが、光の波
長によって分岐特性が変化するWDM、3dB等の波長
依存型カプラと、約1.3μm〜1.5μmの広帯域で
分岐特性が変化しない波長無依存型カプラがある。光フ
ァイバカプラに要求される性能としては、低損失性、低
PDL性、低い温度依存性、長期信頼性等が挙げられる
が、モニタリング等の用途では、分岐された信号から実
信号の強度を測定するため、分岐比率の精度は重要な性
能となる。
The branching optical fiber coupler is used for branching, monitoring, optical amplifiers, etc. of optical signals. WDM, 3 dB, etc. wavelength-dependent couplers whose branching characteristics change depending on the wavelength of light, and about 1.3 μm. There is a wavelength-independent coupler whose branching characteristic does not change in a wide band of up to 1.5 μm. Performances required for optical fiber couplers include low loss, low PDL, low temperature dependency, long-term reliability, etc., but in applications such as monitoring, the strength of the actual signal is measured from the branched signal. Therefore, the accuracy of the branch ratio is an important performance.

【0005】[0005]

【発明が解決しようとする課題】ところが、光ファイバ
カプラは、製造時の形状が固定された段階で分岐比も固
定され、使用時に分岐比を変更することはできない。例
えば、波長依存型カプラの光学特性は形状依存性が強
く、そのため、例えば特開昭64−38721号には、
融着結合部に金属コーティングを施し、融着・延伸後に
使用するに際し、この金属コーティング部に電圧を印加
してその部分を発熱させることにより膨張させ、この膨
張に伴って光ファイバのテーパ部に熱的な伸びを与えて
分岐比をコントロールする方法が提案されている。しか
しながら、これらの波長依存型カプラで分岐比調整を行
なう場合、1つの波長で特性を合わせても、他の波長で
の分岐比が異なってしまうという問題点があった。ま
た、軸線方向のガラス部分(光ファイバのテーパ部)の
伸びには限度があり、充分な伸びは期待できない。一
方、波長無依存型カプラ(WIC)では、波長による特
性の変化は小さいが、伸縮による光学特性の変化も小さ
く、融着・延伸後の分岐特性のコントロールは難しいと
考えられていた。
However, in the optical fiber coupler, the branching ratio is fixed when the shape is fixed during manufacturing, and the branching ratio cannot be changed during use. For example, the optical characteristics of wavelength-dependent couplers are strongly shape-dependent, so that, for example, Japanese Patent Laid-Open No. 64-38721 discloses that
When a metal coating is applied to the fusion-bonded part, and when the fusion-bonded part is used after being stretched, a voltage is applied to this metal-coated part to cause the part to generate heat and expand, and the taper part of the optical fiber is expanded with this expansion. A method has been proposed in which thermal elongation is applied to control the branching ratio. However, when the branching ratio is adjusted by these wavelength-dependent couplers, there is a problem that even if the characteristics are matched at one wavelength, the branching ratios at other wavelengths are different. Further, there is a limit to the elongation of the glass portion (tapered portion of the optical fiber) in the axial direction, and sufficient elongation cannot be expected. On the other hand, in the wavelength-independent coupler (WIC), the change in the characteristics depending on the wavelength is small, but the change in the optical characteristics due to expansion and contraction is also small, and it has been considered difficult to control the branching characteristics after fusion and stretching.

【0006】従って、本発明の目的は、融着・延伸後に
分岐比をコントロールすることができる融着型光ファイ
バカプラ、特に波長無依存型カプラ(WIC)におい
て、波長無依存性を保持したまま、融着・延伸後に分岐
比をコントロールすることができる広帯域分岐比可変カ
プラを提供することにある。さらに本発明の目的は、こ
のような分岐比可変型の融着型光ファイバカプラを簡単
に製造できる方法を提供することにある。本発明の他の
目的は、保護収容具内に配設した後でも分岐比をコント
ロールすることができる光ファイバカプラの固定方法、
及びそのように保護収容具内に配設されてなる光ファイ
バカプラを提供することにある。
Accordingly, an object of the present invention is to provide a fusion splicing type optical fiber coupler capable of controlling a branching ratio after fusion splicing / stretching, particularly a wavelength independent coupler (WIC) while maintaining wavelength independence. Another object of the present invention is to provide a wideband branching ratio variable coupler capable of controlling the branching ratio after fusion and drawing. A further object of the present invention is to provide a method capable of easily manufacturing such a fusion ratio type optical fiber coupler of variable branching ratio. Another object of the present invention is a method of fixing an optical fiber coupler capable of controlling the branching ratio even after being arranged in a protective container.
Another object of the present invention is to provide an optical fiber coupler thus arranged in the protective container.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の第一の側面によれば、複数本の光ファイバ
の融着部に湾曲状のたわみ部を形成してなる融着型光フ
ァイバカプラが提供される。本発明の第二の側面によれ
ば、溶融延伸法による融着型光ファイバカプラの製造に
おいて、複数本の光ファイバの融着・延伸後、延伸方向
と逆方向に所定距離だけ縮め、光ファイバ融着部に湾曲
状のたわみ部を形成することを特徴とする融着型光ファ
イバカプラの製造方法が提供される。
In order to achieve the above object, according to the first aspect of the present invention, a fusion splicing formed by forming a curved flexure portion on a fusion splicing portion of a plurality of optical fibers. A fiber optic coupler is provided. According to the second aspect of the present invention, in the production of the fusion-type optical fiber coupler by the fusion drawing method, after fusing / drawing a plurality of optical fibers, the optical fibers are contracted by a predetermined distance in the direction opposite to the drawing direction. There is provided a method for manufacturing a fusion-type optical fiber coupler, which is characterized in that a curved flexible portion is formed in the fusion-bonded portion.

