JP2003073726A - METHOD FOR MANUFACTURING LOW Ti STEEL - Google Patents

METHOD FOR MANUFACTURING LOW Ti STEEL

Info

Publication number
JP2003073726A
JP2003073726A JP2001260331A JP2001260331A JP2003073726A JP 2003073726 A JP2003073726 A JP 2003073726A JP 2001260331 A JP2001260331 A JP 2001260331A JP 2001260331 A JP2001260331 A JP 2001260331A JP 2003073726 A JP2003073726 A JP 2003073726A
Authority
JP
Japan
Prior art keywords
molten steel
slag
steel
refining
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001260331A
Other languages
Japanese (ja)
Inventor
Kiyotaka Okamura
清隆 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001260331A priority Critical patent/JP2003073726A/en
Publication of JP2003073726A publication Critical patent/JP2003073726A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which can produce low Ti steel, without aggravating a material yield, and without transporting molten steel to other location in the middle of a manufacturing process. SOLUTION: The method for manufacturing the steel comprises an EAF process for melting scrap in an electric furnace, and a LF (ladle furnace) process for smelting the molten steel in a ladle, after transferring it to the ladle. The above LF process is divided into a low basicity smelting process (an LF process 2) under a condition in which slag is made to have relatively low basicity, and a high basicity smelting (an LF process 3) under a condition in which the slag is made to have relatively high basicity. In the LF process 2, scale is added to the molten steel, to separate Ti in the molten steel by surfacing it in the slag through a reaction of Ti with oxygen of the scale, and to reduce Ti in the molten steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は軸受鋼、特に静粛
性の要求される軸受のための軸受鋼等に適用して好適な
低Ti鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-Ti steel suitable for application to a bearing steel, particularly a bearing steel for a bearing which requires quietness.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り軸受、特に音響機器用軸受等静粛性の求められる軸受
において、回転時に異音が発生することが問題視されて
おり、その対策が求められている。この種静粛性の求め
られる軸受にあっては、例えば図4に示しているように
無音響室で軸受200を回転作動させながらマイク20
2にて集音し音響を測定する試験が行われ、その際にノ
イズが発生するものについては不適格とされる。この異
音の発生源は軸受部品表面に存在する硬いTiN等のT
i介在物が原因であると考えられている。
2. Description of the Related Art Conventionally, bearings, particularly bearings for audio equipment, which are required to be quiet, have been regarded as a problem that abnormal noise is generated during rotation. Has been. In this type of quietness-required bearing, for example, as shown in FIG. 4, the microphone 20 is rotated while rotating the bearing 200 in an acoustic chamber.
A test for collecting sound and measuring sound is performed in 2 and those that generate noise at that time are disqualified. The source of this abnormal noise is T such as hard TiN existing on the surface of the bearing component.
It is believed that the cause is i inclusions.

【0003】従ってこの問題は軸受鋼製造時において鋼
のTi含有量を少なくし、TiN等のTi介在物量を少
なくすることで改善することができる。しかしながら軸
受鋼製造時においてTi介在物を少なくすること、特に
最近求められている数ppmオーダーの極低レベルに制
御するといったことは容易ではない。
Therefore, this problem can be solved by reducing the Ti content of the steel at the time of manufacturing the bearing steel and reducing the amount of Ti inclusions such as TiN. However, it is not easy to reduce the amount of Ti inclusions at the time of manufacturing the bearing steel, and particularly to control it to a very low level of several ppm order, which is required recently.

【0004】ここで従来、軸受鋼製造は以下のようにし
て行われている。先ずアーク炉等の電気炉で鉄原料とし
てのスクラップを溶解し、そして溶鋼を電気炉から出鋼
して取鍋に移し、そこでCaO,CaF等の造滓剤と
脱酸剤及び必要な合金成分とを添加し、脱硫,脱酸精錬
を行った後溶鋼を鋳造、例えば連続鋳造する。
Heretofore, bearing steel has heretofore been manufactured as follows. First, scrap as an iron raw material is melted in an electric furnace such as an arc furnace, and the molten steel is tapped from the electric furnace and transferred to a ladle, where a slag forming agent such as CaO and CaF 2 and a deoxidizer and necessary alloys. After adding components and desulfurization and deoxidation refining, molten steel is cast, for example, continuous casting.

【0005】この場合電気炉や取鍋の耐火材からTiが
溶鋼中にピックアップされて来てしまい、或いはまた電
気炉から取鍋に持ち込まれたスラグや取鍋に付着してい
たスラグからも溶鋼中にTiがピックアップされてしま
う。またたとえこれらを十分防ぎ得たとしても、精錬の
段階で加えられる合金成分からもTiが溶鋼中にピック
アップされてしまう。
In this case, Ti is picked up in the molten steel from the refractory material of the electric furnace or ladle, or the molten steel is also brought from the slag brought into the ladle from the electric furnace or the slag attached to the ladle. Ti is picked up inside. Even if these can be sufficiently prevented, Ti will be picked up in the molten steel from the alloy components added in the refining stage.

【0006】例えば高炭素軸受鋼といわれるものはCr
が1.5%(重量%)程度鋼に含有される。而して精錬
の工程で溶鋼中に合金成分としてCrを添加すると、そ
の中に不純物として不可避的に含まれているTiが溶鋼
中に入り込んでしまう。
For example, what is called high carbon bearing steel is Cr
Is contained in steel at about 1.5% (weight%). If Cr is added to the molten steel as an alloy component in the refining process, Ti, which is unavoidably contained as an impurity in the molten steel, enters the molten steel.

