JP2003075437A - Detection method of fragmentation of dna by cell apoptosis derivation due to near-infrared spectrochemical analysis method - Google Patents

Detection method of fragmentation of dna by cell apoptosis derivation due to near-infrared spectrochemical analysis method

Info

Publication number
JP2003075437A
JP2003075437A JP2001266741A JP2001266741A JP2003075437A JP 2003075437 A JP2003075437 A JP 2003075437A JP 2001266741 A JP2001266741 A JP 2001266741A JP 2001266741 A JP2001266741 A JP 2001266741A JP 2003075437 A JP2003075437 A JP 2003075437A
Authority
JP
Japan
Prior art keywords
dna
fragmentation
cell apoptosis
sample
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001266741A
Other languages
Japanese (ja)
Inventor
Takaaki Maekawa
孝昭 前川
Hiroko Isoda
博子 礒田
Koji Emura
耕司 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukuba Biosystem Ltd
Original Assignee
Tsukuba Biosystem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukuba Biosystem Ltd filed Critical Tsukuba Biosystem Ltd
Priority to JP2001266741A priority Critical patent/JP2003075437A/en
Publication of JP2003075437A publication Critical patent/JP2003075437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detection method of the fragmentation of DNAs by cell apoptosis derivation due to a near-infrared spectrochemical analysis method. SOLUTION: The fragmentation of DNAs is detected by cell apoptosis derivation by a process for applying near-infrared light with a wavelength of 800-2500 nm to a sample made of DNAs, a process for receiving reflection light or transmission light from the sample for detecting intensity to a wavelength contained at near-infrared light region and to measure an absorbance spectrum, and a process for measuring the concentration of the fragmentation of DNAs due to cell apoptosis derivation in a sample by analyzing an absorbance spectrum with one or a plurality of specific wavelengths out of absorbance spectra.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、近赤外分光分析
法による細胞アポトーシス誘導によるDNAの断片化の
検出方法に関する。
TECHNICAL FIELD The present invention relates to a method for detecting DNA fragmentation due to cell apoptosis induction by near infrared spectroscopy.

【0002】[0002]

【従来の技術】可視域に隣接する近赤外領域の光を用い
て物質の定量、定性分析を行う近赤外分光分析法は、近
年、農業分野をはじめ医療分野等の様々な分野で利用さ
れている(岩元睦夫、河野澄夫、魚住純「近赤外分光法
入門」幸書房、1994年9月10日初版発行)。近赤
外分光分析法は、 1)エネルギーの低い電磁波を用いるので試料を損傷す
ることがない。 2)固体、粉体、繊維、液体、気体など様々な状態の試
料に適用することができる。 3)赤外にくらべ近赤外では水の吸収強度が弱くなるの
で、水溶液あるいは含水系での分析ができる。 4)紫外光や可視光にくらべ近赤外光は、厚い組織をも
透過することができる。などの利点を有する。
2. Description of the Related Art Near-infrared spectroscopy, which performs quantitative and qualitative analysis of substances using light in the near-infrared region adjacent to the visible region, has recently been used in various fields such as agriculture and medical fields. (Mutio Iwamoto, Sumio Kono, Jun Uozumi "Introduction to Near Infrared Spectroscopy" Koshobo, published on September 10, 1994 first edition). The near-infrared spectroscopic method 1) does not damage the sample because it uses electromagnetic waves with low energy. 2) It can be applied to samples in various states such as solid, powder, fiber, liquid and gas. 3) The absorption intensity of water in the near infrared is weaker than that in the infrared, so that analysis in an aqueous solution or a water-containing system can be performed. 4) Compared to ultraviolet light and visible light, near-infrared light can also penetrate thick tissues. It has advantages such as

