JP2003074796A - Hydrogen storage method and hydrogen storage vessel - Google Patents

Hydrogen storage method and hydrogen storage vessel

Info

Publication number
JP2003074796A
JP2003074796A JP2001267485A JP2001267485A JP2003074796A JP 2003074796 A JP2003074796 A JP 2003074796A JP 2001267485 A JP2001267485 A JP 2001267485A JP 2001267485 A JP2001267485 A JP 2001267485A JP 2003074796 A JP2003074796 A JP 2003074796A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
gas
material powder
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001267485A
Other languages
Japanese (ja)
Inventor
Takanori Suzuki
貴紀 鈴木
Izuru Kanoya
出 鹿屋
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001267485A priority Critical patent/JP2003074796A/en
Publication of JP2003074796A publication Critical patent/JP2003074796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage method capable of rapidly filling hydrogen into a hydrogen storage vessel, and sufficiently increasing a hydrogen storage amount. SOLUTION: This hydrogen storage method adopts means for filling hydrogen storage material powder Ph after hydrogen storage into the hydrogen storage vessel 3, discharging the hydrogen storage material powder Ph from the hydrogen storage vessel 3 after a hydrogen discharge, and filling new hydrogen storage material powder Ph after the hydrogen storage into the hydrogen storage vessel 3. When filling the hydrogen storage material powder Ph after the hydrogen storage into the hydrogen storage vessel 3, a fluid F1 comprising the hydrogen storage material powder Ph and a gas g is led into the hydrogen storage vessel 3, the gas g is discharged from the hydrogen storage vessel 3, and the hydrogen storage material powder Ph is left inside the hydrogen storage vessel 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水素貯蔵方法,特に
水素吸蔵合金粉末,ナノ構造カーボン粉末等の水素貯蔵
材粉末を用いる水素貯蔵方法および水素貯蔵容器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage method, and more particularly to a hydrogen storage method and a hydrogen storage container using a hydrogen storage material powder such as hydrogen storage alloy powder or nanostructured carbon powder.

【0002】[0002]

【従来の技術】従来,熱媒体用管路を組込んだ水素貯蔵
容器内に水素貯蔵材粉末を充填し,その水素貯蔵材粉末
に水素を貯蔵させるときは熱媒体により水素貯蔵材粉末
を冷却し,一方,水素貯蔵材粉末から水素を放出させる
ときは熱媒体により水素貯蔵材粉末を加熱する,といっ
た水素貯蔵方法が知られている(例えば,特開平2−1
64701号公報参照)。
2. Description of the Related Art Conventionally, when a hydrogen storage material powder is filled in a hydrogen storage container incorporating a heat medium pipe and hydrogen is stored in the hydrogen storage material powder, the hydrogen storage material powder is cooled by the heat medium. On the other hand, a hydrogen storage method is known in which, when hydrogen is released from the hydrogen storage material powder, the hydrogen storage material powder is heated by a heat medium (for example, Japanese Patent Laid-Open No. 2-1).
64701 gazette).

【0003】[0003]

【発明が解決しようとする課題】水素の急速充填におい
ては,水素貯蔵材粉末が多量の熱を発生するが,従来の
方法では,この多量の熱を十分に奪取することができな
いので,水素の急速充填を採用することができず,した
がって水素貯蔵に際し多くの時間を要する,という問題
があった。また水素貯蔵材粉末として水素吸蔵合金粉末
を用いた場合,その粉末が振動等によって高密度化する
と,水素吸蔵中に水素吸蔵合金粉末が膨脹したとき容器
が変形するおそれがあり,これに対処するためには容器
の剛性を高めなければならず,その構造の複雑化,高コ
スト化を招来する,という問題もあった。
In the rapid filling of hydrogen, the hydrogen storage material powder generates a large amount of heat. However, the conventional method cannot sufficiently absorb this large amount of heat. There is a problem that rapid filling cannot be adopted, and therefore it takes a lot of time to store hydrogen. If hydrogen storage alloy powder is used as the hydrogen storage material powder and the density of the powder increases due to vibration, etc., the container may be deformed when the hydrogen storage alloy powder expands during hydrogen storage. In order to do so, the rigidity of the container must be increased, which also leads to a complicated structure and higher cost.

【0004】[0004]

【課題を解決するための手段】本発明は,水素貯蔵容器
への水素の急速充填を可能にし,しかも水素貯蔵量を十
分に高めることが可能な前記水素貯蔵方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrogen storage method capable of rapidly filling hydrogen into a hydrogen storage container and sufficiently increasing the hydrogen storage amount. .

【0005】前記目的を達成するため本発明によれば,
水素貯蔵後の水素貯蔵材粉末を水素貯蔵容器に充填し,
水素放出後においては前記水素貯蔵材粉末を前記水素貯
蔵容器から排出して,水素貯蔵後の新たな水素貯蔵材粉
末をその水素貯蔵容器に充填する水素貯蔵方法であっ
て,水素貯蔵容器に水素貯蔵後の水素貯蔵材粉末を充填
するに当り,その水素貯蔵材粉末およびガスよりなる流
動体を前記水素貯蔵容器に導入して,そのガスを前記水
素貯蔵容器より排出すると共に前記水素貯蔵材粉末を前
記水素貯蔵容器内に残置させる水素貯蔵方法が提供され
る。
According to the present invention to achieve the above object,
Fill the hydrogen storage container with hydrogen storage material powder after hydrogen storage,
A method for storing hydrogen, wherein the hydrogen storage material powder is discharged from the hydrogen storage container after hydrogen is released, and new hydrogen storage material powder after hydrogen storage is filled into the hydrogen storage container. Upon filling the hydrogen storage material powder after storage, a fluid comprising the hydrogen storage material powder and gas is introduced into the hydrogen storage container, and the gas is discharged from the hydrogen storage container and the hydrogen storage material powder is discharged. There is provided a hydrogen storage method for leaving hydrogen in the hydrogen storage container.

【0006】水素貯蔵容器への水素充填に当り,前記の
ように水素貯蔵後の水素貯蔵材粉末を水素貯蔵容器に充
填すると,その容器に対する水素の充填時間を従来の場
合よりも短縮して,実質的に,水素の急速充填を実現す
ることができる。
When filling the hydrogen storage container with hydrogen as described above, when the hydrogen storage material powder after hydrogen storage is filled into the hydrogen storage container, the time for filling the hydrogen storage container with hydrogen is shortened as compared with the conventional case. Substantially, rapid filling of hydrogen can be realized.

【0007】一方,水素貯蔵材粉末をガスと共に流動体
として水素貯蔵容器に導入するので,その水素貯蔵材粉
末が微細であってもそれを分散状態に保ち,また水素貯
蔵容器からガスを排出して水素貯蔵材粉末をその容器内
に残置させることにより,水素貯蔵材粉末の堆積量を漸
次増加させ,これらにより水素貯蔵容器の水素貯蔵量を
十分に高めることができる。
On the other hand, since the hydrogen storage material powder is introduced into the hydrogen storage container as a fluid together with the gas, even if the hydrogen storage material powder is fine, it is kept in a dispersed state and the gas is discharged from the hydrogen storage container. By allowing the hydrogen storage material powder to remain in the container, the deposition amount of the hydrogen storage material powder is gradually increased, and by this, the hydrogen storage amount of the hydrogen storage container can be sufficiently increased.

