JP2003074331A - Exhaust emission control device and exhaust emission treatment method - Google Patents

Exhaust emission control device and exhaust emission treatment method

Info

Publication number
JP2003074331A
JP2003074331A JP2001264547A JP2001264547A JP2003074331A JP 2003074331 A JP2003074331 A JP 2003074331A JP 2001264547 A JP2001264547 A JP 2001264547A JP 2001264547 A JP2001264547 A JP 2001264547A JP 2003074331 A JP2003074331 A JP 2003074331A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
reducing agent
denitration
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001264547A
Other languages
Japanese (ja)
Other versions
JP5030343B2 (en
Inventor
Akihiro Sawada
明宏 澤田
Yutaka Tonegawa
裕 利根川
Hideji Fujii
秀治 藤井
Yuichiro Murakami
勇一郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001264547A priority Critical patent/JP5030343B2/en
Publication of JP2003074331A publication Critical patent/JP2003074331A/en
Application granted granted Critical
Publication of JP5030343B2 publication Critical patent/JP5030343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of N2 O and increase the selectivity of N2 without lowering the purification rate of NOx in a precious metal catalyst. SOLUTION: In this method and device for denitration, a heat exchanger 2 is installed in a denitration catalyst 1 upstream of exhaust emission to control the temperature of the exhaust emission. A reducer is added to a rather low temperature exhaust emission, and then the exhaust gas is passed through the denitration catalyst 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、移動体用または定
置用のディーゼルエンジン及びガスエンジン等の燃焼装
置から発生する排ガス中に含まれる窒素酸化物(NO
x)を還元して無害な窒素に変える、窒素酸化物の除去
装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen oxide (NO) contained in exhaust gas generated from a combustion device such as a diesel engine or a gas engine for a moving body or stationary.
The present invention relates to a nitrogen oxide removing apparatus and method for reducing x) to convert it into harmless nitrogen.

【0002】[0002]

【従来の技術】従来から、ガソリン自動車等の排ガス浄
化触媒として、理論空燃比で高い浄化性能を有する三元
触媒及び、酸素過剰なリーン領域(空燃比:A/F=2
1)でもNOxの還元が可能なように、三元触媒と組合
せたNOx吸蔵触媒が知られている。最近は、自動車の
燃費向上の観点から、その排ガス浄化方法としては、後
者が主流となっている。三元触媒としては、例えば、A
23−SiO2−MgO系の酸化物を主成分としたコ
ージェライトハニカム基材にγアルミナ(γAl23
からなる担持層を形成し、白金(Pt)、パラジウム
(Pd)、ロジウム(Rh)等の貴金属を担持したもの
がよく知られている。NOx吸蔵触媒としては、コージ
ェライトハニカム基材にγアルミナからなる担持層を形
成し、白金触媒とアルカリ金属、アルカリ土類金属及び
希土類金属等を担持したものがよく知られている。三元
触媒は、理論空燃比(A/F=14.6前後)において
未燃炭化水素(HC)、一酸化炭素(CO)の酸化及び
NOxの分解を同時に行うものである。一方、NOx吸
蔵触媒は、リーン領域の排ガス中においてNOを触媒表
面上で積極的に酸化させ、次いで硝酸イオン(N
3 2-)にして吸蔵し、ある程度吸蔵量が飽和したら空
燃比を一時的にリッチにする、いわゆるリッチスパイク
を行うことによってNOxを脱離、還元するものであ
る。このため、リーンバーン用NOx吸蔵触媒では、エ
ンジン燃焼の際、リーン、リッチ空燃比制御が不可欠と
なる。しかし、一般に自動車の走行においては、特に市
街地走行の場合は、加速、減速を頻繁に行うため、空燃
比は理論空燃比からリーン状態までの範囲で頻繁に変化
し、ある程度NOxの浄化が自然に進行することから、
実用的な浄化方法の一つとされている。
2. Description of the Related Art Conventionally, as an exhaust gas purifying catalyst for gasoline automobiles and the like, a three-way catalyst having a high purifying performance at a theoretical air-fuel ratio and a lean region with excess oxygen (air-fuel ratio: A / F = 2
A NOx storage catalyst combined with a three-way catalyst is known so that NOx can be reduced even in 1). From the viewpoint of improving the fuel efficiency of automobiles, the latter has recently become the mainstream as an exhaust gas purification method. As the three-way catalyst, for example, A
γ-alumina (γAl 2 O 3 ) on a cordierite honeycomb substrate whose main component is an l 2 O 3 —SiO 2 —MgO-based oxide.
It is well known that a carrier layer made of is formed and carries a noble metal such as platinum (Pt), palladium (Pd) and rhodium (Rh). As the NOx storage catalyst, it is well known that a carrier layer made of γ-alumina is formed on a cordierite honeycomb substrate and a platinum catalyst and an alkali metal, an alkaline earth metal, a rare earth metal or the like are supported on the carrier layer. The three-way catalyst simultaneously oxidizes unburned hydrocarbons (HC) and carbon monoxide (CO) and decomposes NOx at a stoichiometric air-fuel ratio (A / F = 14.6). On the other hand, the NOx storage catalyst positively oxidizes NO on the catalyst surface in the exhaust gas in the lean region, and then the nitrate ion (N
O 3 2− ) is occluded, and when the occluded amount is saturated to some extent, the air-fuel ratio is temporarily made rich, so-called rich spike is performed to desorb and reduce NOx. Therefore, in the lean burn NOx storage catalyst, lean and rich air-fuel ratio control is essential during engine combustion. However, in general, when driving an automobile, especially in urban areas, since acceleration and deceleration are frequently performed, the air-fuel ratio changes frequently in the range from the stoichiometric air-fuel ratio to the lean state, and purification of NOx naturally occurs to some extent. From progressing,
It is considered as one of the practical purification methods.

【0003】これに対し、ディーゼルエンジンから発生
する排ガスは一般に、ガソリンエンジンから発生する排
ガスに比べ酸素濃度が高く、常にリーン状態を保ってい
る。そこで、ディーゼルエンジンに対してはリーンバー
ン用NOx吸蔵触媒の利用が考えられる。しかし、ディ
ーゼルエンジンはガソリンエンジンよりも空燃比制御が
難しく、また、燃費を逆に悪化させるという課題があ
る。特に、定置用ディーゼルエンジンの場合は、自動車
用ディーゼルエンジンよりも起動と停止の頻度が少な
く、定常負荷モードで運転するケースがほとんどであ
る。従って、リーン、リッチ空燃比制御を必要とする従
来のNOx吸蔵触媒は実用的でない。
On the other hand, the exhaust gas generated from a diesel engine generally has a higher oxygen concentration than the exhaust gas generated from a gasoline engine and always maintains a lean state. Therefore, it is possible to use a lean burn NOx storage catalyst for a diesel engine. However, the diesel engine has a problem that it is more difficult to control the air-fuel ratio than the gasoline engine, and the fuel efficiency is deteriorated. In particular, stationary diesel engines start and stop less frequently than automobile diesel engines, and in most cases operate in a steady load mode. Therefore, the conventional NOx storage catalyst that requires lean and rich air-fuel ratio control is not practical.

【0004】この他、ディーゼルエンジン排ガス中のN
Oxの除去方法としては、アンモニアを還元剤としたN
Ox選択還元触媒(SCR触媒)がある。しかし、この
場合、還元剤のアンモニアが劇物、高圧ガス規制の対象
となることから一定の管理区域での使用に限られる。ま
た、ハンドリングが容易な固体尿素を還元剤に用い、こ
れをアンモニアに加水分解し脱硝する方法もある。しか
し、この方法では、脱硝触媒の出口からアンモニアがス
リップしないように尿素の注入量を排ガス中のNOxの
化学量論比よりも少なくする必要があり、実質的な浄化
率は低下するといった問題がある。また、触媒の前後に
NOxセンサーやアンモニアガスセンサーを設置し、排
ガス中のNOxやアンモニアの濃度を常に監視しなが
ら、アンモニア水、または尿素水の噴射量を制御する必
要があり、噴射制御装置やセンサーにコストがかかり経
済的でないといった問題がある。さらに、アンモニア、
または尿素を還元剤に用いた場合のもう一つの課題とし
ては、排ガス中の硫黄とアンモニアとの反応によって生
成した硫安((NH42SO4)、酸性硫安(NH4HS
4)が触媒を被毒することである。特に、ディーゼル
エンジンに適用する場合は、ガソリンよりも硫黄を多く
含んだ軽油や重油を燃料として用いており、しかも排ガ
ス温度が低いことから、硫安や酸性硫安が析出しやすい
条件が整っている。
In addition, N in diesel engine exhaust gas
As a method of removing Ox, N using ammonia as a reducing agent is used.
There is an Ox selective reduction catalyst (SCR catalyst). However, in this case, ammonia as a reducing agent is subject to the regulation of deleterious substances and high-pressure gas, so that it is limited to use in a certain controlled area. There is also a method in which solid urea that is easy to handle is used as a reducing agent, and this is hydrolyzed into ammonia to denitrate. However, in this method, it is necessary to make the injection amount of urea smaller than the stoichiometric ratio of NOx in the exhaust gas so that ammonia does not slip from the outlet of the denitration catalyst, and there is a problem that the actual purification rate decreases. is there. Further, NOx sensors and ammonia gas sensors are installed before and after the catalyst, and it is necessary to control the injection amount of ammonia water or urea water while constantly monitoring the concentrations of NOx and ammonia in the exhaust gas. There is a problem that the sensor is expensive and not economical. In addition, ammonia,
Another problem when urea is used as a reducing agent is ammonium sulfate ((NH 4 ) 2 SO 4 ) produced by a reaction between sulfur and ammonia in exhaust gas, and acidic ammonium sulfate (NH 4 HS).
O 4 ) poisons the catalyst. In particular, when it is applied to a diesel engine, light oil or heavy oil containing more sulfur than gasoline is used as a fuel, and since the exhaust gas temperature is low, conditions for easily depositing ammonium sulfate or acidic ammonium sulfate are set.