【0007】鋼中のTiを低減する方法としては、Ti
と酸素との親和力が高いことを利用して電気炉での溶解
工程で酸素を多量に吹精するといったことが考えられ
る。この場合、溶鋼中のTiが吹精した酸素と反応し、
Ti酸化物(TiO)となってスラグ中に浮上分離
し、これに応じて溶鋼中のTiが低減する。
As a method of reducing Ti in steel, Ti is
It is conceivable that a large amount of oxygen is blown in the melting process in the electric furnace by utilizing the high affinity of oxygen with oxygen. In this case, Ti in the molten steel reacts with the oxygen spewed,
It becomes Ti oxide (TiO 2 ) and floats and separates in the slag, and accordingly Ti in the molten steel decreases.

【0008】しかしながらこの場合、溶鋼中のFeも酸
化物となって浮上分離してしまい、従ってこの方法の場
合には材料の歩留りが低下してしまう。またこの方法の
場合、取鍋の耐火材から溶鋼中にTiがピックアップさ
れる問題や、添加される合金成分から溶鋼中にTiがピ
ックアップされる問題に対しては対処することができな
い。
However, in this case, Fe in the molten steel also becomes an oxide and floats and separates. Therefore, in the case of this method, the yield of the material decreases. In addition, this method cannot deal with the problem that Ti is picked up in the molten steel from the refractory material of the ladle and the problem that Ti is picked up in the molten steel from the added alloy component.

【0009】他の方法として、電気炉から出鋼した溶鋼
にCr等の合金を添加した後にクレーン等にて酸素吹精
設備のある場所まで運んで行き、そこで酸素吹精を行っ
て溶鋼中のTiを低減するといったことも考えられる。
しかしながらこの場合、酸素吹精によって鉄原料の歩留
りが低下する問題の外、実際の製鋼ラインの中の途中
で、一旦溶鋼を酸素吹精設備のある場所まで運んで行っ
て酸素吹精するときには、その間に溶鋼の温度が低下し
たりその後の鋳造が円滑に行えなくなるなど各種の制約
があり、実際にこの方法を採用することは難しい。
As another method, after adding an alloy such as Cr to molten steel discharged from an electric furnace, the molten steel is carried by a crane or the like to a place where oxygen blowing equipment is installed, and oxygen blowing is performed there to remove the molten steel. It is also possible to reduce Ti.
However, in this case, in addition to the problem that the yield of the iron raw material decreases due to oxygen sparging, in the middle of the actual steelmaking line, when the molten steel is once carried to the place where the oxygen sparging equipment is installed and oxygen sprinkling is performed, In the meantime, there are various restrictions such as the temperature of molten steel decreasing and the subsequent casting cannot be performed smoothly, and it is difficult to actually adopt this method.

【0010】[0010]

【課題を解決するための手段】本発明の低Ti鋼の製造
方法はこのような課題を解決するために案出されたもの
である。而して請求項1のものは、電気炉でスクラップ
を溶解する工程と、溶鋼を取鍋に移して該取鍋で精錬を
行う工程とを経て鋼を製造する方法において、前記取鍋
精錬の工程で溶鋼にスケールを添加して該溶鋼のTiと
スケールの酸素との反応によりTiをスラグ中に浮上分
離し、該溶鋼のTiを低減することを特徴とする。
The method for producing a low Ti steel according to the present invention has been devised to solve such a problem. Thus, the invention of claim 1 is a method for producing steel through a step of melting scrap in an electric furnace and a step of transferring molten steel to a ladle and refining in the ladle. It is characterized in that scale is added to the molten steel in the step and Ti of the molten steel reacts with oxygen of the scale to float and separate Ti in the slag to reduce the Ti of the molten steel.

【0011】請求項2のものは、請求項1において、前
記スケールの添加を最終的な脱酸剤添加の前に行うこと
を特徴とする。
A second aspect of the present invention is characterized in that, in the first aspect, the addition of the scale is performed before the final addition of the deoxidizing agent.

【0012】請求項3のものは、請求項1,2の何れか
において、前記取鍋精錬を、スラグを相対的に低塩基度
とする条件下での低塩基度精錬と、該スラグを相対的に
高塩基度とする条件下での高塩基度精錬とに分けて行
い、該低塩基度精錬の工程で前記スケールを溶鋼に添加
することを特徴とする。
A third aspect of the present invention is the method according to any one of the first and second aspects, wherein the ladle refining is performed under low basicity refining under the condition that the slag has a relatively low basicity, and the slag is subjected to relative refining. It is characterized in that the scale is added to molten steel in the step of refining with high basicity under the condition that the degree of basicity is high, and in the step of refining with low basicity.

【0013】[0013]

【作用及び発明の効果】上記のように本発明は、取鍋精
錬の工程で溶鋼にスケールを添加して、溶鋼のTiとス
ケールの酸素との反応によりTiをスラグ中に浮上分離
し、溶鋼のTiを低減するものである。ここでスケール
は例えば鋼材の熱間圧延時や鋳片の均熱時に地鉄表面に
発生するウスタイト,マグネタイト,ヘマタイト等から
成る鉄酸化物を主体とするもので、通常は酸洗いや研削
等によって地鉄から取り除かれそのまま廃棄処分される
ものである。
As described above, according to the present invention, scale is added to molten steel in the process of ladle refining, and Ti is floated and separated in the slag by the reaction between Ti of molten steel and oxygen of the scale. To reduce Ti. Here, the scale is mainly composed of iron oxides such as wustite, magnetite, and hematite that are generated on the surface of the base iron during hot rolling of steel or soaking of slabs, and usually by pickling or grinding. It is removed from the ground iron and discarded as it is.

【0014】本発明はこのスケールを溶鋼のTi低減の
ために有効に活用するもので、本発明によれば、溶鋼に
対して酸素吹精を行わなくても良好に溶鋼のTiを極低
レベルまで低減することが可能となる。
The present invention effectively utilizes this scale for reducing Ti in molten steel. According to the present invention, Ti in molten steel can be satisfactorily reduced to an extremely low level without oxygen blowing. Can be reduced to.