【0003】近赤外分光分析はその定量、定性分析を行
うためにいわゆるケモメトリクスと呼ばれる手法を用い
る。これは多変量解析手法や統計解析手法を用いて化学
分析を行う手法で、近年、パーソナルコンピュータの発
達とともに発展してきた。最近の近赤外分光分析では回
帰分析あるいはPLS回帰分析といった多変量解析手法
を用いて行われている。また、ニューラルネットワーク
やカオス理論等の解析への応用も試みられている。
The near-infrared spectroscopic analysis uses a so-called chemometrics technique to perform its quantitative and qualitative analysis. This is a method of performing chemical analysis using a multivariate analysis method or a statistical analysis method, and has been developed in recent years with the development of personal computers. In recent near infrared spectroscopy, multivariate analysis methods such as regression analysis or PLS regression analysis are used. In addition, application to analysis of neural networks and chaos theory has also been attempted.

【0004】定量分析を行う場合、たとえば、PLS(P
anial Least Square)回帰分析と呼ばれる手法を用い
る。前記回帰分析は、予め本従来例の分析装置を用いて
既知濃度の試料の吸収スペクトルを測定する実験より検
量線を作成することにより行われる。前記検量線は、濃
度既知の複数試科から測定した吸光スペクトルを説明変
量とし、試料中成分の濃度を目的変数として回帰分析す
ることにより求める。
When performing a quantitative analysis, for example, PLS (P
anial Least Square) A method called regression analysis is used. The regression analysis is performed by preparing a calibration curve in advance by an experiment in which the absorption spectrum of a sample having a known concentration is measured using the analyzer of the conventional example. The calibration curve is obtained by performing a regression analysis using the absorption spectra measured from a plurality of trial departments of known concentrations as explanatory variables and the concentrations of the components in the sample as objective variables.

【0005】上記のような優れた特性を有する近赤外分
光分析法は、臨床医学の分野で注目を集め、細胞の分
析、検出やモニタリング等に適用されている。
The near-infrared spectroscopic method having the above-mentioned excellent characteristics has been attracting attention in the field of clinical medicine and is applied to cell analysis, detection, monitoring and the like.

【0006】[0006]

【発明が解決しようとする課題】本願発明の目的は、近
赤外分光分析法(NIR法)を用いてDNAの挙動解析
を行った例がないことに着目して、形態学的に変化した
細胞や病的な状態であるアポトーシス細胞の検出、特に
近赤外分光分析法による細胞アポトーシス誘導によるD
NAの断片化の検出方法を提供することである。
The object of the present invention has been changed morphologically, focusing on the fact that there is no example of behavior analysis of DNA using near infrared spectroscopy (NIR method). Detection of cells or apoptotic cells in a pathological state, especially by induction of cell apoptosis by near infrared spectroscopy
It is to provide a method for detecting NA fragmentation.

【0007】[0007]

【課題を解決するための手段】本願発明は、DNAを含
む試料に800〜2500nm波長の近赤外光を照射す
る工程、前記試料からの反射光又は透過光を受光して近
赤外光領域に含まれる波長に対する強度をセンサよって
検出し、吸光度スぺクトルを計測する工程、前記吸光度
スぺクトルのうち1乃至複数の特定波長の吸光度スぺク
トルを解析して前記試料中の細胞アポトーシス誘導によ
るDNAの断片化を検出する工程、とからなることを特
徴とする近赤外分光分析法による細胞アポトーシス誘導
によるDNAの断片化の検出方法である。前記特定波長
は、1405〜1425、1510〜1535、154
5〜1570、1600〜1625、1845〜186
0、1865〜1890nmである。
According to the present invention, a step of irradiating a sample containing DNA with near infrared light having a wavelength of 800 to 2500 nm, a reflected light or a transmitted light from the sample is received, and a near infrared light region is received. Detecting the intensity for the wavelength contained in the sample with a sensor to measure the absorbance spectrum, and inducing cell apoptosis in the sample by analyzing the absorbance spectrum of one or more specific wavelengths of the absorbance spectrum And a step of detecting the fragmentation of the DNA by the method, and the method for detecting the fragmentation of the DNA by inducing cell apoptosis by the near-infrared spectroscopy. The specific wavelengths are 1405 to 1425, 1510 to 1535, 154.
5-1570, 1600-1625, 1845-186
0, 1865 to 1890 nm.

