JP2003074545A - Designing method of ball bearing and ball bearing therewith - Google Patents

Designing method of ball bearing and ball bearing therewith

Info

Publication number
JP2003074545A
JP2003074545A JP2001265123A JP2001265123A JP2003074545A JP 2003074545 A JP2003074545 A JP 2003074545A JP 2001265123 A JP2001265123 A JP 2001265123A JP 2001265123 A JP2001265123 A JP 2001265123A JP 2003074545 A JP2003074545 A JP 2003074545A
Authority
JP
Japan
Prior art keywords
bearing
ball
diameter
ball bearing
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001265123A
Other languages
Japanese (ja)
Inventor
Hiroya Achinami
博也 阿知波
Manda Noda
万朶 野田
Hiromitsu Muraki
宏光 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001265123A priority Critical patent/JP2003074545A/en
Publication of JP2003074545A publication Critical patent/JP2003074545A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Abstract

PROBLEM TO BE SOLVED: To reduce bearing torque without decreasing supporting rigidity and a life caused by noises. SOLUTION: Dimensions for a ball diameter, a bearing outer diameter, and a bearing bore diameter are set so as to satisfy the following expression (1) when the ball diameter is set at DW, the bearing outer diameter is set at D, and the bearing bore diameter is set at d. 0.650<=DW/ (D-d)/2}<=0.750...(1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷却ファン、情報
機器用モータ等に用いられる小型モータ用の軸受等とし
て好適な玉軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ball bearing suitable as a bearing for a small motor used for a cooling fan, a motor for information equipment and the like.

【0002】[0002]

【従来の技術】上記用途の玉軸受としては、通常、2個
の深溝玉軸受を一組として使用され、振動低減および軸
剛性維持のために、軸方向にバネや間座による押圧力を
付与することによって予圧が負荷されている。そのた
め、玉と内外輪の軌道溝とはある角度で接触している。
2. Description of the Related Art Normally, two deep groove ball bearings are used as a set for the above-mentioned ball bearings, and a pressing force is applied in the axial direction by a spring or a spacer to reduce vibration and maintain shaft rigidity. Preload is applied by Therefore, the balls and the raceways of the inner and outer races are in contact with each other at an angle.

【0003】上記用途の玉軸受には、軸受としての強度
および剛性に加え、小型化、高い回転精度、長い音響寿
命、低トルク化等の厳しい要求がある。一方、近年の環
境問題に対応して電化製品の省エネルギー化が求められ
ており、そのために電化製品に組み込む軸受に対する低
トルク化の要求は特に厳しいものとなっている。軸受の
トルクを低減する方法としては、軸受に作用する荷
重、特に予圧を小さくする方法、軸受の内部に封入す
る潤滑剤(潤滑油またはグリース)の量を少なくする方
法、潤滑油の粘度またはグリースの基油の粘度を低く
する方法、軟らかいグリースを使用する方法が挙げら
れる。
In addition to the strength and rigidity of the bearing, the ball bearing for the above-mentioned applications has strict requirements for downsizing, high rotational accuracy, long acoustic life, low torque, and the like. On the other hand, in response to recent environmental problems, there has been a demand for energy saving of electric appliances, and for this reason, the demand for lower torque of bearings incorporated in electric appliances has become particularly severe. Bearing torque can be reduced by reducing the load acting on the bearing, especially by reducing the preload, by reducing the amount of lubricant (lubricating oil or grease) enclosed in the bearing, by the viscosity of the lubricating oil or by grease. The method of lowering the viscosity of the base oil and the method of using a soft grease can be mentioned.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法には以下のような問題点がある。の方法により
予圧を小さくすると、軸受の支持剛性が低下して、異常
振動が生じたり、位置決め精度が低下する恐れがある。
の方法により潤滑剤の封入量を少なくすると、玉と軌
道面との間の潤滑状態が不良となり易いため、音響寿命
が低下し易くなる。の方法により潤滑剤の粘度を低く
すると、玉と軌道面との間に形成される油膜の厚さが薄
くなって、潤滑状態が不良となり易いため、音響寿命が
低下し易くなる。
However, these methods have the following problems. If the preload is reduced by the above method, the supporting rigidity of the bearing may be reduced, abnormal vibration may occur, and the positioning accuracy may be reduced.
When the amount of the lubricant enclosed is reduced by the method described above, the lubrication state between the balls and the raceway surface is likely to be poor, and the acoustic life is likely to be shortened. If the viscosity of the lubricant is reduced by the method described in (1), the thickness of the oil film formed between the ball and the raceway surface becomes thin, and the lubrication state is likely to be poor, so that the acoustic life is likely to be shortened.

