JP2003074336A - Exhaust emission control device and method of manufacturing the control device - Google Patents

Exhaust emission control device and method of manufacturing the control device

Info

Publication number
JP2003074336A
JP2003074336A JP2001265252A JP2001265252A JP2003074336A JP 2003074336 A JP2003074336 A JP 2003074336A JP 2001265252 A JP2001265252 A JP 2001265252A JP 2001265252 A JP2001265252 A JP 2001265252A JP 2003074336 A JP2003074336 A JP 2003074336A
Authority
JP
Japan
Prior art keywords
metal shell
mat
exhaust gas
manufacturing
purification unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001265252A
Other languages
Japanese (ja)
Inventor
Suekichi Hanshimoseki
末吉 半下石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2001265252A priority Critical patent/JP2003074336A/en
Publication of JP2003074336A publication Critical patent/JP2003074336A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To assure a sufficient surface pressure necessary for stably maintaining a purification unit while avoiding the risk of damage to the purification unit and of rupture of a mat in an exhaust emission control device adopting an insert type metal shell structure. SOLUTION: A catalytic converter as this exhaust emission control device comprises a metal shell 1, a catalytic carrier 2 as the purification unit, and the mat 3 disposed between both thereof 1 and 2. In this catalytic converter, after the catalytic carrier 2 having the mat 3 wound thereon is inserted into the cylindrical metal shell 1, the outer peripheral surface of the metal shell 1 is uniformly pressurized in radial inner direction with the metal shell 1 heated by using a chuck mechanism 10 with a heating means 12 to compress the metal shell 1 to a target diameter smaller than the initial diameter thereof so as to stably hold the catalytic carrier 2 and the mat 3 in the metal shell 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、触媒コンバータ等
に代表される排気ガス浄化装置と、その製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus represented by a catalytic converter and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】一般に車輌用ガソリンエンジンの排気経
路には、排気ガス浄化用の触媒コンバータが設けられて
いる。この触媒コンバータは、円筒状の収納空間を区画
する金属製のシェル(ケース)と、NOx還元触媒等を
担持した円柱状のセラミックス製触媒担体と、その触媒
担体の周囲に巻き付けるマット(例えば無機繊維シート
からなる充填材)とから構成される。マットは、触媒担
体の外周面と金属シェルの内周面との間に介在して内外
周面間の隙間から排気ガスが漏洩するのを防止すると共
に、内外周面に及ぼす押圧力(面圧)に基づく摩擦力に
よって触媒担体を金属シェル内に安定保持する役目を担
う。
2. Description of the Related Art Generally, a catalytic converter for purifying exhaust gas is provided in an exhaust path of a gasoline engine for a vehicle. This catalytic converter is composed of a metal shell (case) that defines a cylindrical storage space, a cylindrical ceramic catalyst carrier carrying a NOx reduction catalyst, etc., and a mat (for example, inorganic fiber) wound around the catalyst carrier. (Filler consisting of a sheet). The mat is interposed between the outer peripheral surface of the catalyst carrier and the inner peripheral surface of the metal shell to prevent exhaust gas from leaking through the gap between the inner and outer peripheral surfaces, and to exert a pressing force (contact pressure) on the inner and outer peripheral surfaces. ) Is used to stably hold the catalyst carrier in the metal shell.

【0003】触媒コンバータにおける金属シェルの構成
形態としては、クラムシェル型、ターニキット型および
挿入型(圧入型ともいう)が知られている。クラムシェ
ル型は、金属シェルを上下半割り状態の分割片としてお
き、マットを巻き付けた触媒担体を二つの分割片間に挟
み込んで両分割片を結合したものであるが、マットの充
填密度に偏りが生じて面圧分布が不均一になる等の欠点
がある。
Clam shell type, turnnikit type and insertion type (also referred to as press-fitting type) are known as the configuration of the metal shell in the catalytic converter. In the clamshell type, the metal shell is divided into upper and lower halves, and the catalyst carrier around which the mat is wrapped is sandwiched between the two pieces to join the two pieces, but the packing density of the mat is uneven. However, there is a defect that the surface pressure distribution becomes non-uniform due to the occurrence of.

【0004】ターニキット型は、金属板を予め円筒状に
ロール成形したロール体の中にマットを巻き付けた触媒
担体を配置し、その後ロール体を周方向に締め付けてか
ら側縁部同士を溶接接合したものである。ターニキット
型は触媒担体の径変化に柔軟に対応でき面圧分布も均一
化することができるため、合理的な手法と考えられてき
た。しかし、ターニキット型には、ロール成形した金属
板の側縁部同士を溶接する際、金属の溶け落ちによって
マットを傷めるという欠点がある。又、金属シェル内に
触媒担体を保持した後、円筒状金属シェルの前後開口部
分に所望の絞り形状を付与する際にスピニング加工の適
用が難しい。このため、部材をつぎはぎ的に溶接接合し
てシェルの前後開口部分の形状を作り上げるしかなく、
トータルでの製造コストの低減が難しかった。それ故、
触媒コンバータの金属シェルは挿入型が主流になりつつ
ある。
In the Thani kit type, a catalyst carrier having a mat wound is placed in a roll body obtained by roll-forming a metal plate in advance into a cylindrical shape, and then the roll body is clamped in the circumferential direction and then the side edges are weld-bonded to each other. It is a thing. The Thani kit type has been considered a rational method because it can flexibly respond to changes in the diameter of the catalyst support and can even out the surface pressure distribution. However, the Thani kit type has a drawback in that, when the side edges of the roll-formed metal plates are welded to each other, the mat is damaged by the burn-through of the metal. Further, it is difficult to apply a spinning process when a desired drawing shape is applied to the front and rear openings of the cylindrical metal shell after holding the catalyst carrier in the metal shell. Therefore, there is no choice but to join the members in a welded manner to form the shape of the front and rear openings of the shell.
It was difficult to reduce the total manufacturing cost. Therefore,
The insertion shell is becoming the mainstream for the metal shell of a catalytic converter.

【0005】挿入型(圧入型)では、金属シェルを予め
所定径の円筒として成形し、その円筒内にマットを巻き
付けた触媒担体を挿入するという手順をとる。シェル内
に触媒担体を保持するための面圧を確保するため、触媒
担体に巻き付けられたマットを圧縮しながら円筒シェル
内に挿入したり、マットを巻き付けた触媒担体を円筒シ
ェル内に挿入後、シェルの全周にわたり縮径方向に圧力
をかけてシェルを縮径加工したりしている。挿入型によ
れば、面圧分布を均一化できるのみならず、金属シェル
の前後開口部分に対して事後的にスピニング加工を施す
ことができるという利点がある。
In the insertion type (press-fitting type), a metal shell is formed in advance as a cylinder having a predetermined diameter, and a catalyst carrier around which a mat is wound is inserted into the cylinder. In order to secure the surface pressure for holding the catalyst carrier in the shell, while inserting the mat wrapped around the catalyst carrier into the cylindrical shell while compressing, or after inserting the catalyst carrier wrapped with the mat into the cylindrical shell, The shell is reduced in diameter by applying pressure in the direction of diameter reduction over the entire circumference of the shell. According to the insertion type, not only the surface pressure distribution can be made uniform, but also the front and rear openings of the metal shell can be subjected to a spinning process afterwards.

【0006】[0006]

【発明が解決しようとする課題】挿入型の金属シェル内
に触媒担体を挿入する際、触媒担体に巻き付けたマット
を圧縮する旨述べたが、シェルの初期内半径と触媒担体
の外半径との差(ギャップ)に比較してマットの肉厚が
かなり大きいと、挿入時にマットを無理に圧縮する必要
が生じ、挿入過程で過度な面圧上昇(ひいては触媒担体
の破損やマットの圧壊)を招きかねない。それ故、マッ
トの肉厚は前記ギャップ程度にとどめざるを得ず、マッ
トの肉厚設定にさほどの自由度はない。従って、シェル
内に触媒担体を安定保持するための面圧確保は主とし
て、マットを巻き付けた触媒担体をシェル内に挿入した
後の当該金属シェルの縮径加工に依存することになる。
Although it has been stated that the mat wound around the catalyst carrier is compressed when the catalyst carrier is inserted into the insertion type metal shell, the initial inner radius of the shell and the outer radius of the catalyst carrier are described. If the thickness of the mat is much larger than the difference (gap), it will be necessary to force the mat to be compressed during insertion, resulting in an excessive increase in surface pressure during the insertion process (and eventually damage to the catalyst carrier or crush of the mat). It can happen. Therefore, the thickness of the mat has to be limited to the above-mentioned gap, and there is not much freedom in setting the thickness of the mat. Therefore, securing the surface pressure for stably holding the catalyst carrier in the shell depends mainly on the diameter reduction processing of the metal shell after inserting the catalyst carrier wound with the mat into the shell.