【0015】因みに図1(A)は、溶鋼に対してスケー
ルを添加したときの溶鋼中Ti[ppmTi]とスラグ
中Ti(%TiO)との分配比、詳しくは(%TiO
)/[ppmTi]を示したもので(図1(A)は溶鋼
80tに対しスケール250kgを添加した場合)、同
図に示しているようにスケールを添加することによって
スラグへのTiの分配比が飛躍的に大きくなっている。
Incidentally, FIG. 1 (A) shows a distribution ratio of Ti [ppm Ti] in molten steel and Ti (% TiO 2 ) in slag when a scale is added to molten steel, specifically, (% TiO 2 ).
2 ) / [ppm Ti] (Fig. 1 (A) shows the case where 250 kg of scale is added to 80 t of molten steel), and the distribution of Ti to the slag by adding scale as shown in the same figure. The ratio is dramatically increasing.

【0016】上記スケールは元々廃棄処分されるもので
あって、本発明によればそのようなスケールを有効に活
用することができる。また本発明に従ってスケールの添
加により溶鋼中のTiを低減するようになした場合、ス
ケールに含まれている鉄成分そのものが添加によって溶
鋼の合金系に悪影響を及ぼさない利点がある。
The scale is originally disposed of, and according to the present invention, such a scale can be effectively used. Further, when the Ti content in the molten steel is reduced by adding the scale according to the present invention, there is an advantage that the iron component itself contained in the scale does not adversely affect the alloy system of the molten steel by the addition.

【0017】ここでスケールの添加は最終的な脱酸剤添
加の前に行うことができる(請求項2)。最終的な脱酸
剤添加の後にスケールの添加を行うと、せっかく溶鋼中
の酸素を低減しても後のスケール添加によって再び溶鋼
中に酸素が供給されてしまう。
Here, the addition of the scale can be carried out before the final addition of the deoxidizing agent (claim 2). If the scale is added after the final addition of the deoxidizing agent, oxygen will be supplied to the molten steel again by the subsequent addition of scale even if the oxygen in the molten steel is reduced.

【0018】例えば清浄軸受鋼の場合最終的に酸素レベ
ルの低い鋼としなければならず、この場合通常は最終的
に強力な脱酸剤であるAlを添加することが行われる
が、このような場合に脱酸剤添加後においてスケールを
溶鋼に供給すると脱酸剤添加の意味が殆ど失われてしま
う。
For example, in the case of a clean bearing steel, a steel having a low oxygen level must be finally obtained, and in this case, a strong deoxidizer Al is usually added finally. In this case, if the scale is supplied to the molten steel after the addition of the deoxidizing agent, the meaning of adding the deoxidizing agent is almost lost.

【0019】本発明においては取鍋精錬を、スラグを相
対的に低塩基度とする条件下での低塩基度精錬と、スラ
グを相対的に高塩基度とする条件下での高塩基度精錬と
に分けて行い、その低塩基度精錬の工程でスケールの添
加を行うようになすことができる(請求項3)。
In the present invention, ladle refining includes low basicity refining under conditions where slag is relatively low basicity and high basicity refining under conditions where slag is relatively high basicity. And the addition of scale is performed in the step of refining low basicity (claim 3).

【0020】例えば軸受鋼においては精錬の工程で強力
に脱硫を行う必要がある。この場合スラグの塩基度を高
くした方が脱硫を効率高く行うことができる。一方でス
ラグの塩基度が高いと溶鋼中のTiがスラグ中に浮上分
離し難くなる。
For example, bearing steel must be strongly desulfurized in the refining process. In this case, the higher the basicity of the slag, the higher the efficiency of desulfurization. On the other hand, if the basicity of the slag is high, it becomes difficult for Ti in the molten steel to float and separate in the slag.

【0021】図1(B)はスラグの塩基度とTiの分配
比との関係を表したもので、同図に示しているようにT
iの分配比、即ち(%TiO)/[ppmTi]は塩
基度C/S(CaO/SiO)が小さくなる程大きく
なっている。尚この図1(B)はまた、溶鋼中のTiが
少ない程同じ塩基度の下においてもTiの分配比が大き
くなることを示している。
FIG. 1 (B) shows the relationship between the basicity of slag and the distribution ratio of Ti. As shown in FIG.
The distribution ratio of i, that is, (% TiO 2 ) / [ppmTi], increases as the basicity C / S (CaO / SiO 2 ) decreases. Note that FIG. 1B also shows that the smaller the Ti content in the molten steel, the larger the Ti distribution ratio under the same basicity.

【0022】このようにTiの分配比がスラグの塩基度
によって異なることから、請求項3に従い取鍋精錬を低
塩基度精錬と高塩基度精錬とに分けて行うことで、その
低塩基度精錬において溶鋼中のTiとスラグ中のTiと
の分配比を大きくでき、溶鋼中のTiを効率高くスラグ
中に浮上分離させ得て溶鋼のTiを低減することができ
る。
Since the distribution ratio of Ti varies depending on the basicity of the slag, the ladle refining is divided into the low basicity refining and the high basicity refining according to claim 3, and the low basicity refining is performed. In, the distribution ratio between Ti in the molten steel and Ti in the slag can be increased, and the Ti in the molten steel can be efficiently floated and separated in the slag to reduce the Ti in the molten steel.

【0023】一方これに続く高塩基度の下での精錬にお
いて、脱硫を効率高く行うことができる。そしてその低
塩基度精錬の工程で請求項3に従いスケールを添加する
ことで、先に図1(A)で示したように溶鋼からのTi
の除去ないし低減を効果的に行うことができる。尚ここ
でスケールの添加は低塩基度精錬の後期に行うことが望
ましい。
On the other hand, in the subsequent refining under high basicity, desulfurization can be performed with high efficiency. Then, by adding a scale according to claim 3 in the step of refining low basicity, Ti from molten steel can be obtained as shown in FIG. 1 (A).
Can be effectively removed or reduced. Incidentally, it is desirable to add the scale here in the latter stage of the low basicity refining.