【0005】の方法により軟らかいグリースを使用す
ると、シールを接触型のものとしないとグリースが軸受
外部に漏れ易くなる。グリースが漏れると潤滑状態が不
良となって、音響寿命が低下し易くなる。軟らかいグリ
ースを使用しながらグリースの漏れを防ぐために接触型
のシールを用いると、シールと内輪または外輪との接触
によって摩擦トルクが発生するため、トルクを低減する
作用が得られ難くなる。
When a soft grease is used by the method described above, the grease tends to leak to the outside of the bearing unless the seal is of a contact type. If grease leaks, the lubrication state becomes poor, and the acoustic life tends to be shortened. When a contact type seal is used to prevent grease leakage while using soft grease, friction torque is generated by contact between the seal and the inner ring or the outer ring, and it is difficult to obtain the action of reducing the torque.

【0006】本発明は、このような従来技術の問題点に
着目してなされたものであり、支持剛性および音響寿命
を低下させることなく、軸受のトルクを低減できる方法
を提供することを課題とする。
The present invention has been made in view of such problems of the prior art, and an object thereof is to provide a method capable of reducing the torque of the bearing without lowering the supporting rigidity and the acoustic life. To do.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、玉の直径をDW 、軸受外径(直径)を
D、軸受内径(直径)をdとしたときに下記の(1)式
を満たすように、これらの寸法を設定することを特徴と
する玉軸受の設計方法を提供する。 0.650≦DW /{(D−d)/2}≦0.750‥‥(1) 本発明はまた、玉の直径をDW 、軸受外径をD、軸受内
径をdとしたときに上記(1)式を満たすように構成さ
れている玉軸受を提供する。
In order to solve the above-mentioned problems, the present invention is as follows, where D W is the diameter of the ball, D is the bearing outer diameter (diameter), and d is the bearing inner diameter (diameter). Provided is a ball bearing designing method characterized by setting these dimensions so as to satisfy the expression (1). 0.650 ≦ D W /{(D−d)/2}≦0.750 (1) The present invention also defines the ball diameter as D W , the bearing outer diameter as D, and the bearing inner diameter as d. And a ball bearing configured to satisfy the above formula (1).

【0008】図1に示すように、DW /{(D−d)/
2}=0.750であると、玉1を軸受内径と外径の中
間位置に配置した場合、すなわち、玉1のピッチ円Pの
直径DPWを(D+d)/2とした場合、内輪および外輪
の軌道溝の溝底厚(最も深い部分の厚さ)Tは0.12
5×{(D−d)/2}となる。ここで、d=4mm〜
7mmの玉軸受は、特に低トルク化の要求が厳しい軸受
であるが、DW /{(D−d)/2}=0.750であ
ると、例えば、d=4mm、D=7mmの場合に、溝底
厚がT≒0.19mmと非常に薄くなり、これ以上薄く
すると軌道溝の加工が困難となる。その結果、軌道溝の
加工精度が不十分となるか、加工精度を高くするために
加工時間が掛かってコストアップにつながる。
As shown in FIG. 1, D W / {(D-d) /
When 2} = 0.750, when the ball 1 is arranged at an intermediate position between the bearing inner diameter and the outer diameter, that is, when the diameter D PW of the pitch circle P of the ball 1 is (D + d) / 2, the inner ring and The groove bottom thickness (thickness of the deepest portion) T of the outer raceway groove is 0.12.
It becomes 5 × {(D−d) / 2}. Where d = 4 mm
The 7 mm ball bearing is a bearing that is particularly required to reduce the torque, but if D W /{(D−d)/2}=0.750, for example, when d = 4 mm and D = 7 mm In addition, the groove bottom thickness is very thin, T≈0.19 mm, and if it is further thinned, it becomes difficult to process the raceway groove. As a result, the machining accuracy of the raceway groove becomes insufficient, or it takes machining time to improve the machining accuracy, resulting in an increase in cost.

【0009】また、溝底厚が薄くなると、内輪を軸に、
外輪をハウジングに圧入で固定する場合には、軌道溝が
軸およびハウジングの真円度に応じた形状に変形し易く
なり、接着で固定する場合には、軌道溝が接着剤の硬化
収縮による影響を受け易くなる。その結果、軸受の回転
精度および音響特性が低下する恐れもある。以上のこと
から、本発明ではDW /{(D−d)/2}≦0.75
0とする。なお、DPW=(D+d)/2として、内輪と
外輪で溝底厚を同じにし、一方の溝底厚だけが極端に薄
くならないようにすることが好ましいが、内輪の溝底厚
が極端に薄くならない範囲で、DPW<(D+d)/2と
してもよい。反対にDPW>(D+d)/2とすると、玉
の公転半径が大きくなって軸受のトルクが高くなるため
好ましくない。
When the groove bottom becomes thin, the inner ring is used as an axis,
When fixing the outer ring to the housing by press fitting, the raceway groove is likely to be deformed into a shape according to the roundness of the shaft and housing, and when fixing by adhesion, the raceway groove is affected by the curing shrinkage of the adhesive. It becomes easy to receive. As a result, the rotation accuracy and acoustic characteristics of the bearing may deteriorate. From the above, in the present invention, D W /{(D−d)/2}≦0.75
Set to 0. It is preferable to set D PW = (D + d) / 2 so that the inner ring and the outer ring have the same groove bottom thickness so that only one of the groove bottom thicknesses does not become extremely thin, but the inner ring groove bottom thickness is extremely small. D PW <(D + d) / 2 may be set within the range in which the thickness does not decrease. On the contrary, if D PW > (D + d) / 2, the orbital radius of the ball becomes large and the torque of the bearing becomes high, which is not preferable.

【0010】一方、d=4mm〜7mmであって「DW
/{(D−d)/2}」値が各種値である多数の玉軸受
サンプルを用いた回転試験の結果から、「DW /{(D
−d)/2}≧0.650」であると「DW /{(D−
d)/2}<0.650」の場合よりもトルクが著しく
小さくなることが分かった。これについては、実施形態
で詳述する。
On the other hand, when d = 4 mm to 7 mm and "D W
/ {(D-d) / 2} "values are various values. From the results of the rotation test using a large number of ball bearing samples," D W / {(D
“−D) / 2} ≧ 0.650”, then “D W / {(D−
It was found that the torque was significantly smaller than in the case of d) / 2} <0.650 ”. This will be described in detail in the embodiment.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0012】[0012]

【表1】 [Table 1]

【0013】先ず、上記表1に示すNo. 1〜11の深溝
玉軸受について、ラジアル隙間:16.5μm、内外輪
の軌道溝の曲率半径:0.56×DW (玉直径)、予圧
(軸方向荷重):4.9Nの場合の、軌道面と玉との間
に作用する最大面圧を求めた。この結果を、各No. 毎
に、DW /{(D−d)/2}=0.750で玉数Zが
最小値であるものの最大面圧を「1」とした比を算出
し、この最大面圧比を縦軸とし、「DW /{(D−d)
/2}」値を横軸とするグラフにまとめた。図2は内輪
最大面圧比と「DW /{(D−d)/2}」との関係を
示すグラフであり、図3は外輪最大面圧比と「DW
{(D−d)/2}」との関係を示すグラフである。
First, regarding the deep groove ball bearings Nos. 1 to 11 shown in Table 1 above, the radial clearance: 16.5 μm, the radius of curvature of the raceway groove of the inner and outer rings: 0.56 × D W (ball diameter), preload ( Axial load): In the case of 4.9 N, the maximum surface pressure acting between the raceway surface and the ball was determined. The result is calculated for each No. as D W /{(D−d)/2}=0.750 and the number of balls Z is the minimum value, but the maximum surface pressure is “1”. This maximum surface pressure ratio is taken as the vertical axis, and "D W / {(D-d)
/ 2} "values are plotted on the horizontal axis. FIG. 2 is a graph showing the relationship between the inner ring maximum surface pressure ratio and “D W / {(D−d) / 2}”, and FIG. 3 is the outer ring maximum surface pressure ratio and “D W /
It is a graph which shows the relationship with {(D-d) / 2}.

【0014】なお、表1の深溝玉軸受No. 1〜11は、
ピッチ円直径DPW=(D+d)/2とし、玉数Zは、通
常の方法により、玉径に応じ、外輪を弾性変形させる応
力(ここでは、好ましい値である1079MPa以下)
で組み立て可能な数に設定した。次に、上記表1に示す
No. 1〜11の深溝玉軸受について、ラジアル隙間:
7.5μm、内外輪の軌道溝の曲率半径:0.56×D
W (玉直径)、予圧(軸方向荷重):4.9Nとし、ラ
ジアル荷重を負荷した場合に、ラジアル変位が0.1μ
mとなる位置でのラジアル剛性(ラジアル変位に対する
バネ定数)を求めた。この結果を、各No. 毎に、DW
{(D−d)/2}=0.750で玉数Zが最小値であ
るもののラジアル剛性を「1」とした比を算出して、こ
のラジアル剛性比を縦軸とし、「DW /{(D−d)/
2}」値を横軸としたグラフにまとめた。このグラフを
図4に示す。
The deep groove ball bearings Nos. 1 to 11 in Table 1 are
The pitch circle diameter D PW = (D + d) / 2, and the number of balls Z is a stress that elastically deforms the outer ring according to the ball diameter by a normal method (here, a preferable value is 1079 MPa or less).
I set it to the number that can be assembled. Next, shown in Table 1 above
For No. 1 to 11 deep groove ball bearings, radial clearance:
7.5 μm, radius of curvature of raceway groove of inner and outer rings: 0.56 × D
W (ball diameter), preload (axial load): 4.9N, radial displacement is 0.1μ when a radial load is applied.
The radial stiffness (spring constant for radial displacement) at the position of m was determined. This result is D W / for each No.
The ratio of {(D−d) / 2} = 0.750, where the number Z of balls is the minimum value, is defined as the radial rigidity is “1”, and this radial rigidity ratio is taken as the vertical axis, and “D W / {(D-d) /
2} ”values are plotted on the horizontal axis. This graph is shown in FIG.

【0015】次に、表1のNo. 2,4,6,8,9の深
溝玉軸受について、実際に軸受を作製し、ラジアル隙
間:16.5μm、内外輪の軌道溝の曲率半径:0.5
6×D W (玉直径)、予圧(軸方向荷重):4.9Nと
して、内輪回転で1800rpmの回転速度で5分間連
続回転させ、その時点での軸受動トルクを測定した。な
お、潤滑剤については、それぞれ軸受の内部空間容積の
10%を封入した。
Next, the depths of Nos. 2, 4, 6, 8 and 9 in Table 1
For grooved ball bearings, actually manufacture the bearings and
Distance: 16.5 μm, radius of curvature of raceway groove of inner and outer rings: 0.5
6 x D W(Ball diameter), preload (axial load): 4.9N
Then, rotate the inner ring for 5 minutes at a rotation speed of 1800 rpm.
After continuing rotation, the bearing dynamic torque at that time was measured. Na
Regarding the lubricant, the internal space volume of the bearing
Enclosed 10%.

【0016】この測定結果を、各No. 毎に、DW
{(D−d)/2}=0.750で玉数Zが最小値であ
るものの軸受動トルクを「1」とした比を算出して、こ
のトルク比を縦軸とし、「DW /{(D−d)/2}」
値を横軸としたグラフにまとめた。このグラフを図5に
示す。図2および3のグラフから、最大面圧と「DW
{(D−d)/2}」とがほぼ線形の関係にあり、「D
W /{(D−d)/2}」が小さいほど最大面圧は大き
くなることが分かる。図4のグラフから、「DW
{(D−d)/2}」が0.400〜0.750の範囲
ではラジアル剛性はほとんど変わらないことが分かる。
図5のグラフから、軸受動トルクは「DW /{(D−
d)/2}」が大きいほど小さくなり、「DW /{(D
−d)/2}≧0.650」であると、「DW/{(D
−d)/2}<0.650」の場合よりもトルクが著し
く小さくなることが分かる。
This measurement result is D W /
The ratio of {(D-d) / 2} = 0.750, where the number Z of balls is the minimum value, and the bearing dynamic torque is "1" is calculated, and this torque ratio is taken as the vertical axis, and "D W / {(D-d) / 2} "
The values are summarized in a graph with the horizontal axis. This graph is shown in FIG. From the graphs of Figs. 2 and 3, the maximum surface pressure and "D W /
{(D−d) / 2} ”has a substantially linear relationship with“ D
It can be seen that the smaller the W / {(D-d) / 2} ", the larger the maximum surface pressure. From the graph of FIG. 4, “D W /
It can be seen that the radial rigidity is hardly changed in the range of {(D-d) / 2} "of 0.400 to 0.750.
From the graph of FIG. 5, the bearing dynamic torque is “D W / {(D−
The larger "d) / 2}" is, the smaller it is, and "D W / {(D
-D) / 2} ≧ 0.650 ”, then“ D W / {(D
It can be seen that the torque is significantly smaller than in the case of −d) / 2} <0.650 ”.

【0017】一方、前述のように、DW /{(D−d)
/2}=0.750であると、例えば、d=4mm、D
=7mmの場合に、溝底厚がT≒0.19mmと非常に
薄くなり、これ以上薄くすると軌道溝の加工が困難とな
り、軸受の回転精度および音響特性が低下する恐れもあ
る。以上のことから、0.650≦DW /{(D−d)
/2}≦0.750とすることによって、支持剛性およ
び音響寿命を低下させることなく、軸受のトルクを低減
できることが分かる。
On the other hand, as described above, D W / {(D-d)
/2}=0.750, for example, d = 4 mm, D
= 7 mm, the groove bottom thickness becomes very thin, T≈0.19 mm, and if it is thinner than this, it becomes difficult to process the raceway groove, and the rotational accuracy and acoustic characteristics of the bearing may deteriorate. From the above, 0.650 ≦ D W / {(D−d)
It can be seen that by setting /2}≦0.750, the torque of the bearing can be reduced without lowering the support rigidity and the acoustic life.

【0018】なお、公知文献に記載されている玉軸受の
外径D、内径d、玉径DW の値から「DW /{(D−
d)/2}」を算出したところ、下記の表2に示すよう
に、「DW /{(D−d)/2}」は0.400〜0.
635の範囲内にあった。
From the values of the outer diameter D, the inner diameter d, and the ball diameter D W of the ball bearing described in the known document, "D W / {(D-
d) / 2} "was calculated, and as shown in Table 2 below," D W / {(D-d) / 2} "was 0.400-0.
It was within the range of 635.

【0019】[0019]

【表2】 [Table 2]

【0020】すなわち、本発明の設計方法で得られる玉
軸受によれば、従来の玉軸受よりも玉径を大きくして玉
数を少なくすることができるため、軸受の組み立て時間
を従来よりも短縮することができる。
That is, according to the ball bearing obtained by the designing method of the present invention, the ball diameter can be made larger and the number of balls can be made smaller than that of the conventional ball bearing. can do.

【0021】[0021]

【発明の効果】以上説明したように、本発明の設計方法
によれば、支持剛性および音響寿命を低下させることな
く、軸受のトルクを低減することができる。また、玉径
を大きくして玉数を少なくできるため、軸受の組み立て
時間を短縮できる効果も得られる。
As described above, according to the designing method of the present invention, the torque of the bearing can be reduced without lowering the support rigidity and the acoustic life. Further, since the ball diameter can be increased and the number of balls can be reduced, the effect of shortening the assembly time of the bearing can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining the present invention.

【図2】実施形態で得られた結果を示す図であって、内
輪最大面圧比を縦軸とし、「D W /{(D−d)/
2}」値を横軸とするグラフである。
FIG. 2 is a diagram showing the results obtained in the embodiment,
The maximum wheel surface pressure ratio is taken as the vertical axis, and "D W/ {(D-d) /
2} ”value is plotted on the horizontal axis.

【図3】実施形態で得られた結果を示す図であって、外
輪最大面圧比を縦軸とし、「D W /{(D−d)/
2}」値を横軸とするグラフである。
FIG. 3 is a diagram showing the results obtained in the embodiment,
The maximum wheel surface pressure ratio is taken as the vertical axis, and "D W/ {(D-d) /
2} ”value is plotted on the horizontal axis.

【図4】実施形態で得られた結果を示す図であって、ラ
ジアル剛性比を縦軸とし、「D W /{(D−d)/
2}」値を横軸とするグラフである。
FIG. 4 is a diagram showing the results obtained in the embodiment,
The radial rigidity ratio is plotted on the vertical axis, and "D W/ {(D-d) /
2} ”value is plotted on the horizontal axis.