【0008】[0008]

【発明の実施の形態】図1は、本発明において使用する
近赤外分光分析装置の模式図を示すもので、1100〜
2500nmの波長の近赤外光を光源11からの光を順
次フィルタ12を通して、特定波長のみを通すように制
御装置15によりフィルタを切り替えて、2nmの分解
能で分光する。この分光された光を試料台13中の測定
すべき試料に照射する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a near-infrared spectroscopic analyzer used in the present invention.
The near-infrared light having a wavelength of 2500 nm is sequentially passed through the filter 12 by the light from the light source 11, and the control device 15 switches the filters so that only specific wavelengths are allowed to pass therethrough, and the light is dispersed at a resolution of 2 nm. The sample to be measured in the sample table 13 is irradiated with this dispersed light.

【0009】試料から反射または透過してくる反射光又
は透過光をセンサ14(透過光センサ14a、反射光セ
ンサ14bからなる。)によって検出し、波長毎に吸光
度スぺクトルを計測する。
The sensor 14 (comprising a transmitted light sensor 14a and a reflected light sensor 14b) detects reflected light or transmitted light reflected or transmitted from the sample, and measures the absorbance spectrum for each wavelength.

【0010】試料の近赤外域における吸収バンドを調べ
る。近赤外分光装置は、BRAN+LUEBBR社製I
nfraAlyzer500を用い、近赤外吸収スぺク
トルの測定波長範囲は1100−2500nm、測定温
度25℃とし、この範囲を2nm間隔で走査測定する。
The absorption band of the sample in the near infrared region is examined. The near-infrared spectroscopic device is I manufactured by BRAN + LUEBBR
Using nfraAlyzer 500, the measurement wavelength range of the near infrared absorption spectrum is 1100-2500 nm, the measurement temperature is 25 ° C., and this range is scanned and measured at 2 nm intervals.

【0011】以下に、細胞アポトーシスの検出方法の詳
細を説明する。
The details of the method for detecting cell apoptosis will be described below.

【0012】先ず、細胞アポトーシスの誘導は、FBS
(Fetal Bovine Serum ウシ胎児血
清)を10%、ペニシリンを1%添加したRPMI M
ediumを用いて、ヒト乳ガン由来乳腺上皮細胞(M
CF−7)1×106個を37℃の温度条件下で、5%
CO2インキュベーター内で培養する。次いで、スタウ
ロスポリン(非特異的リン酸化阻害剤)の濃度が1μM
となるように処理し、6時間培養して細胞のアポトーシ
スを起こさせる。未処理のものをコントロールとした。
[0012] First, the induction of cell apoptosis is performed by using FBS.
RPMI M with 10% (Fetal Bovine Serum fetal bovine serum) and 1% penicillin added
human breast cancer-derived mammary epithelial cells (M
5% of CF-7) 1 × 10 6 under the temperature condition of 37 ° C.
Culture in a CO 2 incubator. Next, the concentration of staurosporine (non-specific phosphorylation inhibitor) was 1 μM
And the cells are cultured for 6 hours to induce cell apoptosis. The untreated one was used as a control.

【0013】細胞のDNAの抽出には、和光純薬製「W
AKO DNA Extractor WB Kit」
(ヨウ化ナトリウム法)を使用した。
For extracting DNA of cells, "W" manufactured by Wako Pure Chemical Industries, Ltd.
AKO DNA Extractor WB Kit "
(Sodium iodide method) was used.

【0014】先ず、細胞をPBS(Phosphate
Buffered Salineリン酸緩衝液)で洗
浄後、マイクロチューブに回収する。マイクロチューブ
によって回収した細胞を3000G、5分間遠心し、上
清を除去する。
First, the cells are put into PBS (Phosphate).
After washing with Buffered Saline phosphate buffer), it is collected in a microtube. The cells collected by the microtube are centrifuged at 3000 G for 5 minutes, and the supernatant is removed.