【0008】本発明の第三の側面によれば、複数本の光
ファイバの融着部に湾曲状のたわみ部を形成してなる融
着型光ファイバカプラが、その両側又は片側の固定点が
移動自在に保護収容具内に配設されてなる光ファイバカ
プラが提供される。さらに本発明の第四の側面によれ
ば、複数本の光ファイバの融着部に湾曲状のたわみ部を
形成してなる融着型光ファイバカプラを、上記たわみ部
を電気的もしくは機械的に伸縮可能なように保護収容具
内に固定することを特徴とする光ファイバカプラの固定
方法が提供される。
According to the third aspect of the present invention, there is provided a fusion-type optical fiber coupler in which curved flexures are formed in the fusion-bonded portions of a plurality of optical fibers, and the fixing points on both sides or one side are fixed. An optical fiber coupler is provided that is movably disposed within a protective container. Further, according to a fourth aspect of the present invention, a fusion-type optical fiber coupler formed by forming a curved flexure in the fusion-bonded part of a plurality of optical fibers, the flexure is electrically or mechanically A method for fixing an optical fiber coupler is provided, which is fixed in a protective container so that it can expand and contract.

【0009】[0009]

【発明の実施の形態】本発明者らは、前記課題を解決す
べく鋭意研究の結果、意外にも、融着型光ファイバカプ
ラにおいて、その融着部に湾曲状のたわみ部を形成すれ
ば、融着・延伸後、固化した状態でも、このたわみ部の
弾力性により伸縮可能であり、この部分での伸縮により
分岐比をコントロールすることができることを見出し、
本発明を完成するに至ったものである。上記たわみ部
は、光ファイバ融着部のテーパ部間の最小径部分(中央
部)に形成され、融着型光ファイバカプラの製造段階に
おいてもこのたわみ部の湾曲度合い(曲率半径)を調整
することにより、所定の分岐比に調整することができ、
また、使用時にも、たわみ部を伸縮させることにより任
意に分岐比を調整することができる。このたわみ部はか
なり細い径を有するため、弾力性に富んで伸縮可能であ
り、分岐比の調整範囲程度の伸縮によって折れることは
ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of intensive research to solve the above-mentioned problems, the present inventors have surprisingly found that in a fusion splicing type optical fiber coupler, if a curved flexure portion is formed in the fusion splicing portion. It has been found that, even after being fused and stretched, it can be expanded and contracted due to the elasticity of this flexible portion even in the solidified state, and the branching ratio can be controlled by the expansion and contraction at this portion,
The present invention has been completed. The flexible portion is formed in the smallest diameter portion (central portion) between the taper portions of the optical fiber fusion portion, and the degree of curvature (radius of curvature) of the flexible portion is adjusted even in the manufacturing stage of the fusion optical fiber coupler. By doing so, it is possible to adjust to a predetermined branching ratio,
Further, even during use, the branching ratio can be arbitrarily adjusted by expanding and contracting the flexible portion. Since this flexible portion has a fairly small diameter, it is highly elastic and can be expanded and contracted, and will not break due to expansion and contraction within the adjustment range of the branching ratio.

【0010】上記のように使用時に分岐比を調整可能と
するためには、複数本の光ファイバの融着部に湾曲状の
たわみ部を形成してなる融着型光ファイバカプラを、そ
の両側又は片側の固定点が移動自在に、あるいは上記た
わみ部を電気的もしくは機械的に伸縮可能なように、保
護収容具内に固定する。これによって、保護収容具内に
配設した後でも、分岐比を任意にコントロールすること
ができる。
In order to be able to adjust the branching ratio at the time of use as described above, a fusion splicing type optical fiber coupler in which curved flexures are formed in the fusion splicing portion of a plurality of optical fibers is used. Alternatively, it is fixed in the protective container so that the fixing point on one side is movable or the flexible portion can be expanded or contracted electrically or mechanically. As a result, the branching ratio can be arbitrarily controlled even after it is arranged in the protective container.