【0005】以上のようなNOx浄化方法に関する従来
の問題点を鑑みて、これまで、還元剤に燃料由来の炭化
水素、またはアルコール等の含酸素有機化合物を用いた
NOx浄化方法に関しても多数報告されている。そのN
Ox浄化触媒の典型的な例として、Pt、Pd、Rh、
Ag等の貴金属類、Cu、Fe、Co、V等の遷移金属
類、及びAl23、SiO2、TiO2、ZrO2、ゼオ
ライトの群から選ばれた酸化物系触媒が挙げられる。
In view of the conventional problems relating to the NOx purification method as described above, a number of NOx purification methods using a hydrocarbon derived from a fuel or an oxygen-containing organic compound such as alcohol as a reducing agent have been reported so far. ing. That N
Typical examples of Ox purification catalysts include Pt, Pd, Rh,
Examples thereof include noble metals such as Ag, transition metals such as Cu, Fe, Co, and V, and oxide-based catalysts selected from the group of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , and zeolite.

【0006】[0006]

【発明が解決しようとする課題】還元剤に炭化水素、ま
たはアルコール等の含酸素有機化合物を用いたNOx浄
化触媒のうち、Cu、Fe、Co、V等の遷移金属類、
及びAl23、SiO2、TiO2、ZrO2、ゼオライ
トの群から選ばれた酸化物系の触媒は、一般に400℃
以上あるいは500℃以上で高い浄化性能を発揮できる
ものである。したがって、ディーゼルエンジンのように
排ガス温度が比較的低い排ガス条件では、前記酸化物系
の触媒は必ずしも十分な性能を発揮できない。また、高
温、過剰酸素を含む排ガス中では、NO2が生じやす
く、結果的にN2への反応選択性が低下するといった課
題がある。
Among NOx purification catalysts that use hydrocarbon or an oxygen-containing organic compound such as alcohol as a reducing agent, transition metals such as Cu, Fe, Co and V,
And an oxide-based catalyst selected from the group of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , and zeolite generally has a temperature of 400 ° C.
It is possible to exhibit high purification performance at or above or above 500 ° C. Therefore, under an exhaust gas condition where the exhaust gas temperature is relatively low, such as a diesel engine, the oxide catalyst cannot always exhibit sufficient performance. Further, there is a problem that NO 2 is easily generated in the exhaust gas containing high temperature and excess oxygen, and as a result, the reaction selectivity to N 2 is lowered.

【0007】これに対し、Pt、Pd、Rh、Ag等の
貴金属類の触媒は、上記遷移金属類、酸化物系よりも低
温での活性が比較的高いため、200℃以上400℃以
下といった比較的低い温度で高い浄化作用を示し、ディ
ーゼルのような低温排ガスには好適な浄化触媒と考えら
れている。ところが、貴金属類触媒の課題として、NO
xの還元反応の際、N2Oも同時に副生するといった問
題がある。N2Oは、未だ排出規制物質の対象にはなっ
ていないが、今後、地球温暖化の要因物質や環境汚染物
質の一つとして規制されることが予想され、貴金属類触
媒においては、N 2Oの生成を抑制することが課題とな
っている。
On the other hand, Pt, Pd, Rh, Ag, etc.
Catalysts of noble metals are lower than those of the above transition metals and oxides.
Since the activity at temperature is relatively high, it is above 200 ℃ and below 400 ℃
It has a high purification effect at a relatively low temperature such as
It is considered to be a suitable purification catalyst for low temperature exhaust gas such as diesel
Has been. However, the issue of precious metal catalysts is NO
In the reduction reaction of x, N2The question that O is also a byproduct at the same time
There is a problem. N2O is still a subject of controlled emissions
Not yet, but in the future, substances that contribute to global warming and environmental pollutants
It is expected that it will be regulated as one of the
In the medium, N 2The challenge is to suppress the generation of O
ing.

【0008】上記対策として、特開2000−2111
号公報には、排ガス流入側に金属酸化物に担持されたP
t、AuからなるNOx還元触媒を設置し、排ガス流出
側に金属酸化物に担持されたRh、IrからなるN2
分解触媒を設置し、N2Oを分解処理する方法が開示さ
れている。この場合、排ガス処理装置に少なくとも2種
類の触媒をそれぞれ、排ガス流入側と排ガス流出側の2
箇所に設置するため、ある程度、実用的な浄化性能を持
たせるためには触媒容積を大きくする必要がある。ま
た、300℃を超える高温排ガスでは、N2Oよりもむ
しろNO2が増加しN 2O分解触媒は機能しない恐れがあ
る。また、R. Burchらは、Applied C
atalysis B:Enviromental 9
(1996)L19−L24で、Pt/Al23触媒に
おいて、トルエンを還元剤に用いると、N2Oの生成が
抑制されることを報告しているが、これはクリーンなモ
デルガスにおける試験に止まっている。
As a countermeasure for the above, Japanese Patent Laid-Open No. 2000-2111
Japanese Patent Laid-Open Publication No. P-A0
Installed NOx reduction catalyst consisting of t and Au, and exhaust gas outflow
N consisting of Rh and Ir supported on the metal oxide side2O
Install a decomposition catalyst, N2A method for decomposing O is disclosed
Has been. In this case, at least two types of exhaust gas treatment equipment
2 kinds of catalysts, one on the exhaust gas inflow side and the other on the exhaust gas outflow side
Since it is installed in a certain place, it has practical purification performance to some extent.
It is necessary to increase the catalyst volume in order to fill. Well
Also, in high temperature exhaust gas exceeding 300 ° C, N2More than O
White NO2Increases and N 2O decomposition catalyst may not work
It In addition, R. Burch et al. Applied C
analysis B: Environmental 9
(1996) L19-L24, Pt / Al2O3For catalyst
When toluene is used as the reducing agent, N2O is generated
It is reported that it is suppressed, but this is a clean model.
It has only been tested in Dellgas.

【0009】本発明は、このような事情に鑑みてなされ
たものであり、同一の貴金属類触媒においても、NOx
浄化率を低下させることなく、N2Oの生成を抑制し、
2の選択性を向上させるNOxの浄化装置及び方法を
提供することを目的とする。
The present invention has been made in view of such circumstances, and even in the case of the same noble metal catalyst, NOx is used.
Suppresses the generation of N 2 O without lowering the purification rate,
An object of the present invention is to provide a NOx purification device and method that improve the selectivity of N 2 .

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、発明者らは、まず各種貴金属類触媒において、炭化
水素または、低沸点含酸素有機化合物を還元剤に用い、
ディーゼル排ガス中のNOx還元特性を調査したとこ
ろ、以下のような一般的な性質があることが分かった。
これを図1に従って説明すると、a)N2及びN2Oはい
ずれも低温から生成を開始し、温度と共に増加するが、
あるピーク温度を境に減少する。b)NO 2は、N2、N
2Oよりも比較的高温側で生成し、そのピーク温度も、
2、N2Oよりも高い。また、N2、N2Oの反応選択
性、及びこれらのピーク温度は、貴金属、担体の種類、
及び貴金属の粒径によって異なるが、N2の選択性を向
上させるには、できるだけ温度を下げることが好まし
い。
[Means for Solving the Problems] To achieve the above object
First, the inventors of the present invention firstly conducted carbonization in various precious metal catalysts.
Hydrogen or a low-boiling oxygen-containing organic compound is used as a reducing agent,
A study on NOx reduction characteristics in diesel exhaust gas
However, it was found that there are the following general properties.
This will be described with reference to FIG.2And N2O yes
The deviation starts from low temperature and increases with temperature,
It decreases at a certain peak temperature. b) NO 2Is N2, N
2It is generated on the relatively higher temperature side than O, and its peak temperature is
N2, N2Higher than O. Also, N2, N2O reaction selection
Properties and their peak temperatures depend on the precious metal, the type of support,
And N depends on the particle size of the noble metal, but N2Towards the selectivity of
In order to raise the temperature, it is preferable to lower the temperature as much as possible.
Yes.

【0011】図1の性質は、O2共存下、NO−N2O−
NO2系の気相中での熱力学平衡反応に基づくものと考
えられる。特に、活性の高い触媒ほど、低温からその触
媒による反応物質の平衡組成に近づくものと推定され
る。NOx浄化特性の好適な温度としては、およそ15
0℃から320℃の範囲であり、より好適な範囲は20
0℃以上300℃以下である。320℃を超えると、触
媒上でNOが酸化されやすく、NO2を多量に発生する
ため好ましくない。逆に、150℃未満では、NOx還
元速度が著しく低下するため、実用的でない。また、N
2が生成する最大ピーク温度よりも、やや低い温度で制
御する方法は、N2への転化率はやや低下するものの、
2Oの副生が著しく抑えられ、N2の反応選択性の観点
からは最も有効な手段である。
The characteristics of FIG. 1 are that NO--N 2 O-- in the presence of O 2.
It is considered to be based on the thermodynamic equilibrium reaction in the gas phase of the NO 2 system. In particular, it is presumed that the higher the activity of the catalyst, the closer the equilibrium composition of the reactant by the catalyst will be to the temperature from low temperature. A suitable temperature for the NOx purification characteristic is about 15
The range is 0 ° C to 320 ° C, and the more preferable range is 20 ° C.
It is 0 ° C or higher and 300 ° C or lower. If it exceeds 320 ° C., NO is easily oxidized on the catalyst and a large amount of NO 2 is generated, which is not preferable. On the contrary, if the temperature is lower than 150 ° C., the NOx reduction rate is remarkably reduced, which is not practical. Also, N
Although the method of controlling at a temperature slightly lower than the maximum peak temperature generated by 2 , although the conversion rate to N 2 is slightly lowered,
By-product of N 2 O is remarkably suppressed, and it is the most effective means from the viewpoint of reaction selectivity of N 2 .