【0015】分離された細胞に溶解液1mlを加えて、
VORTEXによって攪拌する。更に、10000G、
1分間遠心し、上清を除去する。この操作を再度繰り返
す。
1 ml of lysate was added to the separated cells,
Stir with VORTEX. Furthermore, 10000G,
Centrifuge for 1 minute and remove the supernatant. Repeat this operation again.

【0016】上記操作で得られたものを、酵素反応液2
00μlとタンパク分解酵素10μlを添加し、混合
し、37℃の温度で1時間保温し、ヨウ化ナトリウム溶
液を300μl加えて混合し、イソプロピルアルコール
を0.5μl加えて混合し、DNAを沈殿させる。
The product obtained by the above operation is used as the enzyme reaction solution 2
00 μl and 10 μl of proteolytic enzyme are added, mixed and kept at 37 ° C. for 1 hour, 300 μl of sodium iodide solution is added and mixed, and 0.5 μl of isopropyl alcohol is added and mixed to precipitate DNA.

【0017】上記操作で得られたDNAを含む液を10
000G、10分間遠心し、上清を除去し、洗浄液を1
ml加えて混合し、さらに10000G、5分間遠心
し、上清を除去し、洗浄液を1ml加えて混合した後、
更に、10000G、5分間遠心し、上清を除去し、乾
燥させて、DNAを5μg抽出する。
A solution containing the DNA obtained by the above operation was added to 10
Centrifuge at 000G for 10 minutes, remove the supernatant, and wash with 1
After adding 1 ml and mixing, further centrifugation at 10,000 G for 5 minutes, removing the supernatant, and adding 1 ml of the washing solution and mixing,
Further, the mixture is centrifuged at 10000 G for 5 minutes, the supernatant is removed, and dried to extract 5 μg of DNA.

【0018】抽出されたDNAの濃度の調整は、分光光
度計(BECKMAN社製 DU600)を用いて測定
し、DNA濃度をそれぞれ1.0μg/ml、0.1μ
g/ml、0.01μg/mlに調整し、それぞれの試
料について、検出を行った。本発明の近赤外分光法によ
れば、0.01μg/ml低濃度の濃度でも検出でき
た。
The concentration of the extracted DNA was adjusted by using a spectrophotometer (DU600 manufactured by BECKMAN), and the DNA concentrations were 1.0 μg / ml and 0.1 μm, respectively.
It was adjusted to g / ml and 0.01 μg / ml, and detection was performed for each sample. According to the near-infrared spectroscopy of the present invention, detection was possible even at a low concentration of 0.01 μg / ml.

【0019】上記した細胞アポトーシスが誘導された試
料と、未処理の細胞であるコントロールとを赤外分光装
置にかけて、角波長毎の吸収スぺクトルを収集し、10
回ずつ測定した。また、両試料とも、DNA電気泳動法
によって、DNAの断片化を確認した。
The sample in which the above-mentioned cell apoptosis was induced and a control which was an untreated cell were applied to an infrared spectroscope to collect absorption spectra for each angular wavelength.
Measured each time. In both samples, DNA fragmentation was confirmed by DNA electrophoresis.

【0020】図2は、2次微分スぺクトルの主成分分析
(PCA)の線図を示している。
FIG. 2 shows a principal component analysis (PCA) diagram of the second derivative spectrum.