【0011】[0011]

【実施例】以下、添付図面に示す実施例を説明しつつ、
本発明についてさらに詳しく説明する。まず、本発明に
係る融着型光ファイバカプラの製造方法を、図1を参照
しながら説明する。まず、図1(A)に示されるよう
に、被覆2を部分的に除去した光ファイバ1bにマイク
ロトーチ(マイクロバーナー)6を横方向に往復動させ
ながら加熱し、張力を与えて延伸する。次に、図1
(B)に示されるように、上記事前に延伸した光ファイ
バ1bと、被覆2を部分的に除去した光ファイバ1aを
(すなわち、伝搬定数の異なる光ファイバ1a,1b
を)、クランプ等の適当な把持手段により保持し、その
被覆除去部側面を並列に接触させた状態で、マイクロト
ーチ(マイクロバーナー)6を横方向に往復動させなが
ら加熱し融着させ、さらに図1(C)に示すように張力
を与えて延伸する。マイクロトーチ6の振り幅は、一般
に5mm程度である。なお、図1(B)乃至(D)は2
本の光ファイバ1a,1bの状態を示すために上方から
見た図を示しており、マイクロトーチ6の配置状態は正
確ではなく、マイクロトーチ6の配置状態を正確に示す
ために側面から見た図は、図1(A)と類似の形態にな
る。所定の特性を再現性良く得るためには、光ファイバ
に光源及び受光素子(図示せず)を接続しておき、分岐
状態をモニターしながら延伸を行なう。融着部3の断面
形状は、融着の強度に応じて2つの円形が接続されたよ
うな断面形状から、瓢箪型、さらに楕円形まで変えるこ
とができる。その後、図1(D)に示されるように軸線
方向に若干縮める。これによって、光ファイバ融着部3
のテーパ部5間の最小径部分(中央部)に湾曲状のたわ
み部4が形成され(図2参照)、このたわみ部4の湾曲
度合い(曲率半径)を調整することにより所定の分岐比
に調整することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS While explaining the embodiments shown in the accompanying drawings,
The present invention will be described in more detail. First, a method of manufacturing a fusion splicing type optical fiber coupler according to the present invention will be described with reference to FIG. First, as shown in FIG. 1 (A), the optical fiber 1b from which the coating 2 has been partially removed is heated while reciprocally moving the micro torch (micro burner) 6 in the lateral direction, and stretched by applying tension. Next, FIG.
As shown in (B), the previously stretched optical fiber 1b and the optical fiber 1a with the coating 2 partially removed (that is, the optical fibers 1a and 1b having different propagation constants) are used.
) Is held by an appropriate gripping means such as a clamp, and the side surfaces of the coating removal portion are in parallel contact with each other, and the micro torch (micro burner) 6 is reciprocally moved in the lateral direction to heat and fuse, As shown in FIG. 1 (C), stretching is performed by applying tension. The swing width of the micro torch 6 is generally about 5 mm. Note that FIGS. 1B to 1D are 2
The figure seen from above is shown in order to show the state of the optical fibers 1a and 1b of the book, and the arrangement state of the micro torch 6 is not accurate, and the side view is shown to show the arrangement state of the micro torch 6 accurately. The drawing has a form similar to that of FIG. In order to obtain predetermined characteristics with good reproducibility, a light source and a light receiving element (not shown) are connected to the optical fiber, and stretching is performed while monitoring the branched state. The cross-sectional shape of the fusion-bonded portion 3 can be changed from a cross-sectional shape in which two circles are connected to each other, depending on the strength of fusion-bonding, to a gourd shape, and further to an oval shape. Then, as shown in FIG. 1 (D), it is slightly contracted in the axial direction. As a result, the optical fiber fusion section 3
A curved flexible portion 4 is formed in the minimum diameter portion (central portion) between the taper portions 5 (see FIG. 2), and a predetermined branching ratio can be obtained by adjusting the degree of curvature (curvature radius) of the flexible portion 4. Can be adjusted.

【0012】このようにして作製された融着型光ファイ
バカプラでは、結合部分の最も細い部分で極めて細い線
径、例えば10μm程度の径になっている。そこでカプ
ラに充分な機械的強度及び温度安定性を確保するため
に、融着型光ファイバカプラは、図2及び図3に示され
るように、その両端部を線膨張係数の小さいガラスケー
スなどの保護収容具10内に接着剤ないしはガラス半田
などで固定される。
In the fusion splicing type optical fiber coupler manufactured as described above, the thinnest portion of the coupling portion has an extremely thin wire diameter, for example, a diameter of about 10 μm. Therefore, in order to ensure sufficient mechanical strength and temperature stability of the coupler, the fusion splicing type optical fiber coupler has, as shown in FIGS. 2 and 3, a glass case or the like having a small linear expansion coefficient at both ends thereof. It is fixed in the protective container 10 with an adhesive or glass solder.