【0012】そこで、貴金属類触媒の上記性質を最大限
に活かすため、本発明によれば、排ガスと接触する脱硝
触媒の上流側の排ガス中に熱交換手段を設け、排ガス温
度検知手段及び排ガス温度制御手段を用いて排ガス温度
を一定の範囲内の温度に制御し、各種触媒で最適な浄化
特性にすることを特徴とする。さらに、具体的にN
2、N2Oの副生を抑制するため、排ガス温度を150
℃以上320℃以下の範囲で制御することが好ましい。
また、排ガス温度を200℃以上300℃以下の範囲で
制御することがさらに好ましい。
Therefore, the above properties of the noble metal catalyst should be maximized.
According to the present invention, the denitration that contacts exhaust gas
A heat exchange means is provided in the exhaust gas upstream of the catalyst to control the exhaust gas temperature.
The exhaust gas temperature using the temperature detection means and the exhaust gas temperature control means
Is controlled to a temperature within a certain range, and optimal purification with various catalysts
It is characterized by making it a characteristic. Furthermore, specifically N
O 2, N2In order to suppress the by-product of O, the exhaust gas temperature is set to 150
It is preferable to control the temperature within the range of ℃ to 320 ℃.
In addition, the exhaust gas temperature is in the range of 200 ° C to 300 ° C.
It is more preferable to control.

【0013】また、本発明によれば、前記還元剤とし
て、エンジンの燃料の一部を取り出して部分酸化させ、
前記部分酸化によって生成した含酸素有機化合物を用い
ることができる。これにより、新たに還元剤貯蔵容器を
設置することなく、装置をコンパクト化でき、かつ還元
剤のコスト負担を下げることができる。
Further, according to the present invention, as the reducing agent, a part of engine fuel is taken out and partially oxidized,
The oxygen-containing organic compound produced by the partial oxidation can be used. As a result, the apparatus can be made compact and the cost burden of the reducing agent can be reduced without newly installing a reducing agent storage container.

【0014】また、本発明の脱硝触媒は、既にNOx浄
化率が高い触媒として知られているが、本発明では、特
に300℃以下の低温で比較的N2の反応選択性が高い
触媒に限定した。中でも、担体にTiO2、SiO2、Z
rO2、Al23およびゼオライトからなる群より選ば
れた少なくとも1種の単独酸化物またはこれらの複合酸
化物を用い、貴金属としてRh、Ru、及びこれらとP
t、Auを組合せた多元系金属あるいは合金を用いた触
媒において、高いN2反応選択性を有するNOx浄化装
置を提供できる。
Further, the denitration catalyst of the present invention is already known as a catalyst having a high NOx purification rate, but in the present invention, it is limited to a catalyst having a relatively high N 2 reaction selectivity particularly at a low temperature of 300 ° C. or lower. did. Among them, TiO 2 , SiO 2 , Z is used as a carrier.
At least one oxide selected from the group consisting of rO 2 , Al 2 O 3 and zeolite or a composite oxide thereof is used, and Rh, Ru, and P and P are used as noble metals.
It is possible to provide a NOx purification device having a high N 2 reaction selectivity in a catalyst using a multi-component metal or alloy in which t and Au are combined.

【0015】さらに、本発明によれば、Pt、Rh、R
u、Pd、Ir、Auからなる群より選ばれた少なくと
も1種の金属、または合金触媒のうち、これら貴金属粒
子の一次粒径を10nm以下にすることで、低温活性と
2の反応選択性がさらに向上するという特徴がある。
Further, according to the present invention, Pt, Rh, R
Among at least one metal or alloy catalyst selected from the group consisting of u, Pd, Ir, and Au, by making the primary particle diameter of these noble metal particles 10 nm or less, low temperature activity and reaction selectivity of N 2 are achieved. Is further improved.

【0016】また、本発明によれば、前記熱交換器の前
方の排ガス上流側、または脱硝触媒の後方の排ガス下流
側に、酸化触媒、及び煤塵捕集手段、またはDPF(D
iesel Particulate Filter)
を設けることにより、NOxのみならず、ディーゼル排
ガス中の未燃炭化水素(HC)、一酸化炭素(CO)、
黒煙、及び粒子状浮遊物質(PM)も同時に除去するこ
とを可能にした排ガス浄化システムを提供するものであ
る。酸化触媒には、γアルミナ、ゼオライトに担持され
たPt、Pd系触媒が使用できる。煤塵捕集手段または
DPFには、耐熱性、及び耐熱衝撃性の高いコージェラ
イトやSiC等の酸化物系、非酸化物系の多孔質材料を
用いることができ、その多孔度は、集塵効率を高く、圧
力損失を少なくするため、気孔率40%以上50%以
下、細孔径は数μmから20μmの範囲に分布したもの
が好ましい。煤塵捕集手段としては、各種の煤塵トラッ
プフィルタが適用可能である。
Further, according to the present invention, the oxidation catalyst and the dust trapping means, or the DPF (D) are provided on the exhaust gas upstream side of the heat exchanger or on the exhaust gas downstream side of the denitration catalyst.
iesel Particulate Filter)
By providing NOx, not only NOx but also unburned hydrocarbons (HC), carbon monoxide (CO) in diesel exhaust gas,
The present invention provides an exhaust gas purification system capable of simultaneously removing black smoke and particulate matter (PM). As the oxidation catalyst, γ-alumina, Pt supported on zeolite, and Pd-based catalyst can be used. As the dust collecting means or the DPF, an oxide-based or non-oxide-based porous material such as cordierite or SiC having high heat resistance and thermal shock resistance can be used, and its porosity depends on the dust collection efficiency. It is preferable that the porosity is 40% or more and 50% or less and the pore diameter is distributed in the range of several μm to 20 μm in order to increase the pressure drop and the pressure loss. Various dust trap filters can be applied as the dust collecting means.

【0017】さらに、脱硝触媒の前方の排ガス上流側に
脱硫装置を設けることにより、硫黄被毒による脱硝触媒
の劣化を抑制でき、長時間安定した浄化性能を維持でき
るNOx浄化装置を提供できる。脱硫装置としては、水
素添加による分解方式と亜鉛触媒等による吸着方式があ
るが、いずれの方式も適用可能である。
Further, by providing the desulfurization device on the upstream side of the exhaust gas in front of the denitration catalyst, it is possible to suppress the deterioration of the denitration catalyst due to sulfur poisoning and to provide the NOx purification device which can maintain the stable purification performance for a long time. As a desulfurization device, there are a decomposition system by hydrogenation and an adsorption system by a zinc catalyst or the like, but any system is applicable.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)図2に本実施例の基本的な排ガス浄化方法
の模式図を示す。本浄化方法は、燃焼排ガス中の窒素酸
化物を、炭化水素類、含酸素有機化合物類から選ばれる
少なくとも1種の化合物を還元剤として用いて、無害な
窒素に還元する脱硝方法において、排ガスと接触する脱
硝触媒1の上流側の排ガス中に熱交換手段である熱交換
器2を設け、排ガス温度をほぼ一定の温度に制御し、次
いで還元剤供給手段3により排ガス中に還元剤を添加し
ながら、窒素酸化物を効率よく窒素に還元することを特
徴とする。熱交換器2には水などの冷媒を使用したシェ
ルチューブ型やプレート型、あるいは空冷式など、公知
のものが利用できる。また、脱硝触媒と接触する排ガス
温度は、150〜320℃の範囲に制御し、NO2、N2
Oの副生を抑制できることを特徴とする。なお、排ガス
の熱交換手段は必ずしも熱交換器に限定するものではな
く、例えば、脱硝触媒1の排ガス入口側で外気を供給す
ることによって、排ガスを上記温度範囲まで冷却するこ
とも可能である。温度を制御する方法としては、たとえ
ば熱電対や測温抵抗体によって排ガス温度を検知し、検
知された温度に応じて冷媒の流量を制御するなどの公知
の方法が利用できる。また、熱交換の冷却効率を高める
には、浄化装置の許容範囲内でエンジンと脱硝装置との
距離をなるべく遠ざけることが好ましい。
EXAMPLES The present invention will be specifically described below with reference to examples. (Embodiment 1) FIG. 2 shows a schematic diagram of a basic exhaust gas purification method of this embodiment. This purification method is a denitrification method for reducing nitrogen oxides in combustion exhaust gas to harmless nitrogen by using at least one compound selected from hydrocarbons and oxygen-containing organic compounds as a reducing agent. A heat exchanger 2 which is a heat exchange means is provided in the exhaust gas upstream of the contacting NOx removal catalyst 1 to control the exhaust gas temperature to a substantially constant temperature, and then the reducing agent supply means 3 adds a reducing agent to the exhaust gas. However, it is characterized by efficiently reducing nitrogen oxides to nitrogen. The heat exchanger 2 may be a known one such as a shell tube type or plate type using a refrigerant such as water, or an air cooling type. Further, the temperature of the exhaust gas contacting with the denitration catalyst is controlled in the range of 150 to 320 ° C., and NO 2 , N 2
The feature is that the by-product of O can be suppressed. The heat exchange means for the exhaust gas is not necessarily limited to the heat exchanger. For example, the exhaust gas can be cooled to the above temperature range by supplying outside air on the exhaust gas inlet side of the denitration catalyst 1. As a method for controlling the temperature, a known method such as detecting the exhaust gas temperature with a thermocouple or a resistance temperature detector and controlling the flow rate of the refrigerant according to the detected temperature can be used. Further, in order to enhance the cooling efficiency of heat exchange, it is preferable to keep the distance between the engine and the denitration device as far as possible within the allowable range of the purification device.