【0008】この場合,流動体形成のためのガスは,水
素貯蔵材粉末に対しては不活性ガスが適しているが,不
活性ガスの場合はそれを水素貯蔵容器内から除去する工
程が必要となる。この除去工程を省くためには,流動体
形成用ガスとして水素を用いるのがよい。
In this case, as the gas for forming the fluid, an inert gas is suitable for the hydrogen storage material powder, but in the case of the inert gas, a step of removing it from the hydrogen storage container is required. Becomes In order to omit this removing step, it is preferable to use hydrogen as the fluid forming gas.

【0009】また本発明によれば,前記水素貯蔵容器か
ら水素放出後の前記水素貯蔵材粉末を排出するに当り,
前記水素貯蔵容器にガスを吹込んでその水素貯蔵材粉末
およびガスよりなる流動体を形成し,その流動体を前記
水素貯蔵容器から排出する水素貯蔵方法が提供される。
According to the present invention, in discharging the hydrogen storage material powder after releasing hydrogen from the hydrogen storage container,
A hydrogen storage method is provided in which a gas is blown into the hydrogen storage container to form a fluid comprising the hydrogen storage material powder and the gas, and the fluid is discharged from the hydrogen storage container.

【0010】前記方法によれば,水素貯蔵材粉末が固ま
っていても,ガスの吹込みによりその固まりをほぐして
流動体を容易に形成することができ,これにより水素貯
蔵材粉末の交換作業を能率良く行うことができる。
According to the above method, even if the hydrogen storage material powder is solidified, it is possible to loosen the solidified material by blowing gas and easily form a fluid, which allows replacement work of the hydrogen storage material powder. You can do it efficiently.

【0011】さらに本発明によれば,底壁がそれの外周
部から中央部に向って下り勾配の斜面を持つ水素貯蔵材
粉末用充填室と,その底壁の中央部において,水素貯蔵
後の前記水素貯蔵材粉末およびガスよりなる第1の流動
体の前記充填室への導入に寄与すると共に,水素放出後
の前記水素貯蔵材粉末およびガスよりなる第2の流動体
の前記充填室からの導出に寄与する導入兼導出部と,前
記底壁の少なくとも一部を形成して,前記水素貯蔵材粉
末導入過程では前記ガスの前記充填室からの排出を許容
し,一方,前記水素貯蔵材粉末導出過程では前記ガスの
前記充填室への吹込みを許容するフィルタ部材とを有す
る水素貯蔵容器が提供される。
Further, according to the present invention, the bottom wall has a hydrogen storage material powder filling chamber having an inclined surface having a downward slope from the outer peripheral portion to the center portion, and the center portion of the bottom wall after the hydrogen storage. It contributes to the introduction of the first fluid consisting of the hydrogen storage material powder and the gas into the filling chamber, and at the same time from the filling chamber of the second fluid consisting of the hydrogen storage material powder and the gas after hydrogen release. At least a part of the bottom wall and the introduction / delivery portion that contributes to the discharge are formed to allow the discharge of the gas from the filling chamber during the hydrogen storage material powder introduction process, while the hydrogen storage material powder is discharged. In the discharging process, a hydrogen storage container having a filter member that allows the gas to be blown into the filling chamber is provided.

【0012】前記のように構成すると,充填室内では水
素貯蔵材粉末の加熱のみが行われ,冷却を行う必要が無
いので,熱媒体用管路の単純化を図って充填室内の水素
貯蔵材粉末の占有スペースを拡張し,これにより水素貯
蔵量を増加させることが可能である。また水素吸蔵合金
粉末を用いた場合にも,充填室内で水素の吸蔵を行わな
いからその容器に要求される剛性を緩和し,その構造の
簡素化および低コスト化を図ることができる。
With the above-mentioned structure, the hydrogen storage material powder is heated only in the filling chamber and does not need to be cooled. It is possible to expand the space occupied by the, and thereby increase the hydrogen storage capacity. Also, when hydrogen-absorbing alloy powder is used, hydrogen is not stored in the filling chamber, so that the rigidity required for the container can be relaxed, and the structure can be simplified and the cost can be reduced.

【0013】[0013]

【発明の実施の形態】図1において,水素貯蔵システム
1は燃料電池2を装備した自動車,鉄道車両等の車両に
搭載されるもので,5つの水素貯蔵容器3を有し,それ
らは相隣る両容器3が密接するように一列に並べられて
いる。各容器3の上壁4に存する水素放出口5に,第1
開閉弁6を有する導管7が接続され,それら導管7は燃
料電池2の水素入口8から延出する1つの導管9に接続
される。各水素貯蔵容器3に熱媒体を供給すべく,供給
管10の一端が,燃料電池2の冷却系における熱媒体用
出口11に接続され,その供給管10の他端に存する5
つに枝分かれした分岐部12が5つの容器3の熱媒体用
管路の入口13にそれぞれ接続される。また熱媒体を各
水素貯蔵容器3から燃料電池2に戻すべく,戻し管14
の一端に存する5つに枝分かれした分岐部15が5つの
容器3の熱媒体用管路の出口16にそれぞれ接続され,
その戻し管14の他端が,燃料電池2の冷却系における
熱媒体用入口17に接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a hydrogen storage system 1 is mounted on a vehicle such as an automobile equipped with a fuel cell 2, a railroad vehicle, etc., and has five hydrogen storage containers 3 which are adjacent to each other. The two containers 3 are arranged in a line so as to be in close contact with each other. At the hydrogen discharge port 5 existing on the upper wall 4 of each container 3,
Conduits 7 with open / close valves 6 are connected, which are connected to one conduit 9 extending from the hydrogen inlet 8 of the fuel cell 2. In order to supply the heat medium to each hydrogen storage container 3, one end of the supply pipe 10 is connected to the heat medium outlet 11 in the cooling system of the fuel cell 2, and the other end of the supply pipe 10 exists.
The branched portions 12 that are branched into two are respectively connected to the inlets 13 of the heat medium pipes of the five vessels 3. In addition, in order to return the heat medium from each hydrogen storage container 3 to the fuel cell 2, a return pipe 14
5 branching portions 15 present at one end of each are respectively connected to the outlets 16 of the heat medium pipes of the 5 vessels 3,
The other end of the return pipe 14 is connected to the heat medium inlet 17 in the cooling system of the fuel cell 2.

【0014】図2〜4に示すように,水素貯蔵容器3の
器体18は,上壁4を持つ直方体形の上部殻体19と,
その上部殻体19の下部開口縁部分に連なる逆四角錐台
形の下部殻体20とを有する。
As shown in FIGS. 2 to 4, the container 18 of the hydrogen storage container 3 comprises a rectangular parallelepiped upper shell 19 having an upper wall 4.
The upper shell 19 has a lower truncated pyramid-shaped lower shell 20 which is continuous with the lower opening edge portion.

【0015】器体18内において,下部殻体20近傍
に,その下部殻体20と同様の形状である逆四角錐台
形,したがってほぼ漏斗状をなすフィルタ部材21が配
置されて,その外周部が上部殻体19内周面に取付けら
れ,そのフィルタ部材21により,その上方には水素貯
蔵材粉末用充填室22が区画されると共に,その下方に
はガス室23が区画される。フィルタ部材21はその全
体が充填室22の底壁を構成し,その底壁は,その外周
部から中央部に向って下り勾配の四つの斜面24を持
つ。この場合の傾斜角は,水素貯蔵材粉末の安息角を上
回るように設定されている。フィルタ部材21は,ガス
を通すが,水素貯蔵材粉末は通さない直径を持つ複数の
気孔を有する。同様の気孔を持つフィルタ部材25が上
壁4の水素放出口5にも設けられている。充填室22内
にコイル状熱媒体用管路26が配設され,その入口13
を有する側は上部殻体19の周壁27下部より外部に引
出されており,またその出口16を有する側は上部殻体
19の周壁27上部より外部に引出されている。
A filter member 21 having an inverted quadrangular truncated pyramid shape, which is the same shape as that of the lower shell body 20, and thus having a substantially funnel shape, is arranged in the vicinity of the lower shell body 20 in the container 18, and its outer peripheral portion is formed. The filter member 21 is attached to the inner peripheral surface of the upper shell body 19 to define a hydrogen storage material powder filling chamber 22 above and a gas chamber 23 below. The filter member 21 as a whole constitutes a bottom wall of the filling chamber 22, and the bottom wall has four slopes 24 having a downward slope from the outer peripheral portion toward the central portion. The tilt angle in this case is set to exceed the repose angle of the hydrogen storage material powder. The filter member 21 has a plurality of pores having a diameter that allows gas to pass through but does not allow hydrogen storage material powder to pass through. A filter member 25 having similar pores is also provided on the hydrogen discharge port 5 of the upper wall 4. A coil-shaped heat medium pipe line 26 is provided in the filling chamber 22, and its inlet 13
The side having the is drawn out from the lower part of the peripheral wall 27 of the upper shell 19, and the side having the outlet 16 is drawn out from the upper part of the peripheral wall 27 of the upper shell 19.

【0016】下部殻体20は,その中央部に下方に突出
する有底接続筒部28を有し,その内部はガス室23に
連通する。またフィルタ部材21はその中央部に下方に
突出する接続筒部29を有し,その接続筒部29は有底
接続筒部28底壁を貫通すると共にその内部は充填室2
2に連通する。
The lower shell body 20 has a bottomed connecting cylinder portion 28 projecting downward at the center thereof, and the inside thereof communicates with the gas chamber 23. Further, the filter member 21 has a connecting tubular portion 29 projecting downward at the center thereof, and the connecting tubular portion 29 penetrates the bottom wall of the bottomed connecting tubular portion 28 and the inside thereof is filled with the filling chamber 2.
Connect to 2.

【0017】接続筒部29に第2開閉弁30を持つ導管
31の一端が接続され,その他端は第1三方弁32の第
1ポートp1に接続される。第1三方弁32の第2ポー
トp2は導管33を介して第1の流動体を供給する流動
体供給装置34に接続され,また第3ポートp3は導管
35を介して第2の流動体を回収する流動体回収装置3
6に接続される。第1の流動体は,水素貯蔵後の水素貯
蔵材粉末およびガスよりなり,一方,第2の流動体は,
水素放出後の水素貯蔵材粉末およびガスよりなる。接続
筒部29内は充填室22の出入口37であって,その出
入口37は,第1の流動体の充填室22への導入に寄与
すると共に第2の流動体の充填室22からの導出に寄与
する導入兼導出部である。
One end of a conduit 31 having a second opening / closing valve 30 is connected to the connecting cylinder portion 29, and the other end is connected to the first port p1 of the first three-way valve 32. The second port p2 of the first three-way valve 32 is connected via a conduit 33 to a fluid supply device 34 which supplies the first fluid, and the third port p3 is connected via a conduit 35 to the second fluid. Fluid recovery device 3 for recovery
6 is connected. The first fluid consists of hydrogen storage material powder and gas after hydrogen storage, while the second fluid is
It consists of hydrogen storage material powder and gas after hydrogen is released. The inside of the connection tubular portion 29 is an inlet / outlet 37 of the filling chamber 22, and the inlet / outlet 37 contributes to the introduction of the first fluid into the filling chamber 22 and the derivation of the second fluid from the filling chamber 22. It is an introductory / deriving part that contributes.

【0018】有底接続筒部28に第3開閉弁38を持つ
導管39の一端が接続され,その他端は第2三方弁40
の第1ポートp1に接続される。第2三方弁40の第2
ポートp2は導管42を介して第3三方弁41の第1ポ
ートp1に接続され,その第3三方弁41の第2ポート
p2は,導管43を介して真空ポンプPに接続される。
真空ポンプPの吐出側は導管46を介してガス回収器4
4に接続される。第3三方弁41の第3ポートp3は導
管45を介してガス収容器44に接続(または大気に開
放)される。また第2三方弁40の第3ポートp3は導
管47を介して圧縮ガス供給装置48に接続される。
One end of a conduit 39 having a third opening / closing valve 38 is connected to the bottomed connecting tubular portion 28, and the other end has a second three-way valve 40.
Is connected to the first port p1. Second of the second three-way valve 40
The port p2 is connected to the first port p1 of the third three-way valve 41 via the conduit 42, and the second port p2 of the third three-way valve 41 is connected to the vacuum pump P via the conduit 43.
The discharge side of the vacuum pump P is connected via the conduit 46 to the gas recovery unit 4
4 is connected. The third port p3 of the third three-way valve 41 is connected (or open to the atmosphere) to the gas container 44 via the conduit 45. Further, the third port p3 of the second three-way valve 40 is connected to the compressed gas supply device 48 via the conduit 47.

【0019】次に,水素貯蔵容器3への水素貯蔵材粉末
の充填,燃料電池2への水素の供給,およびその容器3
からの水素貯蔵材粉末の排出について説明する。
Next, the hydrogen storage material 3 is filled with hydrogen storage material powder, hydrogen is supplied to the fuel cell 2, and the container 3 is supplied.
The discharge of the hydrogen storage material powder from the will be described.

【0020】図5において,第2,第3開閉弁30,3
8がそれぞれ「開」,第1開閉弁6が「閉」,第1,第
2三方弁32,40の第1,第2ポートp1,p2間お
よび第3三方弁41の第1,第3ポートp1,p3間が
それぞれ「連通」の状態で流動体供給装置34を作動さ
せ,水素貯蔵後の水素貯蔵材粉末Phおよびガスgより
なる第1の流動体F1を所定の圧力で出入口37を経て
充填室22に導入してその内部に充満させ,次いで流動
体供給装置34の作動を停止させると共に第2開閉弁3
0を「閉」にする。この間に第1の流動体F1中の一部
のガスgがフィルタ部材21,ガス室23,第3開閉弁
38,第2三方弁40および第3三方弁41を通過して
ガス回収器44に回収される。
In FIG. 5, the second and third on-off valves 30, 3
8 is “open”, the first opening / closing valve 6 is “closed”, between the first and second ports p1 and p2 of the first and second three-way valves 32 and 40, and the first and third of the third three-way valve 41. The fluid supply device 34 is operated with the ports p1 and p3 being in "communication" with each other, and the first fluid F1 composed of the hydrogen storage material powder Ph and the gas g after hydrogen storage is supplied to the inlet / outlet port 37 at a predetermined pressure. After that, the fluid is introduced into the filling chamber 22 to fill the inside thereof, then the operation of the fluid supply device 34 is stopped, and the second opening / closing valve 3
0 is closed. During this time, a part of the gas g in the first fluid F1 passes through the filter member 21, the gas chamber 23, the third opening / closing valve 38, the second three-way valve 40, and the third three-way valve 41, and enters the gas recovery unit 44. Be recovered.

【0021】図6に示すように,第3三方弁41の第
1,第3ポートp1,p3間を遮断すると共に第1,第
2ポートp1,p2間を連通させて真空ポンプPを作動
させる。これにより第1の流動体F1中のガスgが十分
に排出されてフィルタ部材21上には水素貯蔵材粉末P
hが残置され,またガスgがガス回収器44に回収され
る。その後,真空ポンプPの作動を停止させる。
As shown in FIG. 6, the vacuum pump P is operated by shutting off the first and third ports p1 and p3 of the third three-way valve 41 and connecting the first and second ports p1 and p2. . As a result, the gas g in the first fluid F1 is sufficiently discharged, and the hydrogen storage material powder P on the filter member 21.
h is left, and the gas g is recovered by the gas recovery device 44. Then, the operation of the vacuum pump P is stopped.

【0022】図7に示すように,第2開閉弁30を
「開」にして,流動体供給装置34を作動させ,第1の
流動体F1を所定の圧力で充填室22に導入し,次いで
流動体供給装置34の作動を停止させると共に第2開閉
弁30を「閉」にする。フィルタ部材21上に堆積して
いた水素貯蔵材粉末Phの中央部分が第1の流動体F1
により吹飛ばされて,その粉末Phの中央部分およびそ
の上方に第1の流動体F1が存在する。
As shown in FIG. 7, the second opening / closing valve 30 is "opened", the fluid supply device 34 is operated, and the first fluid F1 is introduced into the filling chamber 22 at a predetermined pressure. The operation of the fluid supply device 34 is stopped and the second opening / closing valve 30 is “closed”. The central portion of the hydrogen storage material powder Ph deposited on the filter member 21 is the first fluid F1.
The first fluid F1 is blown away by the powder Ph and exists in the central portion and above the powder Ph.

【0023】以後,図6に示したガスgの排出,図7に
示した第1の流動体F1の導入,を繰返して,図8に示
すように充填室22を水素貯蔵材粉末Phにより満た
し,次いで真空ポンプPの作動を停止させ,また第3開
閉弁38を「閉」にする。
Thereafter, the discharge of the gas g shown in FIG. 6 and the introduction of the first fluid F1 shown in FIG. 7 are repeated, and the filling chamber 22 is filled with the hydrogen storage material powder Ph as shown in FIG. Then, the operation of the vacuum pump P is stopped and the third opening / closing valve 38 is closed.

【0024】前記過程においてフィルタ部材21の目詰
り防止に当っては,フィルタ部材21に逆圧をかけて浄
化すべく,図8に示すように,第2三方弁40の第1,
第3ポートp1,p3間を連通させて圧縮ガス供給装置
48から圧縮ガスg1を第3開閉弁38を通じてガス室
23に供給する。
In order to prevent clogging of the filter member 21 in the above process, in order to apply a reverse pressure to the filter member 21 to clean it, as shown in FIG.
The compressed gas g1 is supplied from the compressed gas supply device 48 to the gas chamber 23 through the third opening / closing valve 38 by connecting the third ports p1 and p3.

【0025】図1,2において,燃料電池2への水素の
供給は,第1開閉弁6「開」にて,燃料電池2から供給
管10を介し熱媒体用管路26に熱媒体を流通させて水
素貯蔵材粉末Phを加熱し,その粉末Phから水素を放
出させることによって行われる。
In FIGS. 1 and 2, the hydrogen is supplied to the fuel cell 2 by flowing the heat medium from the fuel cell 2 to the heat medium pipe 26 through the supply pipe 10 by opening the first opening / closing valve 6. Then, the hydrogen storage material powder Ph is heated to release hydrogen from the powder Ph.

【0026】水素放出後の水素貯蔵材粉末Phを充填室
22から排出する場合には,図9に示すように,第2,
第3開閉弁30,38が「開」,第1開閉弁6が
「閉」,第1,第2三方弁32,40の第1,第3ポー
トp1,p3間がそれぞれ「連通」の状態で,圧縮ガス
供給装置48から圧縮ガスg1をガス室23,フィルタ
部材21を介して充填室22の底壁側から噴出させる。
これにより水素貯蔵材粉末Phがほぐされて第2の流動
体F2が形成され,その第2の流動体F2は出入口3
7,第2開閉弁30および第1三方弁32を経て流動体
回収装置36に回収される。空の充填室22には,水素
貯蔵後の水素貯蔵材粉末が前記と同様の方法で充填され
る。一方,回収粉末は水素貯蔵処理を施された後,再使
用される。
In the case of discharging the hydrogen storage material powder Ph after releasing hydrogen from the filling chamber 22, as shown in FIG.
A state in which the third opening / closing valves 30 and 38 are “open”, the first opening / closing valve 6 is “closed”, and the first and third ports p1 and p3 of the first and second three-way valves 32 and 40 are “communication”, respectively. Then, the compressed gas g1 is ejected from the compressed gas supply device 48 from the bottom wall side of the filling chamber 22 through the gas chamber 23 and the filter member 21.
As a result, the hydrogen storage material powder Ph is loosened to form the second fluid F2.
7, the second on-off valve 30 and the first three-way valve 32 to collect the fluid in the fluid collecting device 36. The empty filling chamber 22 is filled with the hydrogen storage material powder after hydrogen storage in the same manner as described above. On the other hand, the recovered powder is reused after being subjected to hydrogen storage treatment.

【0027】次に具体例について説明する。水素吸蔵合
金粉末:LaNi5 粉末,粒径2μm以上,10μm以
下,有効水素吸蔵量 1.2wt%;流動体形成用ガ
ス:水素;水素貯蔵容器の最高使用圧力:0.9MP
a;最低放出圧力:0.2MPa;熱媒体:ロングライ
フクーラント(LLC),温度 50℃;フィルタ部
材:焼結ステンレス鋼製,気孔の直径 5μm以下;の
条件下で,水素吸蔵量約4kgに相当する350kgのLa
Ni5 粉末を前記同様の方法で充填室22に充填したと
ころ,その充填に要する時間は約5分間であった。一
方,充填室22から350kgのLaNi5 粉末の排出に
要する時間も約5分間であった。
Next, a specific example will be described. Hydrogen storage alloy powder: LaNi 5 powder, particle size 2 μm or more, 10 μm or less, effective hydrogen storage amount 1.2 wt%; fluid forming gas: hydrogen; maximum working pressure of hydrogen storage container: 0.9 MP
a; minimum release pressure: 0.2 MPa; heat medium: long life coolant (LLC), temperature 50 ° C .; filter member: sintered stainless steel, pore diameter 5 μm or less; The equivalent of 350 kg La
When the filling chamber 22 was filled with the Ni 5 powder in the same manner as described above, the time required for the filling was about 5 minutes. On the other hand, the time required to discharge 350 kg of LaNi 5 powder from the filling chamber 22 was about 5 minutes.

【0028】比較のため,充填室22に350kgのLa
Ni5 粉末を充填し,次いで熱媒体用管路26に冷却水
を50L/min の流量で流通させながらLaNi5 粉末
に水素を吸蔵させ,その水素吸蔵量が約4kgに達するま
での時間を調べたところ,それは約30分間であること
が判明した。
For comparison, 350 kg of La is placed in the filling chamber 22.
Ni 5 powder was filled, and then LaNi 5 powder was allowed to occlude hydrogen while circulating cooling water at a flow rate of 50 L / min through the heat medium pipe line 26, and the time until the hydrogen occlusion amount reached about 4 kg was investigated. It turned out to be about 30 minutes.

【0029】したがって,実施例において,充填室22
から水素放出後のLaNi5 粉末を排出し,次いでその
充填室22に水素吸蔵後のLaNi5 粉末を充填する,
という排出・充填作業を水素吸蔵作業とすれば,その作
業時間は比較例の3分の1に短縮される。
Therefore, in the embodiment, the filling chamber 22
LaNi 5 powder after hydrogen release is discharged from the chamber, and then the filling chamber 22 is filled with LaNi 5 powder after hydrogen storage.
If the discharging / filling work is a hydrogen storage work, the working time is shortened to one-third of that of the comparative example.

【0030】なお,フィルタ部材21は充填室22の底
壁49の少なくとも一部,例えば図10に示すようにそ
の底壁49のほぼ半分を形成していてもよい。また図1
1に示すように器体18は円筒形でもよい。
The filter member 21 may form at least a part of the bottom wall 49 of the filling chamber 22, for example, approximately half of the bottom wall 49 as shown in FIG. See also FIG.
As shown in FIG. 1, the body 18 may be cylindrical.

【0031】図12に示す水素貯蔵容器3において,そ
れの前記導入兼導出部は次のように構成される。即ち,
底壁であるフィルタ部材21の中央部に有底筒50が下
方に突出するように設けられていて,その内部は上向き
に開口する凹部51として機能する。内管52と,それ
を囲繞する外管53とが充填室22の上壁4を貫通して
その充填室22内を上下方向に伸びており,その内管5
2は外管53に支持され,また外管53は上壁4に支持
されている。内,外管52,53の下部開口はそれぞれ
底壁近傍,実施例では凹部51内に位置する。内管52
は,第1の流動体F1を流下させ,且つ第2の流動体F
2を吹上げるための通路を形成する。また外管53は,
第2の流動体F2の吹上げをなす上昇ガス流をその内管
52内に形成すべく,凹部51内にガスを噴出するよう
になっている。この場合,凹部51が無くても上昇ガス
流は形成されるが,凹部51は噴出ガスを拡散させずに
直ちに内管52に導く作用をなすので,上昇ガス流の形
成が容易,且つ確実となる。また凹部51は,そこに第
2の流動体F2を流込ませて集め,その吹上げを促進す
る作用をなす。このように内管52と外管53とによ
り,また必要に応じ凹部51を含めて,流動体の導入兼
導出部が構成される。
In the hydrogen storage container 3 shown in FIG. 12, the introduction and derivation part of the hydrogen storage container 3 is constructed as follows. That is,
A bottomed cylinder 50 is provided at the center of the filter member 21 that is the bottom wall so as to project downward, and the inside thereof functions as a recess 51 that opens upward. An inner pipe 52 and an outer pipe 53 surrounding the inner pipe 52 penetrate the upper wall 4 of the filling chamber 22 and extend vertically in the filling chamber 22.
2 is supported by the outer tube 53, and the outer tube 53 is supported by the upper wall 4. The lower openings of the inner and outer tubes 52, 53 are located near the bottom wall, respectively, in the recess 51 in the embodiment. Inner pipe 52
Causes the first fluid F1 to flow down, and the second fluid F
Form a passage for blowing up 2. The outer tube 53 is
Gas is ejected into the recess 51 in order to form an ascending gas flow that blows up the second fluid F2 in the inner pipe 52 thereof. In this case, the rising gas flow is formed even without the concave portion 51, but the concave portion 51 has a function of immediately guiding the ejected gas to the inner pipe 52 without diffusing, so that the rising gas flow can be formed easily and reliably. Become. Further, the concave portion 51 has a function of injecting the second fluid F2 into the concave portion 51 and collecting the second fluid F2 to promote the blowing up. In this way, the inner pipe 52 and the outer pipe 53, and the recess 51 as necessary, constitute an inlet / outlet portion for the fluid.

【0032】内管52の上端部に第2開閉弁30を持つ
導管31の一端が接続され,その他端は第1三方弁32
の第1ポートp1に接続される。第1三方弁32の第2
ポートp2には導管33を介して第1の流動体を供給す
る流動体供給装置34が接続され,また第3ポートp3
には導管35を介して第2の流動体を回収する流動体回
収装置36が接続されている。
One end of a conduit 31 having the second opening / closing valve 30 is connected to the upper end of the inner pipe 52, and the other end is connected to the first three-way valve 32.
Is connected to the first port p1. Second of the first three-way valve 32
A fluid supply device 34 for supplying the first fluid is connected to the port p2 via a conduit 33, and the third port p3
A fluid recovery device 36 for recovering the second fluid is connected to the via a conduit 35.

【0033】下部殻体20は,内部をガス室23に連通
させ,且つ有底筒50を囲繞する接続筒部54を有し,
その接続筒部54に第3開閉弁38を持つ導管39の一
端が接続され,その他端は第2三方弁40の第1ポート
p1に接続される。第2三方弁40の第2ポートp2
に,第3三方弁41の第1ポートp1が導管42を介し
て接続され,その第3三方弁41の第2ポートp2は,
導管43を介して真空ポンプPに接続される。真空ポン
プPの吐出側は導管46を介してガス回収器44に接続
される。第3三方弁41の第3ポートp3は導管45を
介してガス回収器44に接続(または大気に開放)され
る。また第2三方弁40の第3ポートp3には導管47
を介して圧縮ガス供給装置48が接続され,その導管4
7の中間部と外管53の上端部とが第4開閉弁55を有
する導管56により接続される。その他の構成は図2の
場合と同じである。
The lower shell 20 has a connecting cylinder portion 54 which communicates the inside with the gas chamber 23 and surrounds the bottomed cylinder 50.
One end of a conduit 39 having the third opening / closing valve 38 is connected to the connecting cylinder portion 54, and the other end is connected to the first port p1 of the second three-way valve 40. Second port p2 of second three-way valve 40
Is connected to the first port p1 of the third three-way valve 41 via the conduit 42, and the second port p2 of the third three-way valve 41 is
It is connected to the vacuum pump P via a conduit 43. The discharge side of the vacuum pump P is connected to the gas recovery device 44 via a conduit 46. The third port p3 of the third three-way valve 41 is connected (or opened to the atmosphere) to the gas collector 44 via the conduit 45. Further, a conduit 47 is provided at the third port p3 of the second three-way valve 40.
The compressed gas supply device 48 is connected via the
The middle part of 7 and the upper end of the outer tube 53 are connected by a conduit 56 having a fourth opening / closing valve 55. Other configurations are the same as those in FIG.

【0034】充填室22に水素貯蔵後の水素貯蔵材粉末
を充填する場合には,前記同様の弁操作等を行うと共に
第4開閉弁55を「閉」にして,図13に示すように,
第1の流動体F1を内管52を流下させてから凹部51
を経て充填室22内に導入し,次いで前記同様にフィル
タ部材21および真空ポンプPによるガスgの排出を行
い,その後充填室22への第1の流動体F1の導入,そ
れに次ぐガス排出を繰返し行って充填室22を水素貯蔵
材粉末Phにより満たす。
When the filling chamber 22 is filled with the hydrogen storage material powder after hydrogen storage, the same valve operation as described above is performed and the fourth opening / closing valve 55 is "closed", as shown in FIG.
The first fluid F1 is caused to flow down the inner pipe 52, and then the concave portion 51 is formed.
Of the gas g by the filter member 21 and the vacuum pump P in the same manner as described above, and then the introduction of the first fluid F1 into the filling chamber 22 and the subsequent gas discharge are repeated. The filling chamber 22 is filled with the hydrogen storage material powder Ph.

【0035】水素放出後の水素貯蔵材粉末Phを充填室
22から排出する場合には,前記同様の弁操作等を行っ
て,図14に示すように圧縮ガスg1をガス室23,フ
ィルタ部材21を介して充填室22の底壁側から噴出さ
せる。これにより水素貯蔵材粉末Phがほぐされて第2
の流動体F2が形成される。また第4開閉弁55が
「開」にて,外管52から凹部51内に圧縮ガスg1が
噴出され,この圧縮ガスg1により凹部51内の水素貯
蔵材粉末Phがほぐされると共にその圧縮ガスg1が内
管52に流込むことによって上昇ガス流が形成される。
凹部51内およびそこに流込む第2の流動体F2はその
上昇ガス流に巻込まれて内管52内を吹上げられ,その
後流動体回収装置36に回収される。
When the hydrogen storage material powder Ph after the hydrogen is released is discharged from the filling chamber 22, the same valve operation as described above is performed, and the compressed gas g1 is supplied to the gas chamber 23 and the filter member 21 as shown in FIG. Through the bottom wall side of the filling chamber 22 through. As a result, the hydrogen storage material powder Ph is loosened and the second
Fluid F2 is formed. Further, when the fourth opening / closing valve 55 is “open”, the compressed gas g1 is ejected from the outer pipe 52 into the recess 51, and the compressed gas g1 loosens the hydrogen storage material powder Ph in the recess 51 and the compressed gas g1. As a result of flowing into the inner pipe 52, a rising gas flow is formed.
The second fluid F2 flowing into the concave portion 51 and into the concave portion 51 is entrained in the rising gas flow and blown up in the inner pipe 52, and then collected by the fluid collecting device 36.

【0036】[0036]

【発明の効果】請求項1記載の発明によれば,水素貯蔵
容器への水素の急速充填を可能にし,しかも水素貯蔵量
を十分に高めることが可能な水素貯蔵方法を提供するこ
とができる。
According to the first aspect of the present invention, it is possible to provide a hydrogen storage method capable of rapidly filling hydrogen into a hydrogen storage container and sufficiently increasing the hydrogen storage amount.

【0037】請求項3記載の発明によれば,水素貯蔵材
粉末の交換作業を能率良く行うことができる。
According to the third aspect of the invention, the replacement work of the hydrogen storage material powder can be efficiently performed.

【0038】請求項5記載の発明によれば,水素貯蔵容
器への水素の急速充填を可能にし,しかも水素貯蔵量を
十分に高めることが可能であり,その上,水素貯蔵材粉
末の交換作業を能率良く行うことが可能な水素貯蔵方法
を提供することができる。
According to the fifth aspect of the present invention, it is possible to rapidly fill the hydrogen storage container with hydrogen, and it is possible to sufficiently increase the hydrogen storage amount. It is possible to provide a hydrogen storage method capable of efficiently performing

【0039】請求項2,4および6記載の発明によれ
ば,流動体形成用ガスが水素であることから,それが水
素貯蔵容器に残留しても何等不具合を生じることのない
水素貯蔵方法を提供することができる。
According to the second, fourth and sixth aspects of the invention, since the fluid forming gas is hydrogen, there is provided a hydrogen storage method which does not cause any trouble even if it remains in the hydrogen storage container. Can be provided.

【0040】請求項7記載の発明によれば,燃料電池装
備車両の水素貯蔵容器への水素貯蔵に好適な方法を提供
することができる。
According to the seventh aspect of the present invention, it is possible to provide a method suitable for storing hydrogen in the hydrogen storage container of a vehicle equipped with a fuel cell.

【0041】請求項8〜11記載の発明によれば,熱媒
体用管路の単純化に伴い,充填室内における水素貯蔵材
粉末の占有スペースを拡張して水素貯蔵量を増加させ,
また構造の簡素化および低コスト化を達成された水素貯
蔵容器を提供することができる。
According to the invention described in claims 8 to 11, with the simplification of the heat medium pipe, the space occupied by the hydrogen storage material powder in the filling chamber is expanded to increase the hydrogen storage amount,
Further, it is possible to provide a hydrogen storage container having a simplified structure and reduced cost.

【0042】請求項12記載の発明によれば,燃料電池
装備車両において,その水素貯蔵に好適な水素貯蔵容器
を提供することができる。
According to the twelfth aspect of the present invention, it is possible to provide a hydrogen storage container suitable for hydrogen storage in a vehicle equipped with a fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素貯蔵システムの平面図である。FIG. 1 is a plan view of a hydrogen storage system.

【図2】水素貯蔵容器の第1例の断面図であって,図1
の2−2線断面図に相当する。
2 is a cross-sectional view of a first example of a hydrogen storage container according to FIG.
2-2 taken along the line.

【図3】図2の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 of FIG.

【図4】図3の4−4線断面図である。FIG. 4 is a sectional view taken along line 4-4 of FIG.

【図5】水素貯蔵材粉末の充填に関する第1工程説明図
である。
FIG. 5 is an explanatory diagram of the first step regarding filling with hydrogen storage material powder.

【図6】水素貯蔵材粉末の充填に関する第2工程説明図
である。
FIG. 6 is a second step explanatory diagram related to filling with hydrogen storage material powder.

【図7】水素貯蔵材粉末の充填に関する第3工程説明図
である。
FIG. 7 is a third step explanatory diagram related to filling with hydrogen storage material powder.

【図8】水素貯蔵材粉末の充填終了を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing the end of filling with hydrogen storage material powder.

【図9】水素貯蔵材粉末の排出工程を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a step of discharging hydrogen storage material powder.

【図10】水素貯蔵容器の第2例の断面図であって,図
4に対応する。
10 is a cross-sectional view of a second example of the hydrogen storage container, which corresponds to FIG. 4.

【図11】水素貯蔵容器の第3例の断面図であって,図
4に対応する。
FIG. 11 is a cross-sectional view of a third example of the hydrogen storage container and corresponds to FIG. 4.

【図12】水素貯蔵容器の第4例の断面図であって,図
2に対応する。
FIG. 12 is a cross-sectional view of a fourth example of a hydrogen storage container and corresponds to FIG.