【0013】図2は組み立てられた光ファイバカプラの
内部構造を示す概略断面図、図3は上部を取り払った状
態で見た平面図を示している。光ファィバー1a,1b
は、融着部3の両側において、光ファイバ固定部11及
びカプラ固定部12において石英板等からなる支持板1
3に固定されている。固着剤としては、一般にUV硬化
型樹脂などの接着剤が用いられる。このように光ファイ
バ1a,1bが固定された支持板13はインバー(保護
管)14内に配設され、インバー14の両端部はシール
剤15によりシールされている。
FIG. 2 is a schematic sectional view showing the internal structure of the assembled optical fiber coupler, and FIG. 3 is a plan view of the optical fiber coupler with its upper part removed. Optical fiber 1a, 1b
Is a support plate 1 made of a quartz plate or the like in the optical fiber fixing portion 11 and the coupler fixing portion 12 on both sides of the fusion bonding portion 3.
It is fixed at 3. An adhesive such as a UV curable resin is generally used as the fixing agent. The support plate 13 to which the optical fibers 1a and 1b are fixed in this way is arranged in the invar (protective tube) 14, and both ends of the invar 14 are sealed by the sealant 15.

【0014】図4及び図5は、光ファイバカプラ製造時
の融着・延伸、あるいは保護収容具内に組み立てられた
光ファイバカプラの融着部の湾曲状たわみ部の伸縮を機
械的に行なう2つの態様の概略構成を示している。ま
ず、図4に示す機構の場合、2分割され対向する端部下
面に段差部16が形成された一対の支持板13a,13
bの段差部16に摺動部材17を配し、該摺動部材17
の両端部下面及び支持板13a,13bの対向する段差
部下面にそれぞれ雌ねじ部材18a,18b及び19
a,19bを突設し、各一対の雌ねじ部材18a,19
a及び18b,19bにそれぞれ雄ねじ部材20a及び
20bを螺合した構造を有する。この構造の場合、一方
又は両方の雄ねじ部材20a,20bを回転させること
により、一方又は両方の支持板13a,13bを相手方
向に移動させることができる。
FIGS. 4 and 5 mechanically perform fusion / stretching at the time of manufacturing the optical fiber coupler, or expansion / contraction of the curved flexure portion of the fusion portion of the optical fiber coupler assembled in the protective container. The schematic structure of one aspect is shown. First, in the case of the mechanism shown in FIG. 4, a pair of support plates 13a, 13 having a step portion 16 formed on the lower surface of the end portion which is divided into two.
The sliding member 17 is arranged on the step portion 16 of FIG.
Of the female screw members 18a, 18b and 19 respectively on the lower surface of both end portions of the base plate and the lower surface of the stepped portions of the support plates 13a and 13b facing each other.
a and 19b are projectingly provided, and a pair of female screw members 18a and 19b are provided.
It has a structure in which male screw members 20a and 20b are screwed into a, 18b and 19b, respectively. In the case of this structure, one or both supporting plates 13a, 13b can be moved in the opposite direction by rotating one or both male screw members 20a, 20b.

【0015】一方、図5に示す機構の場合、2分割され
それぞれ対向する端部上面又は下面に段差部16が形成
された一対の支持板13a,13bの下面所定位置にそ
れぞれ雌ねじ部材19a,19bを突設し、両側に逆ね
じのねじ部が形成された雄ねじ部材21のねじ部をそれ
ぞれ上記雌ねじ部材19a,19bに螺合した構造を有
する。この構造の場合、雄ねじ部材21を回転させるこ
とにより、両方の支持板13a,13bが互いに接近
し、又は離れるように移動する。前記図4及び図5に示
すいずれの機構の場合も、光ファイバカプラ製造時の融
着部の延伸・縮めに利用できるのみならず、保護収容具
内に組み立てられた光ファイバカプラの融着部の湾曲状
たわみ部の伸縮にそのまま利用することができる。
On the other hand, in the case of the mechanism shown in FIG. 5, female screw members 19a and 19b are respectively provided at predetermined positions on the lower surfaces of the pair of support plates 13a and 13b, which are divided into two and have stepped portions 16 formed on the upper surfaces or the lower surfaces of the opposing ends. Has a structure in which the threaded portions of the male threaded member 21 having oppositely threaded portions formed on both sides are screwed into the female threaded members 19a and 19b, respectively. In the case of this structure, by rotating the male screw member 21, both the support plates 13a and 13b move toward or away from each other. In the case of any of the mechanisms shown in FIG. 4 and FIG. 5, it can be used not only for stretching and shrinking of the fused portion at the time of manufacturing the optical fiber coupler, but also for the fused portion of the optical fiber coupler assembled in the protective container. It can be used as it is for the expansion and contraction of the curved flexure portion.