【0007】しかしながら、この縮径加工にも問題があ
る。というのも、円筒状の金属シェルをその全周にわた
り縮径方向に均等加圧して所望の縮径状態に変形させよ
うとしても、その加圧力を解除すると、金属本来の反発
弾性により径を復元(拡大)させようとする現象(スプ
リングバックという)が生じてしまう。このため、スプ
リングバックによる拡径量を予め考慮に入れて、加圧に
よる縮径量を決定する必要があった。例えば図7に示す
ように、初期内半径がR1の円筒状金属シェルを目標内
半径R2に縮径したい場合、圧力解除時のスプリングバ
ック量ΔRを見込んだ上で内半径がR3になるまで径方
向加圧を行う必要があった。
However, there is a problem in this diameter reduction processing. This is because even if the cylindrical metal shell is to be uniformly pressed in the diameter-reducing direction over its entire circumference to deform it to the desired diameter-reduced state, when the pressure is released, the diameter is restored by the metal's original repulsion elasticity. A phenomenon (called springback) that tries to (enlarge) occurs. Therefore, it is necessary to determine the amount of diameter reduction due to pressurization in consideration of the amount of diameter expansion due to springback in advance. For example, as shown in FIG. 7, when it is desired to reduce the diameter of the cylindrical metal shell having the initial inner radius R1 to the target inner radius R2, the spring back amount ΔR at the time of releasing the pressure is taken into consideration and the inner radius becomes R3. It was necessary to apply directional pressure.

【0008】しかし、一時的にせよ金属シェルの内径を
R3まで縮めるということは、その内径R3の状態に対
応した面圧上昇を誘発するということであり、過度な面
圧上昇による触媒担体の破損やマット圧壊の危険性が高
まってしまう。他方、そのような危険を回避するために
は径方向加圧時の最小到達径R3を安全圏内にとどめる
しかないが、そうすると、スプリングバックの影響で、
圧力解除後のシェル内半径R2’は目標内半径R2より
も大きくなってしまい、面圧低下による保持力不足を招
きかねない。つまり従来の加工技術では、圧縮加工段階
で触媒担体の破損やマット圧壊の危険性を回避すること
と、触媒担体の安定保持のために必要十分な面圧を確保
することとを両立させることが非常に難しかった。
However, even if the inner diameter of the metal shell is temporarily reduced to R3, it means that the surface pressure rise corresponding to the state of the inner diameter R3 is induced, and the catalyst carrier is damaged by the excessive surface pressure rise. The risk of crushing mats and mats increases. On the other hand, in order to avoid such a danger, there is no choice but to keep the minimum reachable diameter R3 at the time of radial pressurization within the safety range.
The inner radius R2 'of the shell after the pressure is released becomes larger than the target inner radius R2, which may lead to insufficient holding force due to a decrease in surface pressure. In other words, in the conventional processing technique, it is possible to avoid both the risk of catalyst carrier damage and mat crushing in the compression processing stage, and to ensure a sufficient surface pressure necessary for stable retention of the catalyst carrier. It was very difficult.

【0009】本発明の目的は、挿入型の金属シェル構造
を採用した排気ガス浄化装置において、触媒担体(浄化
ユニット)の破損やマット圧壊の危険を回避しつつ、触
媒担体(浄化ユニット)の安定保持のために必要十分な
面圧を確保することが可能な排気ガス浄化装置を提供す
ることにある。また、そのような排気ガス浄化装置が確
実に得られる排気ガス浄化装置の製造方法を提供するこ
とにある。
An object of the present invention is to stabilize the catalyst carrier (purification unit) while avoiding the risk of damage to the catalyst carrier (purification unit) and crushing of the mat in an exhaust gas purification device adopting an insertion type metal shell structure. An object of the present invention is to provide an exhaust gas purifying device capable of ensuring a necessary and sufficient surface pressure for holding. Another object of the present invention is to provide a method for manufacturing an exhaust gas purification device that can reliably obtain such an exhaust gas purification device.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、略円
筒状の収納空間を区画する金属製のシェルと、その収納
空間内に設置される略柱状の浄化ユニットと、前記金属
シェルと前記浄化ユニットとの間に介装されるマットと
を備えた排気ガス浄化装置であって、円筒状金属シェル
内にマットを巻き付けた略柱状浄化ユニットを挿入した
後、金属シェルを加熱した状態で金属シェルの外周面を
縮径方向に均等加圧することにより、当該金属シェルを
その初期径よりも小さな目標径に圧縮して前記マット及
び浄化ユニットを円筒状金属シェル内に保持したことを
特徴とする排気ガス浄化装置である。
According to a first aspect of the present invention, there is provided a metal shell for partitioning a substantially cylindrical storage space, a substantially columnar purification unit installed in the storage space, and the metal shell. An exhaust gas purifying apparatus comprising a mat interposed between the purifying unit and a cylindrical metal shell, wherein a substantially columnar purifying unit in which the mat is wound is inserted, and then the metal shell is heated. By uniformly pressing the outer peripheral surface of the metal shell in the diameter reducing direction, the metal shell is compressed to a target diameter smaller than the initial diameter and the mat and the purification unit are held in the cylindrical metal shell. It is an exhaust gas purification device that does.

【0011】請求項2の発明は、略円筒状の収納空間を
区画する金属製のシェルと、その収納空間内に設置され
る略柱状の浄化ユニットと、前記金属シェルと前記浄化
ユニットとの間に介装されるマットとを備えた排気ガス
浄化装置の製造方法であって、円筒状金属シェル内に、
マットを巻き付けた略柱状浄化ユニットを挿入する挿入
工程と、マット及び浄化ユニットを収納した金属シェル
を加熱した状態で金属シェルの外周面を縮径方向に均等
加圧することにより、当該金属シェルをその初期径より
も小さな目標径に圧縮する加熱圧縮工程と、前記金属シ
ェルに対する加熱及び加圧を解除する解除工程とを備え
たことを特徴とする排気ガス浄化装置の製造方法であ
る。
According to a second aspect of the present invention, there is provided a metal shell defining a substantially cylindrical storage space, a substantially columnar purification unit installed in the storage space, and a space between the metal shell and the purification unit. A method of manufacturing an exhaust gas purifying apparatus comprising a mat interposed in a cylindrical metal shell,
An insertion step of inserting a substantially columnar purification unit around which a mat is wound, and a metal shell containing the mat and the purification unit is heated, and the outer peripheral surface of the metal shell is evenly pressed in the diameter-reducing direction so that the metal shell is A method of manufacturing an exhaust gas purifying apparatus, comprising: a heating compression step of compressing a target diameter smaller than an initial diameter; and a releasing step of releasing heating and pressurizing the metal shell.

【0012】本発明の排気ガス浄化装置(請求項1)及
び排気ガス浄化装置の製造方法(請求項2以降)によれ
ば、円筒状金属シェル内にマットを巻き付けた略柱状浄
化ユニットを挿入した後、金属シェルを加熱した状態で
金属シェルの外周面を縮径方向に均等加圧することによ
り、当該金属シェルをその初期径よりも小さな目標径に
圧縮して、マット及び浄化ユニットを円筒状金属シェル
内に保持することができる。特に本発明では、金属シェ
ルの加熱と縮径方向への均等加圧とを同時に行うこと
で、縮径状態を保持するための加圧力と金属の熱膨張力
との関係で内部応力の高まりと応力緩和とが同時に起き
る。その結果、シェルを構成する金属の微視的構造に何
らかの変化が生じ、金属シェルは縮径状態のまま塑性変
形して反発弾性を失う。このため、金属シェルの外周面
に対する加圧を解除しても、スプリングバックはほとん
ど発生せず、ほぼ目標径通りに金属シェルの恒久的縮径
が達成される。
According to the exhaust gas purifying apparatus (Claim 1) and the method for manufacturing the exhaust gas purifying apparatus (Claim 2 or later) of the present invention, a substantially columnar purifying unit having a mat wound around a cylindrical metal shell is inserted. After that, by uniformly pressing the outer peripheral surface of the metal shell in the diameter reducing direction in a state where the metal shell is heated, the metal shell is compressed to a target diameter smaller than its initial diameter, and the mat and the purification unit are made of cylindrical metal. Can be held in the shell. Particularly, in the present invention, by simultaneously heating the metal shell and uniformly pressing in the diameter reducing direction, the internal stress is increased due to the relationship between the pressing force for maintaining the diameter reduced state and the thermal expansion force of the metal. Stress relaxation occurs at the same time. As a result, some change occurs in the microscopic structure of the metal forming the shell, and the metal shell loses its impact resilience by plastically deforming in the reduced diameter state. Therefore, even if the pressure applied to the outer peripheral surface of the metal shell is released, springback hardly occurs, and the permanent diameter reduction of the metal shell is achieved almost in accordance with the target diameter.