【0024】本発明においては、後においてスケールの
添加を行うと行わないとに拘らず、電気炉から出鋼した
時点でスケールの添加を行うようになすことができる。
極低Ti鋼、例えば前述のように溶鋼中の含有量が数p
pmオーダーの極低Ti鋼を製造する場合、電気炉から
出鋼した時点で溶鋼中のTiは限りなくゼロに近いもの
であることが望ましい。
In the present invention, the scale may be added when the steel is tapped from the electric furnace regardless of whether the scale is added later.
Ultra low Ti steel, for example, the content in molten steel is a few p as described above.
When producing pm-order ultra-low Ti steel, it is desirable that Ti in molten steel be as close to zero as possible at the time of tapping from an electric furnace.

【0025】この時点で溶鋼中にTiが数ppm含まれ
ていると、後において溶鋼中にTiがピックアップされ
ることを考えると最終的に溶鋼中のTiレベルが高めに
なってしまうことが懸念される。従って出鋼時点で溶鋼
中のTiは可及的に少ないことが望まれるが、その時点
でTiが溶鋼中に含まれていると分った場合、その段階
でスケールを投入することによって溶鋼中のTiを除去
し、溶鋼中のTiを限りなくゼロに近い状態とした上
で、これを次に続く取鍋精錬に供することができる。
At this point, if the molten steel contains several ppm of Ti, it is feared that the Ti level in the molten steel will eventually become higher considering that Ti will be picked up in the molten steel later. To be done. Therefore, it is desirable that Ti in the molten steel be as low as possible at the time of tapping, but if Ti is found to be contained in the molten steel at that time, the scale can be added at that stage to remove the molten steel. After removing Ti, the Ti in the molten steel is brought to a state close to zero as much as possible, and this can be subjected to the subsequent ladle refining.

【0026】[0026]

【実施の形態】次に本発明の実施の形態を図面に基づい
て以下に説明する。ここでは先ず鉄原料としてのスクラ
ップを造滓剤とともに図2のアーク炉(電気炉)10に
装入し、電極とスクラップとの間にアークを発生させて
そのアーク熱によりスクラップを溶解する(図3中EA
F工程)。尚この例においてアーク炉10は容量80t
のものである。またこのアーク炉10は炉の中心から偏
心した位置に出鋼口を有するもので、アーク炉10から
の出鋼は炉床の偏心位置の出鋼口からの出鋼となる偏心
炉底出鋼である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described below with reference to the drawings. Here, first, scrap as an iron raw material is charged together with a slag-making agent into the arc furnace (electric furnace) 10 in FIG. 2, an arc is generated between the electrode and the scrap, and the scrap is melted by the arc heat (FIG. EA in 3
Step F). In this example, the arc furnace 10 has a capacity of 80 t.
belongs to. Further, this arc furnace 10 has a tapping hole at a position eccentric from the center of the furnace, and the tapped steel from the arc furnace 10 is tapped from the tapped port at the eccentric position of the hearth. Is.

【0027】アーク炉10からの溶鋼Kは出鋼時に取鍋
12に受けられる。その際溶鋼Kとともにアーク炉10
内のスラグが一部取鍋12内に入り込んで来ることがあ
るため、出鋼後においてスラグオフ工程(図3中SO工
程)が実施される。このSO工程では、図2に示してい
るように取鍋12が傾動させられて表面のスラグSがマ
ニプレータ13によりスラグ受15に掻き出される。
Molten steel K from the arc furnace 10 is received by the ladle 12 at the time of tapping. At that time, with the molten steel K, the arc furnace 10
Since some of the slag inside may come into the ladle 12, the slag-off process (SO process in FIG. 3) is performed after tapping. In this SO process, as shown in FIG. 2, the ladle 12 is tilted and the slag S on the surface is scraped out by the manipulator 13 to the slag receiver 15.

【0028】続いて取鍋12に電極の付いた炉蓋を被
せ、取鍋精錬装置(LF精錬装置)16において取鍋精
錬の前工程としてスラグ生成工程(図3中LF工程)
が実施される。ここでは合金成分その他を添加せずに造
滓剤としてのCaO,CaFのみを添加してスラグの
生成だけを行う。その目的は次の通りである。
Then, the ladle 12 is covered with a furnace lid having an electrode, and a slag generation step (LF step in FIG. 3) is performed as a pre-step of ladle refining in a ladle refining apparatus (LF refining apparatus) 16.
Is carried out. Here, only CaO and CaF 2 as a slag forming agent are added without adding alloy components and the like, and only slag is generated. Its purpose is as follows.

【0029】取鍋12で受けた溶鋼Kには、上記SO工
程を実施したとしてもアーク炉10からのスラグが一部
持ち込まれている場合があり(持込スラグ)、更にまた
元々取鍋12に付着していた鍋付スラグが溶鋼Kに入り
込む可能性がある。この場合スラグに含まれているTi
が溶鋼中にピックアップされてしまう。
The molten steel K received in the ladle 12 may be partially carried with the slag from the arc furnace 10 (carry-in slag) even if the SO process is carried out. There is a possibility that the slag with a pot that had adhered to the molten steel enters the molten steel K. In this case, Ti contained in the slag
Is picked up in molten steel.

【0030】そこで前工程としてのLFでは単にスラ
グを新しく作り直すことだけを行い、これによって持込
スラグ及び鍋付スラグを新しく生成したスラグSと一緒
にし、そのスラグSの除去を行うことでスラグSから溶
鋼K中へのTiのピックアップを可及的に少なくしてい
る。尚このときのスラグSの除去は図2に示すマニプレ
ータ13を用いたSO工程を実施することにより行う。
Therefore, in the LF as a pre-process, the slag is simply recreated, whereby the carry-in slag and the slag with a pot are combined with the newly generated slag S, and the slag S is removed to remove the slag S. The amount of Ti picked up from molten steel K into molten steel K is minimized. The removal of the slag S at this time is performed by performing the SO process using the manipulator 13 shown in FIG.

