JP2003075126A - Film thickness measuring method and device - Google Patents
Film thickness measuring method and deviceInfo
- Publication number
- JP2003075126A JP2003075126A JP2001269339A JP2001269339A JP2003075126A JP 2003075126 A JP2003075126 A JP 2003075126A JP 2001269339 A JP2001269339 A JP 2001269339A JP 2001269339 A JP2001269339 A JP 2001269339A JP 2003075126 A JP2003075126 A JP 2003075126A
- Authority
- JP
- Japan
- Prior art keywords
- light
- film
- wavelength
- intensity
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、膜厚の測定方法、
及び、測定装置に関し、特に、膜の光吸収係数を利用し
た、太陽電池、液晶等の薄膜半導体等の膜厚の測定方法
及び測定装置に関する。TECHNICAL FIELD The present invention relates to a film thickness measuring method,
The present invention also relates to a measuring device, and more particularly to a measuring method and a measuring device for a film thickness of a thin film semiconductor such as a solar cell or a liquid crystal, which utilizes a light absorption coefficient of the film.
【0002】[0002]
【従来の技術】従来、薄膜の厚さを測定するためにダブ
ルモノクロと呼ばれる計測器が使用されている。この計
測器は、薄膜にレーザ光を照射し、膜の両側の表面間で
反射を繰り返す光を干渉させることによって干渉縞を形
成し、この干渉縞を基に膜厚を計測するようになってい
る。2. Description of the Related Art Conventionally, a measuring device called a double monochrome is used to measure the thickness of a thin film. This measuring device forms an interference fringe by irradiating a thin film with a laser beam and causing light repeatedly reflected between the surfaces on both sides of the film to form an interference fringe, and the film thickness is measured based on this interference fringe. There is.
【0003】一方、膜の光吸収係数を利用した膜厚の計
測方法も知られている。この方法では、検量線と呼ばれ
る直線のグラフを予め実験的に求めておき、このグラフ
に基づいて膜厚を計測している。即ち、厚さを測定する
膜に入射すべき光の強度をI 0、膜を透過した光の強度
をIとすると、入射光の強度と透過光の強度の比の自然
対数であるlog(I0/I)と、膜厚との間には、一
般に、比例関係が成り立つ。すなわち、
d=(1/α)log(I0/I) (数式1)
の関係が成り立つ。ここで、dは膜厚であり、αは光吸
収係数と呼ばれる係数である。この関係、即ち、検量線
を予め実験により求めておき、厚さを測定すべき膜につ
いてI0、Iを測定することによって膜厚dを求めるこ
とができる。なお、(数式1)において、入射光の強度
I0及び透過光の強度Iが白色光の強度である場合、光
吸収係数αは各波長に対する光吸収係数の重み付き平均
値となる。On the other hand, a film thickness meter utilizing the light absorption coefficient of the film.
Measuring methods are also known. This method is called a calibration curve
A straight line graph is obtained experimentally in advance, and this graph
The film thickness is measured based on. That is, measure the thickness
I is the intensity of the light to be incident on the film 0, Intensity of light transmitted through the membrane
Let I be the natural ratio of the intensity of the incident light and the intensity of the transmitted light.
Log (I0/ I) and the film thickness
Generally, a proportional relationship holds. That is,
d = (1 / α) log (I0/ I) (Formula 1)
The relationship is established. Here, d is the film thickness, and α is the light absorption.
This is a coefficient called the acquisition coefficient. This relationship, that is, the calibration curve
Is determined in advance by experiment and the thickness of the film to be measured
I0, I to obtain the film thickness d
You can Note that in (Equation 1), the intensity of the incident light
I0And the intensity I of the transmitted light is the intensity of white light,
The absorption coefficient α is the weighted average of the light absorption coefficient for each wavelength.
It becomes a value.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、光の干
渉縞を利用したダブルモノクロによる計測では、太陽電
池のシリコン膜等のように膜の表面に微少な凹凸がある
場合、膜の中に入射したレーザ光が反射する際に乱反射
を起こすので、干渉縞が形成されず、膜厚を計測するこ
とができないという問題がある。また、ダブルモノクロ
による計測では、計測に要する時間が長いため、膜の製
造ラインにおいてオンラインで計測を行うことができな
いという問題がある。However, in the double-monochrome measurement using the interference fringes of light, when the surface of the film has minute irregularities such as a silicon film of a solar cell, the light enters the film. Since diffuse reflection occurs when the laser light is reflected, there is a problem that interference fringes are not formed and the film thickness cannot be measured. In addition, the double-monochrome measurement has a problem that the measurement cannot be performed online in the film production line because the time required for the measurement is long.
【0005】一方、光吸収係数を利用した膜厚の計測方
法では、検量線を基に膜厚を求めているが、実際には、
検量線は個々の膜によって変化するので、測定精度が悪
くなるという問題がある。例えば、太陽電池のシリコン
膜では、同様の製造工程を経て製造されたシリコン膜で
あっても、各製造ロットにより膜質が異なり、検量線の
傾きの逆数である光吸収係数αが変化する。従って、光
吸収係数を利用して精度良く膜厚を測定するためには、
膜質が変わる毎に検量線を求める必要がある。On the other hand, in the film thickness measuring method using the light absorption coefficient, the film thickness is obtained based on the calibration curve.
Since the calibration curve changes depending on each film, there is a problem that the measurement accuracy deteriorates. For example, in the case of a silicon film of a solar cell, even if the silicon film is manufactured through the same manufacturing process, the film quality differs depending on each manufacturing lot, and the light absorption coefficient α, which is the reciprocal of the slope of the calibration curve, changes. Therefore, in order to accurately measure the film thickness using the light absorption coefficient,
It is necessary to obtain a calibration curve every time the film quality changes.
【0006】検量線を実験的に求めるには、膜厚を測定
すべき膜に光を照射し、その入射光I0と透過光Iを測
定し、log(I0/I)を求める。次いで、その部分
の膜厚を電子顕微鏡、ダブルモノクロ等で測定すること
によって膜厚dを求め、log(I0/I)と膜厚dと
の関係をグラフにプロットする。このような関係を多数
求め、プロット点を直線で結ぶことによって検量線が得
られる。しかしながら、検量線を求める実験は多くの時
間、費用を要し、オンラインで計測を行うことができな
いので、これを前記のように製造ロット毎に行うことは
不可能である。In order to obtain the calibration curve experimentally, the film whose film thickness is to be measured is irradiated with light, the incident light I 0 and the transmitted light I are measured, and log (I 0 / I) is obtained. Then, the film thickness of that portion is measured by an electron microscope, double monochrome, or the like to obtain the film thickness d, and the relationship between log (I 0 / I) and the film thickness d is plotted in a graph. A calibration curve can be obtained by obtaining many such relationships and connecting the plotted points with straight lines. However, the experiment for obtaining the calibration curve requires a lot of time and cost, and the measurement cannot be performed online, so that it is impossible to perform this for each production lot as described above.
【0007】本発明の目的は、膜の表面に凹凸がある場
合にも、オンラインで膜厚を測定することができる膜厚
の計測方法及び装置を得ることにある。An object of the present invention is to obtain a film thickness measuring method and apparatus capable of measuring the film thickness online even when the film surface has irregularities.
【0008】[0008]
【課題を解決するための手段】上述した目的を達成する
ために、本発明は、膜厚の計測方法において、膜に入射
すべき第1波長の光の強度を測定する段階と、膜厚を測
定すべき膜に、第1波長の光を照射する段階と、膜を透
過した第1波長の光の強度を測定する段階と、膜に入射
すべき第1波長の光の強度と膜を透過した第1波長の光
の強度の比である第1の比を求める段階と、膜に入射す
べき、第1の波長とは異なる第2波長の光の強度を測定
する段階と、第2波長の光を膜に照射する段階と、膜を
透過した第2波長の光の強度を測定する段階と、膜に入
射すべき第2波長の光の強度と膜を透過した第2波長の
光の強度の比である第2の比を求める段階と、第1の比
と第2の比に基づいて膜の膜厚を求める段階とを有する
ことを特徴としている。In order to achieve the above-mentioned object, the present invention provides a method of measuring a film thickness in which a step of measuring the intensity of light of a first wavelength to be incident on the film, The step of irradiating the film to be measured with the light of the first wavelength, the step of measuring the intensity of the light of the first wavelength transmitted through the film, and the intensity of the light of the first wavelength to be incident on the film and the transmission through the film Determining the first ratio, which is the ratio of the intensities of the light of the first wavelength, measuring the intensity of the light of the second wavelength different from the first wavelength, which should be incident on the film, and the second wavelength. Of irradiating the film with the light of the second wavelength, measuring the intensity of the light of the second wavelength transmitted through the film, and measuring the intensity of the light of the second wavelength that should be incident on the film and the light of the second wavelength transmitted through the film. It has a step of obtaining a second ratio which is a ratio of strengths and a step of obtaining a film thickness of the film based on the first ratio and the second ratio. That.