【0016】図6は、保護収容具内に組み立てられた光
ファイバカプラの融着部の湾曲状たわみ部の伸縮を電気
的に行なう一態様の概略構成を示している。図6に示す
装置は、光ファイバカプラを固定する支持板として、ス
テンレス板等の金属板23とその裏面に貼り合わされた
PZT(圧電性複合材料Pb(Zr,Ti)O3)24
とからなるEO変換素子(バイモルク)22を利用した
態様を示している。EO変換素子(バイモルク)22に
通電すると、PZT24の圧電効果により曲がりを生ず
るので、通電したときの曲がりの度合いを予め検量して
おくことにより、光ファイバカプラに所望の伸縮を加え
ることができる。
FIG. 6 shows a schematic construction of one mode for electrically expanding and contracting the curved flexure of the fusion-bonded portion of the optical fiber coupler assembled in the protective container. The apparatus shown in FIG. 6 serves as a support plate for fixing the optical fiber coupler, and includes a metal plate 23 such as a stainless plate and a PZT (piezoelectric composite material Pb (Zr, Ti) O 3 ) 24 bonded to the back surface thereof.
The embodiment using the EO conversion element (bimorph) 22 composed of is shown. When the EO conversion element (bimorph) 22 is energized, bending occurs due to the piezoelectric effect of the PZT 24. Therefore, it is possible to add desired expansion and contraction to the optical fiber coupler by calibrating the degree of bending when energized in advance.

【0017】次に、本発明に従って融着部に湾曲状のた
わみ部を形成した広帯域光ファイバカプラを用いて光の
分岐を行なったときの具体的な特性について説明する。
図7はWICカプラの概略構成を示し、一方の光ファイ
バから波長λ1の光の強さI(λ1)と波長λ2の光の強
さI(λ2)の光を入射し、一方のポート1から出力す
る光のパワーをP1(λ1)、P1(λ2)、他方のポート
2から出力する光のパワーをP2(λ1)、P2(λ2)と
すると、分岐比(%表示)は以下の式で与えられる。 R(λ1)=P1(λ1)/{P1(λ1)+P2(λ1)}
×100 R(λ2)=P1(λ2)/{P1(λ2)+P2(λ2)}
×100
Next, specific characteristics when light is branched by using the broadband optical fiber coupler in which the curved flexible portion is formed in the fusion portion according to the present invention will be described.
FIG. 7 shows a schematic configuration of a WIC coupler, in which light of wavelength λ 1 having a light intensity I (λ 1 ) and light of wavelength λ 2 having a light intensity I (λ 2 ) is incident from one optical fiber, and Let P 11 ) and P 12 ) be the powers of the light output from the port 1 and P 21 ) and P 22 ) be the powers of the light output from the other port 2. , The branching ratio (expressed in%) is given by the following formula. R (λ 1 ) = P 11 ) / {P 11 ) + P 21 )}
× 100 R (λ 2 ) = P 12 ) / {P 12 ) + P 22 )}
× 100

【0018】光のパワーP1=1310(dBm)、P2
=1550(dBm)の時の一方のポート1での分岐比
が、融着部の湾曲状のたわみ部を軸線方向に伸縮したと
きにどのように変化するかを測定した結果を図8に示
す。他方のポート2での分岐比は対称的に表わされる
が、わかり易いように省略されている。なお、横軸の伸
縮量は一方側の光ファイバの伸縮量を示しており、実際
の伸縮幅はこの2倍であり(以下、伸縮量あるいは縮め
量、延伸量とあるのも同様の表現方法である)、プラス
は伸び、マイナスは縮めを示している。また、伸縮量ゼ
ロの部分は光ファイバカプラ作製時の状態である。この
場合、湾曲状のたわみ部を縮めることによって分岐比を
変え得ることがわかる。
Power of light P 1 = 1310 (dBm), P 2
FIG. 8 shows the results of measurement of how the branching ratio at one port 1 when = 1550 (dBm) changes when the curved flexible portion of the fusion-bonded portion is expanded and contracted in the axial direction. . The branching ratio at the other port 2, which is represented symmetrically, is omitted for clarity. The expansion / contraction amount on the horizontal axis indicates the expansion / contraction amount of the optical fiber on one side, and the actual expansion / contraction width is twice this (hereinafter, the expansion / contraction amount, the contraction amount, and the expansion amount are similar expression methods. , Plus indicates growth, and minus indicates contraction. The portion where the amount of expansion and contraction is zero is the state when the optical fiber coupler was manufactured. In this case, it is understood that the branching ratio can be changed by shrinking the curved flexure.