【図13】水素貯蔵材粉末充填時における流動体および
ガス流れを示す説明図である。
FIG. 13 is an explanatory diagram showing a fluid and a gas flow when the hydrogen storage material powder is filled.

【図14】水素貯蔵材粉末排出時における流動体および
ガス流れを示す説明図である。
FIG. 14 is an explanatory diagram showing a fluid and a gas flow when the hydrogen storage material powder is discharged.

【符号の説明】[Explanation of symbols]

2………燃料電池 3………水素貯蔵容器 21……フィルタ部材 22……充填室 24……斜面 37……出入口(導入兼導出部) 52……内管(導入兼導出部構成要素) 53……外管(導入兼導出部構成要素) F1……第1の流動体 F2……第2の流動体 Ph……水素貯蔵材粉末 g………ガス g1……圧縮ガス 2 ... Fuel cell 3 ... Hydrogen storage container 21 ... Filter member 22 ... filling room 24 …… Slope 37: Doorway (introduction / deriving section) 52 ... Inner pipe (introducing and deriving component) 53 ... Outer tube (introducing and deriving component) F1 ... the first fluid F2 ... Second fluid Ph ... Hydrogen storage material powder g …… ... gas g1 ... compressed gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細江 光矢 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3D035 AA00 AA01 AA05 3E072 EA01 4G040 AA27 AB01 5H027 AA02 BA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuya Hosoe             1-4-1 Chuo Stock Market, Wako City, Saitama Prefecture             Inside Honda Research Laboratory F-term (reference) 3D035 AA00 AA01 AA05                 3E072 EA01                 4G040 AA27 AB01                 5H027 AA02 BA13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 水素貯蔵後の水素貯蔵材粉末(Ph)を
水素貯蔵容器(3)に充填し,水素放出後においては前
記水素貯蔵材粉末(Ph)を前記水素貯蔵容器(3)か
ら排出して,水素貯蔵後の新たな水素貯蔵材粉末(P
h)をその水素貯蔵容器(3)に充填する水素貯蔵方法
であって,水素貯蔵容器(3)に水素貯蔵後の水素貯蔵
材粉末(Ph)を充填するに当り,その水素貯蔵材粉末
(Ph)およびガス(g)よりなる流動体(F1)を前
記水素貯蔵容器(3)に導入して,そのガス(g)を前
記水素貯蔵容器(3)より排出すると共に前記水素貯蔵
材粉末(Ph)を前記水素貯蔵容器(3)内に残置させ
ることを特徴とする水素貯蔵方法。
1. A hydrogen storage material powder (Ph) after hydrogen storage is filled in a hydrogen storage container (3), and after hydrogen release, the hydrogen storage material powder (Ph) is discharged from the hydrogen storage container (3). Then, a new hydrogen storage material powder (P
A hydrogen storage method for filling the hydrogen storage container (3) with h), wherein the hydrogen storage material powder (Ph) is filled into the hydrogen storage container (3) after the hydrogen storage. A fluid (F1) consisting of Ph) and gas (g) is introduced into the hydrogen storage container (3), the gas (g) is discharged from the hydrogen storage container (3), and the hydrogen storage material powder ( A method for storing hydrogen, characterized in that Ph) is left in the hydrogen storage container (3).
【請求項2】 前記流動体(F1)を形成するガス
(g)は水素である,請求項1記載の水素貯蔵方法。
2. The hydrogen storage method according to claim 1, wherein the gas (g) forming the fluid (F1) is hydrogen.
【請求項3】 前記水素貯蔵容器(3)から水素放出後
の前記水素貯蔵材粉末(Ph)を排出するに当り,前記
水素貯蔵容器(3)にガス(g1)を吹込んでその水素
貯蔵材粉末(Ph)およびガス(g1)よりなる流動体
(F2)を形成し,その流動体(F2)を前記水素貯蔵
容器(3)から排出する,請求項1または2記載の水素
貯蔵方法。
3. When discharging the hydrogen storage material powder (Ph) after hydrogen is released from the hydrogen storage container (3), a gas (g1) is blown into the hydrogen storage container (3) to discharge the hydrogen storage material. The hydrogen storage method according to claim 1 or 2, wherein a fluid (F2) composed of powder (Ph) and gas (g1) is formed, and the fluid (F2) is discharged from the hydrogen storage container (3).
【請求項4】 前記流動体(F2)を形成するガス(g
1)は水素である,請求項3記載の水素貯蔵方法。
4. Gas (g) forming the fluid (F2)
The hydrogen storage method according to claim 3, wherein 1) is hydrogen.
【請求項5】 底壁がそれの外周部から中央部に向って
下り勾配の斜面(24)を持つ水素貯蔵材粉末用充填室
(22)を備えた水素貯蔵容器(3)を用意し,前記充
填室(22)への水素貯蔵後の水素貯蔵材粉末(Ph)
の充填に当っては,その充填室(2)の底壁中央に在る
導入兼導出部(37;52,53)から,水素貯蔵後の
前記水素貯蔵材粉末(Ph)およびガス(g)よりなる
第1の流動体(F1)を前記充填室(22)へ導入し
て,そのガス(g)を前記底壁の少なくとも一部を形成
するフィルタ部材(21)を通じて前記充填室(22)
から排出すると共に前記水素貯蔵材粉末(Ph)を前記
充填室(22)内に残置させ,一方,前記充填室(2
2)からの水素放出後の前記水素貯蔵材粉末(Ph)の
排出に当っては,前記フィルタ部材(21)を通じてガ
ス(g1)を前記充填室(22)へ吹込むことにより水
素放出後の前記水素貯蔵材粉末(Ph)およびガス(g
1)よりなる第2の流動体(F2)を形成し,その第2
の流動体(F2)を前記充填室(22)から前記導入兼
導出部(37;52,53)を通じて排出することを特
徴とする水素貯蔵方法。
5. A hydrogen storage container (3) provided with a hydrogen storage material powder filling chamber (22) having a slope (24) whose bottom wall has a downward slope from its outer peripheral portion toward its central portion, Hydrogen storage material powder (Ph) after hydrogen storage in the filling chamber (22)
In the filling of hydrogen, the hydrogen storage material powder (Ph) and gas (g) after hydrogen storage are supplied from the introduction / outlet part (37; 52, 53) in the center of the bottom wall of the filling chamber (2). A first fluid (F1) consisting of the fluid (F1) is introduced into the filling chamber (22), and the gas (g) is introduced through the filter member (21) forming at least a part of the bottom wall into the filling chamber (22).
And the hydrogen storage material powder (Ph) is left in the filling chamber (22) while being discharged from the filling chamber (2).
In discharging the hydrogen storage material powder (Ph) after the hydrogen is released from 2), the gas (g1) is blown into the filling chamber (22) through the filter member (21) to release the hydrogen after the hydrogen is released. The hydrogen storage material powder (Ph) and gas (g
Forming a second fluid (F2) consisting of
The hydrogen storage method is characterized in that the fluid (F2) is discharged from the filling chamber (22) through the introduction and discharge section (37; 52, 53).
【請求項6】 前記第1,第2の流動体(F1,F2)
を形成するガス(g,g1)は水素である,請求項5記
載の水素貯蔵方法。
6. The first and second fluids (F1, F2)
The hydrogen storage method according to claim 5, wherein the gas (g, g1) forming hydrogen is hydrogen.
【請求項7】 前記水素貯蔵容器(3)は燃料電池
(2)を装備した車両に搭載されて,その燃料電池
(2)に水素を供給する,請求項1,2,3,4,5ま
たは6記載の水素貯蔵方法。
7. The hydrogen storage container (3) is mounted on a vehicle equipped with a fuel cell (2) to supply hydrogen to the fuel cell (2). Or the hydrogen storage method described in 6.
【請求項8】 底壁がそれの外周部から中央部に向って
下り勾配の斜面(24)を持つ水素貯蔵材粉末用充填室
(22)と,その底壁の中央部において,水素貯蔵後の
前記水素貯蔵材粉末(Ph)およびガス(g)よりなる
第1の流動体(F1)の前記充填室(22)への導入に
寄与すると共に,水素放出後の前記水素貯蔵材粉末(P
h)およびガス(g1)よりなる第2の流動体(F2)
の前記充填室(22)からの導出に寄与する導入兼導出
部(37;52,53)と,前記底壁の少なくとも一部
を形成して,前記水素貯蔵材粉末導入過程では前記ガス
(g)の前記充填室(22)からの排出を許容し,一
方,前記水素貯蔵材粉末(Ph)導出過程では前記ガス
(g1)の前記充填室(22)への吹込みを許容するフ
ィルタ部材(21)とを有することを特徴とする水素貯
蔵容器。
8. A hydrogen storage material powder filling chamber (22) having a bottom wall having a slope (24) descending from an outer peripheral portion of said bottom wall toward a central portion, and at the center portion of said bottom wall, after hydrogen storage. Of the hydrogen storage material powder (Ph) and gas (g) of the first fluid (F1) into the filling chamber (22), and the hydrogen storage material powder (P
Second fluid (F2) consisting of h) and gas (g1)
Of the gas (g) in the hydrogen storage material powder introduction process by forming at least a part of the introduction wall and the introduction part (37; 52, 53) that contributes to the discharge from the filling chamber (22). ) Is allowed to be discharged from the filling chamber (22), while in the process of deriving the hydrogen storage material powder (Ph), a filter member (that allows the gas (g1) to be blown into the filling chamber (22). 21) The hydrogen storage container characterized by having.
【請求項9】 前記導入兼導出部は,前記充填室(2
2)の,前記底壁に存する出入口(37)である,請求
項8記載の水素貯蔵容器。
9. The charging / discharging portion is provided in the filling chamber (2).
The hydrogen storage container according to claim 8, which is the inlet / outlet (37) existing in the bottom wall of 2).
【請求項10】 前記導入兼導出部は,前記充填室(2
2)内を上下方向に伸びると共に下部開口を前記底壁近
傍に位置させた内管(52)と,その内管(52)を囲
繞すると共に下部開口を前記底壁近傍に位置させた外管
(53)とを有し,前記内管(52)は,前記第1の流
動体(F1)を流下させ,且つ前記第2の流動体(F
2)を吹上げるための通路を形成し,前記外管(53)
は,前記第2の流動体(F2)の吹上げをなす上昇ガス
流を前記内管(52)内に形成すべくガス(g1)を噴
出する,請求項8記載の水素貯蔵容器。
10. The charging / discharging portion is provided in the filling chamber (2).
2) An inner pipe (52) extending in the vertical direction and having a lower opening located near the bottom wall, and an outer pipe surrounding the inner pipe (52) and having the lower opening located near the bottom wall. (53), the inner pipe (52) causes the first fluid (F1) to flow down, and the second fluid (F).
2) A passage for blowing up the outer pipe (53) is formed.
The hydrogen storage container according to claim 8, wherein the gas ejects gas (g1) to form an ascending gas flow that blows up the second fluid (F2) in the inner pipe (52).
【請求項11】 前記第1,第2の流動体(F1,F
2)を形成するガス(g,g1)は水素である,請求項
8,9または10記載の水素貯蔵容器。
11. The first and second fluids (F1, F)
Hydrogen storage container according to claim 8, 9 or 10, wherein the gas (g, g1) forming 2) is hydrogen.
【請求項12】 燃料電池(2)を装備した車両に搭載
されて,その燃料電池(2)に水素を供給する,請求項
8,9,10または11記載の水素貯蔵容器。
12. The hydrogen storage container according to claim 8, 9, 10 or 11, which is mounted on a vehicle equipped with a fuel cell (2) and supplies hydrogen to the fuel cell (2).
JP2001267485A 2001-09-04 2001-09-04 Hydrogen storage method and hydrogen storage vessel Pending JP2003074796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267485A JP2003074796A (en) 2001-09-04 2001-09-04 Hydrogen storage method and hydrogen storage vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267485A JP2003074796A (en) 2001-09-04 2001-09-04 Hydrogen storage method and hydrogen storage vessel

Publications (1)

Publication Number Publication Date
JP2003074796A true JP2003074796A (en) 2003-03-12

Family

ID=19093610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267485A Pending JP2003074796A (en) 2001-09-04 2001-09-04 Hydrogen storage method and hydrogen storage vessel

Country Status (1)

Country Link
JP (1) JP2003074796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219138A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Powder filling method
JP2012520825A (en) * 2009-03-16 2012-09-10 ポール エイチ ジュニア スミス Hydrogen energy system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219138A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Powder filling method
JP2012520825A (en) * 2009-03-16 2012-09-10 ポール エイチ ジュニア スミス Hydrogen energy system

Similar Documents

Publication Publication Date Title
US7997419B2 (en) Fluidizing apparatus
TW201022428A (en) Slag discharge device of a coal gasification reactor
JP2009509765A (en) Filtration method and filtration device
CA2546687A1 (en) Heat storage unit
JP4210634B2 (en) Fuel supply method and apparatus for hydrogen operated vehicle
US7410527B2 (en) Device for separating liquid components from a gas flow with a cyclone, a tank and a cyclone tank turbulence brake
JP2003074796A (en) Hydrogen storage method and hydrogen storage vessel
JP2753107B2 (en) Pressure forming circuit for cryogenic containers
JPH10500775A (en) Strainer device to filter water to emergency cooling system of nuclear power plant
CN115121016B (en) Filter, filtration system and filtration method
JP2003074795A (en) Hydrogen storage method and hydrogen storage vessel
CN100368051C (en) Fiber filtration device with lower floater
CN207309554U (en) A kind of cutting fluid recycling device
JP4528111B2 (en) Hydrogen storage tank
CN217228793U (en) Refrigerant agent holding vessel
US20230272882A1 (en) Hydrogen storage system
CN218032061U (en) Pressure relief device
CN212609566U (en) Hydrogen peroxide carclazyte bed working solution recovery unit
CN214588928U (en) Steam-water separation device suitable for low-temperature cold start of fuel cell system
JP2005262161A (en) Ion exchange apparatus
CN216661141U (en) Energy-saving pressure container with good heat preservation effect
KR102440837B1 (en) Multistage Filtering Apparatus with Function of Coalescing water and Removing particles for Helicopter Refuelling System
CN214019707U (en) Bag type filtering device
CN210085297U (en) Carbon-carbon crucible dipping furnace advances back to glue system
CN216767601U (en) Air filter assembly and vehicle with same