【0019】(実施例2)図3は、実施例1で説明した
排ガス浄化方法において、エンジン燃料タンク4と還元
剤供給手段3との間に、部分酸化リアクタ5を設置し、
エンジン燃料タンク4から供給ポンプ6によって供給さ
れた燃料を、部分酸化リアクタ5で部分酸化し、部分酸
化によって生成された生成物を還元剤供給手段を介して
供給し、排ガス中のNOxを還元する方法である。部分
酸化リアクタには、完全酸化を防ぐため、酸化触媒を充
填せず気相酸化が好ましい。これは、エンジン燃料が完
全酸化すると還元剤としての機能を失するからである。
この方法により、燃費はやや悪化するものの、新たに還
元剤を貯蔵するためのスペースを設ける必要がなく、ま
た新たに還元剤のコストがかからないため、経済的にも
有利となる。
(Embodiment 2) FIG. 3 shows a partial oxidation reactor 5 installed between the engine fuel tank 4 and the reducing agent supply means 3 in the exhaust gas purification method described in Embodiment 1.
The fuel supplied from the engine fuel tank 4 by the supply pump 6 is partially oxidized in the partial oxidation reactor 5, and the product produced by the partial oxidation is supplied through the reducing agent supply means to reduce NOx in the exhaust gas. Is the way. In order to prevent complete oxidation in the partial oxidation reactor, it is preferable to use gas phase oxidation without filling the oxidation catalyst. This is because the engine fuel loses its function as a reducing agent when it is completely oxidized.
By this method, although the fuel consumption is slightly deteriorated, it is not necessary to newly provide a space for storing the reducing agent, and the cost of the reducing agent is not newly added, which is economically advantageous.

【0020】以下では、実施例1または実施例2の浄化
方法において、その特性試験に用いた脱硝触媒の調製方
法について説明する。なお、実施例に記載されている原
料、調製方法については、特に、本発明の範囲を限定す
るものではなく、また、これまで開示されている公知の
貴金属類触媒も用いることができる。
The method of preparing the denitration catalyst used for the characteristic test in the purification method of Example 1 or Example 2 will be described below. The raw materials and preparation methods described in the examples do not particularly limit the scope of the present invention, and known noble metal catalysts disclosed so far can also be used.

【0021】(実施例3)0.129mol/l濃度の
テトラアンミン白金酸ジクロライド(Pt(NH 34
2)液を、シリカ(SiO2)、アナターゼ型チタニア
(TiO2)、γアルミナ(γAl23)、及びジルコ
ニア(ZrO2)の担体粉末に所定量含浸し、120℃
で乾燥後、大気中で300℃で2時間焼成し、それぞれ
2wt%Pt/SiO2(触媒記号P−1)、2wt%
Pt/TiO2(触媒記号P−2)、2wt%Pt/γ
Al23(触媒記号P−3)、及び2wt%Pt/Zr
2(触媒記号P−4)の白金触媒を得た。これらをス
ラリー化したものを、6ミル/400セルのハニカムコ
ージェライト基材にコート、乾燥後、700℃で5時間
焼成して、ハニカム状の脱硝触媒を試作した。ここに、
ハニカム基材へのPt担持量は、コスト及び性能の双方
を考慮して1〜3g/リットルとした。なお、wt%は
重量百分率を示す。また、6ミル/400セルとは、壁
の厚みが1000分の6インチ(約0.15mm)であ
り、1インチ四方(約645mm2)あたり400個の
孔を有するハニカムを指す。
(Example 3) 0.129 mol / l concentration
Tetraammineplatinic acid dichloride (Pt (NH 3)FourC
l2) Liquid to silica (SiO 22), Anatase titania
(TiO2), Γ-alumina (γAl2O3), And Zirco
Near (ZrO2) Impregnated with the carrier powder in a predetermined amount at 120 ° C
After drying in air, bake in air at 300 ℃ for 2 hours.
2wt% Pt / SiO2(Catalyst symbol P-1), 2 wt%
Pt / TiO2(Catalyst symbol P-2), 2 wt% Pt / γ
Al2O3(Catalyst symbol P-3), and 2 wt% Pt / Zr
O2A platinum catalyst of (Catalyst symbol P-4) was obtained. These
The rallyed product is a 6 mil / 400 cell honeycomb
-Coated on the gellite base material and dried, then at 700 ℃ for 5 hours
Firing was performed to manufacture a honeycomb-shaped denitration catalyst as a prototype. here,
The amount of Pt supported on the honeycomb substrate is both cost and performance.
Considering the above, it was set to 1 to 3 g / liter. Note that wt% is
The weight percentage is shown. Also, 6 mils / 400 cells means a wall
Has a thickness of 6/1000 inch (about 0.15 mm)
1 inch square (about 645 mm2) 400 per
Refers to a honeycomb with holes.

【0022】(実施例4)実施例3のPt原料である
(Pt(NH34Cl2)液の代わりに0.019mo
l/lのRhCl3液を用いた以外は、実施例3に記載
の方法と同じであり、このとき得られた触媒は、1wt
%Rh/SiO2(触媒記号R−1)、1wt%Rh/
TiO2(触媒記号R−2)、1wt%Rh/γAl2
3(触媒記号R−3)、及び1wt%Rh/ZrO2(触
媒記号R−4)である。
(Embodiment 4) Instead of the (Pt (NH 3 ) 4 Cl 2 ) liquid which is the Pt raw material of Embodiment 3, 0.019mo
The method is the same as that described in Example 3 except that 1 / l of RhCl 3 solution is used, and the catalyst obtained at this time is 1 wt.
% Rh / SiO 2 (catalyst symbol R-1), 1 wt% Rh /
TiO 2 (catalyst symbol R-2), 1 wt% Rh / γAl 2 O
3 (catalyst symbol R-3) and 1 wt% Rh / ZrO 2 (catalyst symbol R-4).

【0023】(実施例5)実施例3のPt原料である
(Pt(NH34Cl2)液の代わりに0.0059m
ol/l濃度のIrCl4液を用いた以外は、実施例3
に記載の方法と同じであり、このとき得られた触媒は、
2wt%Ir/SiO2(触媒記号I−1)、及び2w
t%Ir/TiO2(触媒記号I−2)である。
(Embodiment 5) Instead of the (Pt (NH 3 ) 4 Cl 2 ) liquid which is the Pt raw material of Embodiment 3, 0.0059 m
Example 3 except that IrCl 4 solution of ol / l concentration was used
Is the same as the method described in, the catalyst obtained at this time,
2 wt% Ir / SiO 2 (catalyst symbol I-1), and 2 w
t% Ir / TiO 2 (catalyst symbol I-2).

【0024】(実施例6)実施例3に記載したPt(N
34Cl2液と実施例4に記載したRhCl3液をPt
とRhの原子比で1:1の割合で混合し、この混合溶液
をシリカSiO2、アナターゼ型チタニアTiO2粉末に
それぞれ所定量含浸した。その後の調製方法は、実施例
3と同じである。このとき得られた触媒は、2wt%
(Pt−Rh)/SiO2(触媒記号PR−1)、2w
t%(Pt−Rh)/TiO2(触媒記号PR−2)で
ある。
Example 6 Pt (N) described in Example 3
The H 3 ) 4 Cl 2 solution and the RhCl 3 solution described in Example 4 were mixed with Pt.
And Rh were mixed at a ratio of 1: 1 in atomic ratio, and this mixed solution was impregnated with silica SiO 2 and anatase-type titania TiO 2 powder in predetermined amounts. The subsequent preparation method is the same as in Example 3. The catalyst obtained at this time is 2 wt%
(Pt-Rh) / SiO 2 ( Catalyst symbol PR-1), 2w
is t% (Pt-Rh) / TiO 2 ( catalyst symbol PR-2).

【0025】(実施例7)実施例4に記載したRhCl
3液と実施例5に記載したIrCl4液をRhとIrの原
子比で1:1の割合で混合し、この混合溶液をシリカS
iO2、アナターゼ型チタニアTiO2粉末にそれぞれ所
定量含浸した。その後の調製方法は、実施例3と同じで
ある。このとき得られた触媒は、1wt%(Rh−I
r)/SiO2(触媒記号RI−1)、2wt%(Rh
−Ir)/TiO2(触媒記号RI−2)である。
Example 7 RhCl described in Example 4
3 liquid and the IrCl 4 liquid described in Example 5 were mixed at an atomic ratio of Rh and Ir of 1: 1 and the mixed solution was mixed with silica S.
A predetermined amount of each of iO 2 and anatase type titania TiO 2 powder was impregnated. The subsequent preparation method is the same as in Example 3. The catalyst obtained at this time was 1 wt% (Rh-I
r) / SiO 2 (catalyst symbol RI-1), 2 wt% (Rh
A -Ir) / TiO 2 (catalyst symbols RI-2).