【0013】金属シェルがその初期径よりも小さな目標
径に縮径される結果、その縮径量に応じた面圧が発生
し、その面圧に基づく摩擦力によりマット及び浄化ユニ
ットが円筒状金属シェル内に安定的に保持される。即ち
本発明によれば、金属シェルの縮径加工段階で、スプリ
ングバックのような寸法設定の不確定要因がないため、
金属シェルの径設定の精度、即ち、金属シェルの内半径
と浄化ユニットの外半径との差(ギャップ)の設定精度
が従来よりも飛躍的に向上する。従って、マットが浄化
ユニット及び金属シェルに及ぼす面圧の最適化を図るこ
とが容易となり、触媒担体の破損やマット圧壊の危険を
回避しつつ、触媒担体の安定保持のために必要十分な面
圧を確保することが可能となる。
As a result of the diameter of the metal shell being reduced to a target diameter smaller than its initial diameter, a surface pressure corresponding to the amount of the diameter reduction is generated, and the friction force based on the surface pressure causes the mat and the purification unit to have a cylindrical metal shape. Stable in the shell. That is, according to the present invention, in the step of reducing the diameter of the metal shell, there is no uncertain factor in the dimension setting such as springback,
The accuracy of setting the diameter of the metal shell, that is, the setting accuracy of the difference (gap) between the inner radius of the metal shell and the outer radius of the purification unit is dramatically improved as compared with the conventional art. Therefore, it becomes easy to optimize the surface pressure exerted on the purification unit and the metal shell by the mat, and avoid the risk of catalyst carrier damage or crushing of the mat while maintaining the necessary and sufficient surface pressure for stable holding of the catalyst carrier. Can be secured.

【0014】請求項3の発明は、請求項2に記載の排気
ガス浄化装置の製造方法において、前記金属シェルの端
部開口部分にスピニング加工を施して、当該端部開口部
分に所望の形状を付与するスピニング加工工程を更に備
えることを特徴とする。
According to a third aspect of the present invention, in the method of manufacturing the exhaust gas purifying apparatus according to the second aspect, the end opening portion of the metal shell is subjected to spinning processing so that the end opening portion has a desired shape. It is characterized in that it further comprises a spinning step of imparting.

【0015】本件の製造方法では、金属シェルが挿入型
の構成形態であるため、金属シェルの端部開口部分にお
ける肉厚が、最初から全周にわたりほぼ均一となってい
る。それ故、当該端部開口部分にスピニング加工を施す
ことが可能であり、スピニング加工によって自由自在に
所望の形状を付与することができる。
In the manufacturing method of the present invention, since the metal shell is of the insert type construction, the thickness of the end opening portion of the metal shell is substantially uniform from the beginning to the entire circumference. Therefore, the end opening portion can be subjected to spinning, and the desired shape can be freely given by the spinning.

【0016】請求項4の発明は、請求項3に記載の排気
ガス浄化装置の製造方法において、前記加熱圧縮工程で
の加熱及び均等加圧の操作は、前記スピニング加工にお
けるワークとしての金属シェルのチャッキングを兼ねて
いることを特徴とする。
According to a fourth aspect of the present invention, in the method for manufacturing an exhaust gas purifying apparatus according to the third aspect, the heating and uniform pressurizing operations in the heating and compressing step are performed on a metal shell as a work in the spinning process. The feature is that it also serves as chucking.

【0017】この方法によれば、スピニング加工の際に
必要となるワーク(金属シェル)のチャッキングが、加
熱圧縮工程での加熱及び均等加圧の操作を兼ねる。従っ
て、金属シェルの加熱及び均等加圧と、金属シェルの端
部開口部分に対するスピニング加工とを同時並行して行
うことができ、作業効率を大幅に向上させることができ
る。
According to this method, the chucking of the work (metal shell), which is necessary during the spinning process, also serves as the heating and uniform pressing operations in the heating and compression step. Therefore, the heating and the uniform pressurization of the metal shell and the spinning process for the end opening portion of the metal shell can be simultaneously performed in parallel, and the working efficiency can be significantly improved.

【0018】請求項5の発明は、請求項2〜4のいずれ
か一項に記載の排気ガス浄化装置の製造方法において、
前記加熱圧縮工程での加熱温度は、200℃以上、金属
シェルの構成金属の融点未満であることを特徴とする。
According to a fifth aspect of the present invention, in the method for manufacturing an exhaust gas purifying apparatus according to any one of the second to fourth aspects,
The heating temperature in the heat compression step is 200 ° C. or higher and lower than the melting point of the constituent metal of the metal shell.

【0019】これは加熱圧縮工程での加熱温度の好まし
い範囲を限定したものである。圧縮後のスプリングバッ
クを回避可能な加熱温度は、金属シェルの材質や板厚等
の材料条件に応じて種々変わり得るが、金属シェルを汎
用の鉄系材料(例えばステンレス鋼)で構成した場合に
は、加熱温度の下限値は約200℃とすることが好まし
い。加熱温度が200℃を下回ると、加熱及び均等加圧
の時間を非常に長くすることでスプリングバックの回避
効果を生み出す必要があり、生産性を低下させる。ま
た、長時間の加熱はマットへの伝熱過多によってマット
を傷める虞れがある。このため、加熱温度をできるだけ
高くして、加熱及び均等加圧の絶対時間を短縮する方向
が好ましい。
This limits the preferable range of the heating temperature in the heat compression step. The heating temperature at which springback after compression can be avoided may vary depending on the material conditions such as the material of the metal shell and the plate thickness, but when the metal shell is composed of a general-purpose iron-based material (for example, stainless steel) The lower limit of the heating temperature is preferably about 200 ° C. When the heating temperature is lower than 200 ° C., it is necessary to lengthen the time of heating and uniform pressurization to produce an effect of avoiding springback, which lowers productivity. Further, heating for a long time may damage the mat due to excessive heat transfer to the mat. Therefore, it is preferable to increase the heating temperature as much as possible to shorten the absolute time of heating and uniform pressurization.

【0020】他方、加熱温度の上限値は金属シェルの構
成金属の融点未満とすることが好ましい。これにより、
金属シェルの過度な軟化や溶融崩れを未然に防止でき
る。なお、汎用の鉄系材料で構成された金属シェルの場
合、加熱温度の最適範囲は、材料が適度に軟化する20
0℃〜400℃程度である。
On the other hand, the upper limit of the heating temperature is preferably lower than the melting point of the constituent metal of the metal shell. This allows
It is possible to prevent excessive softening and melting collapse of the metal shell. In the case of a metal shell composed of a general-purpose iron-based material, the optimum heating temperature range is 20
It is about 0 ° C to 400 ° C.

【0021】請求項2〜5に記載の排気ガス浄化装置の
製造方法において、前記略柱状の浄化ユニットが、排気
ガス浄化触媒を担持したセラミックス製触媒担体、又
は、ウォールフローモノリス型のセラミックス製ディー
ゼルパティキュレートフィルタであることは好ましい
(請求項6)。このようなセラミックス製の浄化ユニッ
トを用いた排気ガス浄化装置において、本件製造方法の
有用性が極めて高い。
In the method for manufacturing an exhaust gas purifying apparatus according to any one of claims 2 to 5, the substantially columnar purifying unit is a ceramic catalyst carrier carrying an exhaust gas purifying catalyst or a wall flow monolith type ceramic diesel. It is preferably a particulate filter (claim 6). In the exhaust gas purifying apparatus using such a ceramic purifying unit, the present manufacturing method is extremely useful.

【0022】なお、請求項1に記載の排気ガス浄化装置
において、「金属シェルの加熱温度は、200℃以上、
金属シェルの構成金属の融点未満であること」、「金属
シェルを構成する金属は鉄系材料であること」、「金属
シェルの端部開口部分にはスピニング加工によるコーン
形状が付与されていること」、「略柱状の浄化ユニット
は、排気ガス浄化触媒を担持したセラミックス製触媒担
体であること」、又は「略柱状の浄化ユニットは、ウォ
ールフローモノリス型のセラミックス製ディーゼルパテ
ィキュレートフィルタであること」は好ましい。
In the exhaust gas purifying apparatus according to claim 1, "The heating temperature of the metal shell is 200 ° C. or higher,
"The melting point of the constituent metal of the metal shell is lower than that", "The metal that forms the metal shell is an iron-based material", "The end opening of the metal shell has a cone shape by spinning. ”,“ The substantially columnar purification unit is a ceramic catalyst carrier carrying an exhaust gas purification catalyst ”, or“ the substantially columnar purification unit is a wall flow monolith-type ceramic diesel particulate filter ” Is preferred.