【0021】図3、図4は、その2次微分スぺクトルを
示す線図である。図3の下段の図3(b)は、波長範囲
1400nm〜1430nmの部分拡大図であって、特
に波長1410nmの領域では、アポトーシスを起こし
たDNAとコントロールDNAとの判別が有効であるこ
とを示している。図4の下段の図4(b)は、波長範囲
1870nm〜1890nmの部分拡大図であって、特
に波長1882nmの領域では、アポトーシスを起こし
たDNAとコントロールDNAとの判別が有効であるこ
とを示している。
FIG. 3 and FIG. 4 are diagrams showing the second derivative spectrum. FIG. 3B in the lower part of FIG. 3 is a partially enlarged view in the wavelength range of 1400 nm to 1430 nm, and shows that the discrimination between apoptotic DNA and control DNA is effective particularly in the wavelength range of 1410 nm. ing. FIG. 4B in the lower part of FIG. 4 is a partially enlarged view of the wavelength range 1870 nm to 1890 nm, and shows that the discrimination between apoptotic DNA and control DNA is effective particularly in the wavelength 1882 nm region. ing.

【0022】収集した吸光度スぺクトル2次微分変換し
たものについて、図2に示されているように、2次微分
による主成分分析をおこなった。いずれも、第1主成分
(Factor1)、第2主成分(Factor2)に
よってアポトーシスを起こしたDNAを検出することが
できた。
As shown in FIG. 2, principal component analysis based on the second derivative was performed on the collected second derivative of the absorbance spectrum. In both cases, it was possible to detect DNA that had undergone apoptosis by the first main component (Factor 1) and the second main component (Factor 2).

【0023】2次微分変換したスぺクトルは、第1主成
分によって、検出することができた。第1主成分は、図
2(b)の相関スぺクトル線図から相関のある特徴的な
波長領域、1405〜1425、1510〜1535、
1545〜1570、1600〜1625、1845〜
1860、1865〜1890nmを抽出することがで
きた。これらの波長を重回帰分析を行うことによって、
アポトーシスを起こしたDNAとコントロールDNAと
を明確に検出することができる。
The second-differential-transformed spectrum could be detected by the first principal component. The first principal component is a characteristic wavelength region having correlation from the correlation spectrum diagram of FIG. 2B, 1405 to 1425, 1510 to 1535,
1545 ~ 1570, 1600 ~ 1625, 1845 ~
It was possible to extract 1860, 1865-1890 nm. By performing multiple regression analysis on these wavelengths,
Apoptotic DNA and control DNA can be clearly detected.

【0024】図8は、2次微分スぺクトルに基づいてク
ラスタ分析をした樹状図である。細胞アポトーシスを起
こしたDNAサンプルA.1〜A.10と、コントロー
ルDNAサンプルC.1〜C.10は、類似値0.4に
着目すると、前者と後者とが二つのグループに明確に分
類されていることが分り、細胞アポトーシスを起こした
DNAサンプルを検出できることが分る。
FIG. 8 is a dendrogram obtained by cluster analysis based on the second derivative spectrum. DNA sample with cell apoptosis 1-A. 10 and the control DNA sample C.I. 1-C. Regarding No. 10, focusing on the similarity value of 0.4, it is found that the former and the latter are clearly classified into two groups, and it is found that a DNA sample in which cell apoptosis has occurred can be detected.

【0025】[0025]

【発明の効果】本発明によれば、 (1)抗ガン剤による細胞アポトーシスの測定 (2)環境汚染によるDNA損傷の測定 (3)遺伝子組み換え作物の検出 が可能となるという効果を有する。According to the present invention, (1) Measurement of cell apoptosis by anti-cancer drug (2) Measurement of DNA damage due to environmental pollution (3) Detection of genetically modified crops Has the effect that it becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の、近赤外分光分析装置の模式図。FIG. 1 is a schematic diagram of a near-infrared spectroscopic analyzer according to the present invention.

【図2】近赤外分光分析法により得られた2次微分スぺ
クトルの主成分分析の線図。
FIG. 2 is a diagram of principal component analysis of a second derivative spectrum obtained by near infrared spectroscopy.

【図3】近赤外分光分析法により得られた細胞アポとシ
ース誘導したDNAとコントロールDNAののそれぞれ
の吸光度スぺクトルの2次微分スぺクトルと、その一部
を拡大した線図。
FIG. 3 is a second-order differential spectrum of the respective absorbance spectra of the cell apo, the sheath-induced DNA, and the control DNA obtained by near-infrared spectroscopy, and an enlarged diagram of a part thereof.

【図4】近赤外分光分析法により得られた細胞アポとシ
ース誘導したDNAとコントロールDNAののそれぞれ
の吸光度スぺクトルの2次微分スぺクトルと、その一部
を拡大した線図。
FIG. 4 is a second-order differential spectrum of the respective absorbance spectra of the cell apo, the sheath-induced DNA, and the control DNA obtained by the near-infrared spectroscopy, and an enlarged diagram of a part thereof.

【図5】近赤外分光分析法により得られた細胞アポとシ
ース誘導したDNAとコントロールDNAののそれぞれ
の吸光度スぺクトルの2次微分スぺクトルをクラスタ分
析から得られた樹状図。
FIG. 5 is a dendrogram obtained by cluster analysis of the second-order differential spectra of the absorbance spectra of the cell apo, the sheath-induced DNA, and the control DNA obtained by near-infrared spectroscopy.

【符号の説明】[Explanation of symbols]

11 光源、12 フィルタ、13 試料台、14 セ
ンサ、15 制御装置
11 light source, 12 filter, 13 sample stage, 14 sensor, 15 control device

【手続補正書】[Procedure amendment]

【提出日】平成13年9月4日(2001.9.4)[Submission date] September 4, 2001 (2001.9.4)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G045 DA12 DA13 FA11 FA25 2G059 AA05 BB12 DD16 EE01 EE02 EE12 FF12 GG10 HH01 HH06 JJ01 JJ03 MM01 MM02 PP04 4B063 QA01 QQ42 QX10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G045 DA12 DA13 FA11 FA25                 2G059 AA05 BB12 DD16 EE01 EE02                       EE12 FF12 GG10 HH01 HH06                       JJ01 JJ03 MM01 MM02 PP04                 4B063 QA01 QQ42 QX10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 DNAからなる試料に800〜2500
nm波長の近赤外光を照射する工程、 前記試料からの反射光又は透過光を受光して近赤外光領
域に含まれる波長に対する強度をセンサよって検出し、
吸光度スぺクトルを計測する工程、 前記吸光度スぺクトルのうち1乃至複数の特定波長の吸
光度スぺクトルを解析して前記試料中の細胞アポトーシ
ス誘導によるDNAの断片化を検出する工程、 とからなることを特徴とする近赤外分光分析法による細
胞アポトーシス誘導によるDNAの断片化の検出方法。
1. A sample comprising DNA is 800 to 2500.
irradiating near-infrared light of nm wavelength, the reflected light or transmitted light from the sample is received and the intensity for the wavelength contained in the near-infrared light region is detected by a sensor,
Measuring the absorbance spectrum; analyzing the absorbance spectrum of one or more specific wavelengths of the absorbance spectrum to detect the fragmentation of DNA in the sample due to the induction of cell apoptosis. A method for detecting fragmentation of DNA by inducing cell apoptosis by near-infrared spectroscopy.
【請求項2】 前記特定波長は、1405〜1425、
1510〜1535、1545〜1570、1600〜
1625、1845〜1860、1865〜1890n
mであることを特徴とする請求項1の近赤外分光分析法
による細胞アポトーシス誘導によるDNAの断片化の検
出方法。
2. The specific wavelength is 1405 to 1425,
1510-1535, 1545-1570, 1600
1625, 1845-1860, 1865-1890n
The method for detecting DNA fragmentation by inducing cell apoptosis by near infrared spectroscopy according to claim 1, wherein m is m.
JP2001266741A 2001-09-04 2001-09-04 Detection method of fragmentation of dna by cell apoptosis derivation due to near-infrared spectrochemical analysis method Pending JP2003075437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266741A JP2003075437A (en) 2001-09-04 2001-09-04 Detection method of fragmentation of dna by cell apoptosis derivation due to near-infrared spectrochemical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266741A JP2003075437A (en) 2001-09-04 2001-09-04 Detection method of fragmentation of dna by cell apoptosis derivation due to near-infrared spectrochemical analysis method

Publications (1)

Publication Number Publication Date
JP2003075437A true JP2003075437A (en) 2003-03-12

Family

ID=19092979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266741A Pending JP2003075437A (en) 2001-09-04 2001-09-04 Detection method of fragmentation of dna by cell apoptosis derivation due to near-infrared spectrochemical analysis method

Country Status (1)

Country Link
JP (1) JP2003075437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313624C (en) * 2004-06-15 2007-05-02 中国科学院大连化学物理研究所 Detecting miniflow controlled chip from single-cell wilting DNA fragmentation
CN100425976C (en) * 2005-03-21 2008-10-15 江苏省人民医院 Method for quick-speed in-situ authentication of peripheral nerve tracts
CN111471589A (en) * 2020-04-23 2020-07-31 华中科技大学 Infrared quantitative PCR nucleic acid detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313624C (en) * 2004-06-15 2007-05-02 中国科学院大连化学物理研究所 Detecting miniflow controlled chip from single-cell wilting DNA fragmentation
CN100425976C (en) * 2005-03-21 2008-10-15 江苏省人民医院 Method for quick-speed in-situ authentication of peripheral nerve tracts
CN111471589A (en) * 2020-04-23 2020-07-31 华中科技大学 Infrared quantitative PCR nucleic acid detection device

Similar Documents

Publication Publication Date Title
Byrne et al. Quantitative analysis of human blood serum using vibrational spectroscopy
Parachalil et al. Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances
Mahmood et al. Raman spectral analysis for rapid screening of dengue infection
Sikirzhytskaya et al. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification
Bunaciu et al. Vibrational spectroscopy in clinical analysis
Gok et al. Bladder cancer diagnosis from bladder wash by Fourier transform infrared spectroscopy as a novel test for tumor recurrence
Taleb et al. Raman microscopy for the chemometric analysis of tumor cells
Parachalil et al. Raman spectroscopic screening of high and low molecular weight fractions of human serum
Perez-Guaita et al. Infrared-based quantification of clinical parameters
EP0818674A2 (en) Spectroscopic method
Lovergne et al. Investigating optimum sample preparation for infrared spectroscopic serum diagnostics
WO1996024837A2 (en) Spectrophotometric method and apparatus for the characterization of blood, blood types, and other bodily fluids
JP2003520942A (en) Reagent-free analysis of biological samples
Başar et al. Investigation of preeclampsia using raman spectroscopy
Takamura et al. Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection Fourier transform infrared spectroscopy: postmortem or antemortem blood?
Ralbovsky et al. Vibrational spectroscopy for detection of diabetes: A review
EP2480874B1 (en) Serum infrared spectroscopy for non invasive assessment of hepatic fibrosis in patients with chronic liver disease
Happillon et al. Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification
Bilal et al. Raman spectroscopy based discrimination of NS1 positive and negative dengue virus infected serum
Callery et al. Vibrational spectroscopy and multivariate analysis techniques in the clinical immunology laboratory: a review of current applications and requirements for diagnostic use
Ellis et al. Metabolic fingerprinting with Fourier transform infrared spectroscopy
Ehsan et al. Surface-enhanced Raman spectroscopy of centrifuged blood serum samples of diabetic type II patients by using 50KDa filter devices
EP1428022A1 (en) A method for the simultaneous and direct determination of serum cholesterol in high-and low-density lipoproteins using infrared spectroscopy
Yao et al. Moving-window bis-correlation coefficients method for visible and near-infrared spectral discriminant analysis with applications
Domján et al. Rapid analysis of whole blood and blood serum using near infrared spectroscopy