【0026】(実施例8)実施例4に記載した同方法で
Rh溶液を含浸し、300℃で2時間仮焼した後、これ
に0.0121mol/lのHAuCl4液と還元剤と
して亜硫酸アンモニウム水溶液をRhとAuの原子比が
9:1となるよう加え、60℃に保持して金イオンを還
元し、担体上に析出させた後、120℃で乾燥、300
℃で2時間焼成した。このとき得られた触媒は、1wt
%(Rh−Au)/TiO2(触媒記号RA−1)であ
る。その後のハニカム基材へのコート方法は、実施例3
と同じである。
Example 8 The Rh solution was impregnated by the same method as described in Example 4 and calcined at 300 ° C. for 2 hours, after which a 0.0121 mol / l HAuCl 4 solution and ammonium sulfite as a reducing agent were added. The aqueous solution was added so that the atomic ratio of Rh and Au was 9: 1, the temperature was kept at 60 ° C. to reduce the gold ion, and the gold ion was deposited on the carrier, then dried at 120 ° C., 300
Calcination was carried out for 2 hours. The catalyst obtained at this time was 1 wt.
A% (Rh-Au) / TiO 2 ( catalyst Symbol RA-1). The subsequent method of coating the honeycomb substrate is described in Example 3.
Is the same as.

【0027】(実施例9)テトラエトキシシランとエタ
ノールを所定量混合した溶液に0.129mol/l濃
度の六塩化白金酸(H2PtCl6)水溶液と濃塩酸を混
合した後、室温でテトラエトキシシランを加水分解し、
ゲル化したものを120℃で乾燥しキセロゲルに変え、
さらに300℃で2時間焼成した。このとき得られた触
媒は、2wt%Pt/SiO2(触媒記号Psg−1)
である。また、H2PtCl6水溶液の代わりに0.01
9mol/lのRhCl3液を用い、上記と同様な方法
で調製した。このときの触媒は、1wt%Rh/SiO
2(触媒記号Rsg−1)である。その後のハニカム基
材へのコート方法は、実施例3と同じである。また、本
実施例で得られたPt及び、Rhの粒径をX線回折法に
より測定した結果、いずれも6〜10nmであった。こ
れに対し、実施例3〜9までの含浸法により得られた触
媒の貴金属の粒径は、いずれも10〜30nmの範囲で
あった。
Example 9 A solution of tetraethoxysilane and ethanol in a predetermined amount was mixed with a 0.129 mol / l concentration hexachloroplatinic acid (H 2 PtCl 6 ) aqueous solution and concentrated hydrochloric acid, and then tetraethoxy was added at room temperature. Hydrolyzes silane,
The gelled product is dried at 120 ° C and converted into xerogel,
Further, it was baked at 300 ° C. for 2 hours. The catalyst obtained at this time was 2 wt% Pt / SiO 2 (catalyst symbol Psg-1).
Is. Further, instead of the H 2 PtCl 6 aqueous solution, 0.01
Using a 9 mol / l RhCl 3 solution, it was prepared in the same manner as above. The catalyst at this time was 1 wt% Rh / SiO.
2 (catalyst symbol Rsg-1). The subsequent method of coating the honeycomb substrate is the same as in Example 3. Further, the particle diameters of Pt and Rh obtained in this example were measured by X-ray diffractometry, and as a result, both were 6 to 10 nm. On the other hand, the particle diameters of the noble metals of the catalysts obtained by the impregnation methods of Examples 3 to 9 were all in the range of 10 to 30 nm.

【0028】(実施例10)次に、実施例3〜9に記載
した触媒を用い、実施例1に記載した浄化方法において
試験を実施したときの各触媒性能について説明する。試
験方法は、エンジンに単筒ディーゼルエンジン(ボアφ
135×ストローク140mm)を用い、エンジン回転
数1800rpm、燃料噴射量80mm3/stとし、
エンジン出口の排ガス温度を350〜400℃とし、触
媒入口温度は熱交換器によって180、200、及び2
50℃に制御した。還元剤には、炭化水素であるプロペ
ン(C 36)を用い、触媒空間速度(SV)は、100
00h-1とした。触媒前後での、排ガス中のNO、NO
2の計測には、ケミルミ法によるNOx計を用い、ま
た、触媒出口のN2Oの計測には、非分散型赤外吸収法
によった。N2、N2O及びNO2への転化率は、次式に
よった。 N2転化率[%]=(NOin−(NOout+NO2out+2
×N2out))/NO in×100 N2O転化率[%]=2×N2out/NOin×100 ここに、添字のinは入口における化合物の量であり、
outは出口における化合物の量である。また、燃料噴
射量の単位として用いたmm3/stとは、ピストンの
吸気工程から圧縮工程までの1ストロークにおいてシリ
ンダー室内に供給する燃料噴射量を立方ミリメートルで
表したものである。
(Example 10) Next, Examples 3 to 9 will be described.
In the purification method described in Example 1, using the prepared catalyst
Each catalyst performance when the test is performed will be described. Trial
The test method is a single cylinder diesel engine (bore φ
135 × stroke 140mm), engine rotation
Number 1800 rpm, fuel injection amount 80 mm3/ St,
Set the exhaust gas temperature at the engine outlet to 350-400 ° C and touch
The medium inlet temperature is 180, 200, and 2 depending on the heat exchanger.
The temperature was controlled at 50 ° C. The reducing agent is a hydrocarbon, propene
(C 3H6), The catalyst space velocity (SV) is 100
00h-1And NO, NO in exhaust gas before and after catalyst
2A NOx meter based on the Chemilumi method was used to measure
N at the catalyst outlet2Non-dispersive infrared absorption method for measuring O
According to N2, N2O and NO2The conversion rate to
Yes N2Conversion rate [%] = (NOin-(NOout+ NO2 out+2
× N2Oout)) / NO in× 100 N2O conversion rate [%] = 2 × N2Oout/ NOin× 100 Where the subscript in is the amount of compound at the inlet,
out is the amount of compound at the outlet. Also, fuel injection
Mm used as a unit of radiation3/ St is the piston
Siri in one stroke from the intake process to the compression process
The amount of fuel injected into the chamber
It is a representation.

【0029】表1に、そのときの各触媒におけるNOx
浄化特性を、上に定義したN2転化率とN2O転化率とに
よって示す。表中の温度は、熱交換器出口における排ガ
スの温度である。また、表中には、比較例として、熱交
換器を使用しない場合の結果も併せて記載した。なお、
比較例における触媒温度は、エンジン出口の排ガス温度
350〜400℃とほぼ同等であった。また、触媒入口
で計測された主な排ガス組成は、概ね次の通りである。
排ガス組成:NO:500〜600ppm、O2:8〜
10%、CO2:10〜12ppm、CO:50〜10
0ppm、H2O:5〜8%、SO2:50〜100pp
m、残部N2。そこで、炭化水素還元剤であるプロペン
の供給量は約1000ppmとした。
Table 1 shows NOx in each catalyst at that time.
The purification properties are indicated by the N 2 conversion and the N 2 O conversion defined above. The temperature in the table is the temperature of the exhaust gas at the outlet of the heat exchanger. Further, in the table, as a comparative example, the results when the heat exchanger is not used are also shown. In addition,
The catalyst temperature in the comparative example was almost the same as the exhaust gas temperature at the engine outlet of 350 to 400 ° C. The main exhaust gas composition measured at the catalyst inlet is as follows.
Exhaust gas composition: NO: 500~600ppm, O 2: 8~
10%, CO 2: 10~12ppm, CO: 50~10
0 ppm, H 2 O: 5-8%, SO 2 : 50-100 pp
m, balance N 2 . Therefore, the supply amount of propene, which is a hydrocarbon reducing agent, is set to about 1000 ppm.

【表1】 比較例において熱交換器を設置しない場合、いずれも、
2の反応選択性が低く、N2とN2Oの比率はほぼ同等
である。これは、触媒層の温度が350℃程度以上と高
いため、NOの酸化反応が促進されNO2の生成量が増
大する結果、N2への転化率が減少するためである。こ
れに対し、熱交換器を設置し触媒層の温度を320℃以
下、特に280℃、230℃、180℃に制御した場合
は、いずれの触媒においても、N2への転化率が増大す
ると共にその反応選択性も向上していることが分かる。
中でも、Rh系触媒(R−1〜4、PR−1〜2、RA
−1、Rsg−1)、及び担体にTiO2を用いた触媒
において、他触媒よりも比較的高いN2反応選択性を有
しており、本発明の浄化方法において良好な性能を有し
ている。また、ゾルゲル法で調製した触媒(Psg−
1、Rsg−1)では、他の含浸法で調製した触媒より
も低温での脱硝活性とN2の反応選択性がいずれも向上
している。これは、ゾルゲル法により、貴金属粒子の粒
径を10nm以下に微粒子化し、かつ、高分散化した効
果が現れたものと言える。
[Table 1] When the heat exchanger is not installed in the comparative example, both are
Low reaction selectivity of N 2, N 2 and N 2 O ratios are substantially equal. This is because the temperature of the catalyst layer is as high as about 350 ° C. or higher, so that the oxidation reaction of NO is promoted and the amount of NO 2 produced increases, resulting in a decrease in the conversion rate to N 2 . On the other hand, when a heat exchanger is installed and the temperature of the catalyst layer is controlled to 320 ° C. or lower, particularly 280 ° C., 230 ° C., and 180 ° C., the conversion rate to N 2 increases with any catalyst. It can be seen that the reaction selectivity is also improved.
Among them, Rh-based catalysts (R-1 to 4, PR-1 to 2, RA
-1, Rsg-1), and a catalyst using TiO 2 as a carrier, have relatively higher N 2 reaction selectivity than other catalysts and have good performance in the purification method of the present invention. There is. In addition, the catalyst prepared by the sol-gel method (Psg-
In No. 1, Rsg-1), the denitration activity at a low temperature and the reaction selectivity of N 2 are both improved as compared with the catalysts prepared by other impregnation methods. It can be said that this is due to the effect that the particle size of the noble metal particles is reduced to 10 nm or less and highly dispersed by the sol-gel method.

【0030】(実施例11)実施例10において還元剤
としてプロペンの代わりに別の炭化水素であるエチレン
(C24)を用いた場合の、脱硝触媒(P−2、R−2)
の浄化特性結果を表2に示す。
Example 11 A denitration catalyst (P-2, R-2) in the case of using ethylene (C 2 H 4 ) which is another hydrocarbon as a reducing agent in place of propene in Example 10.
Table 2 shows the results of purification characteristics of

【表2】 その結果、還元剤にエチレンを用いても、プロペンと同
様、熱交換器の設置により高い浄化特性を示すことが分
かる。
[Table 2] As a result, it can be seen that even if ethylene is used as the reducing agent, high purification characteristics are exhibited by installing a heat exchanger, as in propene.

【0031】(実施例12)実施例10において還元剤
として炭化水素であるプロペンの代わりに含酸素有機化
合物であるエタノール(C25OH)を用いた場合の、
脱硝触媒(P−2、R−2)の浄化特性結果を表3に示
す。
Example 12 In the case of using ethanol (C 2 H 5 OH), which is an oxygen-containing organic compound, instead of propene, which is a hydrocarbon, as a reducing agent in Example 10,
Table 3 shows the purification characteristic results of the denitration catalysts (P-2, R-2).

【表3】 その結果、還元剤にエタノールを用いても、プロペンと
同様、熱交換器の設置により高い浄化特性を示すことが
分かる。
[Table 3] As a result, it can be seen that even when ethanol is used as the reducing agent, high purification characteristics are exhibited by installing the heat exchanger, as in the case of propene.

【0032】(実施例13)実施例10において、還元
剤としてプロペンの代わりに、軽油を部分酸化したもの
を用いた場合の、脱硝触媒(P−2、R−2)の浄化特性
の結果を表4に示す。なお、この際のリアクタ温度は、
特に限定するものではないが、温度を上げ過ぎると軽油
の完全酸化が進行し、還元剤としての機能を失する。ま
た、リアクタ温度があまり低すぎると、軽油が部分酸化
されにくく排ガス流路内に直接噴射され、浄化性能が低
下するため、部分酸化リアクタの温度としては300〜
500℃の範囲が好ましい。また、ここでは、部分酸化
リアクタの加熱に電気ヒータを用いたが、エンジン排ガ
スの排熱を利用することも可能である。
(Example 13) The results of the purification characteristics of the denitration catalysts (P-2, R-2) in the case of using a partially oxidized light oil instead of propene as the reducing agent in Example 10 are shown. It shows in Table 4. The reactor temperature at this time is
Although not particularly limited, if the temperature is raised too much, the complete oxidation of the gas oil proceeds and the function as a reducing agent is lost. Further, if the reactor temperature is too low, the light oil is less likely to be partially oxidized and directly injected into the exhaust gas flow path, and the purification performance is deteriorated.
A range of 500 ° C is preferred. Further, although the electric heater is used for heating the partial oxidation reactor here, exhaust heat of the engine exhaust gas may be used.

【表4】 その結果、本発明において還元剤に軽油を部分酸化した
ものを用いても、プロペンと同様、熱交換器の設置によ
り高い浄化特性を示すことが分かる。
[Table 4] As a result, it can be seen that even if a reducing agent obtained by partially oxidizing light oil is used in the present invention, high purification characteristics are exhibited by installing a heat exchanger as in the case of propene.

【0033】最後に、本発明の装置の実施例について図
4に基づいて説明する。まず、エンジン9から未処理排
ガス10が発生する。エンジン9は燃料ポンプ8を介し
てエンジン燃料タンク4に接続されており、エンジン燃
料タンク4には軽油7が満たされている。未処理排ガス
10は脱硫装置11によって硫黄分を除去されて排ガス
A12となり、排ガスA12は煤塵捕集手段13によっ
て煤塵を除去されて排ガスB14となる。前記硫黄分の
除去及び煤塵の除去は、排ガス下流の各機器や配管、特
に脱硝触媒1の保護に寄与する。排ガスB14は熱交換
器2によって冷却されて排ガスC15となる。ここに、
排ガスC15を好ましい温度である150〜300℃に
保つために、排ガスC15の温度を熱電対などの温度検
知手段16によって測定し、測定された温度は計装ライ
ンA20によって温度制御装置17に入力し、冷媒19
の流量を調節する流量調整弁18の必要な開度を温度制
御装置17によって演算し、演算結果を計装ラインB2
1によって流量調整弁18に出力する。流量調整弁18
の開度を高めれば冷媒19の流量が増して排ガスC15
の温度が下がり、逆に流量調整弁18の開度を低めれば
冷媒19の流量が減じて排ガスC15の温度があがるこ
とはいうまでもない。一方、前記エンジン燃料タンク4
に満たされている軽油7の一部は供給ポンプ6によって
部分酸化リアクタ5に送られ、軽油7は部分酸化されて
還元剤となる。これにより、専用の還元剤タンクを設け
る必要はなくなり、また、専用の還元剤を供給する必要
もなくなって、設計及び運用上の自由度が増す。前記還
元剤は還元剤供給手段3によって排ガスC15の中に供
給される。排ガスC15に含まれる窒素酸化物は脱硝触
媒1によって前記還元剤と反応して無害な窒素ガスとな
り、浄化された処理ずみ排ガス22として排出される。
Finally, an embodiment of the device of the present invention will be described with reference to FIG. First, the untreated exhaust gas 10 is generated from the engine 9. The engine 9 is connected to the engine fuel tank 4 via a fuel pump 8, and the engine fuel tank 4 is filled with light oil 7. The untreated exhaust gas 10 has its sulfur content removed by a desulfurizer 11 to become an exhaust gas A12, and the exhaust gas A12 has its soot dust removed by a soot and dust collecting means 13 to become an exhaust gas B14. The removal of the sulfur content and the removal of soot and dust contributes to the protection of each device and piping downstream of the exhaust gas, especially the denitration catalyst 1. The exhaust gas B14 is cooled by the heat exchanger 2 to become the exhaust gas C15. here,
In order to maintain the exhaust gas C15 at a preferable temperature of 150 to 300 ° C., the temperature of the exhaust gas C15 is measured by the temperature detection means 16 such as a thermocouple, and the measured temperature is input to the temperature control device 17 by the instrumentation line A20. , Refrigerant 19
The required opening of the flow rate adjusting valve 18 for adjusting the flow rate of the air is calculated by the temperature control device 17, and the operation result is the instrumentation line B2.
1 to output to the flow rate adjusting valve 18. Flow rate adjusting valve 18
The flow rate of the refrigerant 19 is increased by increasing the opening degree of the exhaust gas C15.
Needless to say, if the opening of the flow rate adjusting valve 18 is lowered, the flow rate of the refrigerant 19 decreases and the temperature of the exhaust gas C15 rises. On the other hand, the engine fuel tank 4
A part of the light oil 7 filled in is fed to the partial oxidation reactor 5 by the supply pump 6, and the light oil 7 is partially oxidized and becomes a reducing agent. This eliminates the need to provide a dedicated reducing agent tank and the need to supply a dedicated reducing agent, thereby increasing the degree of freedom in design and operation. The reducing agent is supplied into the exhaust gas C15 by the reducing agent supply means 3. The nitrogen oxides contained in the exhaust gas C15 react with the reducing agent by the denitration catalyst 1 to become harmless nitrogen gas, and are discharged as purified treated exhaust gas 22.

【0034】[0034]

【発明の効果】本発明によれば、燃焼排ガス、特にディ
ーゼルエンジンからの排ガスと接触する貴金属類触媒の
上流側の排ガス中に熱交換器を設け、排ガス温度を20
0〜300℃の範囲に制御し、炭化水素または含酸素有
機化合物の還元剤を添加することにより、窒素酸化物を
効率よく窒素に還元することができる。
According to the present invention, a heat exchanger is provided in the exhaust gas upstream of the noble metal catalyst which comes into contact with the combustion exhaust gas, particularly the exhaust gas from the diesel engine, and the exhaust gas temperature is set to 20.
By controlling the temperature in the range of 0 to 300 ° C. and adding a reducing agent for a hydrocarbon or an oxygen-containing organic compound, nitrogen oxides can be efficiently reduced to nitrogen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において課題を解決するための手段の説
明に用いたグラフである。
FIG. 1 is a graph used for explaining means for solving the problems in the present invention.

【図2】実施例1で用いた本発明の窒素酸化物の浄化装
置の模式図である。
FIG. 2 is a schematic view of a nitrogen oxide purifying apparatus of the present invention used in Example 1.

【図3】実施例2で用いた本発明の窒素酸化物の浄化装
置の模式図である。
FIG. 3 is a schematic diagram of a nitrogen oxide purifying apparatus of the present invention used in Example 2.

【図4】本発明の具体的な実施例を示したフロー図であ
る。
FIG. 4 is a flowchart showing a specific example of the present invention.

【符号の説明】[Explanation of symbols]

1 脱硝触媒 2 熱交換器 3 還元剤供給手段 4 エンジン燃料タンク 5 部分酸化リアクタ 6 供給ポンプ 7 軽油 8 燃料ポンプ 9 エンジン 10 未処理排ガス 11 脱硫装置 12 排ガスA 13 煤塵捕集手段 14 排ガスB 15 排ガスC 16 温度検知手段 17 温度制御装置 18 流量調節弁 19 冷媒 20 計装ラインA 21 計装ラインB 22 処理ずみ排ガス 1 DeNOx catalyst 2 heat exchanger 3 Reductant supply means 4 engine fuel tank 5 Partial oxidation reactor 6 supply pumps 7 light oil 8 fuel pump 9 engine 10 untreated exhaust gas 11 Desulfurization equipment 12 Exhaust gas A 13 Dust collection means 14 Exhaust gas B 15 Exhaust gas C 16 Temperature detection means 17 Temperature control device 18 Flow control valve 19 Refrigerant 20 Instrumentation line A 21 Instrumentation line B 22 Treated exhaust gas

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 101A ZAB 102B 102H (72)発明者 藤井 秀治 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 村上 勇一郎 神奈川県横浜市中区錦町12番地 菱日エン ジニアリング株式会社内 Fターム(参考) 3G091 AA18 AB02 AB05 AB11 AB13 BA14 CA08 CA18 EA17 GA16 GB05W GB06W GB07W GB09X GB10X HA08 HA16 4D048 AA06 AB02 AB07 AC02 AC09 BA03X BA06X BA07X BA08X BA11Y BA30X BA31Y BA32Y BA33X BA34X BA41X BA42X BB02 BB17 BC01 BC04 CC31 CC47 CC54 CC61 CD01 CD03 CD08 CD10 DA01 DA03 DA06Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/28 301 B01D 53/36 101A ZAB 102B 102H (72) Inventor Shuji Fujii 1-chome, 8-chome, Kanazawa-ku, Yokohama-shi, Kanagawa Address 1 Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory (72) Inventor Yuichiro Murakami 12 Nishiki-cho, Naka-ku, Yokohama-shi Kanagawa F-term (reference) 3R091 AA18 AB02 AB05 AB11 AB13 BA14 CA08 CA18 EA17 GA16 GB05W GB06W GB07W GB09X GB10X HA08 HA16 4D048 AA06 AB02 AB07 AC02 AC09 BA03X BA06X BA07X BA08X BA11Y BA30X BA31Y BA32Y BA33X BA34X BA41X BA42X BB02 BB17 BC01 BC04 CC31 CC47 CC54 CC61 CD01 CD03 DA08 CD10 CD10

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 排ガスと接触する脱硝触媒と、前記脱硝
触媒の排ガス上流側に設けた熱交換手段と、前記熱交換
手段と前記脱硝触媒の排ガス流路間に還元剤供給手段と
を設けたことを特徴とする排ガス中の窒素酸化物の脱硝
装置。
1. A denitration catalyst in contact with exhaust gas, a heat exchange means provided on the exhaust gas upstream side of the denitration catalyst, and a reducing agent supply means provided between the heat exchange means and the exhaust gas passage of the denitration catalyst. A denitration device for nitrogen oxides in exhaust gas, which is characterized in that
【請求項2】 前記排ガスの温度が200℃以上300
℃以下の範囲内において制御可能である温度制御手段を
備えることを特徴とする請求項1に記載の排ガス中の窒
素酸化物の脱硝装置。
2. The temperature of the exhaust gas is 200 ° C. or higher and 300.
The denitrification device for nitrogen oxides in exhaust gas according to claim 1, further comprising a temperature control means capable of controlling within a range of ℃ or less.
【請求項3】 前記還元剤供給手段が、前記燃焼装置に
接続された燃料貯留装置と、還元剤注入手段と、前記燃
料貯留装置と還元剤注入手段の間に設置された部分酸化
リアクタとからなることを特徴とする請求項1または2
に記載の排ガス中の窒素酸化物の脱硝装置。
3. The reducing agent supply means comprises a fuel storage device connected to the combustion device, a reducing agent injection means, and a partial oxidation reactor installed between the fuel storage device and the reducing agent injection means. 3. The method according to claim 1 or 2, wherein
A denitrification device for nitrogen oxides in exhaust gas according to 1.
【請求項4】 前記脱硝触媒が、TiO2、SiO2、Z
rO2、Al23、及びゼオライトからなる群より選ば
れる少なくとも1種の単独酸化物またはこれらの複合酸
化物を含有した担体と、Pt、Rh、Ru、Pd、I
r、Auからなる群より選ばれる少なくとも1種の金属
または合金である活性成分とからなることを特徴とする
請求項1ないし3のいずれかに記載の排ガス中の窒素酸
化物の脱硝装置。
4. The denitration catalyst is TiO 2 , SiO 2 , Z
A carrier containing at least one single oxide selected from the group consisting of rO 2 , Al 2 O 3 and zeolite, or a composite oxide thereof, and Pt, Rh, Ru, Pd, I
4. A denitration device for nitrogen oxides in exhaust gas according to claim 1, comprising an active component which is at least one metal or alloy selected from the group consisting of r and Au.
【請求項5】 前記活性成分の一次粒径が10nm以下
であることを特徴とする請求項4に記載の排ガス中の窒
素酸化物の脱硝装置。
5. The denitration device for nitrogen oxides in exhaust gas according to claim 4, wherein the primary particle diameter of the active ingredient is 10 nm or less.
【請求項6】 前記熱交換手段の排ガス上流側、または
前記脱硝触媒の排ガス下流側に、酸化触媒、煤塵捕集手
段及びDPF(Diesel Particulate
Filter)のいずれか1種以上を設けたことを特
徴とする請求項1ないし5のいずれかに記載の排ガス中
の窒素酸化物の脱硝装置。
6. An oxidation catalyst, a dust collecting means and a DPF (Diesel Particulate) on the exhaust gas upstream side of the heat exchange means or on the exhaust gas downstream side of the denitration catalyst.
6. A denitration device for nitrogen oxides in exhaust gas according to claim 1, wherein any one or more of the following) are provided.
【請求項7】 前記熱交換手段の排ガス上流側に脱硫装
置を設けたことを特徴とする請求項1ないし6のいずれ
かに記載の排ガス中の窒素酸化物の脱硝装置。
7. The denitrification device for nitrogen oxides in exhaust gas according to claim 1, wherein a desulfurization device is provided on the exhaust gas upstream side of the heat exchange means.
【請求項8】 前記還元剤が、炭化水素類と含酸素有機
化合物類とから選ばれる少なくとも1種の化合物である
ことを特徴とする請求項1ないし7のいずれかに記載の
排ガス中の窒素酸化物の脱硝装置。
8. The nitrogen in the exhaust gas according to claim 1, wherein the reducing agent is at least one compound selected from hydrocarbons and oxygen-containing organic compounds. Oxide denitration equipment.
【請求項9】 排ガスを熱交換する熱交換工程と、還元
剤を熱交換後の排ガスに供給する還元剤供給工程と、還
元剤を加えた後の排ガスを脱硝触媒に接触させる脱硝工
程とからなることを特徴とする排ガス中の窒素酸化物の
排ガス中の窒素酸化物の脱硝方法。
9. A heat exchange step of exchanging heat of exhaust gas, a reducing agent supply step of supplying a reducing agent to the exhaust gas after heat exchange, and a denitration step of bringing the exhaust gas after adding the reducing agent into a denitration catalyst. A method for denitrifying nitrogen oxides in exhaust gas, comprising:
【請求項10】 熱交換後の排ガス温度を150℃以上
300℃以下の範囲に制御する温度制御工程をさらに含
むことを特徴とする請求項9に記載の排ガス中の窒素酸
化物の脱硝方法。
10. The method for denitrifying nitrogen oxides in exhaust gas according to claim 9, further comprising a temperature control step of controlling the exhaust gas temperature after heat exchange in the range of 150 ° C. or higher and 300 ° C. or lower.
【請求項11】 前記還元剤として、炭化水素類と含酸
素有機化合物類とから選ばれる少なくとも1種の化合物
を用いることを特徴とする請求項9または10に記載の
排ガス中の窒素酸化物の脱硝方法。
11. The nitrogen oxide in the exhaust gas according to claim 9, wherein at least one compound selected from hydrocarbons and oxygen-containing organic compounds is used as the reducing agent. Denitration method.
【請求項12】 前記還元剤として、前記燃焼装置の燃
料の一部を分岐し、前記燃料を部分酸化し、前記部分酸
化によって生成した含酸素有機化合物を用いることを特
徴とする請求項9ないし11のいずれかに記載の排ガス
中の窒素酸化物の脱硝方法。
12. The oxygen-containing organic compound produced by the partial oxidation of the fuel of the combustion apparatus, the partial oxidation of the fuel, and the partial oxidation, is used as the reducing agent. 12. The method for denitrifying nitrogen oxides in exhaust gas according to any one of 11 above.
【請求項13】 前記熱交換工程の排ガス上流側、また
は前記脱硝工程の排ガス下流側において、触媒酸化処理
工程及び煤塵除去工程の一方または両方を経ることを特
徴とする請求項9ないし12のいずれかに記載の排ガス
中の窒素酸化物の脱硝方法。
13. The method according to claim 9, wherein one or both of a catalytic oxidation treatment step and a dust removal step are performed on the exhaust gas upstream side of the heat exchange step or the exhaust gas downstream side of the denitration step. A method for denitrifying nitrogen oxides in exhaust gas according to claim 1.
【請求項14】 前記熱交換工程の排ガス上流側におい
て、脱硫工程を経ることを特徴とする請求項9ないし1
3のいずれかに記載の排ガス中の窒素酸化物の脱硝方
法。
14. The desulfurization process is performed on the upstream side of the exhaust gas in the heat exchange process.
3. A method for denitrifying nitrogen oxides in exhaust gas according to any one of 3).
JP2001264547A 2001-08-31 2001-08-31 Exhaust gas purification apparatus and exhaust gas treatment method Expired - Fee Related JP5030343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264547A JP5030343B2 (en) 2001-08-31 2001-08-31 Exhaust gas purification apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264547A JP5030343B2 (en) 2001-08-31 2001-08-31 Exhaust gas purification apparatus and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2003074331A true JP2003074331A (en) 2003-03-12
JP5030343B2 JP5030343B2 (en) 2012-09-19

Family

ID=19091129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264547A Expired - Fee Related JP5030343B2 (en) 2001-08-31 2001-08-31 Exhaust gas purification apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5030343B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316658A (en) * 2003-04-16 2004-11-11 Arvin Technologies Inc Temperature control of exhaust system
WO2005033481A1 (en) * 2003-09-30 2005-04-14 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
JP2007113446A (en) * 2005-10-19 2007-05-10 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2007270643A (en) * 2006-03-30 2007-10-18 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
JP2009125736A (en) * 2007-11-28 2009-06-11 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and exhaust gas cleaner
JP2009247975A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Automotive exhaust gas treatment catalyst
JP2010506088A (en) * 2006-10-05 2010-02-25 ゼネラル・エレクトリック・カンパニイ System and method for reducing nitrogen oxide emissions
WO2013027677A1 (en) * 2011-08-23 2013-02-28 トヨタ自動車株式会社 Exhaust gas purification catalyst, and method for producing same
JP2013039543A (en) * 2011-08-19 2013-02-28 Asahi Kasei Corp Supported catalyst containing rhodium and gold
KR101488331B1 (en) * 2013-09-16 2015-01-30 현대자동차주식회사 Heat exchanger for exhaust heat recovery
JP2015531671A (en) * 2012-08-02 2015-11-05 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method for reducing nitrogen dioxide concentration
JPWO2017042896A1 (en) * 2015-09-08 2017-09-07 中国電力株式会社 Exhaust gas purification method
CN109026297A (en) * 2018-08-29 2018-12-18 华电电力科学研究院有限公司 A kind of efficient control system of internal combustion engine nitrogen oxides and its working method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863885B2 (en) 2014-06-06 2016-02-17 三菱日立パワーシステムズ株式会社 Boiler system and power plant including the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212952A (en) * 1993-01-14 1994-08-02 Mitsubishi Motors Corp Exhaust emission control device
JPH0819728A (en) * 1994-07-08 1996-01-23 Cataler Kogyo Kk Method for purifying exhaust gas
JPH0886214A (en) * 1994-09-14 1996-04-02 Komatsu Ltd Exhaust gas denitration device of diesel engine
JPH08290062A (en) * 1995-04-20 1996-11-05 Babcock Hitachi Kk Waste gas purifying catalyst, its manufacture and waste gas purifying method
JPH0913955A (en) * 1995-06-27 1997-01-14 Komatsu Ltd Exhaust gas purifying device for diesel engine
JPH09308819A (en) * 1996-05-21 1997-12-02 Sumitomo Metal Mining Co Ltd Catalyst layer and method for denitrification
JPH10323538A (en) * 1997-05-22 1998-12-08 Kawasaki Heavy Ind Ltd Reaction control method in exhaust gas denitrification device and device thereof
JP2000303878A (en) * 1999-04-20 2000-10-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001046880A (en) * 1999-08-06 2001-02-20 Mazda Motor Corp Catalyst and its production thereof
JP2001149758A (en) * 1999-11-22 2001-06-05 Valtion Teknillinen Tukimuskeskus Catalyst and method for catalycally recomposing nitrogen oxides

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212952A (en) * 1993-01-14 1994-08-02 Mitsubishi Motors Corp Exhaust emission control device
JPH0819728A (en) * 1994-07-08 1996-01-23 Cataler Kogyo Kk Method for purifying exhaust gas
JPH0886214A (en) * 1994-09-14 1996-04-02 Komatsu Ltd Exhaust gas denitration device of diesel engine
JPH08290062A (en) * 1995-04-20 1996-11-05 Babcock Hitachi Kk Waste gas purifying catalyst, its manufacture and waste gas purifying method
JPH0913955A (en) * 1995-06-27 1997-01-14 Komatsu Ltd Exhaust gas purifying device for diesel engine
JPH09308819A (en) * 1996-05-21 1997-12-02 Sumitomo Metal Mining Co Ltd Catalyst layer and method for denitrification
JPH10323538A (en) * 1997-05-22 1998-12-08 Kawasaki Heavy Ind Ltd Reaction control method in exhaust gas denitrification device and device thereof
JP2000303878A (en) * 1999-04-20 2000-10-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001046880A (en) * 1999-08-06 2001-02-20 Mazda Motor Corp Catalyst and its production thereof
JP2001149758A (en) * 1999-11-22 2001-06-05 Valtion Teknillinen Tukimuskeskus Catalyst and method for catalycally recomposing nitrogen oxides

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316658A (en) * 2003-04-16 2004-11-11 Arvin Technologies Inc Temperature control of exhaust system
US7500355B2 (en) 2003-09-30 2009-03-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
WO2005033481A1 (en) * 2003-09-30 2005-04-14 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
US8028516B2 (en) 2003-09-30 2011-10-04 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
JP4533832B2 (en) * 2005-10-19 2010-09-01 三菱重工業株式会社 Exhaust gas purification device
JP2007113446A (en) * 2005-10-19 2007-05-10 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2007270643A (en) * 2006-03-30 2007-10-18 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
JP2010506088A (en) * 2006-10-05 2010-02-25 ゼネラル・エレクトリック・カンパニイ System and method for reducing nitrogen oxide emissions
JP2009125736A (en) * 2007-11-28 2009-06-11 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst and exhaust gas cleaner
JP2009247975A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Automotive exhaust gas treatment catalyst
JP2013039543A (en) * 2011-08-19 2013-02-28 Asahi Kasei Corp Supported catalyst containing rhodium and gold
WO2013027677A1 (en) * 2011-08-23 2013-02-28 トヨタ自動車株式会社 Exhaust gas purification catalyst, and method for producing same
JP2015531671A (en) * 2012-08-02 2015-11-05 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method for reducing nitrogen dioxide concentration
KR101488331B1 (en) * 2013-09-16 2015-01-30 현대자동차주식회사 Heat exchanger for exhaust heat recovery
JPWO2017042896A1 (en) * 2015-09-08 2017-09-07 中国電力株式会社 Exhaust gas purification method
CN109026297A (en) * 2018-08-29 2018-12-18 华电电力科学研究院有限公司 A kind of efficient control system of internal combustion engine nitrogen oxides and its working method

Also Published As

Publication number Publication date
JP5030343B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US6813884B2 (en) Method of treating diesel exhaust gases
CN100482325C (en) Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions
US8858904B2 (en) Catalyzed soot filter
US7832203B2 (en) Exhaust system for a lean burn internal combustion engine
EP1941942A2 (en) Oxidation Catalyst and Exhaust-Gas Purification System Using the Same
US20070134145A1 (en) Precious metal catalyst stabilized with iron oxide for the removal of pollutants from exhaust gases from leanburn engines
AU2012240909B2 (en) Oxidation Catalyst for Exhaust Gas Purification
JP2000230414A (en) Converting method of diesel engine exhaust gas utilizing nitrogen oxides absorber
KR20110041502A (en) Exhaust system for a lean burn ic engine
EP1979585A1 (en) Exhaust gas-purifying apparatus and exhaust gas-purifying method
JP2013503284A (en) Exhaust gas aftertreatment system with catalytically active wall flow filter with storage function upstream of a catalytic converter with the same storage function
EP3097977A1 (en) Exhaust-gas purifying catalyst for lean-burn engine
JP5030343B2 (en) Exhaust gas purification apparatus and exhaust gas treatment method
JP5583967B2 (en) Exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
JP4372764B2 (en) Exhaust gas purification device
KR101027080B1 (en) Bi-functional catalyst for decomposing and oxidizing nitric oxide simultaneously and its preparation method therein
EP2747878A1 (en) Post-treatment system of an exhaust gas, catalyst useful for said system and processes for their preparation
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
WO2019161775A1 (en) Catalyst for gasoline engine exhaust gas aftertreatment
EP2145679A1 (en) Multifunctional Catalyst for Diesel Exhaust Gas Cleaning Applications and Method of its Preparation
JP3704701B2 (en) Exhaust gas purification catalyst
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP2003290629A (en) Cleaning system for exhaust gas
JP5094199B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R151 Written notification of patent or utility model registration

Ref document number: 5030343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees