JP2003074851A - Eigenvalue-prediction method in combustion equipment and evaluation method of response factor between measuring devices - Google Patents

Eigenvalue-prediction method in combustion equipment and evaluation method of response factor between measuring devices

Info

Publication number
JP2003074851A
JP2003074851A JP2001261805A JP2001261805A JP2003074851A JP 2003074851 A JP2003074851 A JP 2003074851A JP 2001261805 A JP2001261805 A JP 2001261805A JP 2001261805 A JP2001261805 A JP 2001261805A JP 2003074851 A JP2003074851 A JP 2003074851A
Authority
JP
Japan
Prior art keywords
combustor
measuring device
response magnification
measuring
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001261805A
Other languages
Japanese (ja)
Other versions
JP4078052B2 (en
Inventor
Keisuke Matsuyama
敬介 松山
Katsunori Tanaka
克則 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001261805A priority Critical patent/JP4078052B2/en
Publication of JP2003074851A publication Critical patent/JP2003074851A/en
Application granted granted Critical
Publication of JP4078052B2 publication Critical patent/JP4078052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eigenvalue-prediction method in combustion equipment and evaluation method of response magnification factor between measuring devices, in which a reference measuring-device is used downstream of flames to obtain a correct value and an object measuring-device is used upstream of the flames, and the measured values are compared with each other to calculate automatically a correct value in regulating fuel-air ratio by detecting oscillating combustion and pressure fluctuation in combustion equipment such as a gas turbine and rocket-propulsion engine. SOLUTION: A reference measuring-device is placed on a high-temperature side of flames in a combustor such as a gas turbine and a rocket-propulsion engine, and an object measuring-device is placed on a low temperature side. A response magnification factor between the reference and object measuring-devices is calculated from measurement results of the devices. Unusual data is filtered by modified Thompson τ-method. Residual data is further filtered by 2σ to obtain variance of the data, and further a regression line is calculated to obtain a calibration factor. Thus, the measurement can be carried out singly with the object measuring-device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンやロ
ケット推進器等の燃焼器における内圧や音響特性に起因
する圧力等の固有値の測定、熱量や発熱密度と減衰の関
係などを測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring eigenvalues such as internal pressure in a combustor such as a gas turbine or a rocket propulsion device or pressure due to acoustic characteristics, and measuring the relationship between heat quantity, heat density and damping. It is a thing.

【0002】[0002]

【従来の技術】ガスタービンやロケット推進器等の燃焼
器は、例えば図11にガスタービンにおける燃焼器付近
の断面図を示したように、燃焼器11がガスタービンの
車室12に取り付けられている。そしてこの燃焼器11
には、外筒16内に燃料ノズル13、内筒14、尾筒1
5を有し、尾筒15にはバイパスエルボ17が取り付け
られ、さらにバイパス弁18、バイパス弁可変機構19
が設けられている。そして20は空気圧縮機で、ここで
圧縮された圧縮機吐き出し空気21は車室12に流れ、
燃焼器11の周りを通って矢印で示すように燃料ノズル
13の上流側から燃焼器11内へ燃焼用空気として導入
される。そして燃焼器11では、燃料ノズル13を経て
送給される燃料が燃焼され、その燃焼ガスはガスタービ
ン22へ送られてこれを駆動する。
2. Description of the Related Art A combustor such as a gas turbine or a rocket propulsor has a combustor 11 attached to a casing 12 of the gas turbine, as shown in FIG. There is. And this combustor 11
In the outer cylinder 16, the fuel nozzle 13, the inner cylinder 14, and the tail cylinder 1 are provided.
5, a tail pipe 15 is provided with a bypass elbow 17, a bypass valve 18, a bypass valve variable mechanism 19
Is provided. 20 is an air compressor, and the compressor discharge air 21 compressed here flows to the passenger compartment 12,
It is introduced as combustion air into the combustor 11 from the upstream side of the fuel nozzle 13 by passing around the combustor 11 as shown by an arrow. Then, in the combustor 11, the fuel fed through the fuel nozzle 13 is burned, and the combustion gas thereof is sent to the gas turbine 22 to drive it.

【0003】そしてこのようなガスタービンにおける燃
焼器11においては、燃焼振動や圧力変動が生じて燃焼
器11の構成部材、たとえば内筒14、尾筒15、外筒
16内部で反射され、大きな振動エネルギーとなって燃
焼器11本体の疲労破損、更にはタービン翼などの周辺
部品の破損が懸念される。そのため、圧力センサやマイ
クなどを用いてこういった燃焼振動や圧力変動を検出
し、燃料と空気の配分比率、パイロット比、バイパス弁
開度などの調節がおこなわれている。
In the combustor 11 of such a gas turbine, combustion vibrations and pressure fluctuations are generated and reflected inside the constituent members of the combustor 11, such as the inner cylinder 14, the tail cylinder 15, and the outer cylinder 16, to cause large vibrations. There is concern that the energy may become energy and cause fatigue damage to the main body of the combustor 11, and further damage to peripheral components such as turbine blades. Therefore, such combustion vibrations and pressure fluctuations are detected by using a pressure sensor, a microphone, etc., and the distribution ratio of fuel and air, pilot ratio, bypass valve opening, etc. are adjusted.

【0004】そして、こういった燃焼振動や圧力変動を
正確に測定するためには、これら燃焼振動や圧力変動を
検出する圧力センサやマイクなどの測定器を燃焼器内の
火炎の後流側に設置することが好ましいが、火炎の後流
側は高温であり、この高温に耐えられる圧力センサやマ
イクを使う必要がある。しかしながら、こういった高温
に耐えられる圧力センサやマイクなどの測定器は一般的
に高価である。
In order to accurately measure such combustion vibrations and pressure fluctuations, a measuring device such as a pressure sensor or a microphone for detecting these combustion vibrations and pressure fluctuations is provided on the downstream side of the flame in the combustor. Although it is preferable to install it, the wake side of the flame is hot and it is necessary to use a pressure sensor or a microphone that can withstand this high temperature. However, measuring instruments such as pressure sensors and microphones that can withstand such high temperatures are generally expensive.

【0005】[0005]

【発明が解決しようとする課題】そのため本発明におい
ては、高温には耐えられないが安価なセンサやマイクな
どの測定器を用い、測定をおこなえるようにすることが
第1の課題である。
Therefore, the first object of the present invention is to make it possible to carry out the measurement by using an inexpensive measuring device such as a sensor or a microphone which cannot withstand a high temperature.

【0006】しかし、高温に耐えられない安価なセンサ
やマイクは、正確な測定値が得られる火炎の後流側に設
置することはできない。そのため、高温に耐えられない
安価なセンサやマイクを対象測定器として火炎の上流側
など、高温とならない場所に設置し、高温に耐えられる
圧力センサやマイクを火炎の後流側に基準測定器として
設置して、この対象測定器と基準測定器の測定値を比較
して応答倍率を算出することで校正倍率を算出するなど
の方法を取る必要がある。しかしこういった基準測定器
と対象測定器の応答倍率は、一般的に広範囲にわたって
ばらつくことが多く、このばらついた応答倍率からの校
正倍率の算出は、従来では、対象測定器の測定値と基準
測定器の測定値の比を求めてプロットし、経験を積んだ
技術者がその中の異常値を排除して関係性を演算して、
ほぼ勘で倍率を決定するという方法でおこなわれていた
ため、非効率的であり、時間もかかっていた。
However, inexpensive sensors and microphones that cannot withstand high temperatures cannot be installed on the downstream side of the flame where accurate measurement values can be obtained. Therefore, install an inexpensive sensor or microphone that cannot withstand high temperatures as the target measuring instrument in a place that does not become hot, such as the upstream side of the flame, and use a pressure sensor or microphone that can withstand high temperature as a reference measuring instrument on the downstream side of the flame. It is necessary to install the method and calculate the calibration magnification by comparing the measurement values of the target measurement equipment and the reference measurement equipment to calculate the response magnification. However, the response magnification between the reference measuring instrument and the target measuring instrument generally fluctuates over a wide range in general, and the calculation of the calibration magnification from the varied response multiplying factor is conventionally done with the measured value of the target measuring instrument and the reference value. The ratio of the measured values of the measuring device is obtained and plotted, and an experienced technician eliminates the abnormal value in it and calculates the relationship,
It was inefficient and time consuming because it was done with the method of determining the magnification almost by intuition.

【0007】こういったことに対処する為、たとえば特
開平8−166820号公報には、計測値の累積頻度の
第1四分位点と第2四分位点の距離をH1、第2四分位
点と第3四分位点の距離をH2とし、このH1とH2を
元に異常値を判定する範囲を定めて異常値を検出する方
法が示されている。すなわち計測値の異常値を判定する
に当たって従来では、標準偏差を用いた方法か、或いは
相対累積度数25%、50%、75%の点をそれぞれ第
1四分位点、第2四分位点、第3四分位点とした四分位
点を算出し、その第1四分位点から第3四分位点までの
距離をヒンジ幅として、それぞれの四分位点からヒンジ
幅の3倍以上離れた計測値を異常値とする四分位法など
の方法が用いられていたが、これらの方法は計測値の頻
度分布が左右対称である場合はいいが、頻度が偏ってい
る場合はあまり有効ではなかった。そのため前記H1と
H2を元に異常値を判定する範囲を定めることで、計測
値の偏りに対応できるようにしたものである。
In order to deal with such a situation, for example, in Japanese Unexamined Patent Publication No. 8-166820, the distance between the first quartile and the second quartile of the cumulative frequency of measured values is H1 and the second quartile. A method of detecting an abnormal value by setting a distance between the quantile and the third quartile as H2 and setting a range for judging an abnormal value based on H1 and H2 is shown. That is, in determining an abnormal value of a measured value, conventionally, a method using standard deviation or a relative cumulative frequency of 25%, 50%, and 75% is used as a first quartile and a second quartile, respectively. , The third quartile is calculated as the quartile, and the distance from the first quartile to the third quartile is used as the hinge width, and the hinge width from each quartile is 3 Methods such as the quartile method, in which measured values that are more than twice as large as the abnormal value are used, were used when the frequency distribution of measured values is symmetrical, but when the frequencies are biased. Was not very effective. Therefore, by setting a range for determining an abnormal value based on the above H1 and H2, it is possible to deal with the deviation of the measured values.

【0008】しかしながらこの特開平8−166820
号公報に示された方法は、計測値の頻度分布が左右非対
称の場合も有効という利点はあるものの、計測値中に含
まれる異常値を正規分布の2σ、3σから判定する方法
が示されているだけであり、前記したような校正倍率を
算出することについてはふれられていない。
However, this Japanese Patent Laid-Open No. 8-166820
Although the method disclosed in the publication has the advantage that it is effective even when the frequency distribution of measured values is asymmetrical, it shows a method of determining an abnormal value included in measured values from 2σ and 3σ of a normal distribution. However, there is no mention of calculating the calibration magnification as described above.

【0009】そのため本発明においては、対象測定器と
基準測定器の校正倍率の算出を自動的に、正確におこな
えるような校正方法を提供することが第2の課題であ
る。
Therefore, in the present invention, a second object is to provide a calibration method capable of automatically and accurately calculating the calibration magnifications of the target measuring instrument and the reference measuring instrument.

【0010】[0010]

【課題を解決するための手段】上記第1の課題を解決す
るため本発明においては、高温に耐えられない安価なセ
ンサやマイクを対象測定器として火炎の上流側など、高
温とならない場所に設置し、高温に耐えられる圧力セン
サやマイクを火炎の後流側に基準測定器として設置して
この対象測定器と基準測定器の測定値を比較して校正倍
率を算出し、その後この校正倍率を用いて対象測定器の
みで燃焼器における内圧や音響特性に起因する圧力等の
固有値の測定をおこなえるようにして安価な測定器で正
確な値が得られるようにした。
In order to solve the first problem, in the present invention, an inexpensive sensor or microphone that cannot withstand high temperature is installed as a target measuring device in a place where the temperature does not become high, such as the upstream side of a flame. Then, install a pressure sensor or microphone that can withstand high temperature as a reference measuring instrument on the downstream side of the flame, compare the measured values of this target measuring instrument and the reference measuring instrument to calculate the calibration magnification, and then calculate this calibration magnification. By using it, it was possible to measure the eigenvalues such as the internal pressure in the combustor and the pressure due to the acoustic characteristics only with the target measuring device, so that an accurate value could be obtained with an inexpensive measuring device.

【0011】そして上記第2の課題を解決するため本発
明おいては、高温に耐えられない安価なセンサやマイク
を対象測定器として火炎の上流側など、高温とならない
場所に設置し、高温に耐えられる圧力センサやマイクを
火炎の後流側に基準測定器として設置してこの対象測定
器と基準測定器の測定値から応答倍率を算出し、この応
答倍率の異常値を修正トンプソンτ法で排除すると共
に、残ったデータの分散を求めて2σで異常値を排除す
ることを繰り返し、最終的に残ったデータによって回帰
直線を作成してその傾きを校正値倍率とするようにし
て、正確な校正倍率を自動的に算出できるようにした。
In order to solve the above-mentioned second problem, in the present invention, an inexpensive sensor or microphone that cannot withstand high temperature is installed as a target measuring instrument in a place where the temperature does not become high, such as the upstream side of the flame, and the temperature becomes high. Install a pressure sensor or microphone that can withstand as a reference measuring instrument on the downstream side of the flame, calculate the response magnification from the measured values of this target measuring instrument and the reference measuring instrument, and correct the abnormal value of this response magnification with the Thompson τ method. Exclude and repeat the process of finding the variance of the remaining data and eliminating the abnormal value by 2σ, creating a regression line with the finally remaining data, and using the slope as the calibration value magnification, The calibration magnification can be calculated automatically.

【0012】このようにすることにより、従来のように
経験を積んだ技術者が測定値の中の異常値を排除して関
係性を演算し、勘で倍率を決定する、という非効率的で
時間のかかる方法を用いることなく、誰でも迅速に、正
確な校正倍率を自動的に算出することができる。
By doing so, an inexperienced technician can eliminate the abnormal value in the measured values, calculate the relationship, and determine the magnification by intuition, which is inefficient. Anyone can quickly and automatically calculate an accurate calibration magnification without using a time-consuming method.