【0023】[0023]

【発明の実施の形態】以下、本発明を、排気ガス浄化装
置としての触媒コンバータに具体化した一実施形態を図
面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is embodied in a catalytic converter as an exhaust gas purifying apparatus will be described below with reference to the drawings.

【0024】図3は、後述の製造手順で製造される触媒
コンバータの完成状態を示す。図3に示すように、触媒
コンバータは、金属製のシェル1と、浄化ユニットとし
ての触媒担体2と、マット3とから構成される。
FIG. 3 shows a completed state of the catalytic converter manufactured by the manufacturing procedure described later. As shown in FIG. 3, the catalytic converter includes a metal shell 1, a catalyst carrier 2 as a purification unit, and a mat 3.

【0025】金属製のシェル1は、触媒担体2及びマッ
ト3を収納するための一種のケースであり、金属(より
好ましくは、鋳鉄やステンレス鋼等の鉄系材料)で構成
されている。金属シェル1の胴体部分は円筒状に形成さ
れ、その内部が触媒担体2及びマット3の収納空間を提
供する。金属シェル1の胴体部分の前後両端部(端部開
口部分)1a,1bは、排気管(図示略)との接続のた
めに徐々に口径が狭まるコーン状に形成されている。触
媒担体2は、NOx還元触媒等の排気ガス浄化触媒を担
持した略円柱状のセラミックス製担体であり、その内部
には、担体の軸方向に延びる多数の排気ガス通路2aが
形成されている。
The metal shell 1 is a kind of case for accommodating the catalyst carrier 2 and the mat 3, and is made of metal (more preferably, iron-based material such as cast iron or stainless steel). The body portion of the metal shell 1 is formed in a cylindrical shape, and the inside thereof provides a storage space for the catalyst carrier 2 and the mat 3. Both front and rear end portions (end opening portions) 1a, 1b of the body portion of the metal shell 1 are formed in a cone shape whose diameter is gradually narrowed for connection with an exhaust pipe (not shown). The catalyst carrier 2 is a substantially cylindrical ceramic carrier carrying an exhaust gas purification catalyst such as a NOx reduction catalyst, and a large number of exhaust gas passages 2a extending in the axial direction of the carrier are formed inside the carrier.

【0026】マット3は、触媒担体2の外周面と金属シ
ェル1の胴体部内周面との間に介装される一種の充填材
である。このマット3は例えば、アルミナ又はシリカ系
の無機繊維と無機又は有機の結合材との混合物をマット
状(あるいはシート状)に成形したものである。マット
3には様々な役割があるが、最も重要な役割の一つは触
媒担体2の外周面及び金属シェル1の内周面に対し面圧
を及ぼし、その面圧に基づく摩擦力により触媒担体2を
金属シェル1内に安定保持することである。
The mat 3 is a kind of filler which is interposed between the outer peripheral surface of the catalyst carrier 2 and the inner peripheral surface of the body of the metal shell 1. The mat 3 is formed, for example, of a mixture of alumina or silica-based inorganic fibers and an inorganic or organic binder in a mat shape (or a sheet shape). The mat 3 has various roles, and one of the most important roles exerts a surface pressure on the outer peripheral surface of the catalyst carrier 2 and the inner peripheral surface of the metal shell 1, and the catalyst carrier is generated by the frictional force based on the surface pressure. 2 is to be stably held in the metal shell 1.

【0027】本実施形態の触媒コンバータは、およそ次
のような手順で製造される。まず、セラミックス製触媒
担体2の外径又は周長を予め測定する。そして図1に示
すように、触媒担体2の周囲にマット3を巻き付け、そ
のマット3を巻き付けた状態の触媒担体2を、触媒担体
2よりも胴長の長い円筒状金属シェル1内に挿入する。
このとき、金属シェル1の軸方向中程に触媒担体2及び
マット3を収納配置する。
The catalytic converter of this embodiment is manufactured by the following procedure. First, the outer diameter or circumference of the ceramic catalyst carrier 2 is measured in advance. Then, as shown in FIG. 1, a mat 3 is wrapped around the catalyst carrier 2, and the catalyst carrier 2 wound with the mat 3 is inserted into a cylindrical metal shell 1 having a body length longer than that of the catalyst carrier 2. .
At this time, the catalyst carrier 2 and the mat 3 are housed and arranged in the middle of the metal shell 1 in the axial direction.

【0028】次に、触媒担体2及びマット3を収容した
金属シェル1の胴体部を、図2及び図4に示すようなチ
ャック機構10でチャッキングする。このチャック機構
10は、スピニング加工装置SMの近傍に配設された、
又は、スピニング加工装置SMの一部を構成するワーク
把持機構であり、複数個(本例では8個)のチャック爪
11を有している。図4に示すように、8個のチャック
爪11は円柱状のワーク(即ち金属シェル1)の周囲に
等角度間隔にて設けられている。各チャック爪11は、
ワークの中心に向けて接近離間可能に設けられており、
図示しない駆動機構によって全8個のチャック爪11が
同期駆動する。各チャック爪11の内部には加熱手段1
2が設けられている(図4参照)。チャック爪11内に
配設された加熱手段12としては、電気で発熱する電熱
線や、チャック爪11内の通路を流れる熱媒体(例:高
耐熱性シリコーンオイル)等を例示することができる。
Next, the body portion of the metal shell 1 accommodating the catalyst carrier 2 and the mat 3 is chucked by the chuck mechanism 10 as shown in FIGS. The chuck mechanism 10 is arranged in the vicinity of the spinning processing device SM,
Alternatively, it is a work gripping mechanism that constitutes a part of the spinning processing device SM, and has a plurality (eight in this example) of chuck claws 11. As shown in FIG. 4, eight chuck claws 11 are provided around a cylindrical work (that is, the metal shell 1) at equal angular intervals. Each chuck claw 11 is
It is provided so that it can approach and separate toward the center of the work,
All eight chuck claws 11 are synchronously driven by a drive mechanism (not shown). The heating means 1 is provided inside each chuck claw 11.
2 are provided (see FIG. 4). Examples of the heating means 12 arranged in the chuck claw 11 include a heating wire that generates heat by electricity and a heat medium (eg, high heat-resistant silicone oil) flowing in a passage in the chuck claw 11.

【0029】チャッキングに際してはまず、チャック機
構10を構成する8個のチャック爪11で金属シェル1
の外周面を8方向から均等に押圧して、金属シェル1を
確実に把持する。その際、チャック爪11内の加熱手段
12を作動させて、各チャック爪11の表面温度を予め
200℃〜400℃程度に高めておく。チャック爪11
による把持が確実なことを確認した後、チャック爪11
による加圧力を徐々に高めて、金属シェル1の径を、初
期径(非加圧状態での自然径)から所定の目標径にまで
強制的に縮める。なお、加圧圧縮の際の目標径は、最初
に測定しておいた触媒担体2の外径又は周長を参照して
決定される。目標径設定の考え方については、後ほど詳
述する。
In chucking, first, the metal shell 1 is made up of the eight chuck claws 11 constituting the chuck mechanism 10.
The outer peripheral surface of the metal shell 1 is evenly pressed in eight directions to securely grip the metal shell 1. At that time, the heating means 12 in the chuck claws 11 is operated to raise the surface temperature of each chuck claw 11 to about 200 ° C. to 400 ° C. in advance. Chuck claw 11
After confirming that the gripping with the
By gradually increasing the pressing force by, the diameter of the metal shell 1 is forcibly reduced from the initial diameter (natural diameter in the unpressurized state) to a predetermined target diameter. The target diameter at the time of pressure compression is determined by referring to the outer diameter or the circumferential length of the catalyst carrier 2 which is measured first. The concept of setting the target diameter will be described later in detail.

【0030】このように複数のチャック爪11で金属シ
ェル1の胴体部分を高温加熱しつつ縮径方向に加圧した
状態を保持したまま、図2に示すように、金属シェルの
前端部1a及び後端部1bに対してスピニング加工装置
SMによりスピニング加工を施す。そして、前後両端部
1a,1bをコーン状に変形させる(図3参照)。スピ
ニング加工が終了するまでの間、金属シェル1の胴体部
分に対する加熱及び加圧は維持される。前後両端部1
a,1bに対するスピニング加工の終了後に、各チャッ
ク爪11の押圧力を解除してチャック機構10から金属
シェル1を取り外す。こうして、マット3が及ぼす面圧
に基づいて金属シェル1内に触媒担体2が安定保持さ
れ、図3に示すような触媒コンバータが完成する。
While the body portion of the metal shell 1 is heated to a high temperature by the plurality of chuck claws 11 and is kept pressed in the diameter reducing direction, as shown in FIG. Spinning is performed on the rear end portion 1b by the spinning device SM. Then, the front and rear ends 1a and 1b are deformed into a cone shape (see FIG. 3). The heating and pressurization of the body portion of the metal shell 1 are maintained until the spinning process is completed. Front and rear ends 1
After the spinning process for a and 1b is completed, the pressing force of each chuck claw 11 is released and the metal shell 1 is removed from the chuck mechanism 10. Thus, the catalyst carrier 2 is stably held in the metal shell 1 based on the surface pressure exerted by the mat 3, and the catalytic converter as shown in FIG. 3 is completed.

【0031】さて、圧縮状態のマット3が各接触面に及
ぼす面圧の決定要因としては、マットの材質、繊維径、
長さ等の材料的特性があげられるが、そういった材料的
特性に関しては、耐熱性その他の要求性能面からの制約
があり、材料選択の幅はあまり広くない。そうすると、
マット3の面圧は主として、触媒担体2と金属シェル1
の間における単位体積当りのマット充填量(充填密度G
BD)で決まることになる。マットの面圧とGBDとの
間には、例えば図5に示すような二次曲線的相関関係が
あり、GBDの増大に伴って面圧も上昇傾向にある。
The factors that determine the surface pressure exerted by the compressed mat 3 on each contact surface are the mat material, fiber diameter, and
Material properties such as length can be mentioned, but such material properties are limited in terms of heat resistance and other required performance, and the range of material selection is not so wide. Then,
The surface pressure of the mat 3 mainly depends on the catalyst carrier 2 and the metal shell 1.
Filling amount of mat per unit volume (filling density G
BD). There is a quadratic curve correlation between the surface pressure of the mat and the GBD, for example, as shown in FIG. 5, and the surface pressure tends to increase as the GBD increases.

【0032】図6のグラフは、最終外径140mmの触
媒コンバータ内にマット3を実装したときのマット3の
特性、具体的には、金属シェル1の内半径と触媒担体2
の外半径との差(即ちギャップGAP)とGBDとの相
関関係を示す。このグラフからわかるように、触媒コン
バータ内に実装されたマット3は、GAPが小さくなる
ほどGBDが高まるという傾向を示す。ただし、マット
3はいわば無機繊維のランダムな集合体であり、それ自
体が不可避的に品質のバラツキを伴う。このため、マッ
ト3のGAP/GBD特性は、シャープな単一の特性線
としては表われず、図6に示すように一定の幅を持つ右
下がりの特性帯として表現されることになる。
The graph of FIG. 6 shows the characteristics of the mat 3 when the mat 3 is mounted in a catalytic converter having a final outer diameter of 140 mm, specifically, the inner radius of the metal shell 1 and the catalyst carrier 2.
3 shows the correlation between the difference between the outer radius and the outer radius (i.e., gap GAP) and GBD. As can be seen from this graph, the mat 3 mounted in the catalytic converter tends to have a higher GBD as the GAP becomes smaller. However, the mat 3 is, so to speak, a random aggregate of inorganic fibers, and inevitably causes quality variations. For this reason, the GAP / GBD characteristic of the mat 3 does not appear as a sharp single characteristic line, but is expressed as a downward sloping characteristic band having a certain width as shown in FIG.

【0033】マット3には図6のような帯状特性がある
ことを認識した上で、触媒担体2の十分な保持力が得ら
れる面圧を確保できるように、触媒コンバータ完成時の
最終的なマット充填密度(GBD)ひいてはギャップ
(GAP)を設定する必要がある。その際、マット3を
構成する無機繊維の圧縮破壊(繊維圧壊)を防止しつつ
も十分な面圧を確保することを心掛けて、GBDの範囲
を選択しなければならない。具体的には、金属シェル1
内に触媒担体2を安定保持するために必要最小限の面圧
を生じ得るGBDを、範囲選択の際の下限値GB1と
し、繊維圧壊を回避できるGBDの最大許容値を、範囲
選択の際の上限値GB2とする。図6のグラフでは、下
限値GB1=0.24、上限値GB2=0.40であ
る。
After recognizing that the mat 3 has a band-like characteristic as shown in FIG. 6, the final pressure after the completion of the catalytic converter is ensured so that the surface pressure for obtaining a sufficient holding force of the catalyst carrier 2 can be secured. It is necessary to set the mat packing density (GBD) and thus the gap (GAP). At this time, the range of GBD must be selected in consideration of ensuring a sufficient surface pressure while preventing the compressive fracture (fiber collapse) of the inorganic fibers forming the mat 3. Specifically, the metal shell 1
The GBD that can generate the minimum surface pressure necessary for stably holding the catalyst carrier 2 therein is set as the lower limit value GB1 when the range is selected, and the maximum allowable value of the GBD that can avoid the fiber collapse is set as the range. The upper limit value is GB2. In the graph of FIG. 6, the lower limit value GB1 = 0.24 and the upper limit value GB2 = 0.40.

【0034】すると、GBD許容範囲の下限値GB1と
上限値GB2との間に上記特性帯の全体を収め得るよう
に、ギャップGAPの許容範囲が決まる。つまり、マッ
トの特性帯の一部でも上限値GB2を超えることは好ま
しくないため、GBD=0.40(=GB2)の水平線
と特性帯の上辺との交点に対応するGAP値が、ギャッ
プ許容範囲の下限値GA2となる。また、マットの特性
帯の一部でも下限値GB1を下回ることは好ましくない
ため、GBD=0.24(=GB1)の水平線と特性帯
の下辺との交点に対応するGAP値が、ギャップ許容範
囲の上限値GA1となる。
Then, the allowable range of the gap GAP is determined so that the entire characteristic band can be accommodated between the lower limit value GB1 and the upper limit value GB2 of the GBD allowable range. That is, it is not preferable that even a part of the characteristic band of the mat exceeds the upper limit value GB2. Therefore, the GAP value corresponding to the intersection of the horizontal line of GBD = 0.40 (= GB2) and the upper side of the characteristic band is set to the gap allowable range. Is the lower limit value GA2. Since it is not preferable that even a part of the characteristic band of the mat falls below the lower limit value GB1, the GAP value corresponding to the intersection of the horizontal line of GBD = 0.24 (= GB1) and the lower side of the characteristic band is the gap allowable range. Becomes the upper limit value GA1.

【0035】こうして、マット3の繊維圧壊を防止しつ
つ十分な面圧を確保することが可能なギャップGAPの
許容範囲(下限値GA2〜上限値GA1)が決まる。な
お、ギャップGAPとは、金属シェル1の最終的な内半
径と触媒担体2の外半径との差をいい、触媒担体2の外
半径は全製造過程を通じてほぼ一定であることから、G
APを小さくすることは、それだけ金属シェル1の縮径
度合いが大きいことを意味する。つまり、金属シェル1
を縮径加工するときの目標内半径は、当該目標内半径
と、触媒担体2の外径又は周長の測定値から算出した触
媒担体2の実外半径との差(ギャップ目標値GAt)が
上記ギャップの許容範囲内に収まるように決定される。
なお、ギャップの許容範囲内で極力高い面圧を確保する
ことが望ましいことから、通常、ギャップが下限値GA
2に近くなるように縮径加工の目標内半径が選択され
る。
In this way, the allowable range (lower limit value GA2 to upper limit value GA1) of the gap GAP that can secure the sufficient surface pressure while preventing the fiber collapse of the mat 3 is determined. The gap GAP is the difference between the final inner radius of the metal shell 1 and the outer radius of the catalyst carrier 2, and since the outer radius of the catalyst carrier 2 is almost constant throughout the manufacturing process, G
Decreasing AP means that the degree of diameter reduction of the metal shell 1 is correspondingly large. That is, the metal shell 1
The target inner radius when reducing the diameter is the difference between the target inner radius and the actual outer radius of the catalyst carrier 2 calculated from the measured value of the outer diameter or circumference of the catalyst carrier 2 (gap target value GAt). It is determined to be within the allowable range of the gap.
Since it is desirable to secure a surface pressure as high as possible within the allowable range of the gap, the gap is normally set to the lower limit value GA.
The target inner radius of the diameter reduction processing is selected so as to be close to 2.

【0036】本実施形態の製造方法によれば、金属シェ
ル1の加圧縮径加工を加熱下で行うため、縮径状態を保
持するための加圧力と金属の熱膨張力との関係で内部応
力の高まりと応力緩和とが同時に起き、その結果、金属
シェルは縮径状態のまま塑性変形して反発弾性を失う。
このため、金属シェル1に対する加圧力を解除しても、
スプリングバックによる径戻りがほとんどない。それ
故、図6に示すギャップ許容範囲の下限値GA2に近い
値GAtをそのまま、金属シェル1の加圧縮径における
ギャップ目標値(ひいては金属シェル1の目標内半径)
として選択することができ、実際の加工により、ほぼそ
の目標値通りのギャップを実現することができる。ただ
し、実際の金属シェル1では板厚に若干のバラツキがあ
り、その公差分を安全マージンとして予め考慮しておく
ことが不良品の発生防止につながるので、実際の加圧縮
径加工でのギャップ目標値GAtは、ギャップ許容範囲
の下限値GA2よりも板厚公差kだけ大きくしている
(GAt=GA2+k)。
According to the manufacturing method of the present embodiment, since the press-compacting diameter machining of the metal shell 1 is performed under heating, the internal stress is caused by the relationship between the pressurizing force for maintaining the contracted state and the thermal expansion force of the metal. And the stress relaxation occur at the same time, and as a result, the metal shell loses its impact resilience by plastically deforming in the reduced diameter state.
Therefore, even if the pressure applied to the metal shell 1 is released,
Almost no return due to springback. Therefore, the value GAt close to the lower limit value GA2 of the allowable gap range shown in FIG.
Can be selected as, and the actual machining can realize a gap almost according to the target value. However, in the actual metal shell 1, there are slight variations in the plate thickness, and considering the tolerance as a safety margin in advance leads to the prevention of defective products. The value GAt is larger than the lower limit GA2 of the gap allowable range by the plate thickness tolerance k (GAt = GA2 + k).

【0037】これに対し、金属シェル1の加圧縮径加工
を非加熱状態(冷間状態)で行う従来の製造手法によれ
ば、加圧力解除時にスプリングバックによる径戻りΔR
が不可避的に発生する。仮にこの径戻りΔRを予め考慮
に入れて、加圧縮径加工でのギャップ目標値GAt’を
GA2+k−ΔRに設定したとすると、その目標値GA
t’はギャップ許容範囲の下限値GA2を下回ってしま
い、縮径加工の途中でマット3の一部又は全部が繊維圧
壊を起こしてしまう。これを回避するには、縮径加工の
際のギャップ目標値GAt’を最小でもGA2+k(=
GAt)にとどめるよりないが、その場合には、加圧力
解除時のスプリングバックによる径戻りΔR’が生じ、
最終的なギャップはGA2+k+ΔR’となり、本実施
形態の場合の最終ギャップ(GA2+k)よりも大きく
なってしまう。つまり、スプリングバックが避けられな
い従来の製造手法では、縮径加工段階での繊維圧壊を防
止するという条件の下で、ギャップ許容範囲の下限値G
A2直近にまで金属シェル1を縮径することができず、
縮径加工以外の加工条件が同じならば、本実施形態の場
合に比べて低い面圧しか得られない。
On the other hand, according to the conventional manufacturing method in which the press-compacting diameter machining of the metal shell 1 is performed in the non-heated state (cold state), the radial return ΔR due to the springback when the pressurizing force is released.
Occurs inevitably. If this gap return ΔR is taken into consideration in advance and the gap target value GAt ′ in the compression diameter machining is set to GA2 + k−ΔR, the target value GA
Since t'is less than the lower limit GA2 of the allowable gap range, some or all of the mat 3 will be crushed during the diameter reduction process. In order to avoid this, even if the gap target value GAt ′ at the time of diameter reduction processing is at least GA2 + k (=
GAt), but in that case, a radial return ΔR 'occurs due to springback when the pressure is released,
The final gap becomes GA2 + k + ΔR ', which is larger than the final gap (GA2 + k) in the case of this embodiment. That is, in the conventional manufacturing method in which spring back is unavoidable, the lower limit G of the allowable gap range is set under the condition that fiber collapse is prevented in the diameter reduction processing stage.
The diameter of the metal shell 1 cannot be reduced to the nearest A2,
If the processing conditions other than the diameter reduction processing are the same, only a low surface pressure can be obtained as compared with the case of the present embodiment.

【0038】以上説明したように本実施形態によれば、
加熱下での加圧縮径加工後の加圧力解除時でもスプリン
グバックによる径戻りがないため、加工途中及び加工後
のいずれにおいても繊維圧壊を生じることなく、マット
3の面圧を最大限に高めることができる。換言すれば、
本実施形態の製造方法は、従来の手法よりもマット3の
充填密度制御の許容幅が大きく、面圧つまりは触媒担体
保持力の向上が図り易い。
As described above, according to this embodiment,
Since the diameter does not return due to the spring back even when the pressure is released after the compression / diameter processing under heating, the surface pressure of the mat 3 is maximized without fiber crushing both during and after the processing. be able to. In other words,
In the manufacturing method of the present embodiment, the allowable range of the packing density control of the mat 3 is wider than that of the conventional method, and it is easy to improve the surface pressure, that is, the catalyst carrier holding force.

【0039】また、本実施形態によれば、金属シェル1
内での触媒担体2の保持力が従来よりも高まるため、触
媒担体2の脱落を危惧することなく、触媒コンバータを
垂直方向に設置することが可能となる。更に、本実施形
態の製造方法を採用することで触媒担体2の保持力を必
要十分なレベルにできることが明白な場合には、マット
3の肉厚を従来よりも更に薄くする設計を採用すること
もでき、製造コスト低減を目的とした設計上の選択肢が
広がる。
Further, according to this embodiment, the metal shell 1
Since the holding power of the catalyst carrier 2 in the inside is higher than in the conventional case, the catalytic converter can be installed in the vertical direction without fear of the catalyst carrier 2 falling off. Further, when it is clear that the holding force of the catalyst carrier 2 can be made to be a necessary and sufficient level by adopting the manufacturing method of this embodiment, a design in which the thickness of the mat 3 is made thinner than in the conventional case is adopted. The design options for reducing manufacturing costs are expanded.

【0040】なお、近年、触媒コンバータの小型化及び
暖機性向上を図るために、触媒担体を構成する区画壁の
薄壁化が進んでおり、その結果として触媒担体の機械的
耐力が低下傾向にある。このため、上記実施形態の図6
では繊維圧壊の可能性を意識してGBD許容幅の上限値
を決定したが、繊維圧壊の可能性よりも触媒担体の破壊
回避を優先的に考慮して、GBD許容幅の上限値を決定
する場合もあり得ることを付言しておく。
In recent years, in order to reduce the size of the catalytic converter and improve the warm-up property, the partition walls forming the catalyst carrier have been made thinner, and as a result, the mechanical strength of the catalyst carrier tends to decrease. It is in. For this reason, FIG.
Then, the upper limit of the GBD allowable width was determined in consideration of the possibility of fiber crushing, but the upper limit of the GBD allowable width is determined by giving priority to avoiding the destruction of the catalyst carrier rather than the possibility of fiber crushing. It should be added that there may be cases.

【0041】(変更例)本発明の実施形態を以下のよう
に変更してもよい。 ・上記実施形態では、スピニング加工のためのチャッキ
ングを兼ねてチャック機構10による加熱及び均等加圧
の操作を行ったが、金属シェル1を加熱しながら縮径方
向に均等加圧する加熱圧縮工程と、スピニング加工工程
とを時間的にずらし、それぞれを別工程として実施して
もよい。
(Modification) The embodiment of the present invention may be modified as follows. In the above-described embodiment, the heating and uniform pressing operation by the chuck mechanism 10 is performed also as chucking for the spinning process, but a heating and compression step of uniformly pressing the metal shell 1 in the diameter reducing direction while heating the metal shell 1 is performed. , The spinning process step may be temporally staggered, and each may be performed as a separate step.

【0042】・例えば加熱炉等を用いて金属シェル1を
予め加熱しておき、熱がさめない状態でその金属シェル
1をチャック機構(加熱手段12を具備しなくてもよ
い)により均等加圧するようにしてもよい。つまり本発
明では、金属シェル1の均等加圧時に、金属シェル1が
所定の加熱状態にあればよい。
The metal shell 1 is preheated by using, for example, a heating furnace, and the metal shell 1 is uniformly pressed by a chuck mechanism (the heating means 12 may not be provided) in a state where heat is not suppressed. You may do it. That is, in the present invention, it is sufficient that the metal shell 1 is in a predetermined heating state when the metal shell 1 is uniformly pressed.

【0043】・金属シェル1の端部開口部分に対する形
状付与をスピニング加工以外の加工手法で行ってもよ
い。又、当該端部開口部分に付与する形状についても、
コーン形状に限定されるものではない。
The shape imparting to the end opening of the metal shell 1 may be performed by a processing method other than the spinning process. Also, regarding the shape given to the end opening,
It is not limited to the cone shape.

【0044】・本発明を、ウォールフローモノリス型の
セラミックス製ディーゼルパティキュレートフィルタ
(DPF)を内蔵した排気ガス浄化装置に適用してもよ
い。
The present invention may be applied to an exhaust gas purifying apparatus having a wall flow monolith type ceramic diesel particulate filter (DPF) built therein.

【0045】[0045]

【発明の効果】以上詳述したように本発明によれば、挿
入型の金属シェル構造を採用した排気ガス浄化装置にお
いて、浄化ユニットの破損やマット圧壊の危険を回避し
つつ、浄化ユニットの安定保持のために必要十分な面圧
を確保することが可能となる。また、本発明の製造方法
によれば、そのような排気ガス浄化装置を確実に製造す
ることができる。即ち、圧縮工程における浄化ユニット
の破損やマット圧壊の危険を回避することと、浄化ユニ
ットの安定保持のために必要十分な面圧を確保すること
とを両立させることが容易になる。
As described above in detail, according to the present invention, in the exhaust gas purifying apparatus adopting the insertion type metal shell structure, the purifying unit is stabilized while avoiding the risk of damage to the purifying unit and crushing of the mat. It is possible to secure a necessary and sufficient surface pressure for holding. Further, according to the manufacturing method of the present invention, such an exhaust gas purifying device can be reliably manufactured. That is, it becomes easy to avoid both the risk of damage to the purification unit and the crushing of the mat during the compression process and the securing of a sufficient and sufficient surface pressure for stable holding of the purification unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】排気ガス浄化装置の製造工程の一部を示す斜視
図。
FIG. 1 is a perspective view showing a part of a manufacturing process of an exhaust gas purification device.

【図2】金属シェルのチャッキング及びスピニング加工
時を示す断面図。
FIG. 2 is a cross-sectional view showing chucking and spinning of a metal shell.

【図3】スピニング加工完了後の排気ガス浄化装置の断
面図。
FIG. 3 is a cross-sectional view of the exhaust gas purification device after completion of spinning processing.

【図4】金属シェルのチャッキング例を示す図2のA−
A線断面図。
FIG. 4 is an A- of FIG. 2 showing an example of chucking of a metal shell.
A line sectional view.

【図5】マットの充填密度(GBD)と面圧との関係を
示すグラフ。
FIG. 5 is a graph showing the relationship between the packing density (GBD) of the mat and the surface pressure.

【図6】排気ガス浄化装置内に実装したときのマットの
特性を描いた、ギャップ(GAP)とマットの充填密度
(GBD)との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the gap (GAP) and the packing density (GBD) of the mat, which illustrates the characteristics of the mat when mounted in the exhaust gas purification device.

【図7】従来技術におけるスプリングバックの概要を示
した説明図。
FIG. 7 is an explanatory diagram showing an outline of springback in the related art.

【符号の説明】[Explanation of symbols]

1…金属シェル、1a,1b…金属シェルの前端部及び
後端部(端部開口部分)、2…触媒担体(浄化ユニッ
ト)、3…マット。
DESCRIPTION OF SYMBOLS 1 ... Metal shell, 1a, 1b ... Front end and rear end (end opening portion) of the metal shell, 2 ... Catalyst carrier (purification unit), 3 ... Mat.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 33/00 B21D 22/14 Z B21D 22/14 41/04 B 41/04 53/84 B 53/84 F01N 3/02 301B F01N 3/02 301 7/18 7/18 B01D 53/36 C Fターム(参考) 3G004 AA01 BA06 DA14 EA05 FA01 FA04 FA07 GA00 GA01 3G090 AA02 3G091 AA02 AB01 AB13 BA39 GA06 HA27 HA31 4D048 AA14 BA10X BB02 BB14 CA01 CA08 CC02 CC04 CC08 CD05 4G069 AA01 AA08 CA02 CA03 CA18 EA18 EA27 FA01 FB29 FB66 FB69 FB70 FC07 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 33/00 B21D 22/14 Z B21D 22/14 41/04 B 41/04 53/84 B 53/84 F01N 3/02 301B F01N 3/02 301 7/18 7/18 B01D 53/36 C F term (reference) 3G004 AA01 BA06 DA14 EA05 FA01 FA04 FA07 GA00 GA01 3G090 AA02 3G091 AA02 AB01 AB13 BA39 GA06 HA27 HA31 4D048 AA14 BA10X BB14 CA01 CA08 CC02 CC04 CC08 CD05 4G069 AA01 AA08 CA02 CA03 CA18 EA18 EA27 FA01 FB29 FB66 FB69 FB70 FC07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】略円筒状の収納空間を区画する金属製のシ
ェルと、その収納空間内に設置される略柱状の浄化ユニ
ットと、前記金属シェルと前記浄化ユニットとの間に介
装されるマットとを備えた排気ガス浄化装置であって、 円筒状金属シェル内にマットを巻き付けた略柱状浄化ユ
ニットを挿入した後、金属シェルを加熱した状態で金属
シェルの外周面を縮径方向に均等加圧することにより、
当該金属シェルをその初期径よりも小さな目標径に圧縮
して前記マット及び浄化ユニットを円筒状金属シェル内
に保持したことを特徴とする排気ガス浄化装置。
1. A metal shell that defines a substantially cylindrical storage space, a substantially columnar purification unit installed in the storage space, and a metal shell and the purification unit. An exhaust gas purification device equipped with a mat, wherein after inserting a substantially columnar purification unit in which a mat is wound into a cylindrical metal shell, the metal shell is heated and the outer peripheral surface of the metal shell is evenly reduced in the radial direction. By applying pressure
An exhaust gas purifying device characterized in that the metal shell and the purification unit are held in a cylindrical metal shell by compressing the metal shell to a target diameter smaller than its initial diameter.
【請求項2】略円筒状の収納空間を区画する金属製のシ
ェルと、その収納空間内に設置される略柱状の浄化ユニ
ットと、前記金属シェルと前記浄化ユニットとの間に介
装されるマットとを備えた排気ガス浄化装置の製造方法
であって、 円筒状金属シェル内に、マットを巻き付けた略柱状浄化
ユニットを挿入する挿入工程と、 マット及び浄化ユニットを収納した金属シェルを加熱し
た状態で金属シェルの外周面を縮径方向に均等加圧する
ことにより、当該金属シェルをその初期径よりも小さな
目標径に圧縮する加熱圧縮工程と、 前記金属シェルに対する加熱及び加圧を解除する解除工
程と、を備えたことを特徴とする排気ガス浄化装置の製
造方法。
2. A metal shell that defines a substantially cylindrical storage space, a substantially columnar purification unit installed in the storage space, and a metal shell and the purification unit. A method of manufacturing an exhaust gas purifying device including a mat, comprising: an inserting step of inserting a substantially columnar purifying unit around which a mat is wound into a cylindrical metal shell; and heating a metal shell containing the mat and the purifying unit. In this state, the outer peripheral surface of the metal shell is uniformly pressed in the radial contraction direction to compress the metal shell to a target diameter smaller than its initial diameter, and a heating and compression process for releasing the heat and pressure applied to the metal shell. A method for manufacturing an exhaust gas purification device, comprising:
【請求項3】前記金属シェルの端部開口部分にスピニン
グ加工を施して、当該端部開口部分に所望の形状を付与
するスピニング加工工程を更に備えることを特徴とする
請求項2に記載の排気ガス浄化装置の製造方法。
3. The exhaust according to claim 2, further comprising a spinning step of applying a spinning process to an end opening portion of the metal shell to give a desired shape to the end opening portion. Method for manufacturing gas purifier.
【請求項4】前記加熱圧縮工程での加熱及び均等加圧の
操作は、前記スピニング加工におけるワークとしての金
属シェルのチャッキングを兼ねていることを特徴とする
請求項3に記載の排気ガス浄化装置の製造方法。
4. The exhaust gas purification according to claim 3, wherein the heating and uniform pressurizing operations in the heating compression step also serve as chucking of a metal shell as a work in the spinning process. Device manufacturing method.
【請求項5】前記加熱圧縮工程での加熱温度は、200
℃以上、金属シェルの構成金属の融点未満であることを
特徴とする請求項2〜4のいずれか一項に記載の排気ガ
ス浄化装置の製造方法。
5. The heating temperature in the heating and compression step is 200.
The method for manufacturing an exhaust gas purifying apparatus according to claim 2, wherein the melting point of the constituent metal of the metal shell is not less than 0 ° C. and not more than the melting point of the metal shell.
【請求項6】前記略柱状の浄化ユニットは、排気ガス浄
化触媒を担持したセラミックス製触媒担体、又は、ウォ
ールフローモノリス型のセラミックス製ディーゼルパテ
ィキュレートフィルタであることを特徴とする請求項2
〜5のいずれか一項に記載の排気ガス浄化装置の製造方
法。
6. The purification unit having a substantially columnar shape is a ceramic catalyst carrier carrying an exhaust gas purification catalyst or a wall flow monolith type ceramic diesel particulate filter.
5. The method for manufacturing the exhaust gas purification device according to any one of items 1 to 5.
JP2001265252A 2001-09-03 2001-09-03 Exhaust emission control device and method of manufacturing the control device Pending JP2003074336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265252A JP2003074336A (en) 2001-09-03 2001-09-03 Exhaust emission control device and method of manufacturing the control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265252A JP2003074336A (en) 2001-09-03 2001-09-03 Exhaust emission control device and method of manufacturing the control device

Publications (1)

Publication Number Publication Date
JP2003074336A true JP2003074336A (en) 2003-03-12

Family

ID=19091749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265252A Pending JP2003074336A (en) 2001-09-03 2001-09-03 Exhaust emission control device and method of manufacturing the control device

Country Status (1)

Country Link
JP (1) JP2003074336A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358494A (en) * 2003-06-03 2004-12-24 Toyota Motor Corp Device and method for forming shrinking tube, and catalytic converter manufactured using this
JP2009008073A (en) * 2007-06-01 2009-01-15 Yutaka Giken Co Ltd Processing method of exhaust emission control device
JP2009243388A (en) * 2008-03-31 2009-10-22 Sankei Kogyo Kk Method of manufacturing muffler
JP2010023060A (en) * 2008-07-16 2010-02-04 Yutaka Giken Co Ltd Chucking device for machining exhaust gas purifying system
US20100154215A1 (en) * 2007-06-01 2010-06-24 Yoshihiro Umeda Method and apparatus for compressing a mat in exhaust gas cleaning device
JP2010167468A (en) * 2009-01-23 2010-08-05 Nisshin Steel Co Ltd Method of manufacturing exhaust system part for automobile
JP2010167467A (en) * 2009-01-23 2010-08-05 Nisshin Steel Co Ltd Spinning method
KR20110093999A (en) * 2008-11-11 2011-08-19 테네코 오토모티브 오퍼레이팅 컴파니 인코포레이티드 Catalytic unit for treating an exhaust gas and manufacturing methods for such units
CN102596441A (en) * 2009-07-30 2012-07-18 Gws管成形解决方案股份有限公司 Apparatus and method for forming an antipollution device housing
JP2012522632A (en) * 2009-04-02 2012-09-27 フォルシア・システム・デシャプモン Manufacturing method of automobile exhaust gas purification member
KR20160045964A (en) * 2014-10-17 2016-04-28 세종공업 주식회사 Method for manufacturing a catalytic converter with uniform gap bulk density
WO2020207960A1 (en) * 2019-04-08 2020-10-15 Winkelmann Powertrain Components Gmbh & Co. Kg Method for producing a hollow shaft
KR102269294B1 (en) * 2019-12-27 2021-06-25 (주) 대명테크놀러지 Equipment for processing catalytic converter
KR102269295B1 (en) * 2019-12-27 2021-06-28 (주) 대명테크놀러지 Sizing and holding module for catalytic converter processing equipment

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506931B2 (en) * 2003-06-03 2010-07-21 トヨタ自動車株式会社 Reduced tube forming apparatus, reduced tube forming method, and catalytic converter manufactured using the same
JP2004358494A (en) * 2003-06-03 2004-12-24 Toyota Motor Corp Device and method for forming shrinking tube, and catalytic converter manufactured using this
JP2009008073A (en) * 2007-06-01 2009-01-15 Yutaka Giken Co Ltd Processing method of exhaust emission control device
US20100154215A1 (en) * 2007-06-01 2010-06-24 Yoshihiro Umeda Method and apparatus for compressing a mat in exhaust gas cleaning device
US8893383B2 (en) * 2007-06-01 2014-11-25 Yutaka Giken Co., Ltd. Method and apparatus for compressing a mat in exhaust gas cleaning device
JP2009243388A (en) * 2008-03-31 2009-10-22 Sankei Kogyo Kk Method of manufacturing muffler
US8469367B2 (en) 2008-07-16 2013-06-25 Yutaka Giken Co., Ltd. Chucking device for use in machining exhaust gas purifying system
JP2010023060A (en) * 2008-07-16 2010-02-04 Yutaka Giken Co Ltd Chucking device for machining exhaust gas purifying system
KR101643954B1 (en) 2008-11-11 2016-08-10 테네코 오토모티브 오퍼레이팅 컴파니 인코포레이티드 Catalytic unit for treating an exhaust gas and manufacturing methods for such units
KR20110093999A (en) * 2008-11-11 2011-08-19 테네코 오토모티브 오퍼레이팅 컴파니 인코포레이티드 Catalytic unit for treating an exhaust gas and manufacturing methods for such units
JP2010167468A (en) * 2009-01-23 2010-08-05 Nisshin Steel Co Ltd Method of manufacturing exhaust system part for automobile
JP2010167467A (en) * 2009-01-23 2010-08-05 Nisshin Steel Co Ltd Spinning method
JP2012522632A (en) * 2009-04-02 2012-09-27 フォルシア・システム・デシャプモン Manufacturing method of automobile exhaust gas purification member
US9079235B2 (en) 2009-07-30 2015-07-14 Gws Tube Forming Solutions Inc. Apparatus and method for forming an antipollution device housing
CN102596441A (en) * 2009-07-30 2012-07-18 Gws管成形解决方案股份有限公司 Apparatus and method for forming an antipollution device housing
US9481025B2 (en) 2009-07-30 2016-11-01 Gws Tube Forming Solutions Inc. Apparatus and method for forming an antipollution device housing
KR20160045964A (en) * 2014-10-17 2016-04-28 세종공업 주식회사 Method for manufacturing a catalytic converter with uniform gap bulk density
KR101656403B1 (en) 2014-10-17 2016-09-22 세종공업 주식회사 Method for manufacturing a catalytic converter with uniform gap bulk density
WO2020207960A1 (en) * 2019-04-08 2020-10-15 Winkelmann Powertrain Components Gmbh & Co. Kg Method for producing a hollow shaft
CN111790801A (en) * 2019-04-08 2020-10-20 温尔克曼动力元件有限责任两合公司 Method for producing a hollow shaft and molding device
KR102269294B1 (en) * 2019-12-27 2021-06-25 (주) 대명테크놀러지 Equipment for processing catalytic converter
KR102269295B1 (en) * 2019-12-27 2021-06-28 (주) 대명테크놀러지 Sizing and holding module for catalytic converter processing equipment

Similar Documents

Publication Publication Date Title
JP2003074336A (en) Exhaust emission control device and method of manufacturing the control device
US6484397B1 (en) Method of assembling a catalytic converter for use in an internal combustion engine
CN1091836C (en) Method of making catalytic converter for use in internal combustion engine
US20010036427A1 (en) Cell structure mounting container and assembly thereof
US7174635B2 (en) Method for producing a columnar member container
JP4324185B2 (en) Support elements for brittle structures such as catalytic converters
EP0765993B1 (en) Monolith holding material, method for producing the same, catalytic converter using the monolith, and method for producing the same
US7111392B2 (en) Method of producing a fragile substrate container
US5909916A (en) Method of making a catalytic converter
US4020539A (en) Catalytic reactor for automobile
WO2002079618A1 (en) Honeycomb structure and assembly thereof
US20030103876A1 (en) Apparatus and method for forming an exhaust emission control device, and the device formed thereby
US5098763A (en) Honeycomb structure
US7179431B2 (en) Gas treatment device and system, and method for making the same
US5149475A (en) Method of producing a honeycomb structure
US7047641B2 (en) Exhaust emission control device manufacturing method
JPH09234377A (en) Manufacture of catalyst carrier and exhaust system member
US7587819B1 (en) Insert for a catalytic converter and method and apparatus for forming an insert for a catalytic converter
JPH10141052A (en) Manufacture of ceramic catalyst converter and ceramic catalyst converter
JPH0636268Y2 (en) Catalytic converter
KR101005528B1 (en) Exhaust gas purification device
WO2003074225A1 (en) Method of assembling a catalytic converter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070807

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071009