【0019】次に、縮め量と光のパワーの大きさとの関
係を図9に示す。図9から、縮め量が大きくなる程光の
パワーの損失が大きくなることがわかる。また、縮め量
1.0mmまでは光のパワーの損失がほとんどないこと
がわかる。また、伸縮幅0.2mmまでの光のパワーの
損失を測定した結果を図10に示す。図10から、ある
範囲での伸縮では光のパワー損失に変動がないことがわ
かる。
Next, FIG. 9 shows the relationship between the amount of shrinkage and the power of light. It can be seen from FIG. 9 that the loss of light power increases as the amount of contraction increases. Further, it can be seen that there is almost no loss of light power up to the contraction amount of 1.0 mm. In addition, FIG. 10 shows the results of measuring the power loss of light up to the expansion / contraction width of 0.2 mm. From FIG. 10, it can be seen that there is no change in the power loss of light with expansion and contraction within a certain range.

【0020】次に、本発明に従って作製した80:20
WICカプラの伸縮量変化による波長特性を測定した結
果を図11乃至図16に示す。図11は作製時の波長特
性、図12は延伸量0.1mm、図13は縮め量0.0
5mm、図14は縮め量0.1mm、図15は縮め量
0.15mm、図16は縮め量0.2mmの波長特性を
示している。これらの図から、波長無依存性を維持した
まま、融着部の湾曲状のたわみ部を軸線方向に伸縮する
ことにより自在に結合比を変え得ることがわかる。
Next, 80:20 produced according to the present invention.
11 to 16 show the results of measuring the wavelength characteristics of the WIC coupler depending on the expansion / contraction change. FIG. 11 is a wavelength characteristic at the time of production, FIG. 12 is a stretching amount of 0.1 mm, and FIG. 13 is a contraction amount of 0.0.
5 mm, FIG. 14 shows the contraction amount of 0.1 mm, FIG. 15 shows the contraction amount of 0.15 mm, and FIG. 16 shows the contraction amount of 0.2 mm. From these figures, it is understood that the coupling ratio can be freely changed by expanding and contracting the curved flexure portion of the fusion-bonded portion in the axial direction while maintaining the wavelength independence.

【0021】[0021]

【発明の効果】以上説明したように、本発明の融着型光
ファイバカプラはその融着部に湾曲状のたわみ部を形成
したものであるため、融着・延伸後、固化した状態で
も、このたわみ部の弾力性により伸縮可能であり、この
部分での伸縮により分岐比をコントロールすることがで
きる。また、その両側又は片側の固定点が移動自在に、
あるいは上記たわみ部を電気的もしくは機械的に伸縮可
能なように、保護収容具内に配設することによって、保
護収容具内に配設した後でも、分岐比を任意にコントロ
ールすることができる。特に波長無依存型カプラ(WI
C)においては、波長無依存性を保持したまま分岐比を
コントロールすることができ、また単一波長だけではな
く、1.3μm〜1.55μmの広帯域波長帯で同一分
岐特性を持ち、しかも、分岐特性を制御できる。
As described above, since the fusion-type optical fiber coupler of the present invention has a curved flexible portion formed in the fusion-bonded portion, even after being fused and stretched, it may be solidified. It is possible to expand and contract due to the elasticity of the flexible portion, and it is possible to control the branching ratio by expanding and contracting at this portion. Also, the fixed points on both sides or one side can be moved freely,
Alternatively, the branching ratio can be arbitrarily controlled even after the flexible portion is arranged in the protective container so that it can be expanded or contracted electrically or mechanically. Especially wavelength independent coupler (WI
In C), the branching ratio can be controlled while maintaining the wavelength independence, and not only a single wavelength but also the same branching characteristic in a wide wavelength band of 1.3 μm to 1.55 μm, and The branching characteristics can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の融着型光ファイバカプラの製造工程を
示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a manufacturing process of a fusion splicing type optical fiber coupler of the present invention.

【図2】本発明の光ファイバカプラの内部構造を示す概
略断面図である。
FIG. 2 is a schematic cross-sectional view showing the internal structure of the optical fiber coupler of the present invention.

【図3】図2に示す光ファイバカプラの上部を取り払っ
た状態で示す概略平面図である。
FIG. 3 is a schematic plan view showing a state where the upper portion of the optical fiber coupler shown in FIG. 2 is removed.

【図4】光ファイバカプラ製造時の融着・延伸、あるい
は保護収容具内に組み立てられた光ファイバカプラの融
着部の湾曲状たわみ部の伸縮を機械的に行なう一態様の
概略構成図である。
FIG. 4 is a schematic configuration diagram of one mode in which fusion / stretching during manufacturing of the optical fiber coupler or expansion / contraction of a curved flexure portion of the fusion-bonded portion of the optical fiber coupler assembled in the protective container is mechanically performed. is there.

【図5】光ファイバカプラ製造時の融着・延伸、あるい
は保護収容具内に組み立てられた光ファイバカプラの融
着部の湾曲状たわみ部の伸縮を機械的に行なう他の態様
の概略構成図である。
FIG. 5 is a schematic configuration diagram of another mode in which fusion / stretching during manufacturing of the optical fiber coupler or mechanical expansion / contraction of the curved flexure portion of the fusion bonding portion of the optical fiber coupler assembled in the protective container. Is.

【図6】保護収容具内に組み立てられた光ファイバカプ
ラの融着部の湾曲状たわみ部の伸縮を電気的に行なう一
態様の概略構成図である。
FIG. 6 is a schematic configuration diagram of one aspect for electrically expanding and contracting a curved flexible portion of a fusion-bonded portion of an optical fiber coupler assembled in a protective container.

【図7】WICカプラの概略説明図である。FIG. 7 is a schematic explanatory diagram of a WIC coupler.

【図8】本発明に従って作製したWICカプラの伸縮量
と分岐比の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the expansion / contraction amount and the branching ratio of a WIC coupler manufactured according to the present invention.

【図9】本発明に従って作製したWICカプラの縮め量
と光のパワーの大きさとの関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the amount of shrinkage of a WIC coupler manufactured according to the present invention and the magnitude of optical power.

【図10】本発明に従って作製したWICカプラの伸縮
量と光のパワーの損失との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the amount of expansion and contraction of a WIC coupler manufactured according to the present invention and the loss of optical power.

【図11】本発明に従って作製した80:20WICカ
プラの作製時の波長特性を示すグラフである。
FIG. 11 is a graph showing wavelength characteristics when an 80:20 WIC coupler manufactured according to the present invention was manufactured.

【図12】本発明に従って作製した80:20WICカ
プラの延伸量0.1mmでの波長特性を示すグラフであ
る。
FIG. 12 is a graph showing wavelength characteristics of an 80:20 WIC coupler manufactured according to the present invention at a stretch amount of 0.1 mm.

【図13】本発明に従って作製した80:20WICカ
プラの縮め量0.05mmでの波長特性を示すグラフで
ある。
FIG. 13 is a graph showing wavelength characteristics of an 80:20 WIC coupler manufactured according to the present invention when the contraction amount is 0.05 mm.

【図14】本発明に従って作製した80:20WICカ
プラの縮め量0.1mmでの波長特性を示すグラフであ
る。
FIG. 14 is a graph showing wavelength characteristics of an 80:20 WIC coupler manufactured according to the present invention when the shrinkage amount is 0.1 mm.

【図15】本発明に従って作製した80:20WICカ
プラの縮め量0.15mmでの波長特性を示すグラフで
ある。
FIG. 15 is a graph showing wavelength characteristics of an 80:20 WIC coupler manufactured according to the present invention when the shrinkage amount is 0.15 mm.

【図16】本発明に従って作製した80:20WICカ
プラの縮め量0.2mmでの波長特性を示すグラフであ
る。
FIG. 16 is a graph showing wavelength characteristics of an 80:20 WIC coupler manufactured according to the present invention when the contraction amount is 0.2 mm.

【符号の簡単な説明】[Simple explanation of symbols]

1a,1b 光ファイバ 2 被覆 3 融着部 4 たわみ部 5 テーパ部 6 マイクロトーチ 10 保護収容具 11 光ファイバ固定部 12 カプラ固定部12 13,13a,13b 支持板 14 インバー(保護管) 22 EO変換素子(バイモルク) 23 金属板 24 PZT 1a, 1b optical fiber 2 coating 3 Fusion part 4 Deflection part 5 Tapered part 6 micro torch 10 Protective container 11 Optical fiber fixing part 12 Coupler fixing part 12 13, 13a, 13b Support plate 14 Invar (protection tube) 22 EO conversion element (bimorph) 23 Metal plate 24 PZT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長浜 秀信 富山県黒部市三日市4016   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hidenobu Nagahama             4016, Mikkaichi, Kurobe, Toyama