【0013】そして第1の課題を解決するため請求項1
は方法発明であって、燃焼器における内圧や音圧、熱量
等の固有値の予測方法であって、燃焼器内に生じる火炎
の高温側には基準測定器を、低温側には対象測定器を設
置し、該基準測定器と対象測定器の測定結果から対象測
定器における基準測定器に対する校正倍率を算出し、該
校正倍率を用いて火炎の低温側に設置した対象測定器の
みで高温側の値を予測できるようにしたことを特徴とす
る。
In order to solve the first problem, claim 1
Is a method invention, which is a method of predicting eigenvalues such as internal pressure, sound pressure, and heat quantity in a combustor, in which a reference measuring instrument is used on the high temperature side of a flame generated in the combustor and a target measuring instrument is used on the low temperature side. Installed, calculate the calibration magnification for the reference measuring instrument in the target measuring instrument from the measurement results of the reference measuring instrument and the target measuring instrument, and use only the target measuring instrument installed on the low temperature side of the flame using the calibration factor The feature is that the value can be predicted.

【0014】このようにすることにより、前記したよう
に高温に耐えられる高価な圧力センサやマイクを使うこ
となく、安価な圧力センサやマイクで正確な測定をおこ
なうことができ、大きな経済的効果をもたらすものであ
る。
By doing so, it is possible to perform accurate measurement with an inexpensive pressure sensor or microphone, without using an expensive pressure sensor or microphone that can withstand high temperatures as described above, which has a great economic effect. To bring.

【0015】次いで第2の課題を解決するため請求項2
も方法発明であって、燃焼器における内圧や音響特性に
起因する圧力等の固有値を測定する際における複数の測
定器間の応答倍率評価方法であって、燃焼器内に火炎を
生じさせた場合の火炎の高温側位置に基準測定器を、低
温側位置に対象測定器を設置し、該基準測定器と対象測
定器の測定結果から基準測定器と対象測定器の応答倍率
を算出した後、修正トンプソンτ法で前記応答倍率の異
常データをフィルタリングし、さらに残ったデータの分
散を求めて2σでフィルタリングして回帰直線を算出
し、該回帰直線の傾きを前記対象測定器の校正倍率とす
ることを特徴とする。
Next, in order to solve the second problem, a second aspect is provided.
Is also a method invention, which is a method for evaluating response magnification between a plurality of measuring instruments when measuring eigenvalues such as pressure due to internal pressure or acoustic characteristics in the combustor, in which a flame is generated in the combustor. The reference measuring device at the high temperature side position of the flame, the target measuring device is installed at the low temperature side position, and after calculating the response magnification of the reference measuring device and the target measuring device from the measurement results of the reference measuring device and the target measuring device, The abnormal data of the response magnification is filtered by the modified Thompson τ method, the variance of the remaining data is obtained, and the regression straight line is calculated by filtering by 2σ, and the slope of the regression straight line is used as the calibration magnification of the target measuring instrument. It is characterized by

【0016】このように修正トンプソンτ法を用いて測
定結果をフィルタリングすることにより、測定結果数が
ある程度以上になると、正常な測定値を排除する確率を
5%として自動的に、正確に異常値を排除することがで
き、さらに分散を用いてフィルタリングした後回帰直線
を算出することで、なんら経験者を煩わせることなく全
く自動的に正確な校正倍率を算出することができる。
By thus filtering the measurement results using the modified Thompson τ method, when the number of measurement results exceeds a certain level, the probability of excluding normal measurement values is set to 5%, and the abnormal values are automatically and accurately determined. Further, by calculating the regression line after filtering using the variance, it is possible to calculate the accurate calibration magnification completely automatically without bothering an experienced person.

【0017】そしてこの応答倍率は、請求項3、及び4
に記載したように、前記複数の測定器が燃焼器における
内圧を測定する圧力センサであり、燃焼器内の前記対象
測定器設置位置に設けた圧力センサの応答倍率を評価す
ることを特徴とする。前記複数の測定器が燃焼器の非燃
焼時における音響特性を測定するマイクであり、燃焼器
内の前記対象測定器設置位置に設けたマイクの応答倍率
を評価することを特徴とする。ことで、ガスタービンや
ロケット推進器等の燃焼器内の圧力や音響特性を正確に
測定することのできる校正倍率をえることができる。
Then, the response multiplying factor is defined in claims 3 and 4.
As described above, the plurality of measuring devices are pressure sensors for measuring the internal pressure in the combustor, and the response magnification of the pressure sensor provided at the target measuring device installation position in the combustor is evaluated. . The plurality of measuring devices are microphones for measuring acoustic characteristics of the combustor when the combustion is not performed, and the response magnification of the microphone provided at the target measuring device installation position in the combustor is evaluated. As a result, it is possible to obtain a calibration magnification that can accurately measure the pressure and acoustic characteristics in the combustor such as the gas turbine and the rocket propulsion device.

【0018】そしてこの応答倍率評価方法は、請求項5
に記載したように、燃焼器における熱量や発熱密度に対
応した音響系の減衰量の応答倍率評価方法であって、燃
焼器内の熱量や発熱密度と周波数毎の音圧を測定し、該
熱量や発熱密度と音圧の周波数による減衰量の応答倍率
を算出した後修正トンプソンτ法で応答倍率の異常デー
タをフィルタリングし、残ったデータの分散を求めて2
σでフィルタリングした後回帰直線を算出して該回帰直
線の傾きを前記応答倍率とすることを特徴とする。
The response magnification evaluation method is defined in claim 5.
As described in, it is a method of evaluating the response magnification of the attenuation amount of the acoustic system corresponding to the heat quantity and heat density in the combustor, the heat quantity and heat density in the combustor and the sound pressure for each frequency are measured, and the heat quantity After calculating the response magnification of the attenuation amount by the heat generation density and the frequency of sound pressure, the abnormal data of the response magnification is filtered by the modified Thompson τ method to obtain the variance of the remaining data.
After the filtering with σ, a regression line is calculated, and the slope of the regression line is used as the response magnification.

【0019】こうすることで、ガスタービンやロケット
推進器等の燃焼器における熱量や発熱密度に対応した音
響系の減衰量の応答倍率を、前記したようになんら経験
者を煩わせることなく、全く自動的に、正確に算出する
ことができる。
By doing so, the response magnification of the attenuation amount of the acoustic system corresponding to the amount of heat and the heat generation density in the combustor such as the gas turbine and the rocket propulsion device can be completely eliminated without bothering experienced persons as described above. It can be calculated automatically and accurately.

【0020】[0020]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を例示的に詳しく説明する。但し、この実施の
形態に記載されている構成部品の寸法、材質、形状、そ
の相対配置などは、特に特定的な記載がない限りはこの
発明の範囲をそれのみに限定する趣旨ではなく、単なる
説明例に過ぎない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be exemplarily described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative positions, and the like of the constituent parts described in this embodiment are not intended to limit the scope of the present invention thereto, unless otherwise specified, and are merely It is only an example.

【0021】図1は、前記図11に11で示したガスタ
ービンやロケット推進器等の燃焼器とそれによって生じ
る火炎の様子を模式的に表し、燃焼振動や圧力変動を検
出する圧力センサやマイクなどの測定器を設置する場所
を示した説明図であり、1はガスタービンやロケット推
進器等の燃焼器、2は火炎、3は火炎の後流側に設置し
た高温に耐えられる圧力センサやマイクなどの基準測定
器、4は火炎の上流側に設置した高温に耐えられない圧
力センサやマイクなどの対象測定器である。
FIG. 1 schematically shows a combustor such as the gas turbine or rocket propulsor shown at 11 in FIG. 11 and a state of a flame generated by the combustor, and a pressure sensor or a microphone for detecting combustion vibration or pressure fluctuation. FIG. 1 is an explanatory view showing a place where a measuring instrument such as is installed, 1 is a combustor such as a gas turbine or a rocket propulsor, 2 is a flame, 3 is a pressure sensor installed on the downstream side of the flame and capable of withstanding high temperatures, Reference measuring devices 4 such as a microphone are target measuring devices such as a pressure sensor and a microphone installed upstream of the flame that cannot withstand high temperatures.

【0022】本発明においては、このようにガスタービ
ンやロケット推進器等の燃焼器1内の火炎2における上
流側に設置した高温に耐えられない圧力センサやマイク
などの対象測定器4を、火炎の後流側に設置した高温に
耐えられる圧力センサやマイクなどの基準測定器3によ
って校正し、実際の使用に当たっては基準測定器3を用
いずに対象測定器4のみで燃焼振動や圧力変動を予測で
きるようにした。
In the present invention, the target measuring device 4 such as a pressure sensor or a microphone, which cannot withstand a high temperature, is installed on the upstream side of the flame 2 in the combustor 1 such as a gas turbine or rocket propulsor. It is calibrated by a reference measuring device 3 such as a pressure sensor and a microphone that can withstand high temperature installed on the wake side of the engine, and in actual use, combustion vibration and pressure fluctuations are measured only by the target measuring device 4 without using the reference measuring device 3. I was able to predict.

【0023】このようにすることで、高価な高温に耐え
られる圧力センサやマイクを使うことなく価格の安い測
定器だけで正確な固有値の予測をおこなうことができ、
大きな経済的メリットが生じる。
By doing so, it is possible to accurately predict the eigenvalue using only a low-priced measuring instrument without using an expensive pressure sensor or microphone that can withstand high temperatures.
There are significant economic benefits.

【0024】そして図1のように設置した基準測定器3
と対象測定器4により、ガスタービンやロケット推進器
等の燃焼器1内における圧力の周波数スペクトルをプロ
ットしたグラフを図2に示す。このうち(A)は基準測
定器3の測定値P(i)(i:1、2、3、……i)
のグラフ、(B)は対象測定器4の測定値P(i)
(i:1、2、3、……i)のグラフであり、iが等し
いグラフは同一時点における基準測定器3と対象測定器
4の値を示す。各グラフにおいて横軸は周波数(H
z)、縦軸は圧力(Pa)で、この図2のグラフは各測
定器の複数の測定値i(i=1、2、3、……i)のそ
れぞれに対応している。
The reference measuring device 3 installed as shown in FIG.
2 shows a graph in which the frequency spectrum of the pressure in the combustor 1 such as a gas turbine or a rocket propulsion device is plotted by the target measuring device 4. Of these, (A) is the measured value P 0 (i) of the reference measuring device 3 (i: 1, 2, 3, ... i)
Graph (B) is the measured value P 1 (i) of the target measuring instrument 4
(I: 1, 2, 3, ... i), where i is the same graph shows the values of the reference measuring device 3 and the target measuring device 4 at the same time point. In each graph, the horizontal axis is frequency (H
z), the vertical axis represents pressure (Pa), and the graph of FIG. 2 corresponds to each of a plurality of measurement values i (i = 1, 2, 3, ... I) of each measuring device.

【0025】この図2からわかるように、ガスタービン
やロケット推進器等の燃焼器1内の圧力は、その時々の
燃焼具合によってピーク値がいろいろな周波数で現れる
が、基準測定器3と対象測定器4の測定時点iが同じな
らピーク値はだいたい同一周波数となる。そのためiが
等しいピーク値P(i)とP(i)の比、即ち倍率
A(i)(i:1、2、3、……i)を、基準測定器3
の測定値Pを横軸に、対象測定器4の測定値Pを縦
軸にしたPとPの平面にプロットすると、図3のよ
うにこの平面内にばらついてプロットされる。
As can be seen from FIG. 2, the pressure in the combustor 1 such as a gas turbine or a rocket propulsion device has peak values at various frequencies depending on the combustion condition at each time. If the measurement time point i of the container 4 is the same, the peak value will be approximately the same frequency. Therefore, the ratio of the peak values P 0 (i) and P 1 (i) where i is equal, that is, the magnification A (i) (i: 1, 2, 3, ...
When the measurement value P 0 is plotted on the horizontal axis and the measurement value P 1 of the target measuring device 4 is plotted on the vertical axis on the plane of P 0 and P 1 , the variation is plotted in this plane as shown in FIG.

【0026】そのため、このプロットされた値から異常
値を排除し、さらに基準測定器3の測定値Pと対象測
定器4の測定値Pの関係性を求めて校正倍率を求める
わけであるが、前記したように従来ではこれを技術者の
経験によって、たとえば図3に30で示した範囲の値を
有効領域とし、この領域30を外れた値は異常値として
残った値で関係性を演算し、勘で倍率を決定するという
ことがおこなわれていた。そのため本発明においては、
図4の概略フロー図に示したような測定器間の応答倍率
評価方法により、こういった非効率的で時間のかかる方
法を用いることなく、誰でも迅速に、正確な校正倍率を
自動的に算出することができるようにした。
[0026] Therefore, to eliminate the outliers from the plotted values is not determined calibration factor further obtain the relation of the measured values P 1 of the reference measuring device 3 measurements P 0 and the target instrument 4 However, as described above, according to the experience of engineers in the past, for example, a value in the range indicated by 30 in FIG. 3 is set as an effective region, and values outside this region 30 are values that remain as abnormal values and have a relationship. It was done by calculating and intuition to determine the magnification. Therefore, in the present invention,
By the response magnification evaluation method between measuring instruments as shown in the schematic flow chart of FIG. 4, anyone can quickly and accurately obtain an accurate calibration magnification without using such an inefficient and time-consuming method. It was possible to calculate.

【0027】すなわち本発明のガスタービンやロケット
推進器等の燃焼器における測定器間の応答倍率評価方法
においては、まず、第1のステップS1で予め定めてお
いた制限値で基準測定器3の測定値Pをフィルタリン
グし、第2のステップS2でこのフィルタリングした基
準測定器3の測定値Pと、その測定値Pに対応した
対象測定器4の測定値Pとの応答倍率A(n)を求め
る。そして第3のステップS3で、この応答倍率A
(n)を修正トンプソンτ法でフィルタリングして異常
値を排除して残った応答倍率A(n)をA(m)と置き
換え、さらに第4のステップS4で残ったデータの分散
を求めて2σで異常値を排除することを繰り返す。この
ようにして残ったA(m)をA(k)と置き換え、この
A(k)を用いて第5のステップS5で回帰直線を作成
し、第6のステップS6でこの回帰直線の傾きを校正値
として自動的に校正倍率を算出できるようにした。
That is, in the response magnification evaluation method between the measuring devices in the combustor such as the gas turbine and the rocket propulsion device of the present invention, first, the reference measuring device 3 is set to the limit value which is predetermined in the first step S1. the measured value P 0 by filtering, the response magnification of the measured value P 0 of the reference measuring device 3 that this filtering at the second step S2, a measured value P 1 of the object measuring instrument 4 corresponding to the measured value P 0 a Find (n). Then, in the third step S3, this response magnification A
(N) is filtered by the modified Thompson τ method to eliminate the abnormal value and replace the remaining response magnification A (n) with A (m), and further calculate the variance of the remaining data in the fourth step S4 to obtain 2σ. Repeat to eliminate abnormal values with. The remaining A (m) is replaced with A (k), a regression line is created in the fifth step S5 using this A (k), and the slope of this regression line is calculated in the sixth step S6. The calibration factor can be automatically calculated as the calibration value.

【0028】まず第1のステップS1であるが、これは
予め決めておいた制限値αを用い、基準測定器3の測定
値P(i)をフィルタリングするもので、この制限値
αは、経験的に判明している範囲を超えたものを排除す
る値とする。 α<P(i) (α:経験値) ………(1) そして、この(1)で残った有効データ数をnとした場
合、次の第2のステップS2でこのn個のデータP
(n)に対応した対象測定器4の測定値P(n)と
の応答倍率A(n)を次の(2)式で求める。
First, the first step S1 is to filter the measured value P 0 (i) of the reference measuring device 3 using a predetermined limit value α, and this limit value α is It is a value that excludes those that exceed the range empirically known. α <P 0 (i) (α: empirical value) (1) Then, assuming that the number of valid data remaining in (1) is n, the n number of data in the next second step S2. P
The response magnification A (n) with the measured value P 1 (n) of the target measuring device 4 corresponding to 0 (n) is calculated by the following equation (2).

【数1】 [Equation 1]

【0029】そしてこの応答倍率A(n)を、第3のス
テップS3において修正トンプソンτ法でフィルタリン
グするわけであるが、この修正トンプソンτ法は、社団
法人日本機械学会が昭和62年11月25日に発行した
「計測の不確かさ」の22頁から23頁に詳細に述べら
れているように、測定結果数がある程度以上になると正
常な測定値を排除する確率を5%として、自動的に、正
確に異常値を排除することができる。
The response magnification A (n) is filtered by the modified Thompson τ method in the third step S3. The modified Thompson τ method is used by the Japan Society of Mechanical Engineers on November 25, 1987. As described in detail in “Measurement Uncertainty” on pages 22 to 23 of the day, when the number of measurement results exceeds a certain level, the probability of excluding normal measurement values is set to 5% and automatically. , It is possible to accurately exclude outliers.

【0030】この修正トンプソンτ法の概略を説明する
と、N個の測定値Xからなる資料がある場合、精密度
Sと平均値は、
To explain the outline of this modified Thompson τ method, if there is a data consisting of N measurement values X i , the precision S and the average value are

【数2】 [Equation 2]

【数3】 となる。いまj番目の測定値Xが異常値と疑われるも
のとすると、Xと平均値の差の絶対値は、
[Equation 3] Becomes If the j-th measured value X j is suspected to be an abnormal value, the absolute value of the difference between X j and the average value is

【数4】 となる。ここで表1を用いて資料の大きさNに対する5
%有意水準でのτの値を求め、これにより正常な測定値
を排除する確率を5%に制限する。(異常値を排除しな
い確率は一定ではなく、資料の大きさに依存する。)
[Equation 4] Becomes Here, using Table 1, 5 for the size N of the material
The value of τ at the% significance level is determined, which limits the probability of excluding normal measurements to 5%. (The probability of not excluding outliers is not constant and depends on the size of the material.)

【0031】[0031]

【表1】 [Table 1]

【0032】異常値の判定は、(5)式による差δと、
τと(3)式との積τSを比較することによっておこな
われる。 ・δがτSと等しいか大きい場合、Xは異常値 ・δがτSより小さい場合、Xは異常値ではない こうして異常値が排除されると、今度は異常値を除いた
測定値で精密度Sと平均値を再計算してδも再計算し、
同じように異常値を判定して排除することを異常値が無
くなるまで繰り返す。
An abnormal value is judged by the difference δ according to the equation (5),
This is done by comparing the product τS of τ and the equation (3).・ If δ is equal to or larger than τS, X j is an abnormal value. ・ If δ is smaller than τS, X j is not an abnormal value. Thus, when an abnormal value is excluded, the measured value excluding the abnormal value is accurate. The degree S and the average value are recalculated, and δ is also recalculated.
Similarly, the abnormal value is determined and eliminated until the abnormal value disappears.

【0033】こうして修正トンプソンτ法で異常値が排
除されたら、前記応答倍率A(n)のうちで残ったデー
タをA(m)(m=1、2、3、……m)と置き換え、
今度は前記第4のステップS4で分散を求めて2σでフ
ィルタリングする。これはたとえば図5に示したよう
に、基準測定器3の測定値Pを横軸に、対象測定器4
の測定値Pを縦軸にしたPとPの平面に測定結果
をプロットすると、第3のステップS3によって50の
ようなデータは排除されるから、残ったA(m)の値で
分散を求め、さらに次の(6)式によって座標変換した
ηとξからσを求める。そして2σで異常値51を排除
し、残ったデータで同じことを実施して異常値52を排
除するということを繰り返す。
When the abnormal value is eliminated by the modified Thompson τ method in this way, the remaining data in the response magnification A (n) is replaced with A (m) (m = 1, 2, 3, ... M),
This time, the variance is obtained and filtered by 2σ in the fourth step S4. For example, as shown in FIG. 5, the measured value P 0 of the reference measuring device 3 is plotted on the horizontal axis and the target measuring device 4
Plotting the measurement result measured values P 1 to the plane of P 0 and P 1 that the longitudinal axis of, since the data, such as 50 by the third step S3 is eliminated, the value of the remaining A (m) The variance is calculated, and σ is calculated from η and ξ which are coordinate-converted by the following equation (6). Then, the abnormal value 51 is eliminated by 2σ, the same operation is performed on the remaining data, and the abnormal value 52 is eliminated.

【数5】 [Equation 5]

【0034】このようにして2σにより排除される異常
値が無くなると、残ったデータをA(k)(k=1、
2、3、……k)と置き換え、このA(k)によって今
度は前記第5のステップS5で図6のように原点を通る
回帰直線60を描き、第6のステップS6でこの回帰直
線の傾きを校正倍率とする。
When there is no abnormal value excluded by 2σ in this way, the remaining data is A (k) (k = 1,
2, 3, ... K), and by this A (k), a regression line 60 passing through the origin as shown in FIG. 6 is drawn in the fifth step S5, and this regression line is drawn in the sixth step S6. The slope is the calibration magnification.

【0035】このようにすることにより、単に図4に示
したフローの通りに計算を進めていくだけで正確な校正
倍率を得ることができ、従来のように対象測定器の測定
値と基準測定器の測定値の比を求めてプロットし、経験
を積んだ技術者がその中の異常値を排除して関係性を演
算してほぼ勘で倍率を決定する、というような非効率的
で、時間のかかる方法を取る必要が無くなり、かつ、こ
のようにすることで安価だが高温に耐えられない測定器
を用いることができ、大きな経済的効果をももたらすこ
とができる。
By doing so, an accurate calibration magnification can be obtained by simply proceeding with the calculation according to the flow shown in FIG. 4, and the measured value of the target measuring instrument and the reference measuring instrument as in the conventional case can be obtained. The ratio of the measured values is calculated and plotted, and an experienced technician eliminates outliers among them and calculates the relationship to determine the multiplication factor, which is inefficient. It is not necessary to use such a method, and by doing so, an inexpensive measuring device that cannot withstand high temperatures can be used, and a great economic effect can be brought about.

【0036】なお、図1で説明した基準測定器3と対象
測定器4は、火炎2が生じている場合を例として説明し
たが、図7に示したように基準マイク5と対象マイク6
を設置し、ガスタービンやロケット推進器等の燃焼器の
非燃焼時に測定を実施して以上説明してきた図4のフロ
ーで校正値を求めることで、非燃焼時における音響特性
も安価で高温に耐えられないマイクだけで測定を実施す
ることができる。
The reference measuring device 3 and the target measuring device 4 described with reference to FIG. 1 have been described by taking the case where the flame 2 is generated as an example, but as shown in FIG.
Is installed, measurement is performed when the combustor such as a gas turbine or rocket propulsion is not burning, and the calibration value is obtained by the flow of FIG. 4 described above. Measurements can be performed only with unbearable microphones.

【0037】また以上の説明では、本発明をガスタービ
ンやロケット推進器等の燃焼器内の圧力や音響特性を測
定する場合を例に説明してきたが、ガスタービンやロケ
ット推進器等の燃焼器においては、熱量や発熱密度に応
じて音響系の減衰量が変化し、その減衰量も前記した燃
焼振動や圧力変動に影響を与える。そのためこの減衰量
の測定も重要な意味を持つが、この測定値も大きくばら
つくことが多く、図4に示した応答倍率の評価方法を用
いて正確な減衰量を求めることができる。
In the above description, the present invention has been described by taking as an example the case of measuring the pressure and acoustic characteristics in the combustor such as a gas turbine or rocket propulsion device. In the above, the attenuation amount of the acoustic system changes according to the amount of heat and the heat generation density, and the amount of attenuation also affects the above-mentioned combustion oscillation and pressure fluctuation. Therefore, although the measurement of this attenuation amount also has an important meaning, this measured value also often greatly varies, and an accurate attenuation amount can be obtained by using the response magnification evaluation method shown in FIG.

【0038】ガスタービンやロケット推進器等の燃焼器
内の減衰比をζ、発熱変動をq’、トータル熱量をQ、
発熱密度をθ、音圧変動をp’、音響空間をVとする
と、これらの関係は下記(7)式で表される。
The damping ratio in the combustor such as a gas turbine or rocket propulsion device is ζ, the heat generation fluctuation is q ', the total heat quantity is Q,
When the heat generation density is θ, the sound pressure fluctuation is p ′, and the acoustic space is V, these relationships are expressed by the following equation (7).

【数6】 すなわち図8の区間Aに発熱変動q’の分布があるとす
ると、発熱変動をq’は熱量Qの関数であり、単純に比
例していると考えると式(7)から熱量Qが大きいほど
減衰比ζが変化することがわかる。
[Equation 6] That is, assuming that the distribution of the heat generation fluctuation q ′ is in the section A of FIG. 8, the heat generation fluctuation q ′ is a function of the heat quantity Q, and if it is simply proportionally calculated, the larger the heat quantity Q is from the equation (7). It can be seen that the damping ratio ζ changes.

【0039】また同じトータル熱量Qを図8の区間Aと
Bに与えた場合、区間Aの方がBに比べ、区間、すなわ
ち空間体積が小さいため発熱密度θも大きくなる。
(7)式から、減衰比ζは音圧変動p’と発熱変動q’
の積で表すことができるため、区間が狭いほど系の安定
性(減衰比ζ)に与える影響が大きい。極端な場合、音
圧変動p’のプラス、マイナスをまたがるような区間に
発熱変動q’が分布する場合は、キャンセルされる分が
あるため安定性(減衰比ζ)に影響を及ぼす効率は悪く
なる。
When the same total heat quantity Q is applied to the sections A and B of FIG. 8, the section A, that is, the space volume is smaller than the section B, so that the heat generation density θ becomes large.
From the equation (7), the damping ratio ζ is determined by the sound pressure fluctuation p ′ and the heat generation fluctuation q ′.
Since it can be expressed by the product of, the narrower the interval, the greater the influence on the stability of the system (damping ratio ζ). In an extreme case, when the heat generation fluctuation q ′ is distributed in a section that crosses plus and minus of the sound pressure fluctuation p ′, there is a portion to be canceled, so that the efficiency affecting the stability (damping ratio ζ) is poor. Become.

【0040】今、ガスタービンやロケット推進器等の燃
焼器1内における音圧の周波数スペクトルを、図9のよ
うに横軸に周波数(Hz)、縦軸に圧力(Pa)とした
平面にプロットすると、ピーク値の周波数をf、ピー
ク値の1/√2となる圧力の周波数をf、fとする
と、ダンピング周波数(減衰比)ζは次の(8)式のよ
うになる。
Now, as shown in FIG. 9, the frequency spectrum of the sound pressure in the combustor 1 such as a gas turbine or a rocket propeller is plotted on a plane with the frequency (Hz) on the horizontal axis and the pressure (Pa) on the vertical axis. Then, assuming that the frequency of the peak value is f 0 and the frequency of the pressure that is 1 / √2 of the peak value is f 1 and f 2 , the damping frequency (damping ratio) ζ is expressed by the following equation (8).

【数7】 そのためこの値を複数測定し、熱量と減衰比との応答倍
率を前記図4に示したフローに従って算出することによ
り、ばらついていた数値から熱量と減衰比のかなり正確
な関係を導き出すことができる。
[Equation 7] Therefore, by measuring a plurality of these values and calculating the response magnification between the heat quantity and the damping ratio according to the flow shown in FIG. 4, it is possible to derive a fairly accurate relationship between the heat quantity and the damping ratio from the varied values.

【0041】また前記したように、発熱密度と減衰比の
関係も同様である。すなわち前記(7)式により音圧か
ら発熱密度θを導き出すことができるが、この発熱密度
θと前記(8)式で導き出した減衰比ζとから次の
(9)式で応答倍率α(i)(i=1、2、3、……
i)を算出し、図10のようにθとζの平面にプロット
すると、この値も熱量と減衰比の関係と同様にばらつい
たものになる。そのためこの応答倍率α(i)を図4に
示したフローに従って算出することにより、ばらついて
いた発熱密度と減衰比のかなり正確な関係を導き出すこ
とができる。
As described above, the relationship between the heat generation density and the damping ratio is the same. That is, although the heat generation density θ can be derived from the sound pressure by the equation (7), the response magnification α (i) is calculated by the following equation (9) from the heat generation density θ and the damping ratio ζ derived by the equation (8). ) (I = 1, 2, 3, ...
When i) is calculated and plotted on the plane of θ and ζ as shown in FIG. 10, this value also varies like the relationship between the heat quantity and the damping ratio. Therefore, by calculating this response magnification α (i) according to the flow shown in FIG. 4, it is possible to derive a fairly accurate relationship between the heat generation density and the damping ratio, which have varied.

【0042】[0042]

【発明の効果】以上記載の如く本発明によれば、ガスタ
ービンやロケット推進器等の燃焼器内に高温に耐えられ
ない安価なセンサやマイクを対象測定器として火炎の上
流側など、高温とならない場所に設置し、高温に耐えら
れる圧力センサやマイクを火炎の後流側に基準測定器と
して設置して両測定器の校正倍率を算出することで、対
象測定器のみで測定がおこなえるようになり、高温に耐
えられる高価な圧力センサやマイクを使うことなく、安
価な測定器で燃焼器における固有値の正確な予測をおこ
なうことができ、大きな経済的効果をもたらすものであ
る。
As described above, according to the present invention, an inexpensive sensor or microphone, which cannot withstand high temperature, is used as a target measuring device in a combustor such as a gas turbine or a rocket propulsion device, and a high temperature such as an upstream side of a flame is detected. Install in a place where it does not occur, install a pressure sensor or microphone that can withstand high temperatures as a reference measuring instrument on the downstream side of the flame, and calculate the calibration magnification of both measuring instruments so that measurement can be performed only with the target measuring instrument. Therefore, it is possible to accurately predict the eigenvalue in the combustor with an inexpensive measuring device without using an expensive pressure sensor or microphone that can withstand high temperatures, which brings a great economic effect.

【0043】また、この校正倍率を算出するに当たって
は、ガスタービンやロケット推進器等の燃焼器に設置し
た対象測定器と基準測定器の測定値から応答倍率を算出
し、この応答倍率の異常値を修正トンプソンτ法で排除
すると共に、残ったデータの分散を求めて2σで異常値
を排除することを繰り返し、最終的に残ったデータによ
って回帰直線を作成してその傾きを校正値倍率とするよ
うにして正確な校正倍率を自動的に算出できるようにし
たので、従来のように経験を積んだ技術者が測定値の中
の異常値を排除して関係性を演算し、勘で倍率を決定す
る、という非効率的で時間のかかる方法を用いることな
く、誰でも迅速に、正確な校正倍率を自動的に算出する
ことができ、大きな経済的効果が得られるものである。
Further, in calculating the calibration magnification, the response magnification is calculated from the measured values of the target measuring instrument and the reference measuring instrument installed in the combustor such as the gas turbine or the rocket propulsion device, and the abnormal value of this response multiplying factor is calculated. Is eliminated by the modified Thompson τ method, the variance of the remaining data is obtained, and the abnormal value is eliminated by 2σ, and a regression line is finally created by the remaining data and the slope thereof is used as the calibration value magnification. Since an accurate calibration magnification can be automatically calculated in this way, an experienced technician, as in the past, eliminates abnormal values in the measured values, calculates the relationship, and uses the intuition to calculate the magnification. Anyone can quickly and automatically calculate an accurate calibration magnification without using an inefficient and time-consuming method of determining, and a great economic effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明におけるガスタービンやロケット推進
器等の燃焼器における測定方法の実施の形態を示す概略
図である。
FIG. 1 is a schematic diagram showing an embodiment of a measuring method in a combustor such as a gas turbine or a rocket propulsion device according to the present invention.

【図2】 基準測定器と対象測定器で測定したガスター
ビンやロケット推進器等における燃焼器内の圧力の周波
数スペクトルをプロットしたグラフである。
FIG. 2 is a graph in which a frequency spectrum of pressure in a combustor in a gas turbine, a rocket propulsion device or the like measured by a reference measuring device and a target measuring device is plotted.

【図3】 基準測定器と対象測定器で測定したガスター
ビンやロケット推進器等における燃焼器内の圧力のピー
ク値をプロットしたグラフである。
FIG. 3 is a graph in which peak values of pressure in a combustor in a gas turbine, a rocket propulsion device, and the like measured by a reference measuring device and a target measuring device are plotted.

【図4】 本発明になるガスタービンやロケット推進器
等の燃焼器における測定方法の概略フロー図である。
FIG. 4 is a schematic flow chart of a measuring method in a combustor such as a gas turbine or a rocket propulsion device according to the present invention.

【図5】 測定値から分散を求めて2σで異常値を排除
する説明図である。
FIG. 5 is an explanatory diagram for obtaining variance from measured values and excluding abnormal values by 2σ.

【図6】 測定値から異常値を排除して残ったデータか
ら回帰直線を得る説明図である。
FIG. 6 is an explanatory diagram for obtaining a regression line from the remaining data after excluding abnormal values from measured values.

【図7】 音響特性を測定するマイクなどを設置する場
所を示した説明図である。
FIG. 7 is an explanatory diagram showing a place where a microphone or the like for measuring acoustic characteristics is installed.

【図8】 音圧と空間距離を示した説明図である。FIG. 8 is an explanatory diagram showing sound pressure and spatial distance.

【図9】 ダンピング周波数を説明するための図であ
る。
FIG. 9 is a diagram for explaining a damping frequency.

【図10】 発熱密度θと減衰比ζとの平面にプロット
した応答倍率α(i)を示した図である。
FIG. 10 is a diagram showing a response magnification α (i) plotted on a plane of a heat generation density θ and a damping ratio ζ.

【図11】 ガスタービンにおける燃焼器付近の断面図
である。
FIG. 11 is a sectional view of the vicinity of a combustor in a gas turbine.

【符号の説明】[Explanation of symbols]

1 ガスタービンやロケット推進器等の燃焼器 2 火炎 3 基準測定器 4 対象測定器 1 Combustors such as gas turbines and rocket thrusters 2 flames 3 Standard measuring instrument 4 Target measuring instruments

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01L 7/00 G01L 7/00 L Fターム(参考) 2F055 AA27 BB12 CC59 FF49 GG49 2G064 AA15 AB16 AB23 BA28 BD02 CC47 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01L 7/00 G01L 7/00 LF term (reference) 2F055 AA27 BB12 CC59 FF49 GG49 2G064 AA15 AB16 AB23 BA28 BD02 CC47

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃焼器における内圧や音圧、熱量等の固
有値の予測方法であって、燃焼器内に生じる火炎の高温
側には基準測定器を、低温側には対象測定器を設置し、
該基準測定器と対象測定器の測定結果から対象測定器に
おける基準測定器に対する校正倍率を算出し、該校正倍
率を用いて火炎の低温側に設置した対象測定器のみで高
温側の値を予測できるようにしたことを特徴とする燃焼
器における固有値の予測方法。
1. A method for predicting eigenvalues of internal pressure, sound pressure, heat quantity, etc. in a combustor, wherein a reference measuring instrument is installed on the high temperature side of a flame generated in the combustor and a target measuring instrument is installed on the low temperature side. ,
Calculate the calibration factor for the reference measuring device in the target measuring device from the measurement results of the reference measuring device and the target measuring device, and use the calibration factor to predict the value on the high temperature side only with the target measuring device installed on the low temperature side of the flame. A method for predicting an eigenvalue in a combustor characterized by being able to do so.
【請求項2】 燃焼器における内圧や音響特性に起因す
る圧力等の固有値を測定する際における複数の測定器間
の応答倍率評価方法であって、燃焼器内に火炎を生じさ
せた場合の火炎の高温側位置に基準測定器を、低温側位
置に対象測定器を設置し、該基準測定器と対象測定器の
測定結果から基準測定器と対象測定器の応答倍率を算出
した後、修正トンプソンτ法で前記応答倍率の異常デー
タをフィルタリングし、さらに残ったデータの分散を求
めて2σでフィルタリングして回帰直線を算出し、該回
帰直線の傾きを前記対象測定器の校正倍率とすることを
特徴とする燃焼器における測定器間の応答倍率評価方
法。
2. A method for evaluating response magnification between a plurality of measuring instruments when measuring eigenvalues such as internal pressure in a combustor and pressure due to acoustic characteristics, which is a flame when a flame is generated in the combustor. Install the reference measuring device at the high temperature side position and the target measuring device at the low temperature side position, calculate the response magnification of the reference measuring device and the target measuring device from the measurement results of the reference measuring device and the target measuring device, and then correct Thompson By filtering the abnormal data of the response magnification by the τ method, further obtaining the variance of the remaining data and filtering by 2σ to calculate a regression line, and using the slope of the regression line as the calibration magnification of the target measuring device. A method for evaluating response magnification between measuring instruments in a characteristic combustor.
【請求項3】 前記複数の測定器が燃焼器における内圧
を測定する圧力センサであり、燃焼器内の前記対象測定
器設置位置に設けた圧力センサの応答倍率を評価するこ
とを特徴とする請求項2に記載した燃焼器における測定
器間の応答倍率評価方法。
3. The pressure sensor for measuring the internal pressure in a combustor, wherein the plurality of measuring devices evaluate the response magnification of a pressure sensor provided in the target measuring device installation position in the combustor. Item 2. A response magnification evaluation method between measuring instruments in the combustor described in Item 2.
【請求項4】 前記複数の測定器が燃焼器の非燃焼時に
おける音響特性を測定するマイクであり、燃焼器内の前
記対象測定器設置位置に設けたマイクの応答倍率を評価
することを特徴とする請求項2に記載した燃焼器におけ
る測定器間の応答倍率評価方法。
4. The microphone is a microphone for measuring acoustic characteristics of a combustor when the combustor is not burning, and the response magnification of a microphone provided at the target measuring instrument installation position in the combustor is evaluated. The method for evaluating response magnification between measuring devices in a combustor according to claim 2.
【請求項5】 燃焼器における熱量や発熱密度に対応し
た音響系の減衰量の応答倍率評価方法であって、燃焼器
内の熱量や発熱密度と周波数毎の音圧を測定し、該熱量
や発熱密度と音圧の周波数による減衰量の応答倍率を算
出した後修正トンプソンτ法で応答倍率の異常データを
フィルタリングし、残ったデータの分散を求めて2σで
フィルタリングした後回帰直線を算出して該回帰直線の
傾きを前記応答倍率とすることを特徴とする燃焼器にお
ける応答倍率評価方法。
5. A method for evaluating a response magnification of an attenuation amount of an acoustic system corresponding to a heat quantity or a heat generation density in a combustor, wherein the heat quantity or the heat generation density in the combustor and the sound pressure for each frequency are measured, and the heat quantity or After calculating the response magnification of the attenuation amount by the heat density and the frequency of the sound pressure, filter the abnormal data of the response magnification by the modified Thompson τ method, obtain the variance of the remaining data, filter by 2σ, and then calculate the regression line. A response magnification evaluation method for a combustor, wherein the slope of the regression line is used as the response magnification.
JP2001261805A 2001-08-30 2001-08-30 Prediction method of eigenvalue in combustor and evaluation method of response magnification between measuring instruments Expired - Lifetime JP4078052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261805A JP4078052B2 (en) 2001-08-30 2001-08-30 Prediction method of eigenvalue in combustor and evaluation method of response magnification between measuring instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261805A JP4078052B2 (en) 2001-08-30 2001-08-30 Prediction method of eigenvalue in combustor and evaluation method of response magnification between measuring instruments

Publications (2)

Publication Number Publication Date
JP2003074851A true JP2003074851A (en) 2003-03-12
JP4078052B2 JP4078052B2 (en) 2008-04-23

Family

ID=19088790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261805A Expired - Lifetime JP4078052B2 (en) 2001-08-30 2001-08-30 Prediction method of eigenvalue in combustor and evaluation method of response magnification between measuring instruments

Country Status (1)

Country Link
JP (1) JP4078052B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300613A (en) * 2005-04-18 2006-11-02 Yokohama Rubber Co Ltd:The Tire testing device and tire testing method
JP2014517893A (en) * 2011-05-17 2014-07-24 スネクマ Supply system and method for suppressing pogo effect
WO2021157567A1 (en) * 2020-02-04 2021-08-12 国立研究開発法人宇宙航空研究開発機構 Spacecraft liquid propulsion system failure diagnosis system and spacecraft liquid propulsion system failure diagnosis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646338B (en) * 2016-12-07 2019-07-16 华南理工大学 A kind of quickly accurate indoor orientation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300613A (en) * 2005-04-18 2006-11-02 Yokohama Rubber Co Ltd:The Tire testing device and tire testing method
JP4706316B2 (en) * 2005-04-18 2011-06-22 横浜ゴム株式会社 Tire testing apparatus and tire testing method
JP2014517893A (en) * 2011-05-17 2014-07-24 スネクマ Supply system and method for suppressing pogo effect
WO2021157567A1 (en) * 2020-02-04 2021-08-12 国立研究開発法人宇宙航空研究開発機構 Spacecraft liquid propulsion system failure diagnosis system and spacecraft liquid propulsion system failure diagnosis method
JP2021124045A (en) * 2020-02-04 2021-08-30 国立研究開発法人宇宙航空研究開発機構 Failure diagnostic system for spacecraft liquid propulsion system, and failure diagnostic method for spacecraft liquid propulsion system
JP7417256B2 (en) 2020-02-04 2024-01-18 国立研究開発法人宇宙航空研究開発機構 Fault diagnosis system for spacecraft liquid propulsion system and fault diagnosis method for spacecraft liquid propulsion system

Also Published As

Publication number Publication date
JP4078052B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US10788399B2 (en) Apparatus for evaluating turbine engine system stability
US6979118B1 (en) Estimating combustor flame temperature based on frequency of combustor dynamics transverse mode
EP3284930B1 (en) Gas turbine engine comprising a leak detection system and method
KR101256038B1 (en) Gas turbine control method and controller
US9976915B2 (en) Temperature measurement in a gas turbine engine combustor
AU777846B2 (en) System and method for direct non-intrusive measurement of corrected airflow
CN106233109B (en) The method for determining the waveguide temperature of the acoustic transceiver for gas-turbine unit
US20140208764A1 (en) Systems and methods for measuring a flow profile in a turbine engine flow path
WO2009107818A1 (en) Gas turbine control method and device
EP1229226B1 (en) Combustion vibration estimating apparatus, plant and gas turbine plant
US20140208755A1 (en) Gas Turbine Air Mass Flow Measuring System and Methods for Measuring Air Mass Flow in a Gas Turbine Inlet Duct
JP2003074851A (en) Eigenvalue-prediction method in combustion equipment and evaluation method of response factor between measuring devices
CN111220364B (en) Method for calculating creep elongation of rotor and method for monitoring creep elongation of rotor
Hajilouy-Benisi et al. Empirical assessment of the performance characteristics in turbocharger turbine and compressor
Betz et al. Impact of damper parameters on the stability margin of an annular combustor test rig
Mersinligil et al. High-temperature high-frequency turbine exit flow field measurements in a military engine with a cooled unsteady total pressure probe
JP2000130750A (en) Combustion monitoring device
JP4295045B2 (en) Method for evaluating the operating conditions of a machine or facility
Knadler et al. Validation of a physics-based low-order thermo-acoustic model of combustion driven oscillations in a liquid fueled gas turbine combustor
Stadlmair et al. Experimentally determining the acoustic damping rates of a combustor with a swirl stabilized lean premixed flame
Andreini et al. Experimental investigation on effusion liner geometries for aero-engine combustors: evaluation of global acoustic parameters
van Kampen et al. Characterisation of interaction between combustion dynamics and equivalence ratio oscillations in a pressurised combustor
Boyle et al. DGEN aeropropulsion research turbofan core/combustor-noise measurements: Experiment and modal structure at core-nozzle exit
George et al. Error Estimation of Measured Exhaust Gas Temperature in Afterburner Mode in an Aero Gas Turbine Engine.
Weidner et al. Pulsations in Gas Turbine Operation: Identification and Modeling With the Purpose of Online Engine Monitoring and Optimization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R151 Written notification of patent or utility model registration

Ref document number: 4078052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term