【図5】実施形態で得られた結果を示す図であって、ト
ルク比を縦軸とし、「DW /{(D−d)/2}」値を
横軸とするグラフである。
FIG. 5 is a graph showing results obtained in the embodiment, in which the vertical axis represents the torque ratio and the horizontal axis represents the “D W / {(D−d) / 2}” value.

【符号の説明】[Explanation of symbols]

1 玉 DW 玉の直径 D 軸受外径 d 軸受内径 P 玉のピッチ円 T 軌道溝の溝底厚1 Ball D W Ball diameter D Bearing outer diameter d Bearing inner diameter P Ball pitch circle T Groove bottom thickness of raceway groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村木 宏光 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 Fターム(参考) 3J101 AA02 AA62 FA01 FA15 FA31 FA60 GA29 GA53    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiromitsu Muraki             1-5-50 Kumei, Kugenuma, Fujisawa-shi, Kanagawa             Within NSK Ltd. F term (reference) 3J101 AA02 AA62 FA01 FA15 FA31                       FA60 GA29 GA53

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 玉の直径をDW 、軸受外径をD、軸受内
径をdとしたときに下記の(1)式を満たすように、こ
れらの寸法を設定することを特徴とする玉軸受の設計方
法。 0.650≦DW /{(D−d)/2}≦0.750‥‥(1)
1. A ball bearing characterized in that these dimensions are set so that the following formula (1) is satisfied, where D W is the diameter of the ball, D is the outer diameter of the bearing, and d is the inner diameter of the bearing. Design method. 0.650 ≦ D W /{(D-d)/2}≦0.750 (1)
【請求項2】 玉の直径をDW 、軸受外径をD、軸受内
径をdとしたときに下記の(1)式を満たすように構成
されている玉軸受。 0.650≦DW /{(D−d)/2}≦0.750‥‥(1)
2. A ball bearing configured to satisfy the following formula (1), where D W is the diameter of the ball, D is the outer diameter of the bearing, and d is the inner diameter of the bearing. 0.650 ≦ D W /{(D-d)/2}≦0.750 (1)
JP2001265123A 2001-08-31 2001-08-31 Designing method of ball bearing and ball bearing therewith Pending JP2003074545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265123A JP2003074545A (en) 2001-08-31 2001-08-31 Designing method of ball bearing and ball bearing therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265123A JP2003074545A (en) 2001-08-31 2001-08-31 Designing method of ball bearing and ball bearing therewith

Publications (1)

Publication Number Publication Date
JP2003074545A true JP2003074545A (en) 2003-03-12

Family

ID=19091631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265123A Pending JP2003074545A (en) 2001-08-31 2001-08-31 Designing method of ball bearing and ball bearing therewith

Country Status (1)

Country Link
JP (1) JP2003074545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163456A (en) * 2010-02-10 2011-08-25 Jtekt Corp Split rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163456A (en) * 2010-02-10 2011-08-25 Jtekt Corp Split rolling bearing

Similar Documents

Publication Publication Date Title
JP4159332B2 (en) Hydrodynamic bearing device
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP4460730B2 (en) Spindle motor
US6705760B2 (en) Spindle motor and bearing assembly
JP2002369474A (en) Rolling bearing equipment for retaining impeller shaft
US7946770B2 (en) Hydrodynamic bearing device
JPH11210771A (en) Double row bearing device
JPH11280755A (en) Fluid bearing device and spindle motor using the same
JP2013133853A (en) Rolling bearing
JP2003074545A (en) Designing method of ball bearing and ball bearing therewith
JP2002005157A (en) Composite bearing device
JP4219903B2 (en) Hydrodynamic bearing device
JP2004011801A (en) Deep groove ball bearing and fan coupling device
JPS624565B2 (en)
US11859661B2 (en) Deep groove ball bearing and applications thereof
JP2007132428A (en) Rolling bearing
JP2004144107A (en) Rolling bearing sealing device
US6942392B2 (en) Rolling bearing of a small motor for an information-processing device
CN216383336U (en) Laser radar and rotation driving assembly
JP2003016742A (en) Swing arm unit
JP2007085288A (en) Plunger driving structure
JP2004324561A (en) Water pump
CN116105033A (en) Laser radar and rotary driving assembly
JP2000027872A (en) Rolling bearing
JP2015052384A (en) Rolling bearing device