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数本の光ファイバ(1a,1b)の融
着部(3)に湾曲状のたわみ部(4)を形成してなる融
着型光ファイバカプラ。
1. A fusion splicing type optical fiber coupler comprising a plurality of optical fibers (1a, 1b) having a curved flexure (4) formed on the fusion splicing part (3).
【請求項2】 伝搬定数の異なる複数本の光ファイバ
(1a,1b)を融着・延伸することにより作製される
光ファイバカプラである請求項1記載の融着型光ファイ
バカプラ。
2. The fusion splicing type optical fiber coupler according to claim 1, which is an optical fiber coupler produced by fusing and stretching a plurality of optical fibers (1a, 1b) having different propagation constants.
【請求項3】 溶融延伸法による融着型光ファイバカプ
ラの製造において、複数本の光ファイバ(1a,1b)
の融着・延伸後、延伸方向と逆方向に所定距離だけ縮
め、光ファイバ融着部(3)に湾曲状のたわみ部(4)
を形成することを特徴とする融着型光ファイバカプラの
製造方法。
3. A plurality of optical fibers (1a, 1b) in the production of a fusion splicing type optical fiber coupler by a fusion drawing method.
After fusion / stretching, the optical fiber fusion portion (3) is shrunk by a predetermined distance in the direction opposite to the stretching direction, and the curved flexible portion (4) is formed.
A method for manufacturing a fusion splicing type optical fiber coupler, which comprises:
【請求項4】 複数本の光ファイバ(1a,1b)を並
列に並べ被覆除去部分を接触させた状態で融着・延伸す
る請求項3記載の融着型光ファイバカプラの製造方法。
4. The method for producing a fusion-type optical fiber coupler according to claim 3, wherein a plurality of optical fibers (1a, 1b) are arranged in parallel and fused and stretched in a state where the coating removal portions are in contact with each other.
【請求項5】 複数本の光ファイバ(1a,1b)の融
着部(3)に湾曲状のたわみ部(4)を形成してなる融
着型光ファイバカプラが、その両側又は片側の固定点が
移動自在に保護収容具(10)内に配設されてなる光フ
ァイバカプラ。
5. A fusion splicing type optical fiber coupler comprising a plurality of optical fibers (1a, 1b) formed with a curved flexure (4) on a fusion splicing part (3), and fixing the both sides or one side thereof. An optical fiber coupler in which points are movably arranged in a protective container (10).
【請求項6】 複数本の光ファイバ(1a,1b)の融
着部(3)に湾曲状のたわみ部(4)を形成してなる融
着型光ファイバカプラを、上記たわみ部(4)を電気的
もしくは機械的に伸縮可能なように保護収容具(10)
内に固定することを特徴とする光ファイバカプラの固定
方法。
6. A fusion splicing type optical fiber coupler comprising a plurality of optical fibers (1a, 1b) having a fused portion (3) formed with a curved flexure portion (4). Protective container (10) that can expand and contract electrically or mechanically
A method for fixing an optical fiber coupler, characterized in that the optical fiber coupler is fixed inside.
JP2001269168A 2001-09-05 2001-09-05 Welding type optical fiber coupler Pending JP2003075680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269168A JP2003075680A (en) 2001-09-05 2001-09-05 Welding type optical fiber coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269168A JP2003075680A (en) 2001-09-05 2001-09-05 Welding type optical fiber coupler

Publications (1)

Publication Number Publication Date
JP2003075680A true JP2003075680A (en) 2003-03-12

Family

ID=19095033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269168A Pending JP2003075680A (en) 2001-09-05 2001-09-05 Welding type optical fiber coupler

Country Status (1)

Country Link
JP (1) JP2003075680A (en)

Similar Documents

Publication Publication Date Title
EP1285294B1 (en) Optical waveguide lens and method of fabrication
JP2764141B2 (en) How to connect waveguides
JP2996602B2 (en) Optical branching coupler for constant polarization optical fiber
US5098459A (en) Method of manufacturing optical branching and coupling device
US6836599B2 (en) All-fiber Mach-Zehnder interferometer and method of making the same
KR20010084624A (en) Method of fabricating fused-type mode selective coupler
JPH07504767A (en) fiber optic attenuator
US6731842B2 (en) Microbend fused fiber coupler method and apparatus
US6385372B1 (en) Fiber optical coupler fabrication and system
CA2123757C (en) Method for making optical waveguide couplers with low wavelength sensitivity and couplers thereby produced
JP2003075680A (en) Welding type optical fiber coupler
US6763685B1 (en) Fabrication of multiplexing and demultiplexing single-mode fiber optic couplers
JPS6155615A (en) Manufacture of light branching and coupling section
JPH02113212A (en) Waveguide type optical module
JP2749842B2 (en) Multiplexer / demultiplexer
JP3066444B2 (en) Manufacturing method of broadband optical fiber coupler
JP3436831B2 (en) Multi-core tape type optical fiber coupler and manufacturing method thereof
JP3392275B2 (en) Broadband optical fiber coupler
JPH05313074A (en) Waveguide type directional photocoupler and coupling ratio adjusting method
JP2883183B2 (en) Method and apparatus for manufacturing optical fiber coupler
JPH08220369A (en) Optical fiber coupler and its production
JPH06148461A (en) Manufacture of optical fiber coupler
JPH04372910A (en) Photo-coupler with variable photo-branching ratio and photo-coupling ratio
JPH11218616A (en) Optical filter
JPH02115807A (en) Production of fiber type coupler