【0009】この計測方法では、膜厚を測定すべき膜
に、第1波長の光が照射され、膜を透過した第1波長の
光の強度が測定される。同様に、第1波長とは異なる第
2波長の光が膜に照射され、膜を透過した第2波長の光
の強度が測定される。次いで、第1波長の光、第2波長
の光について、入射光と透過光の強度の比が、夫々計算
される。これら2つの光の強度の比を使用して、上述の
測定原理により膜厚を求めることができる。In this measuring method, the film of which the film thickness is to be measured is irradiated with the light of the first wavelength and the intensity of the light of the first wavelength transmitted through the film is measured. Similarly, the film is irradiated with light having a second wavelength different from the first wavelength, and the intensity of the light having the second wavelength transmitted through the film is measured. Then, for the light of the first wavelength and the light of the second wavelength, the ratios of the intensities of the incident light and the transmitted light are calculated, respectively. The ratio of these two light intensities can be used to determine the film thickness according to the measurement principle described above.
【0010】この計測方法によれば、測定すべき膜の膜
質が代わる毎に検量線を作成することなく、膜の表面に
凹凸がある場合にも、オンラインで膜厚を測定すること
ができる。According to this measuring method, it is possible to measure the film thickness online even if the surface of the film has irregularities without creating a calibration curve every time the film quality of the film to be measured changes.
【0011】また、本発明の計測方法は、膜に入射すべ
き、第1波長及び第2波長とは異なる第i波長の光の強
度を測定する段階と、第i波長の光を、膜に照射する段
階と、膜を透過した第i波長の光の強度を測定する段階
と、膜に入射すべき第i波長の光の強度と膜を透過した
第i波長の光の強度の比である第iの比を求める段階
と、を更に有し、第1の比ないし第iの比に基づいて膜
の膜厚を求めることもできる。Further, the measuring method of the present invention comprises a step of measuring the intensity of light of the i-th wavelength different from the first wavelength and the second wavelength, which is to be incident on the film, and the light of the i-th wavelength is applied to the film. The step of irradiating, the step of measuring the intensity of the light of the i-th wavelength transmitted through the film, and the ratio of the intensity of the light of the i-th wavelength to be incident on the film and the intensity of the light of the i-th wavelength transmitted through the film. The step of obtaining the i-th ratio may be further included, and the film thickness of the film may be obtained based on the first ratio to the i-th ratio.
【0012】この方法によれば、3種類以上の波長の光
が膜に照射され、3つ以上の入射光と透過光の強度の比
が測定される。これら3つ以上の強度の比に基づいて膜
厚を計算することにより、膜厚の計算精度を更に向上さ
せることができる。According to this method, the film is irradiated with light having three or more kinds of wavelengths, and the ratio of the intensity of three or more incident lights to the intensity of transmitted light is measured. By calculating the film thickness based on the ratio of these three or more intensities, the calculation accuracy of the film thickness can be further improved.
【0013】さらに、本発明の方法において、検量線を
求める段階を更に有し、この検量線に基づいて膜厚を計
算し、入射すべき光と透過した光の強度の比に基づいて
検量線による膜厚の計算値を補正して膜厚を求めても良
い。Furthermore, the method of the present invention further comprises the step of obtaining a calibration curve, the film thickness is calculated based on this calibration curve, and the calibration curve is calculated based on the ratio of the intensity of light to be incident and the intensity of transmitted light. The calculated film thickness may be corrected to obtain the film thickness.
【0014】この方法によれば、実験的に得られた検量
線を使用して膜厚を求めているので、理論式には加味さ
れていない種々の測定条件による影響を排除することが
できる。According to this method, since the film thickness is obtained by using the calibration curve obtained experimentally, it is possible to eliminate the influence of various measurement conditions which are not considered in the theoretical formula.
【0015】また、本発明による膜厚計測装置は、膜厚
を測定すべき膜に、第1波長の光を照射するための第1
光源と、膜に入射すべき第1波長の光の強度を測定する
ための第1入射光受光器と、膜を透過した第1波長の光
の強度を測定するための第1透過光受光器と、膜に入射
すべき第1波長の光の強度と膜を透過した第1波長の光
の強度の比である第1の比を求めるための第1比較器
と、膜に、第1の波長とは異なる第2波長の光を照射す
る第2光源と、膜に入射すべき第2波長の光の強度を測
定するための第2入射光受光器と、膜を透過した第2波
長の光の強度を測定するための第2透過光受光器と、膜
に入射すべき第2波長の光の強度と膜を透過した第2波
長の光の強度の比である第2の比を求めるための第2比
較器と、第1の比と第2の比に基づいて膜の膜厚を求め
るための膜厚計算器と、を有することを特徴としてい
る。Further, the film thickness measuring device according to the present invention is the first for irradiating the film of which the film thickness is to be measured with the light of the first wavelength.
A light source, a first incident light receiver for measuring the intensity of light of the first wavelength to be incident on the film, and a first transmitted light receiver for measuring the intensity of light of the first wavelength transmitted through the film And a first comparator for determining a first ratio, which is a ratio of the intensity of the light of the first wavelength that should be incident on the film and the intensity of the light of the first wavelength that has passed through the film, and the first comparator on the film. A second light source for irradiating light of a second wavelength different from the wavelength, a second incident light receiver for measuring the intensity of light of the second wavelength to be incident on the film, and a second wavelength of the second wavelength transmitted through the film. A second transmitted light receiver for measuring the intensity of light, and a second ratio, which is the ratio of the intensity of light of the second wavelength to be incident on the film and the intensity of light of the second wavelength transmitted through the film, are obtained. And a film thickness calculator for obtaining the film thickness of the film based on the first ratio and the second ratio.
【0016】本発明の膜厚計測装置によれば、上記本発
明の膜厚計測方法を利用して、膜厚を測定することがで
きる。また、各入射光受光器は、各透過光受光器を兼ね
ても良い。各受光器は、光源と受光器との間に膜を配置
せずに光源の光を受光することにより、入射光受光器と
して機能し、光源と受光器との間に膜を配置して受光す
ることにより、透過光受光器として機能する。この構成
により、受光器の数を減ずることができる。According to the film thickness measuring device of the present invention, the film thickness can be measured by utilizing the film thickness measuring method of the present invention. Each incident light receiver may also serve as each transmitted light receiver. Each light receiver functions as an incident light receiver by receiving the light of the light source without disposing a film between the light source and the light receiver, and by arranging a film between the light source and the light receiver to receive light. By doing so, it functions as a transmitted light receiver. With this configuration, the number of light receivers can be reduced.
【0017】また、本発明の膜厚計測装置において、各
光源の光が、光ファイバを介して膜に照射されるように
構成しても良い。この構成によれば、光の照射位置を膜
に隣接して密に配置することができる。さらに、各入射
光受光器、及び/又は、各透過光受光器が受光すべき光
が、光ファイバを介して各受光器に導かれるように構成
しても良い。この構成によれば、一つの受光器によって
複数点の透過光を受光することが可能になる。Further, in the film thickness measuring device of the present invention, the light of each light source may be applied to the film through an optical fiber. According to this structure, the irradiation position of light can be densely arranged adjacent to the film. Further, the light to be received by each incident light receiver and / or each transmitted light receiver may be guided to each light receiver via an optical fiber. According to this configuration, it is possible to receive the transmitted light at a plurality of points with one light receiver.
【0018】また、本発明の膜厚計測装置は、膜厚を測
定すべき膜に光を照射するための光源と、膜に入射すべ
き光の強度を測定するための入射光分光器と、膜を透過
した光の強度を測定するための透過光分光器と、入射光
分光器によって分光された膜に入射すべき光の第1波長
成分の強度と透過光分光器によって分光された膜を透過
した光の第1波長成分の強度との比である第1の比を求
めるための第1比較器と、入射光分光器によって分光さ
れた膜に入射すべき光の第2波長成分の強度と透過光分
光器によって分光された膜を透過した光の第2波長成分
の強度との比である第2の比を求めるための第2比較器
と、第1の比と第2の比に基づいて膜の膜厚を求めるた
めの膜厚計算器と、を有することを特徴としている。Further, the film thickness measuring device of the present invention comprises a light source for irradiating the film whose film thickness is to be measured with light, an incident light spectroscope for measuring the intensity of light which should be incident on the film, The transmitted light spectroscope for measuring the intensity of the light transmitted through the film, the intensity of the first wavelength component of the light to be incident on the film, which is split by the incident light spectroscope, and the film split by the transmitted light spectroscope A first comparator for obtaining a first ratio, which is a ratio with the intensity of the first wavelength component of the transmitted light, and an intensity of the second wavelength component of the light to be incident on the film, which is split by the incident light spectroscope. And a second comparator for determining a second ratio, which is a ratio of the intensity of the second wavelength component of the light transmitted through the film, which is split by the transmitted light spectroscope, and the first ratio and the second ratio. And a film thickness calculator for obtaining the film thickness of the film based on the above.