【0031】次にこの前工程に続き、(取鍋精錬装置1
6を用いて)スラグを低塩基度にする条件の下で低塩基
度精錬を行う(図3中LF工程)。具体的には、ここ
では合金成分としてのCr,Si,Mnを不純物、特に
Ti含有量の少ないCr,Si,Mn合金の形で添加
し、また造滓剤としてのCaO,CaF、更にC源と
してTi含有量の少ない高純度のC粉を添加する。
Next, following the previous step, (ladle refining device 1
6) is used to perform low basicity refining under the condition of making the slag low basicity (LF step in FIG. 3). Specifically, here, Cr, Si, and Mn as alloying components are added in the form of Cr, Si, and Mn alloys containing impurities, particularly Ti content is small, and CaO, CaF 2 , and C as slag forming agents. A high-purity C powder having a low Ti content is added as a source.

【0032】尚このLF工程では造滓剤を後に述べる
高塩基度精錬に比べて相対的に少量添加する。尚このL
F工程では取鍋12の溶鋼中にTiができるだけピッ
クアップされないように不純物としてのTiの少ない添
加物が選択されている。
In this LF step, a relatively small amount of the slag forming agent is added as compared with the high basicity refining described later. This L
In the F step, an additive with a small amount of Ti as an impurity is selected so that Ti is not picked up as much as possible in the molten steel of the ladle 12.

【0033】この低塩基度精錬(LF工程)では、S
i合金によってシリコン脱酸が行われ、また低塩基度の
スラグにより溶鋼K中のTiが効率高くスラグ中に浮上
分離する。この低塩基度精錬(LF工程)では、その
後期にスケールの添加が行われ、そのスケール中の酸素
と溶鋼K中のTiとの反応によりTiがTiOとして
スラグ中に浮上分離せしめられる。
In this low basicity refining (LF step), S
Silicon is deoxidized by the i alloy, and Ti in the molten steel K is efficiently floated and separated in the slag by the low basicity slag. In this low basicity refining (LF step), scale is added in the latter stage, and Ti is floated and separated as TiO 2 in the slag by the reaction between oxygen in the scale and Ti in the molten steel K.

【0034】その後再び図2に示すマニプレータ13を
用いたSO工程が実施され、これに続いて図3に示す高
塩基度精錬(LF工程)が実施される。ここでは初期
に強力な脱酸剤であるAl及び造滓剤としてのCaO,
CaFが添加され、更に続いて必要に応じ合金成分の
添加が行われる。
After that, the SO step using the manipulator 13 shown in FIG. 2 is performed again, and subsequently, the high basicity refining (LF step) shown in FIG. 3 is performed. Here, Al, which is a strong deoxidizing agent, and CaO as a slag forming agent in the initial stage,
CaF 2 is added, and subsequently, alloy components are added if necessary.

【0035】この高塩基度精錬(LF工程)では、造
滓剤として低塩基度精錬の際よりも多量のCaO,Ca
が添加され、これによってスラグが高塩基度に保持
される。このことによって、更にはまた強力な脱酸剤と
してのAlの添加によって脱硫及び脱酸が強く行われ
る。
In this high basicity refining (LF step), a larger amount of CaO, Ca is used as a slag-forming agent than in the case of low basicity refining.
F 2 is added, whereby the slag is maintained at a high basicity. This also results in strong desulfurization and deoxidation by addition of Al as a strong deoxidizer.

【0036】この高塩基度精錬(LF工程)を終えた
溶鋼Kは、続いてRH真空脱ガス装置18によって真空
脱ガスされ、溶鋼K中の水素,酸素,窒素が脱ガスされ
る。その後溶鋼が所定温度を保っている間に次の連続鋳
造20が実施され、鋳片が連続的に取り出されて行く。
The molten steel K that has undergone the high basicity refining (LF step) is subsequently degassed in vacuum by the RH vacuum degassing device 18, and hydrogen, oxygen and nitrogen in the molten steel K are degassed. After that, while the molten steel maintains the predetermined temperature, the next continuous casting 20 is performed, and the cast pieces are continuously taken out.

【0037】[0037]

【実施例】次に低Ti鋼製造の具体例を以下に詳述す
る。表1に示す組成の低Ti鋼(SUJ2鋼)を図2及
び図3に示すプロセスに従って製造した。即ち、先ずア
ーク炉10を用いて鋼の溶解工程(図3中EAF工程)
を実施した。このとき鉄原料としてのスクラップととも
にC源としてTi含有量の極めて少ない高純度のC粉及
び造滓剤としてCaO(2000kg)をアーク炉10
に装入し、溶解を行った。尚このアーク炉10では溶鋼
80tを溶解した。
EXAMPLES Next, specific examples of low Ti steel production will be described in detail below. A low Ti steel (SUJ2 steel) having the composition shown in Table 1 was manufactured according to the process shown in FIGS. 2 and 3. That is, first, the melting process of steel using the arc furnace 10 (the EAF process in FIG. 3)
Was carried out. At this time, along with scrap as an iron raw material, a high-purity C powder having a very small Ti content as a C source and CaO (2000 kg) as a slag forming agent were used in the arc furnace 10.
It was charged into a vessel and dissolved. In this arc furnace 10, molten steel 80t was melted.

【0038】[0038]

【表1】 [Table 1]

【0039】続いてアーク炉10内部の溶鋼Kを炉底か
ら取鍋12に出鋼した。尚出鋼時の溶鋼温度は1680
℃であった。そしてこれに続いて溶鋼Kとともに取鍋1
2内に入り込んだスラグを除去するスラグオフ工程(S
O工程)を実施し、その後LF工程を実施した。この
LF工程では造滓剤のみを添加し昇熱を行った。具体
的には、ここではCaO500kg,CaF150k
gを溶鋼Kに添加し、1600℃までの昇熱を実施し
た。
Subsequently, the molten steel K inside the arc furnace 10 was tapped from the furnace bottom to the ladle 12. The molten steel temperature during tapping is 1680.
It was ℃. Then, following this, ladle 1 with molten steel K
Slag-off process (S to remove slag that has entered inside 2)
O step) was performed, and then the LF step was performed. In this LF process, only the slag forming agent was added to heat up. Specifically, here, CaO 500kg, CaF 2 150k
g was added to the molten steel K, and the temperature was raised to 1600 ° C.

【0040】このLF工程を実施することにより、溶
鋼Kとともにアーク炉10から持ち込まれた持込スラグ
及び取鍋12に付着していた鍋付スラグを、新たに生成
したスラグSと一緒にし、そして続くスラグオフ工程
(SO工程)で一緒になったスラグSを分離除去した。
このLF工程を実施することでスラグSから溶鋼Kへ
のTiのピックアップを可及的に少なくすることができ
る。尚このLF工程では積極的に脱酸,脱硫精錬を行
うことは目的としていない。
By carrying out this LF step, the slag brought in from the arc furnace 10 together with the molten steel K and the slag with a pot attached to the ladle 12 are combined with the newly generated slag S, and The slag S combined in the subsequent slag-off step (SO step) was separated and removed.
By carrying out this LF process, the pickup of Ti from the slag S to the molten steel K can be reduced as much as possible. It should be noted that this LF process is not intended to actively perform deoxidation and desulfurization refining.

【0041】上記LF工程及びこれに続くSO工程実
施後、次に図3のLF工程を実施した。このLF工
程はスラグSを低塩基度とする条件下での低塩基度精錬
である。このLF工程では、先ず初期に合金成分とし
てのTi等不純物の少ない高純度のCr,Mn合金及び
C粉を添加した。また併せて脱酸剤としてTi等不純物
の少ないSi合金を添加し、造滓剤としてCaO500
kg,CaF150kgを添加した。
After carrying out the LF process and the subsequent SO process, the LF process of FIG. 3 was carried out. This LF process is a low basicity refining under the condition that the slag S has a low basicity. In this LF step, first, high-purity Cr, Mn alloy and C powder containing few impurities such as Ti as alloy components were added at the beginning. At the same time, a Si alloy containing few impurities such as Ti is added as a deoxidizing agent, and CaO500 is added as a slag forming agent.
kg and CaF 2 150 kg were added.

【0042】このLF工程では、造滓剤の添加量が後
のLF工程に比べて少なく、生成するスラグSは相対
的に低塩基度のものとなる。これにより溶鋼K中のTi
が造滓剤と反応して効率的にスラグS中に浮上分離す
る。このLF工程ではまた、合金成分添加後において
スケール250kgを添加し、その後15分以上保持す
るか又は電極に通電を行った上でLF工程を終了し
た。
In this LF step, the amount of the slag-forming agent added is smaller than in the subsequent LF step, and the slag S produced has a relatively low basicity. As a result, Ti in the molten steel K
Reacts with the slag forming agent to efficiently float and separate in the slag S. In this LF step, 250 kg of scale was added after the addition of the alloy components, and then held for 15 minutes or more, or the electrodes were energized, and then the LF step was terminated.

【0043】このLF工程後、再度SO工程を実施し
た後、続いてLF工程を実施した。このLF工程は
スラグを高塩基度とする条件下での高塩基度精錬であ
る。このLF工程では、先ず強力な脱酸剤であるAl
を60kg添加し、また造滓剤としてCaO,CaF
をそれぞれCaO1000kg,CaF400kg添
加した。このLF工程ではAl添加によって、更にま
たスラグが高塩基度であることによって脱酸,脱硫精錬
が強く行われる。
After the LF process, the SO process was performed again, and then the LF process was performed. This LF process is a high basicity refining under the condition that the slag has a high basicity. In this LF process, the strong deoxidizer, Al
Was added to 60 kg, and CaO, CaF 2 as a slag forming agent.
1000 kg of CaO and 400 kg of CaF 2 were added. In this LF step, deoxidation and desulfurization refining are strongly carried out by adding Al and by virtue of the high basicity of the slag.

【0044】このLF工程では成分調整のための合金
添加を併せて行い、更にまたAlの追添加も行った。上
記LF工程の後、図2に示すRH真空脱ガス装置18
を用いてRH真空脱ガス工程を実施した。ここではRH
脱ガス処理を60分かけて行った。続いて溶鋼Kを図2
に示す連続鋳造装置20まで搬送し、連続鋳造を行っ
た。これら各プロセスを通じての溶鋼K中の成分の推移
が図3に併せて示してある。
In this LF step, alloy addition for component adjustment was also performed, and Al was additionally added. After the LF process, the RH vacuum degassing device 18 shown in FIG.
Was used to perform the RH vacuum degassing process. RH here
The degassing process was performed for 60 minutes. Then, the molten steel K is shown in FIG.
It was conveyed to the continuous casting apparatus 20 shown in FIG. The transition of the components in the molten steel K through each of these processes is also shown in FIG.

【0045】尚、比較のために上記実施例のLF工程
でスケールを添加するのに代えて、LFの終了前のと
ころで溶鋼を酸素吹精設備のある場所まで搬送し、そこ
で酸素吹精を行うことで溶鋼中のTiを低減する製造プ
ロセスを実施した。その結果、Tiは10ppmにしか
ならなかった。
For comparison, instead of adding the scale in the LF step of the above-mentioned embodiment, the molten steel is conveyed to the place where the oxygen-sparing equipment is located before the end of the LF, and the oxygen-sparging is carried out there. Therefore, a manufacturing process for reducing Ti in the molten steel was carried out. As a result, Ti was only 10 ppm.

【0046】これらの比較から分るように、本実施例に
従って低Ti鋼を製造することにより、溶鋼製造のプロ
セスの途中で溶鋼を酸素吹精設備のあるところまで搬送
しなくても、スケールの添加により最終的に溶鋼中のT
iを極低レベル、具体的には5ppm以下に低減できる
ことが分る。
As can be seen from these comparisons, by producing the low-Ti steel according to this example, it is possible to obtain the scale of the scale even if the molten steel is not transported to the place where the oxygen blowing unit is provided during the process of the molten steel production. The final addition of T in molten steel
It can be seen that i can be reduced to an extremely low level, specifically 5 ppm or less.

【0047】以上本発明の実施例を詳述したがこれはあ
くまで一例示である。例えば上記実施例ではLFとL
FとLFとを実施しているが、場合によってLF
を省略し、LFの後にLFの工程を実施して、その
LFの工程で溶鋼にスケールを添加するようになすと
いったことも可能である。また本発明は上記軸受鋼以外
の鋼種に適用することも可能であるなどその主旨を逸脱
しない範囲において種々変更を加えた態様で実施可能で
ある。
Although the embodiment of the present invention has been described in detail above, this is merely an example. For example, in the above embodiment, LF and L
F and LF are implemented, but in some cases LF
It is also possible to omit, and to carry out the LF process after the LF, and to add the scale to the molten steel in the LF process. The present invention can be applied to steel types other than the above bearing steel, and can be implemented in various modifications without departing from the scope of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A):スケール添加の効果を説明する図であ
る。 (B):スラグの塩基度と(%TiO)/[ppmT
i]との関係を表す図である。
FIG. 1A is a diagram illustrating an effect of adding scale. (B): Basicity of slag and (% TiO 2 ) / [ppmT
It is a figure showing the relationship with i].

【図2】本発明の低Ti鋼の製造方法の一形態を示す図
である。
FIG. 2 is a diagram showing an embodiment of a method for producing low Ti steel according to the present invention.

【図3】本発明の低Ti鋼の製造方法の一形態と溶鋼成
分の推移を示す図である。
FIG. 3 is a diagram showing one embodiment of a method for producing low Ti steel according to the present invention and transition of molten steel components.

【図4】軸受の音響試験の方法の一例を示す図である。FIG. 4 is a diagram showing an example of a method of acoustic testing of a bearing.

【符号の説明】[Explanation of symbols]

10 アーク炉 12 取鍋 K 溶鋼 S スラグ 10 arc furnace 12 ladle K molten steel S slug

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/50 C22C 38/50 Fターム(参考) 4K013 AA09 BA01 BA05 BA08 BA09 BA11 CD02 CE01 CF03 CF12 CF13 DA03 DA09 DA12 DA14 EA02 EA03 EA09 EA18 EA19 EA20 EA28 EA30 FA06 4K014 CA04 CB01 CB05 CD12 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/50 C22C 38/50 F term (reference) 4K013 AA09 BA01 BA05 BA08 BA09 BA11 CD02 CE01 CF03 CF12 CF13 DA03 DA09 DA12 DA14 EA02 EA03 EA09 EA18 EA19 EA20 EA28 EA30 FA06 4K014 CA04 CB01 CB05 CD12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気炉でスクラップを溶解する工程と、
溶鋼を取鍋に移して該取鍋で精錬を行う工程とを経て鋼
を製造する方法において、 前記取鍋精錬の工程で溶鋼にスケールを添加して該溶鋼
のTiとスケールの酸素との反応によりTiをスラグ中
に浮上分離し、該溶鋼のTiを低減することを特徴とす
る低Ti鋼の製造方法。
1. A step of melting scrap in an electric furnace,
In a method for producing steel through the step of transferring molten steel to a ladle and refining in the ladle, in the step of ladle refining, a scale is added to the molten steel to react Ti of the molten steel with oxygen in the scale. A method for producing a low Ti steel, characterized in that Ti is floated and separated in the slag by means of the method to reduce Ti in the molten steel.
【請求項2】 請求項1において、前記スケールの添加
を最終的な脱酸剤添加の前に行うことを特徴とする低T
i鋼の製造方法。
2. The low T according to claim 1, wherein the addition of the scale is performed before the final addition of the deoxidizing agent.
i Steel manufacturing method.
【請求項3】 請求項1,2の何れかにおいて、前記取
鍋精錬を、スラグを相対的に低塩基度とする条件下での
低塩基度精錬と、該スラグを相対的に高塩基度とする条
件下での高塩基度精錬とに分けて行い、該低塩基度精錬
の工程で前記スケールを溶鋼に添加することを特徴とす
る低Ti鋼の製造方法。
3. The ladle refining according to claim 1, wherein the ladle refining is a low basicity refining under the condition that the slag is relatively low basicity, and the slag is relatively high basicity. The method for producing low-Ti steel, characterized in that the scale is added to molten steel in the step of refining with high basicity under the conditions described below.
JP2001260331A 2001-08-29 2001-08-29 METHOD FOR MANUFACTURING LOW Ti STEEL Pending JP2003073726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260331A JP2003073726A (en) 2001-08-29 2001-08-29 METHOD FOR MANUFACTURING LOW Ti STEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260331A JP2003073726A (en) 2001-08-29 2001-08-29 METHOD FOR MANUFACTURING LOW Ti STEEL

Publications (1)

Publication Number Publication Date
JP2003073726A true JP2003073726A (en) 2003-03-12

Family

ID=19087550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260331A Pending JP2003073726A (en) 2001-08-29 2001-08-29 METHOD FOR MANUFACTURING LOW Ti STEEL

Country Status (1)

Country Link
JP (1) JP2003073726A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119806A1 (en) * 2006-04-11 2007-10-25 Nippon Steel Corporation Process for production of iron-base amorphous material
WO2011160483A1 (en) 2010-06-23 2011-12-29 宝山钢铁股份有限公司 Method for controlling titanium content in ultra-low carbon killed steel
CN102383055A (en) * 2011-11-10 2012-03-21 武汉钢铁(集团)公司 Production method for reducing titanium content in high-carbon chromium bearing steel
CN103421928A (en) * 2013-06-19 2013-12-04 武汉钢铁(集团)公司 Method for reducing content of Ti in steel cord in steel smelting process
CN104233099A (en) * 2014-08-29 2014-12-24 洛阳力合机械有限公司 Ball press roll surface material formula
CN104805372A (en) * 2015-04-22 2015-07-29 苏州劲元油压机械有限公司 Manufacture technology of high-temperature resistant check valve
CN104911453A (en) * 2015-06-26 2015-09-16 上海宏钢电站设备铸锻有限公司 Preparation process of cast steel material capable of resisting high temperature of 620 DEG C
CN108676966A (en) * 2018-05-15 2018-10-19 首钢集团有限公司 A kind of smelting process of automobile steel
CN109252010A (en) * 2018-11-22 2019-01-22 武汉钢铁有限公司 Control the smelting process of IF steel top slag oxidizing
CN110484807A (en) * 2019-08-27 2019-11-22 共享铸钢有限公司 The method of rare-earth element cerium is added in cast steel fusion process
CN112795835A (en) * 2020-12-15 2021-05-14 舞阳钢铁有限责任公司 Method for effectively improving production efficiency of cogging finished Cr-Mo steel
CN113490755A (en) * 2019-03-13 2021-10-08 杰富意钢铁株式会社 Method for producing ultra-low carbon steel containing Ti
CN114854938A (en) * 2021-07-23 2022-08-05 包头洪盛化工有限责任公司 Refining titanium-removing slag and low-titanium ferrochromium refining titanium-removing method
CN115418442A (en) * 2021-10-30 2022-12-02 日照宝华新材料有限公司 Method for reducing titanium in LF (ladle furnace) smelting

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119806A1 (en) * 2006-04-11 2007-10-25 Nippon Steel Corporation Process for production of iron-base amorphous material
JP2007277677A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method for producing ferrous amorphous blank
KR101053220B1 (en) * 2006-04-11 2011-08-01 신닛뽄세이테쯔 카부시키카이샤 Manufacturing method of iron-based amorphous material
WO2011160483A1 (en) 2010-06-23 2011-12-29 宝山钢铁股份有限公司 Method for controlling titanium content in ultra-low carbon killed steel
CN102383055A (en) * 2011-11-10 2012-03-21 武汉钢铁(集团)公司 Production method for reducing titanium content in high-carbon chromium bearing steel
CN103421928A (en) * 2013-06-19 2013-12-04 武汉钢铁(集团)公司 Method for reducing content of Ti in steel cord in steel smelting process
CN104233099A (en) * 2014-08-29 2014-12-24 洛阳力合机械有限公司 Ball press roll surface material formula
CN104805372A (en) * 2015-04-22 2015-07-29 苏州劲元油压机械有限公司 Manufacture technology of high-temperature resistant check valve
CN104911453A (en) * 2015-06-26 2015-09-16 上海宏钢电站设备铸锻有限公司 Preparation process of cast steel material capable of resisting high temperature of 620 DEG C
CN104911453B (en) * 2015-06-26 2018-02-27 上海宏钢电站设备铸锻有限公司 A kind of preparation technology of the cast steel material of 620 DEG C of high temperature resistant
CN108676966A (en) * 2018-05-15 2018-10-19 首钢集团有限公司 A kind of smelting process of automobile steel
CN109252010A (en) * 2018-11-22 2019-01-22 武汉钢铁有限公司 Control the smelting process of IF steel top slag oxidizing
CN113490755A (en) * 2019-03-13 2021-10-08 杰富意钢铁株式会社 Method for producing ultra-low carbon steel containing Ti
CN110484807A (en) * 2019-08-27 2019-11-22 共享铸钢有限公司 The method of rare-earth element cerium is added in cast steel fusion process
CN112795835A (en) * 2020-12-15 2021-05-14 舞阳钢铁有限责任公司 Method for effectively improving production efficiency of cogging finished Cr-Mo steel
CN114854938A (en) * 2021-07-23 2022-08-05 包头洪盛化工有限责任公司 Refining titanium-removing slag and low-titanium ferrochromium refining titanium-removing method
CN114854938B (en) * 2021-07-23 2023-07-25 包头洪盛化工有限责任公司 Refining titanium-removing slag and low-titanium ferrochrome refining titanium-removing method
CN115418442A (en) * 2021-10-30 2022-12-02 日照宝华新材料有限公司 Method for reducing titanium in LF (ladle furnace) smelting
CN115418442B (en) * 2021-10-30 2023-06-09 日照宝华新材料有限公司 LF furnace smelting titanium reduction method

Similar Documents

Publication Publication Date Title
JP2003073726A (en) METHOD FOR MANUFACTURING LOW Ti STEEL
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
CN111455138A (en) Smelting method of medium-high carbon sulfur-lead composite free-cutting structural steel
JP3672832B2 (en) Ductile cast iron pipe and manufacturing method thereof
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JPH10317049A (en) Method for melting high clean steel
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH10298631A (en) Method for melting clean steel
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JP2003027128A (en) Method for producing molten steel in vacuum degassing facility
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
CN114959183B (en) Refining slag system based on aluminum deoxidized Cr5 supporting roller steel and application process thereof
JP5387045B2 (en) Manufacturing method of bearing steel
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JP3297992B2 (en) Melting method of high clean ultra low carbon steel
KR100267273B1 (en) The making method of high purity al-si complex deoxidizing steel
JP2855334B2 (en) Modification method of molten steel slag
JP2009127078A (en) High-purity bearing steel and method of smelting the same
JP3736159B2 (en) Steel manufacturing method with excellent cleanliness
JP3918695B2 (en) Method for producing ultra-low sulfur steel
JP3594757B2 (en) Melting method for high purity high Ni molten steel
JP3424163B2 (en) Method for producing ultra low carbon steel with low V content
JP2523516B2 (en) Method for manufacturing case-hardening steel with excellent rolling fatigue
JP2002294327A (en) High cleanliness steel and production method therefor