【0019】この構成では、複数の波長を有する光、又
は、白色光が、計測すべき膜に照射される。光源から射
出され、入射光分光器によって受光された光は、分光さ
れ、受光した光に含まれる第1波長成分の光の強度と、
第1波長成分とは異なる波長の第2波長成分の光の強度
が測定される。同様に、光源から射出され、膜を透過し
て透過光分光器によって受光された光は、分光され、第
1波長成分の光の強度と、第2波長成分の光の強度が測
定される。第1比較器は、膜に入射すべき第1波長の光
の強度と膜を透過した第1波長の光の強度との第1の比
を求める。同様に、第2比較器は、膜に入射すべき第2
波長の光の強度と膜を透過した第2波長の光の強度との
第2の比を求める。膜厚計算器は、第1の比と第2の比
に基づいて膜厚を計算する。In this structure, the film to be measured is irradiated with light having a plurality of wavelengths or white light. The light emitted from the light source and received by the incident light spectroscope is separated into the light intensity of the first wavelength component contained in the received light,
The intensity of the light of the second wavelength component having a wavelength different from the first wavelength component is measured. Similarly, the light emitted from the light source, transmitted through the film, and received by the transmitted light spectroscope is dispersed, and the intensity of the light of the first wavelength component and the intensity of the light of the second wavelength component are measured. The first comparator obtains a first ratio between the intensity of the light of the first wavelength that should be incident on the film and the intensity of the light of the first wavelength that has passed through the film. Similarly, the second comparator is the second comparator that should be incident on the membrane.
A second ratio between the intensity of the light of the wavelength and the intensity of the light of the second wavelength transmitted through the film is obtained. The film thickness calculator calculates the film thickness based on the first ratio and the second ratio.
【0020】この構成によれば、単一の光源で測定を行
うことができ、膜厚測定に使用する光の波長を自由に選
択することができる。According to this structure, the measurement can be performed with a single light source, and the wavelength of light used for film thickness measurement can be freely selected.
【0021】[0021]
【発明の実施の形態】まず、本発明の実施形態における
膜厚の測定原理について説明する。一般に、光吸収係数
αは、光の波長λの関数として次の理論式によって求め
ることができる。
α(λ)=B(E−Eg)2/E (数式2)
ここで、BはB定数と呼ばれる定数であり、E[eV]
(エレクトロンボルト)は光子エネルギーであり、Eg
[eV]はバンドギャップである。また、光子エネルギ
ーEは、E=1.24/λで与えられ、波長λの関数で
ある。バンドギャップEgは、膜質を支配する定数であ
り、膜毎に値が変化する。BEST MODE FOR CARRYING OUT THE INVENTION First, the principle of film thickness measurement according to an embodiment of the present invention will be described. In general, the light absorption coefficient α can be obtained by the following theoretical formula as a function of the wavelength λ of light. α (λ) = B (E−E g ) 2 / E (Equation 2) Here, B is a constant called B constant, and E [eV]
(Electron volt) is photon energy, E g
[EV] is a band gap. The photon energy E is given by E = 1.24 / λ and is a function of the wavelength λ. The band gap E g is a constant that governs the film quality, and its value changes for each film.
【0022】ここで、測定すべき膜に入射した波長λ1
の光の強度をI01とし、透過した波長λ1の光の強度を
I11とすると、(数式1)(数式2)を使用して、次の
関係式が得られる。
-log(I11/I01)=α(λ1)d=d・B(E1−Eg)2/E1 (数式3)
同様に、膜に入射した波長λ2の光の強度をI02、透過
した波長λ2の光の強度をI12とすると、
-log(I12/I02)=α(λ2)d=d・B(E2−Eg)2/E2 (数式4)
の関係式が得られる。なお、E1=1.24/λ1、E2=
1.24/λ2である。更に、(数式3)(数式4)を連
立方程式として、Egについて解くと、
Eg={E2(a1E1)1/2−E1(a2E2)1/2}
/{(a1E1)1/2−(a2E2)1/2}
ただし、a1=-log(I11/I01)、a2=-log(I12/I02) (数式5)
の関係式が得られる。(数式5)によって計算されたE
gの値を、(数式2)に代入することによって、α
(λ)の値を得ることができる。このようにして得られ
たα(λ)に基づいて膜厚を求めることにより、膜質に
よってEgが変化した場合にも精度良く膜厚を求めるこ
とができる。Here, the wavelength λ 1 incident on the film to be measured
Let I 01 be the intensity of the light and I 11 be the intensity of the light of the transmitted wavelength λ 1 , then the following relational expression can be obtained using (Equation 1) and (Equation 2). -log (I 11 / I 01 ) = α (λ 1 ) d = d · B (E 1 −E g ) 2 / E 1 (Equation 3) Similarly, the intensity of light of wavelength λ 2 incident on the film is Let I 02 be the intensity of the transmitted light of wavelength λ 2 and I 12 be -log (I 12 / I 02 ) = α (λ 2 ) d = d · B (E 2 −E g ) 2 / E 2 ( The relational expression of Equation 4) is obtained. In addition, E 1 = 1.24 / λ 1 , E 2 =
It is 1.24 / λ 2 . Further, solving for E g using (Equation 3) and (Equation 4) as simultaneous equations, E g = {E 2 (a 1 E 1 ) 1/2 −E 1 (a 2 E 2 ) 1/2 } / {(A 1 E 1 ) 1/2 − (a 2 E 2 ) 1/2 } where a 1 = -log (I 11 / I 01 ), a 2 = -log (I 12 / I 02 ) (mathematical formula) The relational expression of 5) is obtained. E calculated by (Equation 5)
By substituting the value of g into (Equation 2), α
The value of (λ) can be obtained. By obtaining the film thickness based on α (λ) thus obtained, it is possible to obtain the film thickness accurately even when E g changes depending on the film quality.
【0023】次に、添付図面を参照して、本発明の実施
形態を説明する。まず、図1乃至図3を参照して本発明
の第1実施形態を説明する。図1は、本発明の第1実施
形態による膜厚計測装置1の概略図である。第1実施形
態による膜厚計測装置1は、ガラス基板S上に形成され
た薄膜Mの膜厚を測定するように構成されている。膜厚
計測装置1は、第1光源である第1LED2と、第1L
ED2とは異なる波長の光を照射する第2光源である第
2LED4と、第1LED2及び第2LED4を点灯さ
せるための電源6と、を有する。さらに、膜厚計測装置
1は、第1入射光受光器及び第1透過光受光器として機
能する、第1LED2が照射した光を受光するための第
1フォトセンサ8と、第2入射光受光器及び第2透過光
受光器として機能する、第2LED4が照射した光を受
光するための第2フォトセンサ10と、第1フォトセン
サ8及び第2フォトセンサ10が受光した光に基づいて
膜厚を求めるための演算装置12と、を有する。Next, an embodiment of the present invention will be described with reference to the accompanying drawings. First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view of a film thickness measuring device 1 according to the first embodiment of the present invention. The film thickness measuring device 1 according to the first embodiment is configured to measure the film thickness of the thin film M formed on the glass substrate S. The film thickness measuring device 1 includes a first LED 2 which is a first light source and a first LED 2.
It has the 2nd LED4 which is the 2nd light source which irradiates the light of a wavelength different from ED2, and the power supply 6 for lighting the 1st LED2 and the 2nd LED4. Further, the film thickness measuring device 1 includes a first photosensor 8 for receiving the light emitted by the first LED 2, which functions as a first incident light receiver and a first transmitted light receiver, and a second incident light receiver. And a second photosensor 10 that functions as a second transmitted light receiver for receiving the light emitted by the second LED 4, and a film thickness based on the light received by the first photosensor 8 and the second photosensor 10. And an arithmetic unit 12 for obtaining.
【0024】第1LED2は薄膜Mに隣接して配置さ
れ、単色光を薄膜Mに照射するように構成されている。
第2LED4は薄膜Mに隣接して配置され、第1LED
2とは異なる波長(色)の単色光を、薄膜Mに照射する
ように構成されている。また、第1LED2と第2LE
D4は、互いに近接した位置に光を照射できるように、
隣接して配置されている。電源6は、第1LED2及び
第2LED4に直流電圧を供給し、各LEDを点灯させ
るように構成されている。The first LED 2 is arranged adjacent to the thin film M and is configured to irradiate the thin film M with monochromatic light.
The second LED 4 is disposed adjacent to the thin film M, and the first LED
The thin film M is configured to be irradiated with monochromatic light having a wavelength (color) different from 2. In addition, the first LED2 and the second LE
D4 is designed to irradiate light at positions close to each other,
Adjacent to each other. The power supply 6 is configured to supply a DC voltage to the first LED 2 and the second LED 4 and turn on each LED.
【0025】第1フォトセンサ8は、第1LED2の反
対側で、薄膜Mに隣接して第1LED2対向して配置さ
れ、薄膜M及びガラス基板Sを透過した第1LED2の
光を受光するように構成されている。同様に、第2フォ
トセンサ10は第2LED4に対応する位置に配置さ
れ、薄膜M及びガラス基板Sを透過した第1LED2の
光を受光するように構成されている。第1フォトセンサ
8及び第2フォトセンサ10は、受光した光の強度に対
応したアナログ電圧を出力するように構成され、各出力
信号は、演算装置12に導かれる。The first photosensor 8 is arranged on the side opposite to the first LED 2 adjacent to the thin film M and facing the first LED 2, and is configured to receive the light of the first LED 2 transmitted through the thin film M and the glass substrate S. Has been done. Similarly, the second photosensor 10 is arranged at a position corresponding to the second LED 4, and is configured to receive the light of the first LED 2 that has passed through the thin film M and the glass substrate S. The first photosensor 8 and the second photosensor 10 are configured to output an analog voltage corresponding to the intensity of the received light, and each output signal is guided to the arithmetic unit 12.
【0026】演算装置12は、各フォトセンサが出力し
たアナログ信号をデジタル信号に変換するためのA/D
変換器14と、A/D変換器14によって変換されたデ
ジタル信号に基づいて膜厚を計算するためのコンピュー
タ16と、を有する。即ち、演算装置12は、第1比較
器、第2比較器、及び、膜厚計算器として機能する。The arithmetic unit 12 is an A / D for converting an analog signal output from each photosensor into a digital signal.
It has a converter 14 and a computer 16 for calculating a film thickness based on the digital signal converted by the A / D converter 14. That is, the arithmetic unit 12 functions as a first comparator, a second comparator, and a film thickness calculator.
【0027】次に、図2及び図3を参照して、本発明の
第1実施形態による膜厚計測装置1の作用を説明する。
図2は、本実施形態による測定手順のフローチャートで
ある。まず、ステップS1において、各LEDとフォト
センサとの間に薄膜M及びガラス基板Sを配置しない状
態で各LEDを点灯させる。この状態で、第1LED2
の射出光を第1フォトセンサ8で、第2LED4の射出
光を第2フォトセンサ10で夫々受光する。各LEDと
各フォトセンサとの間隔は狭いので、各フォトセンサが
受光した光は、LEDとフォトセンサとの間に薄膜Mが
配置された場合に、薄膜Mに入射する光と同一の強度で
あると見なすことができる。即ち、各フォトセンサの出
力により、膜に入射する光の強度I01、I02を求めるこ
とができる。Next, the operation of the film thickness measuring device 1 according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3.
FIG. 2 is a flowchart of the measurement procedure according to this embodiment. First, in step S1, each LED is turned on without the thin film M and the glass substrate S being arranged between each LED and the photo sensor. In this state, the first LED 2
The first photo sensor 8 receives the light emitted from the second photo sensor 10 and the second photo sensor 10 receives the light emitted from the second LED 4. Since the interval between each LED and each photo sensor is narrow, the light received by each photo sensor has the same intensity as the light incident on the thin film M when the thin film M is arranged between the LED and the photo sensor. Can be considered to be. That is, the intensities I 01 and I 02 of the light incident on the film can be obtained from the output of each photosensor.
【0028】次に、ステップS2において、膜厚測定の
準備として、測定すべき膜の検量線を求める。まず、検
量線を求めるべき薄膜M0及びガラス基板Sを、第1L
ED2と第1フォトセンサ8との間に配置し、薄膜M0
及びガラス基板Sを透過した第1LED2の射出光を第
1フォトセンサ8で受光する。これにより透過光の強度
I11が得られる。なお、本実施形態においては、ガラス
基板Sは透明度が高いので、ガラス基板Sの存在は透過
光の強度I11に殆ど影響を与えない。このI11と先に求
めたI01により、log(I01/I11)の値を計算す
る。次いで、透過光を計測した位置の膜厚dを電子顕微
鏡等で測定する。このようにして、log(I01/
I11)の値と、膜厚dとの関係を薄膜M0上の多数の点
で求め、グラフにプロットすることにより、検量線が得
られる。また、適用によっては、複数の薄膜のサンプル
を利用して検量線を求めても良い。Next, in step S2, a calibration curve of the film to be measured is obtained in preparation for film thickness measurement. First, the thin film M 0 and the glass substrate S for which the calibration curve is to be obtained are first
The thin film M 0 is arranged between the ED 2 and the first photo sensor 8.
Light emitted from the first LED 2 that has passed through the glass substrate S is received by the first photosensor 8. Thereby, the intensity I 11 of the transmitted light is obtained. In addition, in this embodiment, since the glass substrate S has high transparency, the presence of the glass substrate S hardly affects the intensity I 11 of the transmitted light. The value of log (I 01 / I 11 ) is calculated from this I 11 and I 01 previously obtained. Next, the film thickness d at the position where the transmitted light is measured is measured with an electron microscope or the like. In this way, log (I 01 /
A calibration curve can be obtained by obtaining the relationship between the value of (I 11 ) and the film thickness d at a number of points on the thin film M 0 and plotting it on a graph. Further, depending on the application, a calibration curve may be obtained using a plurality of thin film samples.
【0029】ステップS3において、コンピュータ16
は、最小2乗法等を使用して、検量線の傾きA、及び、
y切片Bを計算し、その値をコンピュータ16のメモリ
に記憶する。得られた検量線の一例を図3に示す。さら
に、コンピュータ16は、検量線を求めた薄膜M0の任
意の位置で、入射光の強度I01、I02及び透過光の強度
I11、I12に基づいて、薄膜M0の光吸収係数α
0(λ1)を後述する手順によって計算し、その値をメモ
リに記憶する。In step S3, the computer 16
Is the slope A of the calibration curve using the method of least squares, and
The y-intercept B is calculated and the value is stored in the memory of the computer 16. An example of the obtained calibration curve is shown in FIG. Further, the computer 16 determines the light absorption coefficient of the thin film M 0 based on the incident light intensities I 01 and I 02 and the transmitted light intensities I 11 and I 12 at an arbitrary position of the thin film M 0 for which the calibration curve is obtained. α
0 (λ 1 ) is calculated by the procedure described later, and the value is stored in the memory.
【0030】次いで、検量線を求めた薄膜M0とは別の
薄膜Mの膜厚測定を開始する。ステップS4において、
検量線を求めた場合と同様に、各LEDと各フォトセン
サとの間に、ガラス基板S上に形成された薄膜Mを配置
する。次に、薄膜M及びガラス基板Sを透過した第1L
ED2の射出光を第1フォトセンサ8で受光する。第1
フォトセンサ8は、受光した光の強度に対応した電圧を
A/D変換器14に出力する。A/D変換器14は、入
力された電圧に対応したデジタル値をコンピュータ16
に出力する。これにより、透過光の強度I11が測定され
る。同様に、第2フォトセンサ10によって透過光の強
度I12が測定される。Then, the film thickness measurement of the thin film M different from the thin film M 0 for which the calibration curve was obtained is started. In step S4,
Similar to the case where the calibration curve is obtained, the thin film M formed on the glass substrate S is arranged between each LED and each photosensor. Next, the first L transmitted through the thin film M and the glass substrate S
The light emitted from the ED 2 is received by the first photosensor 8. First
The photo sensor 8 outputs a voltage corresponding to the intensity of the received light to the A / D converter 14. The A / D converter 14 converts the digital value corresponding to the input voltage into the computer 16
Output to. Thereby, the intensity I 11 of the transmitted light is measured. Similarly, the intensity I 12 of the transmitted light is measured by the second photo sensor 10.
【0031】ステップS5において、コンピュータ16
は、先に求めた入射光の強度I01、I02及び透過光の強
度I11、I12からlog(I01/I11)、log(I02
/I 12)の値を計算する。更に、これらの値を(数式
5)に代入してバンドギャップEgを計算し、得られた
Egの値を(数式2)に代入して、薄膜Mの光吸収係数
α(λ1)を求める。なお、前述の薄膜M0の光吸収係数
α0(λ1)も同様の手順によって計算されている。さら
に、ステップS6において、コンピュータ16は、lo
g(I01/I11)の値を使用して、検量線から膜厚dを
計算する。即ち、
d=A・log(I01/I11)+B (数式6)
によって膜厚dを計算する。ここで、Aは検量線の傾き
であり、Bは切片である。しかしながら、測定した薄膜
Mは、検量線を求めた薄膜M0とは別のものであり、求
められた膜厚dには誤差が含まれる。そこで、ステップ
S7において、膜厚dの値を(数式7)によってdCに
補正する。
dC=d・α0(λ1)/α(λ1) (数式7)
以上の手順により膜質変化等の影響を受けずに膜厚が測
定される。In step S5, the computer 16
Is the intensity I of the incident light previously obtained01, I02And the intensity of transmitted light
Degree I11, I12To log (I01/ I11), Log (I02
/ I 12) Value is calculated. In addition, these values
Substituting in 5), the band gap EgWas calculated and obtained
EgSubstituting the value of into the (Formula 2), the light absorption coefficient of the thin film M
α (λ1). In addition, the above-mentioned thin film M0Light absorption coefficient of
α0(Λ1) Is calculated by the same procedure. Furthermore
Then, in step S6, the computer 16
g (I01/ I11) Is used to calculate the film thickness d from the calibration curve.
calculate. That is,
d = A · log (I01/ I11) + B (Formula 6)
The film thickness d is calculated by Where A is the slope of the calibration curve
And B is the intercept. However, the measured thin film
M is a thin film M for which a calibration curve was obtained0Is different from
The measured film thickness d includes an error. Then step
In S7, the value of the film thickness d is calculated byCTo
to correct.
dC= Dα0(Λ1) / Α (λ1) (Formula 7)
With the above procedure, the film thickness can be measured without being affected by changes in film quality.
Is determined.
【0032】本発明の第1実施形態によれば、検量線に
よって計算された膜厚dを、光吸収係数によって補正し
ているので、膜質変化の影響を受け難い正確な膜厚dC
を求めることができる。また、一旦、検量線を作成して
おけば、別の測定すべき薄膜については検量線を作成す
る必要がないので、オンラインで正確な膜厚を測定する
ことができる。更に、実験的に求められた検量線を利用
しているので、理論式を基に計算された光吸収係数α
(λ1)には加味されていない、ガラス基板等の影響も
排除することができる。According to the first embodiment of the present invention, since the film thickness d calculated by the calibration curve is corrected by the light absorption coefficient, the accurate film thickness d C which is hardly affected by the change in film quality.
Can be asked. Further, once the calibration curve is created, it is not necessary to create the calibration curve for another thin film to be measured, so that the accurate film thickness can be measured online. Further, since the calibration curve obtained experimentally is used, the light absorption coefficient α calculated based on the theoretical formula
The influence of the glass substrate or the like, which is not added to (λ 1 ), can be eliminated.
【0033】変形例として、本発明の第1実施形態で
は、光源であるLEDを測定すべき薄膜Mに近接して配
置しているが、LEDを薄膜Mから離れた位置に配置
し、LEDの光を光ファイバ等によって薄膜Mに導くよ
うに構成しても良い。この構成によれば、多数点での膜
厚計測を容易に行うことができる。或いは、フォトセン
サを薄膜Mから離れた位置に配置し、薄膜Mを透過した
光を光ファイバ等によってフォトセンサまで導くように
構成しても良い。この構成では、受光部分を軽量化する
ことができ、多点計測にも有利である。また、複数の光
ファイバが1つのフォトセンサに対して光を導くように
構成し、フォトセンサを複数の受光点について兼用にす
ることもできる。As a modified example, in the first embodiment of the present invention, the LED, which is the light source, is arranged close to the thin film M to be measured. The light may be guided to the thin film M by an optical fiber or the like. With this configuration, it is possible to easily measure the film thickness at multiple points. Alternatively, the photosensor may be arranged at a position apart from the thin film M, and the light transmitted through the thin film M may be guided to the photosensor by an optical fiber or the like. With this configuration, it is possible to reduce the weight of the light receiving portion, which is also advantageous for multipoint measurement. Alternatively, the plurality of optical fibers may be configured to guide light to one photosensor, and the photosensor may also be used for a plurality of light receiving points.
【0034】さらに、本実施形態では、2種類の波長λ
1、λ2の単色光を使用してバンドギャップEgを計算し
ているが、3種類以上の波長の単色光を使用しても良
い。その場合には、(数式3)(数式4)の他に同様の
関係式を加え、それらの関係式を連立させて最小2乗法
等によってEgの値を計算する。これにより、Egの計算
精度を向上させることができる。また、本実施形態にお
いては、検量線を利用して膜厚dを計算し、その値を光
吸収係数の比によって補正しているが、適用によって
は、検量線を利用せずに、計算された光吸収係数α(λ
1)を直接(数式1)に代入することによって膜厚を求
めても良い。Further, in this embodiment, two kinds of wavelengths λ
Although the bandgap E g is calculated by using monochromatic lights of 1 and λ 2 , monochromatic lights of three or more kinds of wavelengths may be used. In that case, the same relational expressions are added in addition to (Equation 3) and (Equation 4), these relational expressions are made simultaneous, and the value of E g is calculated by the least square method or the like. As a result, the calculation accuracy of E g can be improved. Further, in the present embodiment, the film thickness d is calculated using the calibration curve, and the value is corrected by the ratio of the light absorption coefficient. However, depending on the application, the film thickness d is calculated without using the calibration curve. Light absorption coefficient α (λ
The film thickness may be obtained by directly substituting ( 1 ) into (Equation 1).
【0035】次に、図4を参照して、本発明の第2実施
形態を説明する。本発明の第2実施形態による膜厚計測
装置100は、単一の光源が薄膜Mに白色光を照射し、
分光器が薄膜Mを透過した光を受光する点以外は第1実
施形態と同様である。従って、第1実施形態と同様の構
成要素には同一の参照番号を付し、同一の構成、作用、
効果、変形例については説明を省略する。図4は、本発
明の第2実施形態の概略図である。Next, a second embodiment of the present invention will be described with reference to FIG. In the film thickness measuring device 100 according to the second embodiment of the present invention, a single light source irradiates the thin film M with white light,
The second embodiment is the same as the first embodiment except that the spectroscope receives the light transmitted through the thin film M. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the same configurations, operations,
Descriptions of effects and modified examples are omitted. FIG. 4 is a schematic diagram of the second embodiment of the present invention.
【0036】図4に示すように、第2実施形態による膜
厚計測装置100は、光源であるランプ102と、ラン
プ102を点灯させるための電源6と、を有する。さら
に、膜厚計測装置100は、入射光分光器及び透過光分
光器として機能する、ランプ102が照射した光を分光
するための分光器112と、分光器112の出力に基づ
いて膜厚を求めるための演算装置12と、を有する。As shown in FIG. 4, the film thickness measuring apparatus 100 according to the second embodiment has a lamp 102 which is a light source and a power source 6 for lighting the lamp 102. Furthermore, the film thickness measuring device 100 obtains the film thickness based on the output of the spectroscope 112 and the spectroscope 112 that functions as an incident light spectroscope and a transmitted light spectroscope to disperse the light emitted by the lamp 102. And an arithmetic unit 12 for.
【0037】分光器112は、入射した光の波長ごとの
強度、即ち、スペクトラムを計測することができる。分
光器112は、プリズムや回折格子等を含む機器によっ
て構成することができる。The spectroscope 112 can measure the intensity of the incident light for each wavelength, that is, the spectrum. The spectroscope 112 can be configured by a device including a prism, a diffraction grating, and the like.
【0038】ランプ102によって照射された白色光
は、薄膜M及びガラス基板Sを透過し、分光器112に
入射する。分光器112は、入射した白色光のスペクト
ラムを計測する。分光器112で計測された白色光のス
ペクトラムは、演算装置12のコンピュータ16に出力
される。コンピュータ16では、スペクトラムの中から
任意の波長λ1、λ2が選択され、薄膜Mを透過した波長
λ1、λ2の光の強度に基づいて膜厚が計算される。検量
線の作成手順、及び、任意の2波長の透過強度を用いた
後の演算装置12による信号処理は、第1実施形態と同
様であるので説明を省略する。The white light emitted by the lamp 102 passes through the thin film M and the glass substrate S and enters the spectroscope 112. The spectroscope 112 measures the spectrum of the incident white light. The spectrum of white light measured by the spectroscope 112 is output to the computer 16 of the arithmetic unit 12. In the computer 16, arbitrary wavelengths λ 1 and λ 2 are selected from the spectrum, and the film thickness is calculated based on the intensities of the light having the wavelengths λ 1 and λ 2 transmitted through the thin film M. Since the procedure for creating the calibration curve and the signal processing by the arithmetic unit 12 after using the transmission intensities of arbitrary two wavelengths are the same as those in the first embodiment, the description thereof will be omitted.
【0039】本発明の第2実施形態によれば、任意の波
長を、分光器によって選択できるので、測定に使用する
光の波長を自由に設定することができる。この構成は、
使用する光の波長を3種類以上に増加させる場合に特に
有利である。According to the second embodiment of the present invention, an arbitrary wavelength can be selected by the spectroscope, so that the wavelength of light used for measurement can be freely set. This configuration
It is particularly advantageous when the wavelength of light used is increased to three or more.
【0040】以上、本発明の好ましい実施形態を説明し
たが、本発明の範囲又は精神から逸脱することなく、特
許請求の範囲に記載されて技術的事項の範囲内におい
て、開示した実施形態に種々の変更をすることができ
る。特に、測定対象物は、太陽電池のシリコン膜等に限
定されることはなく、任意の薄膜の測定に本発明を使用
することができる。Although the preferred embodiments of the present invention have been described above, various modifications can be made to the disclosed embodiments within the scope of the technical matters described in the claims without departing from the scope or spirit of the present invention. Can be changed. In particular, the measurement object is not limited to the silicon film or the like of the solar cell, and the present invention can be used for measurement of any thin film.
【0041】[0041]
【発明の効果】本発明によれば、膜の表面に凹凸がある
場合にも、オンラインで膜厚を測定することができる。According to the present invention, the film thickness can be measured online even when the surface of the film has irregularities.
【図1】本発明の第1実施形態による膜厚計測装置の概
略図である。FIG. 1 is a schematic view of a film thickness measuring device according to a first embodiment of the present invention.
【図2】第1実施形態の膜厚計測装置による測定手順を
示すフローチャートである。FIG. 2 is a flowchart showing a measurement procedure by the film thickness measuring device according to the first embodiment.
【図3】検量線の一例を示すグラフである。FIG. 3 is a graph showing an example of a calibration curve.
【図4】本発明の第2実施形態による膜厚計測装置の概
略図である。FIG. 4 is a schematic diagram of a film thickness measuring device according to a second embodiment of the present invention.
M 薄膜 S ガラス基板 1 第1実施形態による膜厚計測装置 2 第1LED 4 第2LED 6 電源 8 第1フォトセンサ 10 第2フォトセンサ 12 演算装置 14 A/D変換器 16 コンピュータ 100 第2実施形態による膜厚計測装置 102 ランプ 112 分光器 M thin film S glass substrate 1. Film thickness measuring apparatus according to the first embodiment 2 First LED 4 Second LED 6 power supply 8 First photo sensor 10 Second photo sensor 12 arithmetic unit 14 A / D converter 16 computers 100 Film Thickness Measuring Apparatus According to Second Embodiment 102 lamp 112 Spectrometer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 茂一 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 宮園 直之 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 Fターム(参考) 2F065 AA30 BB01 BB23 CC17 DD06 DD11 FF46 FF61 GG02 GG07 GG22 GG23 GG24 HH15 JJ01 JJ05 JJ15 LL02 LL67 QQ03 QQ18 QQ21 QQ25 QQ26 RR05 RR07 RR09 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shigekazu Ueno 1-1 Satinoura Town, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries Nagasaki Shipyard Co., Ltd. (72) Inventor Naoyuki Miyazono 1-1 Satinoura Town, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries Nagasaki Shipyard Co., Ltd. F term (reference) 2F065 AA30 BB01 BB23 CC17 DD06 DD11 FF46 FF61 GG02 GG07 GG22 GG23 GG24 HH15 JJ01 JJ05 JJ15 LL02 LL67 QQ03 QQ18 QQ21 QQ25 QQ26 RR05 RR07 RR09
Claims (10)
と、 膜厚を測定すべき膜に、前記第1波長の光を照射する段
階と、 前記膜を透過した前記第1波長の光の強度を測定する段
階と、 前記膜に入射すべき前記第1波長の光の強度と前記膜を
透過した前記第1波長の光の強度の比である第1の比を
求める段階と、 前記膜に入射すべき、第1の波長とは異なる第2波長の
光の強度を測定する段階と、 前記第2波長の光を前記膜に照射する段階と、 前記膜を透過した前記第2波長の光の強度を測定する段
階と、 前記膜に入射すべき前記第2波長の光の強度と前記膜を
透過した前記第2波長の光の強度の比である第2の比を
求める段階と、 前記第1の比と前記第2の比に基づいて前記膜の膜厚を
求める段階と、 を有することを特徴とする膜厚の計測方法。1. A method of measuring a film thickness, the step of measuring the intensity of light of a first wavelength to be incident on the film, and the step of irradiating the film of which the film thickness is to be measured with the light of the first wavelength. Measuring the intensity of the light of the first wavelength transmitted through the film, the intensity of the light of the first wavelength to be incident on the film and the intensity of the light of the first wavelength transmitted through the film. Determining a first ratio, which is a ratio, measuring the intensity of light of a second wavelength different from the first wavelength, which should be incident on the film, and irradiating the film with light of the second wavelength. Measuring the intensity of the light of the second wavelength transmitted through the film, the intensity of the light of the second wavelength to be incident on the film, and the intensity of the light of the second wavelength transmitted through the film. Obtaining a second ratio which is a ratio of strengths, and obtaining a film thickness of the film based on the first ratio and the second ratio A method for measuring a film thickness, comprising:
前記第2波長とは異なる第i波長の光の強度を測定する
段階と、 前記第i波長の光を、前記膜に照射する段階と、 前記膜を透過した前記第i波長の光の強度を測定する段
階と、 前記膜に入射すべき前記第i波長の光の強度と前記膜を
透過した前記第i波長の光の強度の比である第iの比を
求める段階と、を更に有し、 前記第1の比ないし前記第iの比に基づいて前記膜の膜
厚を求める段階と、 を有することを特徴とする請求項1記載の膜厚の計測方
法。2. A step of measuring an intensity of light of an i-th wavelength different from the first wavelength and the second wavelength, which is to be incident on the film, and the film is irradiated with the light of the i-th wavelength. Measuring the intensity of the i-th wavelength light transmitted through the film, the intensity of the i-th wavelength light to be incident on the film, and the intensity of the i-th wavelength light transmitted through the film. The step of obtaining an i-th ratio which is a ratio of the above, and the step of obtaining the film thickness of the film based on the first ratio to the i-th ratio. Item 1. A method for measuring a film thickness according to item 1.
量線に基づいて膜厚を計算し、前記入射すべき光と透過
した光の強度の比に基づいて前記検量線による膜厚の計
算値を補正して膜厚を求めることを特徴とする請求項1
又は請求項2に記載の膜厚の計測方法。3. The method further comprises the step of obtaining a calibration curve, calculating the film thickness based on this calibration curve, and calculating the film thickness based on the ratio of the intensities of the light to be incident and the transmitted light. The film thickness is obtained by correcting the calculated value.
Alternatively, the film thickness measuring method according to claim 2.
照射するための第1光源と、 前記膜に入射すべき前記第1波長の光の強度を測定する
ための第1入射光受光器と、 前記膜を透過した前記第1波長の光の強度を測定するた
めの第1透過光受光器と、 前記膜に入射すべき前記第1波長の光の強度と前記膜を
透過した前記第1波長の光の強度の比である第1の比を
求めるための第1比較器と、 前記膜に、第1の波長とは異なる第2波長の光を照射す
る第2光源と、 前記膜に入射すべき前記第2波長の光の強度を測定する
ための第2入射光受光器と、 前記膜を透過した前記第2波長の光の強度を測定するた
めの第2透過光受光器と、 前記膜に入射すべき前記第2波長の光の強度と前記膜を
透過した前記第2波長の光の強度の比である第2の比を
求めるための第2比較器と、 前記第1の比と前記第2の比に基づいて前記膜の膜厚を
求めるための膜厚計算器と、を有することを特徴とする
膜厚計測装置。4. A first light source for irradiating a film of which film thickness is to be irradiated with light of a first wavelength, and a first light source for measuring intensity of light of the first wavelength to be incident on the film. An incident light receiver; a first transmitted light receiver for measuring the intensity of the light of the first wavelength transmitted through the film; and an intensity of the light of the first wavelength to be incident on the film and the film. A first comparator for determining a first ratio which is a ratio of the intensity of the transmitted light of the first wavelength; and a second light source for irradiating the film with light of a second wavelength different from the first wavelength. A second incident light receiver for measuring the intensity of the light of the second wavelength to be incident on the film, and a second transmission for measuring the intensity of the light of the second wavelength transmitted through the film. A light receiver and a second ratio which is a ratio of the intensity of the light of the second wavelength to be incident on the film and the intensity of the light of the second wavelength transmitted through the film. And a film thickness calculator for calculating the film thickness of the film based on the first ratio and the second ratio. .
照射するための第i光源と、 前記膜に入射すべき前記第i波長の光の強度を測定する
ための第i入射光受光器と、 前記膜を透過した前記第i波長の光の強度を測定するた
めの第i透過光受光器と、 前記膜に入射すべき前記第i波長の光の強度と前記膜を
透過した前記第i波長の光の強度の比である第iの比を
求めるための第i比較器と、を更に有し、 前記膜厚計算器が、前記第1の比ないし前記第iの比に
基づいて前記膜の膜厚を求めることを特徴とする請求項
4記載の膜厚計測装置。5. An i-th light source for irradiating a film of which film thickness is to be irradiated with light of an i-th wavelength, and an i-th light for measuring intensity of light of the i-th wavelength to be incident on the film. An incident light receiver, an i-th transmitted light receiver for measuring the intensity of the light of the i-th wavelength transmitted through the film, and an intensity of the light of the i-th wavelength to be incident on the film and the film. And an i-th comparator for obtaining an i-th ratio which is a ratio of the intensity of the transmitted light of the i-th wavelength, wherein the film thickness calculator has the first ratio to the i-th ratio. The film thickness measuring device according to claim 4, wherein the film thickness of the film is obtained based on a ratio.
憶しており、この検量線に基づいて膜厚を計算し、前記
入射すべき光と透過した光の強度の比に基づいて前記計
算された膜厚を補正することを特徴とする請求項4又は
請求項5に記載の膜厚計測装置。6. The film thickness calculator stores the data of a calibration curve, calculates the film thickness based on this calibration curve, and based on the ratio of the intensity of the incident light and the intensity of the transmitted light. The film thickness measuring device according to claim 4 or 5, wherein the calculated film thickness is corrected.
光器を兼ねることを特徴とする請求項4乃至請求項6の
何れか1項に記載の膜厚計測装置。7. The film thickness measuring device according to claim 4, wherein each of the incident light receivers also serves as each of the transmitted light receivers.
前記膜に照射されることを特徴とする請求項4乃至請求
項7の何れか1項に記載の膜厚計測装置。8. The film thickness measuring device according to claim 4, wherein the light from each of the light sources is applied to the film through an optical fiber.
各透過光受光器が受光すべき光が、光ファイバを介して
各受光器に導かれることを特徴とする請求項4乃至請求
項8の何れか1項に記載の膜厚計測装置。9. The light to be received by each of the incident light receivers and / or each of the transmitted light receivers is guided to each of the light receivers through an optical fiber. Item 9. The film thickness measuring device according to any one of items 8.
めの光源と、 前記膜に入射すべき前記光の強度を測定するための入射
光分光器と、 前記膜を透過した前記光の強度を測定するための透過光
分光器と、 前記入射光分光器によって分光された前記膜に入射すべ
き前記光の第1波長成分の強度と前記透過光分光器によ
って分光された前記膜を透過した前記光の第1波長成分
の強度との比である第1の比を求めるための第1比較器
と、 前記入射光分光器によって分光された前記膜に入射すべ
き前記光の第2波長成分の強度と前記透過光分光器によ
って分光された前記膜を透過した前記光の第2波長成分
の強度との比である第2の比を求めるための第2比較器
と、 前記第1の比と前記第2の比に基づいて前記膜の膜厚を
求めるための膜厚計算器と、を有することを特徴とする
膜厚計測装置。10. A light source for irradiating a film of which thickness is to be measured with light, an incident light spectroscope for measuring the intensity of the light to be incident on the film, and the light transmitted through the film. A transmitted light spectroscope for measuring the intensity of the first wavelength component of the light to be incident on the film split by the incident light spectroscope and the film split by the transmitted light spectroscope. A first comparator for determining a first ratio, which is a ratio with the intensity of the first wavelength component of the transmitted light, and a second comparator for the light to be incident on the film split by the incident light spectroscope. A second comparator for obtaining a second ratio, which is a ratio of the intensity of the wavelength component and the intensity of the second wavelength component of the light transmitted through the film, which is split by the transmitted light spectroscope; Thickness calculator for determining the thickness of the film based on the ratio of Thickness measuring apparatus characterized by having a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001269339A JP4146111B2 (en) | 2001-09-05 | 2001-09-05 | Film thickness measuring method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001269339A JP4146111B2 (en) | 2001-09-05 | 2001-09-05 | Film thickness measuring method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003075126A true JP2003075126A (en) | 2003-03-12 |
JP4146111B2 JP4146111B2 (en) | 2008-09-03 |
Family
ID=19095179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001269339A Expired - Fee Related JP4146111B2 (en) | 2001-09-05 | 2001-09-05 | Film thickness measuring method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4146111B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285810A (en) * | 2006-04-14 | 2007-11-01 | Mitsubishi Heavy Ind Ltd | Device and method for evaluating photoelectric conversion layer |
WO2008102485A1 (en) * | 2007-02-20 | 2008-08-28 | Mitsubishi Heavy Industries, Ltd. | Wavelength selecting method, film thickness measuring method, film thickness measuring apparatus, and thin film silicon device manufacturing system |
WO2010011938A1 (en) * | 2008-07-24 | 2010-01-28 | Massachusetts Institute Of Technology | Systems and methods for imaging using absorption |
US8384916B2 (en) | 2008-07-24 | 2013-02-26 | Massachusetts Institute Of Technology | Dynamic three-dimensional imaging of ear canals |
WO2013179444A1 (en) * | 2012-05-31 | 2013-12-05 | 三洋電機株式会社 | Measurement device for texture size, manufacturing system for solar cell, and manufacturing method for solar cell |
CN103868444A (en) * | 2012-12-07 | 2014-06-18 | 台积太阳能股份有限公司 | Rapid analysis of buffer layer thickness for thin film solar cells |
US8845526B2 (en) | 2008-07-24 | 2014-09-30 | Massachusetts Institute Of Technology | Integrated otoscope and three dimensional scanning system |
US9140649B2 (en) | 2008-07-24 | 2015-09-22 | Massachusetts Institute Of Technology | Inflatable membrane having non-uniform inflation characteristic |
US9170200B2 (en) | 2008-07-24 | 2015-10-27 | Massachusetts Institute Of Technology | Inflatable membrane with hazard mitigation |
US9170199B2 (en) | 2008-07-24 | 2015-10-27 | Massachusetts Institute Of Technology | Enhanced sensors in three dimensional scanning system |
US9291565B2 (en) | 2008-07-24 | 2016-03-22 | Massachusetts Institute Of Technology | Three dimensional scanning using membrane with optical features |
WO2016199683A1 (en) * | 2015-06-11 | 2016-12-15 | 住友化学株式会社 | Method for measuring basis weight, method for manufacturing laminated film, and device for measuring basis weight |
-
2001
- 2001-09-05 JP JP2001269339A patent/JP4146111B2/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285810A (en) * | 2006-04-14 | 2007-11-01 | Mitsubishi Heavy Ind Ltd | Device and method for evaluating photoelectric conversion layer |
US7755777B2 (en) | 2007-02-20 | 2010-07-13 | Mitsubishi Heavy Industries, Ltd. | Wavelength selection method, film thickness measurement method, film thickness measurement apparatus, and system for producing thin film silicon device |
WO2008102485A1 (en) * | 2007-02-20 | 2008-08-28 | Mitsubishi Heavy Industries, Ltd. | Wavelength selecting method, film thickness measuring method, film thickness measuring apparatus, and thin film silicon device manufacturing system |
US9013701B2 (en) | 2008-07-24 | 2015-04-21 | Massachusetts Institute Of Technology | Positioning an input transducer for an earpiece based upon dynamic data |
US9097512B2 (en) | 2008-07-24 | 2015-08-04 | Massachusetts Institute Of Technology | Layered medium for three-dimensional imaging |
US8107086B2 (en) | 2008-07-24 | 2012-01-31 | Massachusetts Institute Of Technology | Three-dimensional imaging using absorption |
AU2009273823B2 (en) * | 2008-07-24 | 2015-07-09 | Massachusetts Institute Of Technology | Systems and methods for imaging using absorption |
US8116853B2 (en) | 2008-07-24 | 2012-02-14 | Massachusetts Institute Of Technology | Three-dimensional imaging using an inflatable membrane and an intensity ratio based on differential light absorption at two wavelengths |
US8116854B2 (en) | 2008-07-24 | 2012-02-14 | Massachusetts Institute Of Technology | Imaging tray with medium disposed therein for ratiometric determination of object shape |
US8310560B2 (en) | 2008-07-24 | 2012-11-13 | Massachusetts Institute Of Technology | Three-dimensional imaging using a single camera |
US8319184B2 (en) | 2008-07-24 | 2012-11-27 | Massachusetts Institute Of Technology | Three-dimensional imaging using a fluorescent medium |
US8384916B2 (en) | 2008-07-24 | 2013-02-26 | Massachusetts Institute Of Technology | Dynamic three-dimensional imaging of ear canals |
US8493574B2 (en) | 2008-07-24 | 2013-07-23 | Massachusetts Institute Of Technology | Imaging shape changes in ear canals |
JP2011529189A (en) * | 2008-07-24 | 2011-12-01 | マサチューセッツ インスティテュート オブ テクノロジー | System and method for image formation using absorption |
US8619154B2 (en) | 2008-07-24 | 2013-12-31 | Massachusetts Institute Of Technology | Three-dimensional imaging using a single camera |
US8743377B2 (en) | 2008-07-24 | 2014-06-03 | Massachusetts Institute Of Technology | Using dynamic data to determine a material profile for earpiece |
US9291565B2 (en) | 2008-07-24 | 2016-03-22 | Massachusetts Institute Of Technology | Three dimensional scanning using membrane with optical features |
US8845526B2 (en) | 2008-07-24 | 2014-09-30 | Massachusetts Institute Of Technology | Integrated otoscope and three dimensional scanning system |
US8874404B2 (en) | 2008-07-24 | 2014-10-28 | Massachusetts Institute Of Technology | Simulating earpiece fit based upon dynamic data |
US8976263B2 (en) | 2008-07-24 | 2015-03-10 | Massachusetts Institute Of Technology | Three-dimensional imaging using a single camera |
WO2010011938A1 (en) * | 2008-07-24 | 2010-01-28 | Massachusetts Institute Of Technology | Systems and methods for imaging using absorption |
US8112146B2 (en) | 2008-07-24 | 2012-02-07 | Massachusetts Institute Of Technology | Three-dimensional imaging using a luminescent surface and a differentially attenuating medium |
US9820636B2 (en) | 2008-07-24 | 2017-11-21 | Massachusetts Institute Of Technology | Layered medium for three-dimensional imaging |
US9170200B2 (en) | 2008-07-24 | 2015-10-27 | Massachusetts Institute Of Technology | Inflatable membrane with hazard mitigation |
US9140649B2 (en) | 2008-07-24 | 2015-09-22 | Massachusetts Institute Of Technology | Inflatable membrane having non-uniform inflation characteristic |
US9170199B2 (en) | 2008-07-24 | 2015-10-27 | Massachusetts Institute Of Technology | Enhanced sensors in three dimensional scanning system |
US9175945B2 (en) | 2008-07-24 | 2015-11-03 | Massachusetts Institute Of Technology | Evaluating fit of an earpiece based on dynamic data |
US9504546B2 (en) | 2008-07-24 | 2016-11-29 | Massachusetts Institute Of Technology | Layered medium for three-dimensional imaging |
US9448061B2 (en) | 2008-07-24 | 2016-09-20 | Massachusetts Institute Of Technology | Selecting an earpiece based on dynamic data |
WO2013179444A1 (en) * | 2012-05-31 | 2013-12-05 | 三洋電機株式会社 | Measurement device for texture size, manufacturing system for solar cell, and manufacturing method for solar cell |
US9294034B2 (en) | 2012-05-31 | 2016-03-22 | Panasonic intellectual property Management co., Ltd | Measurement device for texture size, manufacturing system for solar cell, and manufacturing method for solar cell |
JPWO2013179444A1 (en) * | 2012-05-31 | 2016-01-14 | パナソニックIpマネジメント株式会社 | Texture size measuring device, solar cell manufacturing system, and solar cell manufacturing method |
US9689912B2 (en) | 2012-12-07 | 2017-06-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Rapid analysis of buffer layer thickness for thin film solar cells |
CN103868444A (en) * | 2012-12-07 | 2014-06-18 | 台积太阳能股份有限公司 | Rapid analysis of buffer layer thickness for thin film solar cells |
WO2016199683A1 (en) * | 2015-06-11 | 2016-12-15 | 住友化学株式会社 | Method for measuring basis weight, method for manufacturing laminated film, and device for measuring basis weight |
JP2017003476A (en) * | 2015-06-11 | 2017-01-05 | 住友化学株式会社 | Basis weight measuring method, laminated film manufacturing method, and basis weight measuring apparatus |
US10591347B2 (en) | 2015-06-11 | 2020-03-17 | Sumitomo Chemical Company, Limited | Method for measuring basis weight, method for manufacturing laminated film, and device for measuring basis weight |
CN107636428A (en) * | 2015-06-11 | 2018-01-26 | 住友化学株式会社 | Weight per unit area assay method, stacking film manufacturing method and weight per unit area measure device |
KR20180016415A (en) * | 2015-06-11 | 2018-02-14 | 스미또모 가가꾸 가부시키가이샤 | A method for mass measurement per unit area, a method for manufacturing a laminated film, and a mass measuring device per unit area |
KR102530294B1 (en) * | 2015-06-11 | 2023-05-09 | 스미또모 가가꾸 가부시키가이샤 | Method for measuring mass per unit area, method for manufacturing a laminated film, and mass measurement device per unit area |
Also Published As
Publication number | Publication date |
---|---|
JP4146111B2 (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003075126A (en) | Film thickness measuring method and device | |
US20140313511A1 (en) | Rotating-element ellipsometer and method for measuring properties of the sample using the same | |
WO2013147038A1 (en) | Substance properties measuring device | |
JP6863831B2 (en) | Calculation method of calculation formula for output correction of photodetector and output correction method of photodetector | |
CN105066889A (en) | A portable thin film thickness measuring device and a film thickness measuring method thereof | |
CN110514627B (en) | Silicon wafer reflectivity measuring method and measuring device thereof | |
JP2012032239A (en) | Sample inspection device and sample inspection method | |
US8902425B2 (en) | Temperature-stable incoherent light source | |
JP4905798B2 (en) | Turbidity meter | |
US9587930B2 (en) | Method and assembly for determining the thickness of a layer in a sample stack | |
US20100253942A1 (en) | Method and device for characterizing silicon layer on translucent substrate | |
US9347823B2 (en) | Absolute measurement method and apparatus thereof for non-linear error | |
JPH0269639A (en) | Laser system gas sensor | |
JPH0781840B2 (en) | Optical film thickness measuring device | |
CN112014341B (en) | Method for measuring ultralow transmittance of liquid by spectrometer | |
JP4487197B2 (en) | Turbidity / colorimeter | |
JP7014701B2 (en) | Optical analyzers, machine learning devices used in optical analyzers, and methods thereof | |
JPS6459018A (en) | Method and measuring instrument for long time resolution total reflection spectrum analyzing | |
CN207717612U (en) | A kind of double light source measurement devices of COD | |
Tavassoly et al. | Height distribution on a rough plane and specularly diffracted light amplitude are Fourier transform pair | |
Shitomi et al. | A new absolute diffuse reflectance measurement in the near-IR region based on the modified double-sphere method | |
CN110031190A (en) | A kind of Transmissivity measurement accuracy scaling method | |
CN211121620U (en) | Device for measuring beer standard color filter value | |
JP2002022416A (en) | Film pressure measuring method with considering refraction factor | |
JP2013221891A (en) | Film thickness measuring method and film thickness measuring program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080226 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080603 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080619 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |