JP2003073563A - Thermoplastic material composition, and optical component constituted by including the same - Google Patents

Thermoplastic material composition, and optical component constituted by including the same

Info

Publication number
JP2003073563A
JP2003073563A JP2001266727A JP2001266727A JP2003073563A JP 2003073563 A JP2003073563 A JP 2003073563A JP 2001266727 A JP2001266727 A JP 2001266727A JP 2001266727 A JP2001266727 A JP 2001266727A JP 2003073563 A JP2003073563 A JP 2003073563A
Authority
JP
Japan
Prior art keywords
fine particles
resin
material composition
optical
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001266727A
Other languages
Japanese (ja)
Inventor
Takashi Ono
隆 小野
Toyoji Hayashi
豊治 林
Masaji Tamai
正司 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001266727A priority Critical patent/JP2003073563A/en
Publication of JP2003073563A publication Critical patent/JP2003073563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Filters (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic and/or melt-moldable material composition having optical properties about refractive index n and Abbe number ν meeting formulae (H) and (J), heat resistance >=80 deg.C in glass transition temperature, transparency >=70% in light transmittance, and density of <=2.0 g/cm<3> , and to provide an optical component constructed by including the above material composition. 1.45<n<=1.80...(H) ν>=200-100 n...(J). SOLUTION: This thermoplastic material composition has a refractive index n2 and Abbe number ν2 given by formulae (E), (F) and (G) and comprises a thermoplastic resin having specific physical properties and inorganic microparticles whose mean diameter di meets formula (C) and refractive index ni is given by formula (D). 1 nm<=di <=200 nm...(C) 1.50<=ni <=4.00...(D) 1.45<n2 <=1.80...(E) ν2 >=200-100 n2 ...(F) n2 >=n1 +0.01...(G).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性材料組成物、
及びそれを含んで構成される光学部品に関し、より詳細
には、高屈折性、低分散性(高いアッベ数)、耐熱性、
透明性、軽量性に優れる、熱可塑性を有する材料組成
物、及びそれを含んで構成される光学部品(例えば、レ
ンズ(例えば、眼鏡レンズ、光学機器用レンズ、オプト
エレクトロニクス用レンズ、レーザー用レンズ、CDピ
ックアップ用レンズ、自動車用ランプレンズ、OHP用
レンズ等)、光ファイバー、光導波路、光フィルター、
光学用接着剤、光ディスク基盤、ディスプレー基盤、コ
ーティング材、プリズム等)に関する。
The present invention relates to a thermoplastic material composition,
Further, regarding the optical component including the same, more specifically, high refractivity, low dispersion (high Abbe number), heat resistance,
Material composition having transparency and excellent lightness and having thermoplasticity, and optical components including the same (for example, lenses (for example, spectacle lenses, lenses for optical devices, lenses for optoelectronics, lenses for lasers, Lens for CD pickup, lamp lens for automobile, lens for OHP, etc.), optical fiber, optical waveguide, optical filter,
Optical adhesives, optical disc substrates, display substrates, coating materials, prisms, etc.).

【0002】[0002]

【従来の技術】近年、高度情報化社会に向けたオプトエ
レクトロニクスの研究が精力的に行われ、その実現に向
けて光学材料の研究も盛んに行われている。光通信、光
記録、光加工、光計測、光演算等、オプトエレクトロニ
クスの様々な展開を支える光学材料として、次のような
特性が求められている。すなわち、高屈折性、低分散性
(すなわち高いアッベ数)、耐熱性、透明性、無色性、
クリーン性、易成形性、軽量性、耐薬品性・耐溶剤性等
である。
2. Description of the Related Art In recent years, research into optoelectronics for an advanced information society has been vigorously carried out, and research into optical materials has been actively carried out toward its realization. The following characteristics are required as an optical material that supports various developments of optoelectronics such as optical communication, optical recording, optical processing, optical measurement, and optical calculation. That is, high refractivity, low dispersion (that is, high Abbe number), heat resistance, transparency, colorlessness,
Cleanability, easy moldability, light weight, chemical resistance, solvent resistance, etc.

【0003】これまで光学材料として、石英や光学ガラ
スなどの無機系材料が主に用いられてきた。これら無機
系材料は、優れた光学特性や耐熱性を有しているもの
の、加工性やコスト、密度が大きいなどの問題を抱えて
いる。例えば、屈折率1.70を有する光学用ガラスの
密度は約3.0g/cm3と非常に大きい。これらに対
応すべく近年、優れた光学特性と加工性、軽量性等を兼
ね備えた材料開発が進められ、有機光学材料、特に熱可
塑性を有する樹脂材料に対する期待が高まっている。熱
可塑性を有する樹脂材料は、軽量で可とう性に優れる、
電気的誘導を受けない、成形加工が容易であるなどの多
くの特徴を有し、光ファイバー、光導波路、光ディスク
基盤、光フィルター、レンズ、光学用接着剤等の用途に
向けた展開が図られている。
Until now, inorganic materials such as quartz and optical glass have been mainly used as optical materials. Although these inorganic materials have excellent optical characteristics and heat resistance, they have problems such as processability, cost, and high density. For example, the optical glass having a refractive index of 1.70 has a very high density of about 3.0 g / cm 3 . In order to meet these demands, in recent years, development of materials having excellent optical characteristics, workability, and lightness has been advanced, and expectations for organic optical materials, particularly resin materials having thermoplasticity, are increasing. The resin material having thermoplasticity is lightweight and excellent in flexibility,
It has many features such as being free from electrical induction and being easy to process, and is being developed for applications such as optical fibers, optical waveguides, optical disc substrates, optical filters, lenses, and optical adhesives. There is.

【0004】代表的な熱可塑性樹脂材料としてポリカー
ボネート樹脂があり、2,2−ビス(4−ヒドロキシフ
ェニル)プロパン(通称ビスフェノールA)を原料とし
たものは、透明性に優れているうえにガラスに比べて軽
く、耐衝撃性に優れ、溶融成形が可能であるため大量生
産が容易である等の特徴から、多くの分野において、光
学部品として応用が図られている。しかし、屈折率は
1.58程度と比較的高い値を有しているものの、屈折
率の分散性の程度を表すアッベ数が30と低く、屈折率
と分散特性とのバランスが悪く、光学部品を構成する樹
脂として、その用途が限られているのが現状である。例
えば光学部品の代表例である眼鏡レンズは、視覚機能を
考慮すると眼鏡レンズ素材のアッベ数は40以上が望ま
しいことが知られており(季刊化学総説No.39 透
明ポリマーの屈折率制御 日本化学会編、学会出版セン
ター 等)、ビスフェノールAを原料としたポリカーボ
ネート樹脂をそのまま使用しても所望の特性を得ること
は難しい。
Polycarbonate resin is a typical thermoplastic resin material, and a material using 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A) as a raw material is excellent in transparency and glass. Compared with other features, it is lightweight, has excellent impact resistance, and can be mass-molded because it can be melt-molded. Therefore, it has been applied as an optical component in many fields. However, although the refractive index has a relatively high value of about 1.58, the Abbe number, which indicates the degree of dispersion of the refractive index, is as low as 30, and the balance between the refractive index and the dispersion characteristic is poor, and the optical component At present, the use of the resin constituting the is limited. For example, it is known that the Abbe number of the spectacle lens material of the spectacle lens, which is a typical example of optical components, is preferably 40 or more in consideration of the visual function (Quarterly Chemistry Review No. 39, Refractive Index Control of Transparent Polymer, The Chemical Society of Japan. It is difficult to obtain the desired properties even if the polycarbonate resin made from bisphenol A is used as it is.

【0005】これらの問題点を解決しようとする多くの
試みがこれまでになされており、酸素を含む環から成る
特定構造を導入したポリカーボネート樹脂(特開平10
−251500等)、芳香族系と脂肪族系を共重合した
ポリカーボネート樹脂(特開2000−230044
等)、特定の脂肪族系構造を有するポリカーボネート樹
脂(特開2000−63506等)等が提案されてい
る。しかし、例えば眼鏡レンズに適用した場合に視覚機
能から必要であるアッベ数40以上を有する樹脂は数少
なく、30〜38程度のものが大半である。またアッベ
数40以上を有する樹脂も幾つか提案されているが、屈
折率は高くても1.56程度であり、高い屈折率と高い
アッベ数が望まれる用途には適用できない。例えば眼鏡
レンズであれば、屈折率1.58以上であり、かつアッ
ベ数40以上を有する樹脂が望まれている。
Many attempts have been made so far to solve these problems, and a polycarbonate resin introduced with a specific structure comprising an oxygen-containing ring (Japanese Patent Application Laid-Open No. 10-29138).
-251500), a polycarbonate resin obtained by copolymerizing an aromatic system and an aliphatic system (Japanese Patent Laid-Open No. 2000-230044).
Etc.), a polycarbonate resin having a specific aliphatic structure (Japanese Patent Laid-Open No. 2000-63506, etc.), and the like. However, for example, when it is applied to a spectacle lens, there are few resins having an Abbe number of 40 or more, which is necessary for the visual function, and most of them are about 30 to 38. Although some resins having an Abbe number of 40 or more have been proposed, the refractive index is about 1.56 at the highest, and the resin cannot be applied to applications where a high refractive index and a high Abbe number are desired. For example, for eyeglass lenses, a resin having a refractive index of 1.58 or more and an Abbe number of 40 or more is desired.

【0006】さらには、例えば光ファイバーや光導波
路、一部のレンズのように、異なる屈折率を有する複数
の材料を併用したり、屈折率に分布を有する材料の開発
も望まれている。これらの材料に対応するためには、屈
折率を任意に調節できることが不可欠となる。
Further, it is desired to use a plurality of materials having different refractive indexes together, such as an optical fiber, an optical waveguide, and some lenses, or to develop a material having a distribution of refractive indexes. In order to deal with these materials, it is essential that the refractive index can be adjusted arbitrarily.

【0007】一方において、特に眼鏡レンズを対象とし
た熱硬化性樹脂の開発が盛んに行われてきた。これまで
に多くの樹脂が上市されており、その多くは1.60以
上の高屈折率と40以上のアッベ数を併せ持った光学特
性に大変優れたものであり、これまで主流であった光学
ガラスに比べて軽量であるといった特徴を有する(季刊
化学総説No.39 透明ポリマーの屈折率制御 日本
化学会編 学会出版センター 等)。しかしながら、こ
れら全ては熱可塑性樹脂であるため、その加工に煩雑な
工程と数十時間以上の多大な時間を要するのが一般であ
り、これらは生産効率の面から非常に大きな問題となっ
ている。
On the other hand, development of a thermosetting resin for spectacle lenses has been actively conducted. Many resins have been put on the market so far, and most of them have very high optical properties with a high refractive index of 1.60 or more and an Abbe number of 40 or more. It has a characteristic that it is lighter in weight compared to (Journal of Chemistry, No. 39, Refractive Index Control of Transparent Polymers, Chemical Society of Japan, Academic Publishing Center, etc.). However, since all of them are thermoplastic resins, their processing generally requires complicated steps and tens of hours or more, which is a very big problem in terms of production efficiency. .

【0008】従って、高屈折性、低分散性(高いアッベ
数)、耐熱性、透明性、及び軽量性を併せ持ち、さらに
は屈折率を任意に制御できる熱可塑性を有する材料、お
よびそれを含んで構成される光学部品は未だ見出されて
おらず、その開発が切に望まれていた。
Therefore, a material having high refractivity, low dispersibility (high Abbe number), heat resistance, transparency, and lightness, and further having thermoplasticity capable of arbitrarily controlling the refractive index, and a material containing it The optical component to be constructed has not been found yet, and its development has been eagerly desired.

【0009】[0009]

【本発明が解決しようとする課題】本発明の目的は、上
記従来技術の問題点に鑑み、数式(H)及び(J)で
表される屈折率nおよびアッベ数νを有する優れた光学
特性、ガラス転移温度80℃以上の耐熱性、光線透
過率70%以上の透明性、密度2.0g/cm3以下
の軽量性、及び熱可塑性及び/または溶融成形性を併
せ持つ材料組成物、及びそれを含んで構成される光学部
品を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, an object of the present invention is to provide excellent optical characteristics having a refractive index n and an Abbe number ν represented by formulas (H) and (J). A material composition having heat resistance at a glass transition temperature of 80 ° C. or more, transparency at a light transmittance of 70% or more, light weight at a density of 2.0 g / cm 3 or less, and thermoplasticity and / or melt moldability; It is to provide an optical component configured to include.

【0010】1.45<n≦1.80 (H) ν≧200−100n (J)1.45 <n ≦ 1.80 (H) ν ≧ 200-100n (J)

【0011】[0011]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意検討を重ねた結果、特定の光学特
性を有する熱可塑性樹脂と、特定の平均粒子直径を有す
る無機微粒子とから成る材料組成物が、高屈折性、低分
散性(高いアッベ数)、耐熱性、透明性、及び軽量性を
併せ持ち、さらには屈折率を任意に制御できる熱可塑性
を有する材料組成物であり、それを含んで構成される光
学部品が、高屈折性、低分散性(高いアッベ数)、耐熱
性、透明性、及び軽量性を併せ持ち、成形加工性に優れ
ることを見い出し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors have found that a thermoplastic resin having specific optical characteristics, and an inorganic fine particle having a specific average particle diameter are used. Is a material composition having high refractivity, low dispersibility (high Abbe number), heat resistance, transparency, and light weight, and further having thermoplasticity capable of arbitrarily controlling the refractive index. The present invention has been completed by discovering that an optical component including the same has high refractivity, low dispersion (high Abbe number), heat resistance, transparency, and light weight, and is excellent in moldability. did.

【0012】すなわち、本発明は、以下の[1]〜[1
3]に記載した事項により特定される。 [1]数式(A)及び(B)で示される屈折率n1及び
アッベ数ν1を有する熱可塑性樹脂100重量部と、平
均粒子直径diが数式(C)で示され、かつ屈折率ni
数式(D)で示される無機微粒子1〜200重量部とか
ら成る、数式(E)、(F)及び(G)を満たす屈折率
2及びアッベ数ν2を有する熱可塑性材料組成物。
That is, the present invention provides the following [1] to [1]
3]. [1] 100 parts by weight of a thermoplastic resin having a refractive index n 1 and an Abbe number ν 1 shown by the mathematical formulas (A) and (B), and an average particle diameter d i are shown by the mathematical formula (C), and the refractive index is n i is composed of the inorganic fine particles 1 to 200 parts by weight represented by the formula (D), formula (E), (F) and the thermoplastic material composition with a refractive index n 2 and an Abbe number [nu 2 satisfy (G) object.

【0013】1.45≦n1≦1.65 (A) ν1≧195−100n1 (B) 1nm≦di≦200nm (C) 1.50≦ni≦4.00 (D) 1.45<n2≦1.80 (E) ν2≧200−100n2 (F) n2≧n1+0.01 (G)1.45 ≦ n 1 ≦ 1.65 (A) ν 1 ≧ 195-100n 1 (B) 1 nm ≦ d i ≦ 200 nm (C) 1.50 ≦ n i ≦ 4.00 (D) 1. 45 <n 2 ≦ 1.80 (E) ν 2 ≧ 200-100n 2 (F) n 2 ≧ n 1 +0.01 (G)

【0014】[2]熱可塑性樹脂が、溶融成形可能な熱
可塑性樹脂であり、熱可塑性材料組成物が、溶融成形可
能な熱可塑性材料組成物である、[1]記載の熱可塑性
材料組成物。
[2] The thermoplastic material composition according to [1], wherein the thermoplastic resin is a melt-moldable thermoplastic resin, and the thermoplastic material composition is a melt-moldable thermoplastic material composition. .

【0015】[3]熱可塑性樹脂が、アクリル樹脂、環
状オレフィン樹脂、環状脂肪族鎖を有するポリカーボネ
ート樹脂、環状脂肪族鎖を有するポリエステル樹脂、環
状脂肪族鎖を有するポリエーテル樹脂、環状脂肪族鎖を
有するポリアミド樹脂、または環状脂肪族鎖を有するポ
リイミド樹脂である[1]ないし[2]記載の熱可塑性
材料組成物。
[3] The thermoplastic resin is an acrylic resin, a cycloolefin resin, a polycarbonate resin having a cycloaliphatic chain, a polyester resin having a cycloaliphatic chain, a polyether resin having a cycloaliphatic chain, a cycloaliphatic chain. The thermoplastic material composition according to the above [1] or [2], which is a polyamide resin having ## STR4 ## or a polyimide resin having a cyclic aliphatic chain.

【0016】[4]酸化物微粒子、硫化物微粒子、セレ
ン化物微粒子、またはテルル化物微粒子から選ばれる1
種類以上の無機微粒子を含む[1]ないし[3]記載の
熱可塑性材料組成物。
[4] 1 selected from oxide fine particles, sulfide fine particles, selenide fine particles, or telluride fine particles
The thermoplastic material composition according to [1] to [3], which comprises at least one kind of inorganic fine particles.

【0017】[5]酸化物微粒子として、酸化チタン微
粒子または/および酸化亜鉛を含む[4]記載の無機微
粒子。
[5] The inorganic fine particles according to [4], which contain titanium oxide fine particles and / or zinc oxide as the oxide fine particles.

【0018】[6]硫化物微粒子として、硫化亜鉛微粒
子を含む[4]記載の無機微粒子。
[6] The inorganic fine particles according to [4], which contain zinc sulfide fine particles as the sulfide fine particles.

【0019】[7][1]〜[4]記載の熱可塑性材料
組成物を含んで構成される光学部品。
[7] An optical component comprising the thermoplastic material composition as described in [1] to [4].

【0020】[8]光学部品が、レンズであることを特
徴とする[7]記載の光学部品。
[8] The optical component described in [7], wherein the optical component is a lens.

【0021】[9]レンズが、眼鏡レンズ、光学機器用
レンズ、オプトエレクトロニクス用レンズ、レーザー用
レンズ、CDピックアップ用レンズ、自動車用ランプレ
ンズまたはOHP用レンズであることを特徴とする
[8]記載のレンズ。
[9] The lens is a spectacle lens, a lens for optical equipment, a lens for optoelectronics, a lens for laser, a lens for CD pickup, a lamp lens for automobile or a lens for OHP. Lens.

【0022】[10]光学部品が、光ファイバーである
ことを特徴とする[7]記載の光学部品。
[10] The optical component according to [7], wherein the optical component is an optical fiber.

【0023】[11]光学部品が、光導波路であること
を特徴とする[7]記載の光学部品。
[11] The optical component described in [7], wherein the optical component is an optical waveguide.

【0024】[12]光学部品が、光フィルターである
ことを特徴とする[7]記載の光学部品。
[12] The optical component according to [7], wherein the optical component is an optical filter.

【0025】[13]光学部品が、光学用接着剤である
ことを特徴とする[7]記載の光学部品。
[13] The optical component according to [7], which is an optical adhesive.

【0026】[0026]

【発明の実施の形態】本発明の熱可塑性材料組成物は、
数式(A)及び(B)で示される屈折率n1及びアッベ
数ν1を有する熱可塑性樹脂100重量部と、平均粒子
直径diが数式(C)で示され、かつ屈折率niが数式
(D)で示される無機微粒子1〜200重量部とから成
る、数式(E)、(F)及び(G)を満たす屈折率n2
及びアッベ数ν2を有する熱可塑性材料組成物である。
BEST MODE FOR CARRYING OUT THE INVENTION The thermoplastic material composition of the present invention comprises
100 parts by weight of the thermoplastic resin having the refractive index n 1 and the Abbe number ν 1 shown by the formulas (A) and (B), the average particle diameter d i are shown by the formula (C), and the refractive index n i is Refractive index n 2 consisting of 1 to 200 parts by weight of the inorganic fine particles represented by the formula (D) and satisfying the formulas (E), (F) and (G).
And a thermoplastic material composition having an Abbe number ν 2 .

【0027】1.45≦n1≦1.65 (A) ν1≧195−100n1 (B) 1nm≦di≦200nm (C) 1.50≦ni≦4.00 (D) 1.45<n2≦1.80 (E) ν2≧200−100n2 (F) n2≧n1+0.01 (G)1.45 ≦ n 1 ≦ 1.65 (A) ν 1 ≧ 195-100n 1 (B) 1 nm ≦ d i ≦ 200 nm (C) 1.50 ≦ n i ≦ 4.00 (D) 1. 45 <n 2 ≦ 1.80 (E) ν 2 ≧ 200-100n 2 (F) n 2 ≧ n 1 +0.01 (G)

【0028】本発明において用いる熱可塑性樹脂は、数
式(A)及び(B)で示される屈折率n1及びアッベ数
ν1を有する熱可塑性樹脂である。屈折率n1及びアッベ
数ν1が、数式(A)及び(B)を満たさない熱可塑性
樹脂を用いても、得られる熱可塑性材料組成物の屈折率
2及びアッベ数ν2が、数式(E)、(F)及び(G)
を満たさず、本発明の効果を十分に発揮できないおそれ
がある。
The thermoplastic resin used in the present invention is a thermoplastic resin having a refractive index n 1 and an Abbe's number ν 1 shown in the formulas (A) and (B). Even if a thermoplastic resin whose refractive index n 1 and Abbe number ν 1 do not satisfy the mathematical formulas (A) and (B) is used, the refractive index n 2 and Abbe number ν 2 of the obtained thermoplastic material composition are (E), (F) and (G)
May not be satisfied, and the effect of the present invention may not be sufficiently exhibited.

【0029】また、本発明における屈折率(n、ni
2)とは、「季刊化学総説No.39 透明ポリマー
の屈折率制御 日本化学会編、学会出版センター」に記
載されているとおり、588nmの波長における屈折率
を示す。また本発明におけるアッベ数(ν、ν1、ν2
とは、「季刊化学総説No.39 透明ポリマーの屈折
率制御 日本化学会編、学会出版センター」に記載され
ているとおり、数式(K)で示される値である。但し数
式(K)において、nd、nf、ncはそれぞれ、58
8nm、486nm、656nmにおける屈折率を示
す。
Further, in the present invention, the refractive index (n, ni ,
n 2 ) means a refractive index at a wavelength of 588 nm as described in “Quarterly Chemical Review No. 39, Refractive Index Control of Transparent Polymer, edited by The Chemical Society of Japan, Academic Publishing Center”. The Abbe number (ν, ν 1 , ν 2 ) in the present invention
Is a value represented by a mathematical formula (K) as described in "Quarterly Chemistry Review No. 39, Refractive Index Control of Transparent Polymer, edited by The Chemical Society of Japan, Academic Publishing Center". However, in the mathematical expression (K), nd, nf, and nc are each 58
The refractive index at 8 nm, 486 nm, and 656 nm is shown.

【0030】 ν=(nd−1)/(nf−nc) (K)[0030] ν = (nd-1) / (nf-nc) (K)

【0031】本発明において用いる熱可塑性樹脂は、ガ
ラス転移温度が80℃以上400℃以下であることが好
ましく、100℃以上300℃以下であることがより好
ましい。ガラス転移温度が80℃未満であると、十分な
耐熱性が得られない恐れがあり、またガラス転移温度が
400℃を超えると、成形加工する際に高温が必要とな
り、プロセス的に不利となるばかりでなく、材料が変色
する等の問題が生じる恐れがある。
The thermoplastic resin used in the present invention preferably has a glass transition temperature of 80 ° C. or higher and 400 ° C. or lower, and more preferably 100 ° C. or higher and 300 ° C. or lower. If the glass transition temperature is less than 80 ° C, sufficient heat resistance may not be obtained, and if the glass transition temperature exceeds 400 ° C, a high temperature is required for molding, which is a process disadvantage. Not only that, there is a possibility that problems such as discoloration of the material may occur.

【0032】本発明において用いる熱可塑性樹脂は、光
線透過率が70%以上であることが好ましく、80%以
上であることがより好ましい。光線透過率が70%未満
であると、得られる熱可塑性材料組成物の光線透過率が
70%未満となる恐れがある。なお本発明における光線
透過率とは、樹脂を加熱成形して厚さ3.2mmの基板
を作成し、ASTM D1003に従って得られる値で
ある。
The thermoplastic resin used in the present invention preferably has a light transmittance of 70% or more, more preferably 80% or more. When the light transmittance is less than 70%, the resulting thermoplastic material composition may have a light transmittance of less than 70%. The light transmittance in the present invention is a value obtained according to ASTM D1003 by forming a substrate having a thickness of 3.2 mm by heat molding a resin.

【0033】本発明において用いる熱可塑性樹脂は、密
度が2.0g/cm3以下であることが好ましく、1.
5g/cm3以下であることがより好ましい。密度が
2.0g/cm3を超えると、得られる熱可塑性材料組
成物の密度が2.0g/cm3を超える恐れがある。
The thermoplastic resin used in the present invention preferably has a density of 2.0 g / cm 3 or less.
It is more preferably 5 g / cm 3 or less. When the density exceeds 2.0 g / cm 3 , the density of the thermoplastic material composition obtained may exceed 2.0 g / cm 3 .

【0034】本発明において用いる熱可塑性樹脂とし
て、溶融成形が可能な熱可塑性樹脂を用いることによ
り、本発明の熱可塑性材料組成物として、溶融成形が可
能な熱可塑性材料組成物を得ることができる。
By using a melt-moldable thermoplastic resin as the thermoplastic resin used in the present invention, a melt-moldable thermoplastic material composition can be obtained as the thermoplastic material composition of the present invention. .

【0035】本発明における熱可塑性樹脂とは、ある温
度範囲で加熱により軟化し、その軟化した状態で成形や
押し出し等により製品加工ができることを示す。具体的
には、例えば、加熱状態でプレスすることにより、0.
1〜5000μm程度の厚さを有するフィルムを成形で
きる性能を有する。
The thermoplastic resin in the present invention means that it can be softened by heating within a certain temperature range and that the product can be processed by molding or extrusion in the softened state. Specifically, for example, by pressing in a heated state,
It has the ability to form a film having a thickness of about 1 to 5000 μm.

【0036】また、本発明における溶融成形が可能な熱
可塑性樹脂とは、熱的に安定な温度域で溶融成形が可能
な溶融粘度を有しており、押し出しや射出等により成形
加工ができることを示す。具体的には、例えば、空気中
において加熱により樹脂の5重量%が減少する温度、す
なわち5%重量減少温度に比べ、1〜100パスカル・
秒程度の溶融粘度を有する温度が30℃以上、好ましく
は50℃以上低いことをいう。溶融成形性を有すること
により、押し出し成形、射出成形、真空成形、ブロー成
形、圧縮成型、ブロー成形、カレンダー成形、積層成形
等が可能となり、ディスク、ファイバー等の様々な成形
体を得ることができる。
The thermoplastic resin capable of being melt-molded in the present invention has a melt viscosity capable of being melt-molded in a thermally stable temperature range and can be molded by extrusion or injection. Show. Specifically, for example, as compared with a temperature at which 5% by weight of the resin is reduced by heating in air, that is, a 5% weight reduction temperature, 1 to 100 Pascal.
It means that the temperature having a melt viscosity of about 30 seconds is lower than 30 ° C, preferably lower than 50 ° C. By having melt moldability, extrusion molding, injection molding, vacuum molding, blow molding, compression molding, blow molding, calender molding, laminate molding and the like are possible, and various molded products such as disks and fibers can be obtained. .

【0037】本発明において用いる熱可塑性樹脂は、上
述の光学特性(屈折率及びアッベ数)を満たすものであ
り、より好ましくはさらに、上述のガラス転移温度、光
線透過率、密度、及び樹脂加工性(熱可塑性及び/また
は溶融成形性)をも満たす樹脂である。例えば、アクリ
ル樹脂、環状脂肪族鎖を有するポリカーボネート樹脂、
環状脂肪族鎖を有するポリエステル樹脂、環状脂肪族鎖
を有するポリエーテル樹脂、環状脂肪族鎖を有するポリ
アミド樹脂、または環状脂肪族鎖を有するポリイミド樹
脂等が挙げられる。
The thermoplastic resin used in the present invention satisfies the above-mentioned optical characteristics (refractive index and Abbe number), and more preferably, further has the above-mentioned glass transition temperature, light transmittance, density and resin processability. It is a resin that also satisfies (thermoplasticity and / or melt moldability). For example, acrylic resin, polycarbonate resin having a cyclic aliphatic chain,
Examples thereof include a polyester resin having a cyclic aliphatic chain, a polyether resin having a cyclic aliphatic chain, a polyamide resin having a cyclic aliphatic chain, and a polyimide resin having a cyclic aliphatic chain.

【0038】より具体的には、例えば、第1表(表1)
の化学式(1)〜(14)で示される構造骨格を有する
樹脂を挙げることができるが、これらに限定されるもの
ではない。
More specifically, for example, Table 1 (Table 1)
The resin having the structural skeleton represented by the chemical formulas (1) to (14) can be mentioned, but the invention is not limited thereto.

【0039】[0039]

【表1】 [Table 1]

【0040】また、環状脂肪族鎖の一部を芳香環に置き
換えた共重合体を用いることもでき、硫黄を結合鎖など
に一部含んだチオカーボネートやチオエステル、チオエ
ーテル等も好適に用いることができる。なお、芳香環や
硫黄はアッベ数の低減を伴うことがあるので、本発明で
提示している熱可塑性樹脂の光学特性を外れない範囲で
選択することが重要である。
Further, it is also possible to use a copolymer in which a part of the cyclic aliphatic chain is replaced with an aromatic ring, and thiocarbonates, thioesters, thioethers and the like containing a part of sulfur in the bonding chain are also preferably used. it can. Since aromatic rings and sulfur may be accompanied by a decrease in Abbe's number, it is important to select them within a range not deviating from the optical characteristics of the thermoplastic resin presented in the present invention.

【0041】本発明において用いる熱可塑性樹脂の製造
方法は、特に限定されるものではなく、公知のいずれの
方法を用いることもできる。また樹脂に含まれる不純物
の種類及び量についても、特に制限されるものではない
が、用途によっては不純物が本発明の効果を損なう恐れ
があるので、総不純物量は1重量%以下、特にナトリウ
ムや塩素などのイオン性不純物は0.5重量%以下であ
ることが望ましい。
The method for producing the thermoplastic resin used in the present invention is not particularly limited, and any known method can be used. The type and amount of impurities contained in the resin are not particularly limited, but the impurities may impair the effects of the present invention depending on the application. Therefore, the total amount of impurities is 1% by weight or less, especially sodium or It is desirable that the ionic impurities such as chlorine be 0.5% by weight or less.

【0042】本発明において用いる熱可塑性樹脂の分子
量は、特に限定されるものではなく、用途や加工方法に
応じ、任意の分子量とすることができるが、成形加工性
を勘案すると、樹脂を0.5g/100ミリリットルの
濃度で溶解可能な溶剤に溶解した後の35℃で測定した
対数粘度の値が、0.1〜3.0デシリットル/gであ
ることが好ましい。
The molecular weight of the thermoplastic resin used in the present invention is not particularly limited, and may be any molecular weight depending on the application and the processing method. The value of logarithmic viscosity measured at 35 ° C. after dissolving in a solvent capable of dissolving at a concentration of 5 g / 100 ml is preferably 0.1 to 3.0 deciliter / g.

【0043】また、着色の抑制や溶融成形における流動
性の改善などを目的として、メタノールやエタノールな
どのモノアルコール類、フェノールやターシャリーブチ
ルフェノールといった芳香族モノヒドロキシ化合物など
の末端封止用化合物を併用してもよい。
For the purpose of suppressing coloration and improving fluidity in melt molding, monoalcohols such as methanol and ethanol, and end-capping compounds such as aromatic monohydroxy compounds such as phenol and tertiary butylphenol are used together. You may.

【0044】本発明の熱可塑性樹脂は、構成単位の繰り
返しに特に制限はなく、交互構造、ランダム構造、ブロ
ック構造等のいずれの場合でも良い。また、通常用いら
れる分子形状は線状であるが、分岐している形状を用い
ても良い。また、グラフト状でも良い。
The thermoplastic resin of the present invention is not particularly limited in the repeating of the constitutional unit, and may have an alternating structure, a random structure, a block structure or the like. The molecular shape that is usually used is linear, but a branched shape may be used. Further, it may be in a graft form.

【0045】本発明において用いる無機微粒子は、平均
粒子直径diが数式(C)で示される無機微粒子であ
る。平均粒子直径diが1nm未満であると、得られる
熱可塑性材料組成物の屈折率n2及びアッベ数ν2が、数
式(E)、(F)及び(G)で示される範囲を外れる恐
れがある。また平均粒子直径diが200nmを超える
と、得られる熱可塑性材料組成物が濁るなどして透明性
が低下し、光線透過率が70%未満となる恐れがある。
The inorganic fine particles used in the present invention are inorganic fine particles whose average particle diameter d i is represented by the formula (C). If the average particle diameter d i is less than 1 nm, the refractive index n 2 and the Abbe number ν 2 of the obtained thermoplastic material composition may be out of the ranges represented by the formulas (E), (F) and (G). There is. If the average particle diameter d i exceeds 200 nm, the resulting thermoplastic material composition may become turbid and its transparency may deteriorate, resulting in a light transmittance of less than 70%.

【0046】1nm≦di≦200nm (C)1 nm ≦ d i ≦ 200 nm (C)

【0047】本発明において用いる無機微粒子の形状
は、特に限定されるものではないが、好適には球状の微
粒子が用いられる。また、粒子径の分布に関しても特に
制限されるものではないが、本発明の効果をより効率よ
く発現させるためには、広範な分布を有するものより
も、比較的狭い分布を持つものが好適に用いられる。
The shape of the inorganic fine particles used in the present invention is not particularly limited, but spherical fine particles are preferably used. Further, the particle size distribution is not particularly limited, but in order to more efficiently bring out the effect of the present invention, one having a relatively narrow distribution is preferable to one having a wide distribution. Used.

【0048】本発明において用いる無機微粒子は、屈折
率niが数式(D)で示される無機微粒子である。屈折
率niが数式(D)で示される範囲を外れると、得られ
る熱可塑性材料組成物の屈折率n2及びアッベ数ν2が、
数式(E)、(F)及び(G)で示される範囲を外れる
恐れがある。
The inorganic fine particles used in the present invention are inorganic fine particles whose refractive index n i is represented by the formula (D). When the refractive index n i is out of the range represented by the formula (D), the refractive index n 2 and the Abbe number ν 2 of the obtained thermoplastic material composition are
There is a possibility that it may be out of the range shown by the mathematical expressions (E), (F), and (G).

【0049】1.50≦ni≦4.00 (D)1.50 ≦ n i ≦ 4.00 (D)

【0050】本発明において用いる無機微粒子は、上述
の平均粒子直径及び屈折率を満たすものであり、例え
ば、酸化物微粒子、硫化物微粒子、セレン化物微粒子、
テルル化物微粒子等が挙げられる。より具体的には、例
えば、酸化チタン微粒子、酸化亜鉛微粒子、硫化亜鉛微
粒子等を挙げることができるが、これらに限定されるも
のではない。これらの微粒子は、1種類の無機微粒子を
用いてもよく、また複数種類の無機微粒子を併用しても
よい。
The inorganic fine particles used in the present invention satisfy the above-mentioned average particle diameter and refractive index. For example, oxide fine particles, sulfide fine particles, selenide fine particles,
Examples thereof include telluride fine particles. More specifically, for example, titanium oxide fine particles, zinc oxide fine particles, zinc sulfide fine particles and the like can be mentioned, but the present invention is not limited thereto. As these fine particles, one kind of inorganic fine particles may be used, or plural kinds of inorganic fine particles may be used in combination.

【0051】本発明において用いる無機微粒子の製造方
法は、特に限定されるものではなく、公知のいずれの方
法も用いることができる。例えば、ハロゲン化金属やア
ルコキシ金属を原料に用い、水を含有する反応系におい
て加水分解することにより、所望の酸化物微粒子を得る
ことができる。この際、微粒子の安定化のために有機酸
や有機アミンなどを併用する方法も用いられる。より具
体的には、例えば、二酸化チタン微粒子の場合、ジャー
ナル・オブ・ケミカルエンジニアリング・オブ・ジャパ
ン第1巻1号21−28頁(1998年)や、硫化亜鉛
の場合は、ジャーナル・オブ・フィジカルケミストリー
第100巻468−471頁(1996年)に記載され
た公知の方法を用いることができる。例えば、これらの
方法に従えば、平均粒子直径5nmの酸化チタンはチタ
ニウムテトライソプロポキサイドや四塩化チタンを原料
として、適当な溶媒中で加水分解させる際に適当な表面
修飾剤を添加することにより容易に製造することができ
る。また平均粒子直径40nmの硫化亜鉛はジメチル亜
鉛や塩化亜鉛を原料とし、硫化水素あるいは硫化ナトリ
ウムなどで硫化する際に、表面修飾剤を添加することに
より製造することができる。
The method for producing the inorganic fine particles used in the present invention is not particularly limited, and any known method can be used. For example, a desired oxide fine particle can be obtained by hydrolyzing a metal halide or an alkoxy metal as a raw material in a reaction system containing water. At this time, a method of using an organic acid, an organic amine, or the like in combination for stabilizing the fine particles is also used. More specifically, for example, in the case of titanium dioxide fine particles, Journal of Chemical Engineering of Japan Vol. 1, No. 1, pp. 21-28 (1998), and in the case of zinc sulfide, Journal of Physical Known methods described in Chemistry Vol. 100, pages 468-471 (1996) can be used. For example, according to these methods, titanium oxide having an average particle diameter of 5 nm is prepared by adding titanium tetraisopropoxide or titanium tetrachloride as a raw material and adding a suitable surface modifier when hydrolyzing in a suitable solvent. It can be easily manufactured. Zinc sulfide having an average particle diameter of 40 nm can be produced by using dimethyl zinc or zinc chloride as a raw material and adding a surface modifier when sulfiding with hydrogen sulfide or sodium sulfide.

【0052】本発明における熱可塑性材料組成物は、数
式(A)及び(B)で示される屈折率n1及びアッベ数
ν1を有する熱可塑性樹脂100重量部と、平均粒子直
径diが数式(C)で示され、かつ屈折率niが数式
(D)で示される無機微粒子1〜200重量部から成
り、より好適には、熱可塑性樹脂100重量部と無機微
粒子5〜150重量部から成る。熱可塑性樹脂100重
量部に対して無機微粒子が1重量部未満であると、得ら
れる熱可塑性材料組成物の屈折率n2及びアッベ数ν
2が、数式(E)、(F)及び(G)で示される範囲を
外れる恐れがある。また、無機微粒子が200重量部を
超えると、得られる熱可塑性材料組成物の屈折率n 2
びアッベ数ν2が、数式(E)、(F)及び(G)で示
される範囲を外れる恐れがあるばかりでなく、材料組成
物の熱可塑性という特性が損なわれる恐れがある。
The thermoplastic material composition in the present invention has a number of
Refractive index n represented by the formulas (A) and (B)1And Abbe number
ν1100 parts by weight of a thermoplastic resin having
Diameter diIs represented by Formula (C), and the refractive index niIs a mathematical formula
1 to 200 parts by weight of the inorganic fine particles represented by (D)
More preferably, 100 parts by weight of the thermoplastic resin and the inorganic fine particles are used.
It comprises 5 to 150 parts by weight of particles. 100-ply thermoplastic resin
It was obtained that the amount of the inorganic fine particles was less than 1 part by weight based on the parts by weight.
Refractive index n of thermoplastic material composition2And Abbe number ν
2Is the range represented by the formulas (E), (F) and (G).
It may come off. In addition, 200 parts by weight of inorganic fine particles
When it exceeds, the refractive index n of the obtained thermoplastic material composition 2Over
And Abbe number ν2Are represented by the mathematical formulas (E), (F) and (G).
The material composition may not only fall outside the range
The thermoplastic property of the product may be impaired.

【0053】1.45≦n1≦1.65 (A) ν1≧195−100n1 (B) 1nm≦di≦200nm (C) 1.50≦ni≦4.00 (D) 1.45<n2≦1.80 (E) ν2≧200−100n2 (F) n2≧n1+0.01 (G)1.45 ≦ n 1 ≦ 1.65 (A) ν 1 ≧ 195-100n 1 (B) 1 nm ≦ d i ≦ 200 nm (C) 1.50 ≦ n i ≦ 4.00 (D) 1. 45 <n 2 ≦ 1.80 (E) ν 2 ≧ 200-100n 2 (F) n 2 ≧ n 1 +0.01 (G)

【0054】本発明における熱可塑性材料組成物は、熱
可塑性樹脂と無機微粒子から成るが、その作成方法は特
に限定されるものではない。すなわち、熱可塑性樹脂と
無機微粒子をそれぞれ独立して作成し、その後に両者を
混合させる方法、予め作成した無機微粒子が存在する条
件で熱可塑性樹脂を作成する方法、予め作成した熱可塑
性樹脂が存在する条件で無機微粒子を作成する方法、熱
可塑性樹脂と無機微粒子の両者を同時に作成させる方法
など、いずれの方法をも採用できる。具体的には、例え
ば、熱可塑性樹脂が溶解した溶液と、無機微粒子が均一
に分散した分散液の二液を均一に混合し、熱可塑性樹脂
に対して溶解性が乏しい溶液中に打ち合わせることによ
り、目的とする材料組成物を得る方法を好適に挙げるこ
とができるが、これに限定されるものではない。
The thermoplastic material composition of the present invention comprises a thermoplastic resin and inorganic fine particles, but the method for preparing the composition is not particularly limited. That is, the thermoplastic resin and the inorganic fine particles are independently prepared, and then the two are mixed, a method of preparing the thermoplastic resin under the condition that the preliminarily prepared inorganic fine particles are present, and the preliminarily prepared thermoplastic resin is present. Any method such as a method of producing inorganic fine particles under the conditions described above, a method of simultaneously producing both a thermoplastic resin and inorganic fine particles can be adopted. Specifically, for example, a solution in which a thermoplastic resin is dissolved and a dispersion liquid in which inorganic fine particles are uniformly dispersed are uniformly mixed, and a meeting is performed in a solution in which the thermoplastic resin has poor solubility. Therefore, the method for obtaining the desired material composition can be preferably mentioned, but the method is not limited thereto.

【0055】本発明における熱可塑性材料組成物におい
て、熱可塑性樹脂と無機微粒子の混合の程度は特に限定
されるものではないが、本発明の効果をより効率よく発
現させるためには、均一に混合していることが望まし
い。混合の程度が不十分の場合には、特に屈折率やアッ
ベ数、光線透過率などの光学特性に影響を及ぼすことが
懸念され、また熱可塑性や溶融成形性などの樹脂加工性
にも悪影響する恐れがある。混合の程度は、その作成方
法に影響されることが考えられ、用いる熱可塑性樹脂及
び無機微粒子の特性を十分に勘案して、方法を選択する
ことが重要である。熱可塑性樹脂と無機微粒子の両者が
より均一に混合するために、熱可塑性樹脂と無機微粒子
を直接結合させる方法等も、本発明において好適に用い
ることができる。
In the thermoplastic material composition of the present invention, the mixing degree of the thermoplastic resin and the inorganic fine particles is not particularly limited, but in order to bring out the effect of the present invention more efficiently, they are uniformly mixed. Is desirable. If the degree of mixing is insufficient, there is concern that it may affect the optical properties such as refractive index, Abbe number, light transmittance, etc., and it may also adversely affect resin processability such as thermoplasticity and melt moldability. There is a fear. It is considered that the degree of mixing is influenced by the preparation method, and it is important to select the method by fully considering the characteristics of the thermoplastic resin and the inorganic fine particles used. In order to mix both the thermoplastic resin and the inorganic fine particles more uniformly, a method of directly bonding the thermoplastic resin and the inorganic fine particles, etc., can also be preferably used in the present invention.

【0056】本発明の熱可塑性材料組成物は、数式
(E)、(F)及び(G)を満たす屈折率n2及びアッ
ベ数ν2を有する光学的に優れた材料組成物であり、さ
らには熱可塑性及び/または射出成形性を有するため
に、成形加工性に非常に優れた材料組成物である。この
優れた光学特性と成形加工性を併せ持った材料は、これ
までに開示されている材料では達成することができなか
った特性であり、特定の熱可塑性樹脂と特定の無機微粒
子から成ることが、この特性に寄与していることが考え
られる。
The thermoplastic material composition of the present invention is an optically excellent material composition having a refractive index n 2 and an Abbe number ν 2 satisfying the formulas (E), (F) and (G). Is a material composition having very excellent moldability because it has thermoplasticity and / or injection moldability. This material having both excellent optical properties and moldability is a property that cannot be achieved by the materials disclosed so far, and is composed of a specific thermoplastic resin and specific inorganic fine particles, It is considered that it contributes to this characteristic.

【0057】1.45<n2≦1.80 (E) ν2≧200−100n2 (F) n2≧n1+0.01 (G)1.45 <n 2 ≦ 1.80 (E) ν 2 ≧ 200-100n 2 (F) n 2 ≧ n 1 +0.01 (G)

【0058】本発明の熱可塑性材料組成物は、数式
(H)及び(J)で表される屈折率nおよびアッベ数ν
を有する優れた光学特性、ガラス転移温度80℃以上
の耐熱性、光線透過率70%以上の透明性、密度
2.0g/cm3以下の軽量性、成形加工性を併せ持
ち、これらの優れた性能を損なうことなく、さらに屈折
率nを数式(H)で表されるの範囲で任意に調節ができ
る。屈折率の調節は、用いる熱可塑性樹脂と無機微粒子
の構成比を調節すること等により、精度よく調節するこ
とができる。
The thermoplastic material composition of the present invention has a refractive index n and an Abbe number ν represented by the formulas (H) and (J).
With excellent optical properties, glass transition temperature of 80 ° C or more, heat resistance of 70% or more of light transmittance, lightness of 2.0 g / cm 3 or less of density, and moldability, these excellent properties are obtained. Further, the refractive index n can be arbitrarily adjusted within the range represented by the formula (H) without deteriorating. The refractive index can be adjusted accurately by adjusting the composition ratio of the thermoplastic resin and the inorganic fine particles to be used.

【0059】1.45<n≦1.80 (H) ν≧200−100n (J)1.45 <n ≦ 1.80 (H) ν ≧ 200-100n (J)

【0060】本発明の熱可塑性材料組成物は、高屈折
性、低分散性(高いアッベ数)、耐熱性、光線透過性、
軽量性、成形加工性を併せ持ち、さらには屈折率を任意
に調節できる、光学特性に優れた熱可塑性材料組成物で
あり、光学用部品に好適に使用できる。
The thermoplastic material composition of the present invention has high refractivity, low dispersibility (high Abbe number), heat resistance, light transmittance,
It is a thermoplastic material composition that has both lightness and moldability, and that has a refractive index that can be adjusted as desired, and that has excellent optical properties, and can be suitably used for optical parts.

【0061】本発明の熱可塑性材料組成物を含んで構成
される光学部品に特に制限はなく、例えば、部品の一部
あるいは全部に使用することができ、高屈折性と低分散
性が必要とされる部品、高い透明性を必要とされる部
品、あるいは透明性と高屈折性を必要とされる部品等が
挙げられる。また、任意に屈折率を調節できるため、例
えば光ファイバーや光導波路、一部のレンズのように、
異なる屈折率を併用したり、屈折率に分布を必要とする
光学用部品にも好適に用いることができる。より具体的
には、例えば、レンズ(例えば、眼鏡レンズ、光学機器
用レンズ、オプトエレクトロニクス用レンズ、レーザー
用レンズ、CDピックアップ用レンズ、自動車用ランプ
レンズ、OHP用レンズ等)、光ファイバー、光導波
路、光フィルター、光学用接着剤、光ディスク基盤、デ
ィスプレー基盤、コーティング材、プリズム等が挙げら
れる。
There is no particular limitation on the optical component formed by including the thermoplastic material composition of the present invention. For example, it can be used for a part or the whole of the component, and high refractive index and low dispersibility are required. Parts, parts requiring high transparency, parts requiring transparency and high refractivity, and the like. Also, because the refractive index can be adjusted arbitrarily, for example, like optical fibers and optical waveguides, some lenses,
It can also be suitably used for optical components that use different refractive indexes together or that require a refractive index distribution. More specifically, for example, lenses (for example, eyeglass lenses, lenses for optical devices, lenses for optoelectronics, lenses for lasers, lenses for CD pickups, lamp lenses for automobiles, OHP lenses, etc.), optical fibers, optical waveguides, Examples include optical filters, optical adhesives, optical disk substrates, display substrates, coating materials, prisms, and the like.

【0062】本発明の熱可塑性材料組成物は、原料に溶
融成形可能な熱可塑性樹脂を用いることにより、溶融成
形性を有するようになるため、従来用いられている熱硬
化性樹脂に比べ、これら上述の光学部品を効率よく製造
することができる。
The thermoplastic material composition of the present invention becomes melt-moldable by using a melt-moldable thermoplastic resin as a raw material, and therefore, compared with conventionally used thermosetting resins, The optical component described above can be efficiently manufactured.

【0063】[0063]

【実施例】以下、本発明を実施例により詳細に説明す
る。尚、実施例中の熱可塑性樹脂、無機微粒子、熱可塑
性材料組成物等の物性及び光学特性は以下の方法により
測定した。 対数粘度η:熱可塑性樹脂を、その樹脂が溶解可能な
溶媒(例えばクロロホルム、1−メチル−2−ピロリド
ン、ジメチルホルムアミド、オルト−ジクロロベンゼ
ン、クレゾール等)に、0.5g/100ミリリットル
の濃度で溶解した後、35℃において測定した。 屈折率n及びアッベ数ν:通常の熱プレス機を用いて
厚さ約0.1〜1mmの板上サンプルを作成し、アッベ
屈折計(アタゴ社DR−M2)により測定した。 ガラス転移温度Tg:DSC(島津DT−40シリー
ズ,DSC−41M)により測定した。 光線透過率:材料組成物を加熱成形して厚さ3.2m
mの基板を作成し、ASTM D1003に従って測定
した。 5%重量減少温度Td5:空気中でDTA−TG(島
津DT−40シリーズ、DTG−40M)により測定し
た。 溶融粘度:高化式フローテスター(島津CFT−50
0)で直径0.1cm、長さ1cmのオリフィスを用い
て溶融粘度を測定した。所定の温度で5分間保った後、
10万ヘクトパスカルの圧力で押し出した。
EXAMPLES The present invention will be described in detail below with reference to examples. The physical properties and optical characteristics of the thermoplastic resin, the inorganic fine particles, the thermoplastic material composition and the like in the examples were measured by the following methods. Logarithmic viscosity η: A thermoplastic resin is dissolved in a solvent in which the resin is soluble (for example, chloroform, 1-methyl-2-pyrrolidone, dimethylformamide, ortho-dichlorobenzene, cresol, etc.) at a concentration of 0.5 g / 100 ml. After dissolution, measurement was performed at 35 ° C. Refractive index n and Abbe's number ν: A plate sample having a thickness of about 0.1 to 1 mm was prepared using an ordinary heat press and measured with an Abbe refractometer (DR-M2 manufactured by Atago Co.). Glass transition temperature Tg: Measured by DSC (Shimadzu DT-40 series, DSC-41M). Light transmittance: 3.2 m thick by heat molding the material composition
m substrate was measured and measured according to ASTM D1003. 5% weight loss temperature Td 5 : Measured by DTA-TG (Shimadzu DT-40 series, DTG-40M) in air. Melt viscosity: Koka type flow tester (Shimadzu CFT-50
In (0), the melt viscosity was measured using an orifice having a diameter of 0.1 cm and a length of 1 cm. After keeping at the specified temperature for 5 minutes,
It was extruded at a pressure of 100,000 hectopascals.

【0064】[0064]

【合成例1】第2表(表2)に示される化学式(15)
の繰り返し構造単位を有するポリカーボネート樹脂を溶
液重合法にて合成した。窒素導入ライン、攪拌機、温度
計を備えた重合容器に、4,4’−ビシクロヘキサノー
ル19.8g(0.1mol)、及びピリジン200g
を仕込み、撹拌して完全に溶解させた。溶液を温水浴で
40℃に保ち、溶液を激しく撹拌させながら、ホスゲン
を約0.25g/分の速度で吹き込んだ。約25分後に
ピリジン塩酸塩が析出し始め、さらに約15分後、溶液
の粘性が徐々に増し始めた。さらに10分ホスゲンを吹
き込んだ後に供給を止め、そのまま1時間激しく撹拌を
続けた。その後、その状態で上部よりメタノール200
gとイオン交換水100gの混合液300gを5分かけ
て導入し、析出したポリカーボネート樹脂を濾別した。
ピリジン塩酸塩などの残留物を除くため、得られたポリ
カーボネート樹脂をメタノール600gとイオン交換水
300gの混合液900gに懸濁させ、ホモミキサーを
用いて激しく撹拌し、再度濾別した。この操作を3回繰
り返した後、メタノール900gで洗浄し、80℃で2
時間真空乾燥させて樹脂22.0gを得た。得られたポ
リカーボネート樹脂について、C、Hの元素分析を行っ
たところ、その含有量はそれぞれ70.1wt%、8.
8wt%であり、それぞれの理論値69.6wt%、
8.9wt%とほぼ同等であり、化学式(15)の繰り
返し構造単位を有するポリカーボネート樹脂であること
を確認した。得られたポリカーボネート樹脂について、
上記の方法に従って対数粘度η、屈折率n、アッベ数
ν、ガラス転移温度Tg、及び光線透過率、密度ρ、5
%重量減少温度Td5、及び溶融粘度の評価を行い、結
果を表2に示した。この樹脂は、5%重量減少温度に比
べて50℃以上の十分に低い180℃において、9パス
カル・秒という、溶融成形を行うのに適した溶融粘度を
有しており、溶融成形が可能な熱可塑性樹脂であること
がわかる。結果からわかるように、このポリカーボネー
ト樹脂は、数式(A)及び(B)で示される屈折率n1
及びアッベ数ν1を有する溶融成形可能な熱可塑性樹脂
であり、本発明の条件に適した樹脂である。
Synthesis Example 1 Chemical formula (15) shown in Table 2 (Table 2)
A polycarbonate resin having a repeating structural unit of was synthesized by a solution polymerization method. In a polymerization vessel equipped with a nitrogen introduction line, a stirrer, and a thermometer, 19.8 g (0.1 mol) of 4,4′-bicyclohexanol and 200 g of pyridine.
Was charged and stirred to completely dissolve it. The solution was kept at 40 ° C. in a warm water bath and phosgene was bubbled in at a rate of about 0.25 g / min while the solution was vigorously stirred. After about 25 minutes, pyridine hydrochloride started to precipitate, and after about another 15 minutes, the viscosity of the solution began to gradually increase. After bubbling phosgene for another 10 minutes, the supply was stopped and vigorous stirring was continued for 1 hour. Then, in that state, add methanol 200 from the top.
300 g of a mixed solution of g and 100 g of ion-exchanged water was introduced over 5 minutes, and the precipitated polycarbonate resin was filtered off.
In order to remove residues such as pyridine hydrochloride, the obtained polycarbonate resin was suspended in 900 g of a mixed solution of 600 g of methanol and 300 g of ion-exchanged water, vigorously stirred using a homomixer, and filtered again. After repeating this operation 3 times, wash with 900 g of methanol and
After vacuum drying for 2 hours, 22.0 g of a resin was obtained. When the obtained polycarbonate resin was subjected to elemental analysis of C and H, the contents were 70.1 wt% and 8.
8 wt%, each theoretical value 69.6 wt%,
It was confirmed to be a polycarbonate resin having a repeating structural unit represented by the chemical formula (15), which is almost equal to 8.9 wt%. Regarding the obtained polycarbonate resin,
According to the above method, logarithmic viscosity η, refractive index n, Abbe number ν, glass transition temperature Tg, and light transmittance, density ρ, 5
The% weight loss temperature Td 5 and the melt viscosity were evaluated, and the results are shown in Table 2. This resin has a melt viscosity suitable for melt molding of 9 Pascal · sec at 180 ° C., which is sufficiently lower than 50 ° C. as compared with the 5% weight loss temperature, and is capable of melt molding. It can be seen that it is a thermoplastic resin. As can be seen from the results, this polycarbonate resin has a refractive index n 1 represented by the formulas (A) and (B).
And a melt-moldable thermoplastic resin having an Abbe number ν 1 and suitable for the conditions of the present invention.

【0065】1.45≦n1≦1.65 (A) ν1≧195−100n1 (B)1.45 ≦ n 1 ≦ 1.65 (A) ν 1 ≧ 195-100n 1 (B)

【0066】[0066]

【合成例2】4,4’−ビシクロヘキサノール19.8
g(0.1mol)の代わりに2,2−ビス(4−ヒド
ロキシシクロヘキシル)プロパン24.0g(0.1m
ol)に変えた以外は、合成例1と同様にして、第2表
(表2)に示される化学式(16)の繰り返し構造単位
を有するポリカーボネート樹脂を溶液重合法にて合成
し、樹脂26.2gを得た。得られた樹脂のC、Hの元
素分析から、化学式(16)の繰り返し構造単位を有す
るポリカーボネート樹脂であることを確認した。合成例
1と同様にして各特性の評価を行い、結果を第2表(表
2)に示した。結果からわかるように、このポリカーボ
ネート樹脂は本発明の条件に適した樹脂である。
[Synthesis Example 2] 4,4'-bicyclohexanol 19.8
2,2-bis (4-hydroxycyclohexyl) propane 24.0 g (0.1 m) instead of g (0.1 mol)
ol) was used, and a polycarbonate resin having a repeating structural unit represented by the chemical formula (16) shown in Table 2 (Table 2) was synthesized by a solution polymerization method in the same manner as in Synthesis Example 1 to obtain resin 26. 2 g was obtained. From the C and H elemental analysis of the obtained resin, it was confirmed to be a polycarbonate resin having a repeating structural unit represented by the chemical formula (16). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2). As can be seen from the results, this polycarbonate resin is a resin suitable for the conditions of the present invention.

【0067】[0067]

【合成例3】第2表(表2)に示される化学式(17)
の繰り返し構造単位を有するポリエステル樹脂を、酸ク
ロリド法にて合成した。窒素導入ライン、攪拌機、温度
計を備えた重合容器に、4,4’−ビシクロヘキサノー
ル19.8g(0.1mol)、1,4−シクロヘキサ
ンジカルボン酸クロリド20.9g(0.1mol)、
及びニトロベンゼン100gを仕込んだ。窒素雰囲気下
で撹拌しながらゆっくり加熱し、2時間で145℃まで
昇温した。この温度で6時間保持して重合させた後、ニ
トロベンゼンを減圧下で留去した。残ったポリマーを更
にこの温度にて減圧下で2時間乾燥させ、樹脂32.4
gを得た。得られた樹脂のC、Hの元素分析から、化学
式(17)の繰り返し構造単位を有するポリエステル樹
脂であることを確認した。合成例1と同様にして各特性
の評価を行い、結果を第2表(表2)に示した。結果か
らわかるように、このポリエステル樹脂は本発明の条件
に適した樹脂である。
Synthesis Example 3 Chemical formula (17) shown in Table 2 (Table 2)
A polyester resin having a repeating structural unit of was synthesized by the acid chloride method. In a polymerization vessel equipped with a nitrogen introduction line, a stirrer, and a thermometer, 19.8 g (0.1 mol) of 4,4′-bicyclohexanol, 20.9 g (0.1 mol) of 1,4-cyclohexanedicarboxylic acid chloride,
And 100 g of nitrobenzene were charged. The mixture was heated slowly with stirring under a nitrogen atmosphere, and the temperature was raised to 145 ° C. in 2 hours. After maintaining at this temperature for 6 hours for polymerization, nitrobenzene was distilled off under reduced pressure. The remaining polymer was further dried at this temperature under reduced pressure for 2 hours to give resin 32.4.
g was obtained. From the C and H elemental analysis of the obtained resin, it was confirmed to be a polyester resin having a repeating structural unit represented by the chemical formula (17). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2). As can be seen from the results, this polyester resin is a resin suitable for the conditions of the present invention.

【0068】[0068]

【合成例4】4,4’−ビシクロヘキサノール19.8
g(0.1mol)の代わりに2,2−ビス(4−ヒド
ロキシシクロヘキシル)プロパン24.0g(0.1m
ol)に変えた以外は、合成例3と同様にして、表2に
示される化学式(18)の繰り返し構造単位を有するポ
リエステル樹脂を酸クロリド法にて合成し、樹脂36.
4gを得た。得られた樹脂のC、Hの元素分析から、化
学式(18)の繰り返し構造単位を有するポリエステル
樹脂であることを確認した。合成例1と同様にして各特
性の評価を行い、結果を第2表(表2)に示した。結果
からわかるように、このポリエステル樹脂は本発明の条
件に適した樹脂である。
[Synthesis Example 4] 4,4'-bicyclohexanol 19.8
2,2-bis (4-hydroxycyclohexyl) propane 24.0 g (0.1 m) instead of g (0.1 mol)
except that the polyester resin having the repeating structural unit represented by the chemical formula (18) shown in Table 2 was synthesized by the acid chloride method in the same manner as in Synthesis Example 3, except that the resin 36.
4 g was obtained. From the C and H elemental analysis of the obtained resin, it was confirmed to be a polyester resin having a repeating structural unit represented by the chemical formula (18). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2). As can be seen from the results, this polyester resin is a resin suitable for the conditions of the present invention.

【0069】[0069]

【合成例5】第2表(表2)に示される化学式(19)
の繰り返し構造単位を有するポリエーテル樹脂を、ポリ
マー・マテリアル・サイエンス・エンジニアリング第6
0巻170頁(1989年)に従って合成した。得られ
た樹脂のC、Hの元素分析から、化学式(19)の繰り
返し構造単位を有するポリエーテル樹脂であることを確
認した。合成例1と同様にして各特性の評価を行い、結
果を第2表(表2)に示した。結果からわかるように、
このポリエーテル樹脂は本発明の条件に適した樹脂であ
る。
Synthesis Example 5 Chemical formula (19) shown in Table 2 (Table 2)
Polyether resin having repeating structural units of Polymer Material Science Engineering No. 6
0, page 170 (1989). From the C and H elemental analysis of the obtained resin, it was confirmed to be a polyether resin having a repeating structural unit represented by the chemical formula (19). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2). As you can see from the results,
This polyether resin is a resin suitable for the conditions of the present invention.

【0070】[0070]

【合成例6】第2表(表2)に示される化学式(20)
の繰り返し構造単位を有するポリアミド樹脂を、酸クロ
リド法にて合成した。窒素導入ライン、攪拌機、温度計
を備えた重合容器に、1,4−シクロヘキサンジアミン
11.4g(0.1mol)及びN,N−ジメチルアセ
トアミド200gを仕込み、氷冷しながら撹拌した。
1,4−シクロヘキサンジアミンが溶解した後、1,4
−シクロヘキサンジカルボン酸クロリド20.9g
(0.1mol)を徐々に加え、その後3時間撹拌を続
けた。その後、その状態で上部よりメタノール200g
とイオン交換水100gの混合液300gを5分かけて
導入し、析出した樹脂を濾別した。ピリジン塩酸塩など
の残留物を除くため、得られた樹脂をメタノール600
gとイオン交換水300gの混合液900gに懸濁さ
せ、ホモミキサーを用いて激しく撹拌し、再度濾別し
た。この操作を3回繰り返した後、メタノール900g
で洗浄し、80℃で2時間真空乾燥させて樹脂24.0
gを得た。得られた樹脂のC、Hの元素分析から、化学
式(20)の繰り返し構造単位を有するポリアミド樹脂
であることを確認した。合成例1と同様にして各特性の
評価を行い、結果を第2表(表2)に示した。結果から
わかるように、このポリアミド樹脂は本発明の条件に適
した樹脂である。
Synthesis Example 6 Chemical formula (20) shown in Table 2 (Table 2)
A polyamide resin having a repeating structural unit of was synthesized by the acid chloride method. A polymerization vessel equipped with a nitrogen introduction line, a stirrer, and a thermometer was charged with 11.4 g (0.1 mol) of 1,4-cyclohexanediamine and 200 g of N, N-dimethylacetamide and stirred while cooling with ice.
After the 1,4-cyclohexanediamine has dissolved, 1,4
-Cyclohexanedicarboxylic acid chloride 20.9 g
(0.1 mol) was gradually added, and then stirring was continued for 3 hours. Then, 200 g of methanol from the top in that state
300 g of a mixed solution of 100 g of ion-exchanged water was introduced over 5 minutes, and the precipitated resin was separated by filtration. To remove the residue such as pyridine hydrochloride, the resin obtained was treated with methanol 600
g and 300 g of ion-exchanged water were suspended in 900 g, vigorously stirred using a homomixer, and filtered again. After repeating this operation 3 times, 900 g of methanol
And then vacuum dried at 80 ° C. for 2 hours to give resin 24.0.
g was obtained. From the C and H elemental analysis of the obtained resin, it was confirmed to be a polyamide resin having a repeating structural unit represented by the chemical formula (20). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2). As can be seen from the results, this polyamide resin is a resin suitable for the conditions of the present invention.

【0071】[0071]

【合成例7】4,4’−ビシクロヘキサノール19.8
g(0.1mol)の代わりに2,2−ビス(4−ヒド
ロキシシクロヘキシル)プロパン12.0g(0.05
mol)とビスフェノールA11.4g(0.05mo
l)に変えた以外は、合成例1と同様にして、第2表
(表2)に示される化学式(23)の繰り返し構造単位
を有するポリカーボネート樹脂を溶液重合法にて合成
し、樹脂23.2gを得た。得られた樹脂のC、Hの元
素分析から、化学式(23)の繰り返し構造単位を有す
るポリカーボネート樹脂であることを確認した。合成例
1と同様にして各特性の評価を行い、結果を第2表(表
2)に示した。結果からわかるように、このポリカーボ
ネート樹脂は本発明の条件に適していない樹脂である。
Synthesis Example 7 4,4'-bicyclohexanol 19.8
Instead of g (0.1 mol), 2,2-bis (4-hydroxycyclohexyl) propane 12.0 g (0.05
mol) and bisphenol A 11.4g (0.05mo
1) except that the polycarbonate resin having a repeating structural unit of the chemical formula (23) shown in Table 2 (Table 2) was synthesized by a solution polymerization method in the same manner as in Synthesis Example 1 to prepare resin 23. 2 g was obtained. From the C and H elemental analysis of the obtained resin, it was confirmed to be a polycarbonate resin having a repeating structural unit represented by the chemical formula (23). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2). As can be seen from the results, this polycarbonate resin is a resin not suitable for the conditions of the present invention.

【0072】[0072]

【合成例8】4,4’−ビシクロヘキサノール19.8
g(0.1mol)の代わりに1,4−シクロヘキサン
ジオール11.6g(0.1mol)、1,4−シクロ
ヘキサンジカルボン酸クロリド20.9g(0.1mo
l)の代わりにテレフタル酸クロリド20.3g(0.
1mol)に変えた以外は、合成例3と同様にして、第
2表(表2)に示される化学式(24)の繰り返し構造
単位を有するポリエステル樹脂を酸クロリド法にて合成
し、樹脂23.8gを得た。得られた樹脂のC、Hの元
素分析から、化学式(24)の繰り返し構造単位を有す
るポリエステル樹脂であることを確認した。合成例1と
同様にして各特性の評価を行い、結果を第2表(表2)
に示した。結果からわかるように、このポリエステル樹
脂は本発明の条件に適していない樹脂である。
Synthesis Example 8 4,4'-bicyclohexanol 19.8
Instead of g (0.1 mol), 11.6 g (0.1 mol) of 1,4-cyclohexanediol and 20.9 g (0.1 mo) of 1,4-cyclohexanedicarboxylic acid chloride.
20.3 g of terephthaloyl chloride (0.
1 mol) except that the same procedure as in Synthesis Example 3 was performed to synthesize a polyester resin having a repeating structural unit represented by the chemical formula (24) shown in Table 2 (Table 2) by the acid chloride method. 8 g was obtained. From the C and H elemental analysis of the obtained resin, it was confirmed to be a polyester resin having a repeating structural unit represented by the chemical formula (24). Each property was evaluated in the same manner as in Synthesis Example 1, and the results are shown in Table 2 (Table 2).
It was shown to. As can be seen from the results, this polyester resin is a resin not suitable for the conditions of the present invention.

【0073】[0073]

【表2】 [Table 2]

【0074】[0074]

【合成例9】四塩化チタンを原料に二酸化チタン微粒子
の合成を行った。まず、ジャパニーズ・ジャーナル・オ
ブ・アプライド・フィジクス第37巻4603−460
8頁(1998年)に記載の方法に準じて、中間物であ
るTiOCl2の合成を行った。四塩化チタン25.0
g(0.132mol)を窒素ボックス内で三口フラス
コに装入し、メタノール・氷浴で−5℃程度に冷却し
た。撹拌を行いながら、ここに蒸留水14.3g(0.
792mol)を、30分かけてゆっくり滴下した。最
終的に黄色い透明な粘性のある液体が得られた。この液
体を125gの蒸留水で希釈し、蒸留水1450g、エ
タノール1650g及びプロピオン酸5.31g(0.
072mol)から成り、50℃に維持された混合液
に、撹拌しながら一気に投入した。さらに50℃にて撹
拌を続けると、数十分で薄く白濁し始めた。この条件で
6時間熟成した後、10000rpmで2分間遠心分離
を行い、得られた白色のゲル状物を酢酸エチルに懸濁さ
せ、さらに同条件で遠心分離を行い、白色の微粒粉末1
0.2gを得た。この粒子を電子顕微鏡観察し、粒子は
ほぼ真球状であり、平均粒子直径が5nmであることを
確認した。またエックス線回折から、この微粒子はアナ
ターゼ型の二酸化チタンであることを確認した。微粒子
の評価結果を第3表(表3)に示す。結果からわかるよ
うに、この二酸化チタン微粒子は本発明の条件に適した
無機微粒子である。
[Synthesis Example 9] Titanium dioxide fine particles were synthesized from titanium tetrachloride as a raw material. First, Japanese Journal of Applied Physics Volume 37, 4603-460
The intermediate TiOCl 2 was synthesized according to the method described on page 8 (1998). Titanium tetrachloride 25.0
g (0.132 mol) was charged into a three-necked flask in a nitrogen box, and cooled to about -5 ° C with a methanol / ice bath. While stirring, 14.3 g of distilled water (0.
(792 mol) was slowly added dropwise over 30 minutes. Finally a yellow clear viscous liquid was obtained. This liquid was diluted with 125 g of distilled water, and 1450 g of distilled water, 1650 g of ethanol and 5.31 g of propionic acid (0.
(072 mol) and was added all at once with stirring to a mixed solution maintained at 50 ° C. When stirring was further continued at 50 ° C., it began to become cloudy with a tens of minutes. After aging for 6 hours under these conditions, centrifugation was carried out at 10,000 rpm for 2 minutes, the obtained white gel-like substance was suspended in ethyl acetate, and centrifugation was carried out under the same conditions to obtain white fine powder 1
0.2 g was obtained. The particles were observed with an electron microscope, and it was confirmed that the particles had a substantially spherical shape and the average particle diameter was 5 nm. Further, it was confirmed from X-ray diffraction that the fine particles were anatase type titanium dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the titanium dioxide fine particles are inorganic fine particles suitable for the conditions of the present invention.

【0075】[0075]

【合成例10】ラングミュア第16巻第1号241−2
46頁(2000年)に記載の方法に準じて、テトライ
ソプロポキシチタンを原料に二酸化チタン微粒子の合成
を行った。2−プロパノール1000gで希釈したテト
ライソプロポキシチタン2.8g(0.01mol)
を、65℃に維持されたエタノール10000gで希釈
したプロピオン酸11.5g(0.1mol)に、激し
く撹拌しながら2分間かけて滴下した。そのまま65℃
で10分間続けて激しく撹拌した後、蒸留水2000g
を激しく撹拌しながら10分かけて滴下した。そのまま
の条件でさらに2時間維持した後、10000rpmで
2分間遠心分離を行い、得られた白色のゲル状物を酢酸
エチルに懸濁させ、さらに同条件で遠心分離を行い、白
色の微粒粉末0.8gを得た。この粒子を電子顕微鏡観
察し、粒子はほぼ真球状であり、平均粒子直径が4nm
であることを確認した。またエックス線回折から、この
微粒子はアナターゼ型の二酸化チタンであることを確認
した。微粒子の評価結果を第3表(表3)に示す。結果
からわかるように、この二酸化チタン微粒子は本発明の
条件に適した無機微粒子である。
[Synthesis Example 10] Langmuir Volume 16 No. 241-2
According to the method described on page 46 (2000), titanium dioxide fine particles were synthesized from tetraisopropoxy titanium as a raw material. 2.8 g (0.01 mol) of tetraisopropoxy titanium diluted with 1000 g of 2-propanol
Was added dropwise to 11.5 g (0.1 mol) of propionic acid diluted with 10000 g of ethanol maintained at 65 ° C. over 2 minutes with vigorous stirring. 65 ℃ as it is
After stirring vigorously for 10 minutes at 2000 g, distilled water 2000 g
Was added dropwise with vigorous stirring over 10 minutes. After maintaining for 2 hours under the same conditions, centrifugation was performed at 10,000 rpm for 2 minutes, the obtained white gel-like substance was suspended in ethyl acetate, and further centrifugation was performed under the same conditions to obtain a white fine powder. 0.8 g was obtained. The particles were observed by an electron microscope and found to be almost spherical with an average particle diameter of 4 nm.
Was confirmed. Further, it was confirmed from X-ray diffraction that the fine particles were anatase type titanium dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the titanium dioxide fine particles are inorganic fine particles suitable for the conditions of the present invention.

【0076】[0076]

【合成例11】3×10-4規定の過塩素酸亜鉛六水和物
のアルカリ性アセトニトリル溶液100ミリリットルに
ヘリウム希釈の5容量%硫化水素ガスを通じ、5×10
-4規定のドデカンチオールのアセトニトリル溶液100
ミリリットルを加えた。これにヘキサン200ミリリッ
トルを添加し、溶媒除去・乾燥後に白色の微粒粉末0.
3gを得た。この粒子を電子顕微鏡観察し、粒子はほぼ
真球状であり、平均粒子直径が40nmであることを確
認した。またエックス線回折から、この微粒子は硫化亜
鉛であることを確認した。微粒子の評価結果を第3表
(表3)に示す。結果からわかるように、この硫化亜鉛
微粒子は本発明の条件に適した無機微粒子である。
Synthesis Example 11 5% by volume of hydrogen sulfide gas diluted with helium was passed through 100 ml of an alkaline acetonitrile solution of 3 × 10 −4 normal zinc perchlorate hexahydrate to obtain 5 × 10 5.
-4 normal dodecanethiol acetonitrile solution 100
Added milliliters. To this, 200 ml of hexane was added, and after removing the solvent and drying, a white fine powder of 0.1.
3 g was obtained. The particles were observed by an electron microscope, and it was confirmed that the particles had a substantially spherical shape and the average particle diameter was 40 nm. Moreover, it was confirmed from X-ray diffraction that the fine particles were zinc sulfide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the zinc sulfide fine particles are inorganic fine particles suitable for the conditions of the present invention.

【0077】[0077]

【合成例12】用いるプロピオン酸の量を、5.31g
(0.072mol)から26.6g(0.36mo
l)に変えた以外は、合成例9と同様にして合成を行
い、白色の微粒粉末10.2gを得た。この粒子を電子
顕微鏡観察し、粒子はほぼ真球状であり、平均粒子直径
が2nmであることを確認した。またエックス線回折か
ら、この微粒子はアナターゼ型の二酸化チタンであるこ
とを確認した。微粒子の評価結果を第3表(表3)に示
す。結果からわかるように、この二酸化チタン微粒子は
本発明の条件に適した無機微粒子である。
[Synthesis Example 12] The amount of propionic acid used was 5.31 g.
(0.072 mol) to 26.6 g (0.36 mo)
Synthesis was performed in the same manner as in Synthesis Example 9 except that the amount was changed to l) to obtain 10.2 g of white fine powder. The particles were observed by an electron microscope, and it was confirmed that the particles had a substantially spherical shape and the average particle diameter was 2 nm. Further, it was confirmed from X-ray diffraction that the fine particles were anatase type titanium dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the titanium dioxide fine particles are inorganic fine particles suitable for the conditions of the present invention.

【0078】[0078]

【合成例13】用いるプロピオン酸の量を、5.31g
(0.072mol)から0.0531g(0.000
72mol)に変えた以外は、合成例9と同様にして合
成を行い、白色の微粒粉末9.8gを得た。この粒子を
電子顕微鏡観察し、粒子はほぼ球状であり、平均粒子直
径が150nmであることを確認した。またエックス線
回折から、この微粒子はアナターゼ型の二酸化チタンで
あることを確認した。微粒子の評価結果を第3表(表
3)に示す。結果からわかるように、この二酸化チタン
微粒子は本発明の条件に適した無機微粒子である。
[Synthesis Example 13] The amount of propionic acid used was 5.31 g.
(0.072 mol) to 0.0531 g (0.000
Synthesis was performed in the same manner as in Synthesis Example 9 except that the amount was changed to 72 mol) to obtain 9.8 g of white fine powder. The particles were observed with an electron microscope, and it was confirmed that the particles had a substantially spherical shape and the average particle diameter was 150 nm. Further, it was confirmed from X-ray diffraction that the fine particles were anatase type titanium dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the titanium dioxide fine particles are inorganic fine particles suitable for the conditions of the present invention.

【0079】[0079]

【合成例14】用いるプロピオン酸の量を、5.31g
(0.072mol)から106.2g(1.44mo
l)に変えた以外は、合成例9と同様にして合成を行
い、白色の微粒粉末10.6gを得た。この粒子を電子
顕微鏡観察し、粒子はほぼ真球状であり、平均粒子直径
が0.8nmであることを確認した。またエックス線回
折から、この微粒子はアナターゼ型の二酸化チタンであ
ることを確認した。微粒子の評価結果を第3表(表3)
に示す。結果からわかるように、この二酸化チタン微粒
子は本発明の条件に適していない無機微粒子である。
[Synthesis Example 14] The amount of propionic acid used was 5.31 g.
(0.072 mol) to 106.2 g (1.44 mo)
Synthesis was performed in the same manner as in Synthesis Example 9 except for changing to 1) to obtain 10.6 g of white fine powder. The particles were observed by an electron microscope, and it was confirmed that the particles were substantially spherical and had an average particle diameter of 0.8 nm. Further, it was confirmed from X-ray diffraction that the fine particles were anatase type titanium dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3).
Shown in. As can be seen from the results, the titanium dioxide fine particles are inorganic fine particles which are not suitable for the conditions of the present invention.

【0080】[0080]

【合成例15】用いるプロピオン酸の量を、5.31g
(0.072mol)から0.00531g(0.00
0072mol)に変えた以外は、合成例9と同様にし
て合成を行い、白色の微粒粉末8.8gを得た。この粒
子を電子顕微鏡観察し、粒子はほぼ真球状であり、平均
粒子直径が250nmであることを確認した。またエッ
クス線回折から、この微粒子はアナターゼ型の二酸化チ
タンであることを確認した。微粒子の評価結果を第3表
(表3)に示す。結果からわかるように、この二酸化チ
タン微粒子は本発明の条件に適していない無機微粒子で
ある。
[Synthesis Example 15] The amount of propionic acid used was 5.31 g.
(0.072 mol) to 0.00531 g (0.00
Synthesis was performed in the same manner as in Synthesis Example 9 except that the amount was changed to 0072 mol) to obtain 8.8 g of white fine powder. The particles were observed by an electron microscope, and it was confirmed that the particles were substantially spherical and had an average particle diameter of 250 nm. Further, it was confirmed from X-ray diffraction that the fine particles were anatase type titanium dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the titanium dioxide fine particles are inorganic fine particles which are not suitable for the conditions of the present invention.

【0081】[0081]

【合成例16】テトライソプロポキシチタン2.8g
(0.01mol)をテトラメトキシシラン1.52g
(0.01mol)に変えた以外は、合成例10と同様
にして合成を行い、白色の微粒粉末0.6gを得た。こ
の粒子を電子顕微鏡観察し、粒子はほぼ真球状であり、
平均粒子直径が3nmであることを確認した。またエッ
クス線回折において鋭利なピークが観察されなかったこ
とから、この微粒子は非晶質の二酸化ケイ素であること
を確認した。微粒子の評価結果を第3表(表3)に示
す。結果からわかるように、この二酸化ケイ素微粒子は
本発明の条件に適していない無機微粒子である。
[Synthesis Example 16] Tetraisopropoxy titanium 2.8 g
(0.01 mol) of tetramethoxysilane 1.52 g
Synthesis was performed in the same manner as in Synthesis Example 10 except that the content was changed to (0.01 mol) to obtain 0.6 g of white fine powder. Electron microscope observation of these particles, the particles are almost spherical,
It was confirmed that the average particle diameter was 3 nm. Further, since no sharp peak was observed in X-ray diffraction, it was confirmed that the fine particles were amorphous silicon dioxide. The evaluation results of the fine particles are shown in Table 3 (Table 3). As can be seen from the results, the silicon dioxide fine particles are inorganic fine particles that are not suitable for the conditions of the present invention.

【0082】[0082]

【表3】 [Table 3]

【0083】[0083]

【実施例1】第3表(表3)記載の番号(U1)の無機
微粒子0.3gを1−ブタノール10gに懸濁させ、超
音波処理を30分行った後、100℃にて30分加熱し
た。得られる白濁液を、表2記載の番号(P1)の樹脂
が10重量%で溶解したクロロホルム溶液10gに、撹
拌しながら常温で5分かけて滴下した。得られた混合液
は、ほんのり青白がかった無色透明な液であった。この
液を、ホモジナイザーを用いてメタノールと蒸留水の等
容量混合液中に析出させ、無機微粒子が樹脂中に混合し
た材料組成物を得た。この組成物を加熱成形して、厚さ
3.2mmの基板を作成したところ、この基板はうすく
黄色味を帯びた透明であった。電子顕微鏡観察を行った
ところ、無機微粒子が樹脂中に均一に分散していること
を確認した。この材料組成物について、屈折率、アッベ
数、ガラス転移温度、光線透過率、密度、5%重量減少
温度、及び溶融粘度を測定し、その結果を表4に示し
た。結果からわかるように、この材料組成物は、数式
(E)、(F)及び(G)で示される屈折率n2及びア
ッベ数ν2を有する溶融成形可能な可塑性材料組成物、
すなわち光学特性および成形加工性に優れた材料組成物
であり、さらにはガラス転移温度80℃以上の耐熱性、
光線透過率70%以上の透明性、密度2.0g/cm3
以下の軽量性をも併せ持つものであることがわかる。従
って、このような特性が要求される光学部品に適した材
料組成物である。
Example 1 0.3 g of the inorganic fine particles having the number (U1) shown in Table 3 (Table 3) was suspended in 10 g of 1-butanol and sonicated for 30 minutes, and then at 100 ° C. for 30 minutes. Heated. The resulting white turbid liquid was added dropwise to 10 g of a chloroform solution in which the resin of No. (P1) shown in Table 2 was dissolved in 10% by weight at room temperature over 5 minutes while stirring. The resulting mixed liquid was a slightly bluish white colorless transparent liquid. This liquid was precipitated in an equal volume mixture of methanol and distilled water using a homogenizer to obtain a material composition in which inorganic particles were mixed in the resin. When this composition was heat-molded to form a substrate having a thickness of 3.2 mm, the substrate was light yellow and transparent. An electron microscopic observation confirmed that the inorganic fine particles were uniformly dispersed in the resin. The refractive index, Abbe number, glass transition temperature, light transmittance, density, 5% weight loss temperature, and melt viscosity of this material composition were measured, and the results are shown in Table 4. As can be seen from the results, this material composition is a melt-moldable plastic material composition having a refractive index n 2 and an Abbe number ν 2 represented by the formulas (E), (F) and (G),
That is, it is a material composition having excellent optical properties and molding processability, and further, heat resistance at a glass transition temperature of 80 ° C or higher,
Light transmittance of 70% or more, density 2.0 g / cm 3
It can be seen that it also has the following lightness. Therefore, the material composition is suitable for an optical component that requires such characteristics.

【0084】1.45<n2≦1.80 (E) ν2≧200−100n2 (F) n2≧n1+0.01 (G)1.45 <n 2 ≦ 1.80 (E) ν 2 ≧ 200-100n 2 (F) n 2 ≧ n 1 +0.01 (G)

【0085】[0085]

【実施例2〜8】用いる樹脂を、第2表(表2)記載の
番号(P2)〜(P8)の樹脂に代えた以外は、実施例
1と同様にして材料組成物を作成し、その物性測定結果
を第4表(表4)に記した。いずれの実施例において
も、得られる材料組成物は実施例1の材料組成物と同様
な優れた特性を有しており、光学部品に適した材料組成
物であることがわかる。
Examples 2 to 8 Material compositions were prepared in the same manner as in Example 1 except that the resins used were replaced with the resins of the numbers (P2) to (P8) shown in Table 2 (Table 2). The physical property measurement results are shown in Table 4 (Table 4). In each of the examples, the material composition obtained has the same excellent properties as the material composition of Example 1, and it can be seen that the material composition is suitable for an optical component.

【0086】[0086]

【比較例1〜2】用いる樹脂を、第2表(表2)記載の
番号(P9)〜(P10)の樹脂に代えた以外は、実施
例1と同様にして材料組成物を作成し、その物性測定結
果を表4に記した。本発明の条件範囲の樹脂を用いてい
るため、得られた材料組成物は、数式(E)、(F)及
び(G)で示される屈折率n2及びアッベ数ν2を満たさ
ない。
[Comparative Examples 1 and 2] A material composition was prepared in the same manner as in Example 1 except that the resin used was replaced with the resin having the numbers (P9) to (P10) shown in Table 2 (Table 2). The results of measuring the physical properties are shown in Table 4. The obtained material composition does not satisfy the refractive index n 2 and the Abbe's number ν 2 shown in the formulas (E), (F) and (G) because the resin within the condition range of the present invention is used.

【0087】[0087]

【実施例9〜12】用いる樹脂を、第2表(表2)記載
の番号(P3)の樹脂に、また用いる無機微粒子を、第
3表(表3)記載の番号(U2)〜(U5)代えた以外
は、実施例1と同様にして材料組成物を作成し、その物
性測定結果を第4表(表4)に記した。いずれの実施例
においても、得られる材料組成物は実施例1の材料組成
物と同様な優れた特性を有しており、光学部品に適した
材料組成物であることがわかる。
[Examples 9 to 12] The resin to be used is the resin of the number (P3) described in Table 2 (Table 2), and the inorganic fine particles to be used are the numbers (U2) to (U5) of the table 3 (Table 3). ) A material composition was prepared in the same manner as in Example 1 except that it was replaced, and the physical property measurement results are shown in Table 4 (Table 4). In each of the examples, the material composition obtained has the same excellent properties as the material composition of Example 1, and it can be seen that the material composition is suitable for an optical component.

【0088】[0088]

【比較例3】用いる樹脂を、第2表(表2)記載の番号
(P3)の樹脂に、また用いる無機微粒子を、第3表
(表3)記載の番号(U6)代えた以外は、実施例1と
同様にして材料組成物を作成した。得られた組成物から
作成された基板は白濁しており、光線透過率が低いため
に屈折率及びアッベ数の測定ができなかった。電子顕微
鏡観察から、無機微粒子が凝集した状態であった。
COMPARATIVE EXAMPLE 3 Except that the resin to be used was changed to the resin (P3) in Table 2 (Table 2) and the inorganic fine particles to be used were changed to the number (U6) in Table 3 (Table 3). A material composition was prepared in the same manner as in Example 1. The substrate prepared from the obtained composition was clouded and the refractive index and Abbe number could not be measured because of its low light transmittance. The electron microscopic observation revealed that the inorganic fine particles were in an aggregated state.

【0089】[0089]

【比較例4】用いる樹脂を、第2表(表2)記載の番号
(P3)の樹脂に、また用いる無機微粒子を、第3表
(表3)記載の番号(U7)代えた以外は、実施例1と
同様にして材料組成物を作成した。得られた組成物から
作成された基板は白濁しており、光線透過率が低いため
に屈折率及びアッベ数の測定ができなかった。電子顕微
鏡観察から、無機微粒子が凝集していることは観察され
なかった。
[Comparative Example 4] Except that the resin used was replaced with the resin of the number (P3) described in Table 2 (Table 2) and the inorganic fine particles used were replaced with the number (U7) described in Table 3 (Table 3). A material composition was prepared in the same manner as in Example 1. The substrate prepared from the obtained composition was clouded and the refractive index and Abbe number could not be measured because of its low light transmittance. From the electron microscope observation, it was not observed that the inorganic fine particles were aggregated.

【0090】[0090]

【比較例5】用いる樹脂を、第2表(表2)記載の番号
(P3)の樹脂に、また用いる無機微粒子を、第3表
(表3)記載の番号(U8)代えた以外は、実施例1と
同様にして材料組成物を作成し、その物性測定結果を表
4に記した。本発明の条件範囲外の無機微粒子を用いて
いるため、得られた材料組成物は、数式(E)、(F)
及び(G)で示される屈折率n2及びアッベ数ν2を満た
していないものであった。
[Comparative Example 5] Except that the resin to be used was changed to the resin having the number (P3) shown in Table 2 (Table 2) and the inorganic fine particles to be used were changed to the number (U8) shown in Table 3 (Table 3). A material composition was prepared in the same manner as in Example 1, and the physical property measurement results are shown in Table 4. Since the inorganic fine particles out of the condition range of the present invention are used, the obtained material composition has formulas (E) and (F).
And (G) did not satisfy the refractive index n 2 and the Abbe number ν 2 .

【0091】[0091]

【実施例13〜14】用いる樹脂を、第2表(表2)記
載の番号(P3)の樹脂に代え、また用いる無機微粒子
の量を代えた以外は、実施例1と同様にして材料組成物
を作成し、その物性測定結果を第4表(表4)に記し
た。いずれの実施例においても、得られる材料組成物は
実施例1の材料組成物と同様な優れた特性を有してお
り、光学部品に適した材料組成物であることがわかる。
Examples 13 to 14 The material composition was the same as in Example 1 except that the resin to be used was changed to the resin having the number (P3) described in Table 2 (Table 2) and the amount of the inorganic fine particles to be used was changed. A product was prepared, and the physical property measurement results are shown in Table 4 (Table 4). In each of the examples, the material composition obtained has the same excellent properties as the material composition of Example 1, and it can be seen that the material composition is suitable for an optical component.

【0092】[0092]

【比較例6】用いる樹脂を、第2表(表2)記載の番号
(P3)の樹脂に代え、また用いる無機微粒子の量を代
えた以外は、実施例1と同様にして材料組成物を作成
し、その物性測定結果を表4に記した。無機微粒子の使
用量が本発明の条件の範囲外であるため、光学特性の向
上は図ることができず、得られた材料組成物は、数式
(G)で示される屈折率n2を満たすものではない。
[Comparative Example 6] A material composition was prepared in the same manner as in Example 1 except that the resin used was the resin of No. (P3) shown in Table 2 (Table 2) and the amount of the inorganic fine particles used was changed. It was created and the physical property measurement results are shown in Table 4. Since the amount of the inorganic fine particles used is outside the range of the conditions of the present invention, the optical characteristics cannot be improved, and the obtained material composition satisfies the refractive index n 2 represented by the mathematical formula (G). is not.

【0093】n2≧n1+0.01 (G)N 2 ≧ n 1 +0.01 (G)

【0094】[0094]

【比較例7】用いる樹脂を、第2表(表2)記載の番号
(P3)の樹脂に代え、また用いる無機微粒子の量を代
えた以外は、実施例1と同様にして材料組成物を作成し
た。しかし、得られた材料組成物は非常に脆く、熱プレ
ス等でフィルムを作成することができなかった。すなわ
ち、熱可塑性を有していない材料組成物であった。
[Comparative Example 7] A material composition was prepared in the same manner as in Example 1 except that the resin used was changed to the resin having the number (P3) described in Table 2 (Table 2) and the amount of the inorganic fine particles used was changed. Created. However, the obtained material composition was very brittle and a film could not be formed by hot pressing or the like. That is, it was a material composition having no thermoplasticity.

【0095】[0095]

【表4】 [Table 4]

【0096】[0096]

【発明の効果】本発明の熱可塑性材料組成物、及びそれ
を含んで構成される光学部品は、数式(H)及び
(J)で表される屈折率nおよびアッベ数νを有する優
れた光学特性、ガラス転移温度80℃以上の耐熱性、
光線透過率70%以上の透明性、密度2.0g/c
3以下の軽量性、及び熱可塑性及び/または溶融成
形性を併せ持つ材料組成物、及びそれを含んで構成され
る光学部品であり、例えば、レンズ(例えば、眼鏡レン
ズ、光学機器用レンズ、オプトエレクトロニクス用レン
ズ、レーザー用レンズ、CDピックアップ用レンズ、自
動車用ランプレンズ、OHP用レンズ等)、光ファイバ
ー、光導波路、光フィルター、光学用接着剤、光ディス
ク基盤、ディスプレー基盤、コーティング材、プリズム
等の用途に好適である。
INDUSTRIAL APPLICABILITY The thermoplastic material composition of the present invention and the optical component including the same have excellent optical properties having a refractive index n and an Abbe number ν represented by the formulas (H) and (J). Characteristics, heat resistance of glass transition temperature of 80 ° C or higher,
Light transmittance of 70% or more, density 2.0 g / c
A material composition having a lightness of m 3 or less and thermoplasticity and / or melt moldability, and an optical component including the same, for example, a lens (for example, a spectacle lens, a lens for optical equipment, an optoelectronic lens, Applications for electronics lenses, laser lenses, CD pickup lenses, automotive lamp lenses, OHP lenses, etc.), optical fibers, optical waveguides, optical filters, optical adhesives, optical disc substrates, display substrates, coating materials, prisms, etc. Suitable for

【0097】1.45<n≦1.80 (H) ν≧200−100n (J)1.45 <n ≦ 1.80 (H) ν ≧ 200-100n (J)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 6/12 G02B 6/12 N Fターム(参考) 2H047 QA05 2H048 AA05 AA07 2H050 AB42 4J002 AA011 BG051 BK001 CE001 CF001 CG001 CH001 CL001 CM041 DE106 DE136 DG026 DG066 FD206 GP01 GP02─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G02B 6/12 G02B 6/12 NF term (reference) 2H047 QA05 2H048 AA05 AA07 2H050 AB42 4J002 AA011 BG051 BK001 CE001 CF001 CG001 CH001 CL001 CM041 DE106 DE136 DG026 DG066 FD206 GP01 GP02

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】数式(A)及び(B)で示される屈折率n
1及びアッベ数ν1を有する熱可塑性樹脂100重量部
と、平均粒子直径diが数式(C)で示され、かつ屈折
率niが数式(D)で示される無機微粒子1〜200重
量部とから成る、数式(E)、(F)及び(G)を満た
す屈折率n2及びアッベ数ν2を有する熱可塑性材料組成
物。 1.45≦n1≦1.65 (A) ν1≧195−100n1 (B) 1nm≦di≦200nm (C) 1.50≦ni≦4.00 (D) 1.45<n2≦1.80 (E) ν2≧200−100n2 (F) n2≧n1+0.01 (G)
1. A refractive index n represented by formulas (A) and (B).
100 parts by weight of a thermoplastic resin having 1 and Abbe number ν 1, and 1 to 200 parts by weight of inorganic fine particles whose average particle diameter d i is represented by the formula (C) and whose refractive index n i is represented by the formula (D). A thermoplastic material composition having a refractive index n 2 and an Abbe number ν 2 satisfying the formulas (E), (F) and (G), wherein 1.45 ≦ n 1 ≦ 1.65 (A) ν 1 ≧ 195-100n 1 (B) 1 nm ≦ d i ≦ 200 nm (C) 1.50 ≦ n i ≦ 4.00 (D) 1.45 <n 2 ≦ 1.80 (E) ν 2 ≧ 200-100n 2 (F) n 2 ≧ n 1 +0.01 (G)
【請求項2】熱可塑性樹脂が、溶融成形可能な熱可塑性
樹脂であり、熱可塑性材料組成物が、溶融成形可能な熱
可塑性材料組成物である請求項1記載の熱可塑性材料組
成物。
2. The thermoplastic material composition according to claim 1, wherein the thermoplastic resin is a melt-moldable thermoplastic resin, and the thermoplastic material composition is a melt-moldable thermoplastic material composition.
【請求項3】熱可塑性樹脂が、アクリル樹脂、環状オレ
フィン樹脂、環状脂肪族鎖を有するポリカーボネート樹
脂、環状脂肪族鎖を有するポリエステル樹脂、環状脂肪
族鎖を有するポリエーテル樹脂、環状脂肪族鎖を有する
ポリアミド樹脂、または環状脂肪族鎖を有するポリイミ
ド樹脂である請求項1〜2記載の熱可塑性材料組成物。
3. A thermoplastic resin comprising an acrylic resin, a cycloolefin resin, a polycarbonate resin having a cycloaliphatic chain, a polyester resin having a cycloaliphatic chain, a polyether resin having a cycloaliphatic chain, or a cycloaliphatic chain. The thermoplastic material composition according to claim 1 or 2, which is a polyamide resin or a polyimide resin having a cyclic aliphatic chain.
【請求項4】酸化物微粒子、硫化物微粒子、セレン化物
微粒子、またはテルル化物微粒子から選ばれる少なくと
も1種類以上の無機微粒子を含む請求項1〜3記載の熱
可塑性材料組成物。
4. The thermoplastic material composition according to claim 1, which contains at least one kind of inorganic fine particles selected from oxide fine particles, sulfide fine particles, selenide fine particles, and telluride fine particles.
【請求項5】酸化物微粒子として、酸化チタン微粒子ま
たは/および酸化亜鉛を含む請求項4記載の無機微粒
子。
5. The inorganic fine particles according to claim 4, wherein the oxide fine particles include titanium oxide fine particles and / or zinc oxide.
【請求項6】硫化物微粒子として、硫化亜鉛微粒子を含
む請求項4記載の無機微粒子。
6. The inorganic fine particles according to claim 4, wherein the sulfide fine particles include zinc sulfide fine particles.
【請求項7】請求項1〜4記載の熱可塑性材料組成物を
含んで構成される光学部品。
7. An optical component comprising the thermoplastic material composition according to any one of claims 1 to 4.
【請求項8】光学部品が、レンズであることを特徴とす
る請求項7記載の光学部品。
8. The optical component according to claim 7, wherein the optical component is a lens.
【請求項9】レンズが、眼鏡レンズ、光学機器用レン
ズ、オプトエレクトロニクス用レンズ、レーザー用レン
ズ、CDピックアップ用レンズ、自動車用ランプレンズ
またはOHP用レンズであることを特徴とする請求項8
記載のレンズ。
9. The lens is a spectacle lens, a lens for optical equipment, a lens for optoelectronics, a lens for lasers, a lens for CD pickups, a lamp lens for automobiles or a lens for OHPs.
The listed lens.
【請求項10】光学部品が、光ファイバーであることを
特徴とする請求項7記載の光学部品。
10. The optical component according to claim 7, wherein the optical component is an optical fiber.
【請求項11】光学部品が、光導波路であることを特徴
とする請求項7記載の光学部品。
11. The optical component according to claim 7, wherein the optical component is an optical waveguide.
【請求項12】光学部品が、光フィルターであることを
特徴とする請求項7記載の光学部品。
12. The optical component according to claim 7, wherein the optical component is an optical filter.
【請求項13】光学部品が、光学用接着剤であることを
特徴とする請求項7記載の光学部品。
13. The optical component according to claim 7, wherein the optical component is an optical adhesive.
JP2001266727A 2001-09-04 2001-09-04 Thermoplastic material composition, and optical component constituted by including the same Pending JP2003073563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266727A JP2003073563A (en) 2001-09-04 2001-09-04 Thermoplastic material composition, and optical component constituted by including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266727A JP2003073563A (en) 2001-09-04 2001-09-04 Thermoplastic material composition, and optical component constituted by including the same

Publications (1)

Publication Number Publication Date
JP2003073563A true JP2003073563A (en) 2003-03-12

Family

ID=19092967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266727A Pending JP2003073563A (en) 2001-09-04 2001-09-04 Thermoplastic material composition, and optical component constituted by including the same

Country Status (1)

Country Link
JP (1) JP2003073563A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376157A2 (en) * 2002-06-17 2004-01-02 Olympus Optical Co., Ltd. Optical element
WO2004015007A1 (en) * 2002-08-09 2004-02-19 Nagoya Industrial Science Research Institute Resin composition
WO2005006322A1 (en) * 2003-07-11 2005-01-20 Konica Minolta Opto, Inc. Optical pickup device, optical element used for optical pickup device, and method for producing optical element
DE102004061867A1 (en) * 2004-12-22 2006-07-06 Siemens Ag Optically transparent curing adhesive
US7649035B2 (en) 2004-12-10 2010-01-19 Konica Minolta Opto, Inc. Thermoplastic composite material and optical element
US7864425B2 (en) 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
US7897711B2 (en) * 2006-02-10 2011-03-01 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
US8158688B2 (en) 2008-03-12 2012-04-17 Fujifilm Corporation Dispersion liquid of metal oxide fine particles, and molding products using the same
CN103360746A (en) * 2013-07-24 2013-10-23 上海冠旗电子新材料股份有限公司 Method for preparing nano-ZnS / polycarbonate composite film
US9000111B2 (en) 2008-08-28 2015-04-07 Fujifilm Corporation Thermoplastic resin, organic-inorganic hybrid composition and optical parts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291650A (en) * 1985-06-18 1986-12-22 Nippon Sheet Glass Co Ltd Resin composition having high refractive index
JPS63122729A (en) * 1986-11-11 1988-05-26 Daicel Chem Ind Ltd Polycarbonate resin
JPS6466236A (en) * 1987-09-08 1989-03-13 Mitsubishi Gas Chemical Co Aliphatic polycarbonate and production thereof
JPH0718020A (en) * 1993-06-30 1995-01-20 Hoya Corp Optical resin
JP2000044811A (en) * 1998-07-27 2000-02-15 Toppan Printing Co Ltd Ultrafine powder-dispersed type optical material
JP2001348477A (en) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc High refractive index material composition
JP2002196107A (en) * 2000-10-04 2002-07-10 Eastman Kodak Co Antireflection article
JP2002207101A (en) * 2000-12-22 2002-07-26 Eastman Kodak Co Polymeric optical article having reduced temperature sensitivity and its production method
JP2003073559A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Thermoplastic material composition, and optical component constituted by including the same
JP2003073564A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Thermoplastic material composition, and optical component constituted by including the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291650A (en) * 1985-06-18 1986-12-22 Nippon Sheet Glass Co Ltd Resin composition having high refractive index
JPS63122729A (en) * 1986-11-11 1988-05-26 Daicel Chem Ind Ltd Polycarbonate resin
JPS6466236A (en) * 1987-09-08 1989-03-13 Mitsubishi Gas Chemical Co Aliphatic polycarbonate and production thereof
JPH0718020A (en) * 1993-06-30 1995-01-20 Hoya Corp Optical resin
JP2000044811A (en) * 1998-07-27 2000-02-15 Toppan Printing Co Ltd Ultrafine powder-dispersed type optical material
JP2001348477A (en) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc High refractive index material composition
JP2002196107A (en) * 2000-10-04 2002-07-10 Eastman Kodak Co Antireflection article
JP2002207101A (en) * 2000-12-22 2002-07-26 Eastman Kodak Co Polymeric optical article having reduced temperature sensitivity and its production method
JP2003073559A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Thermoplastic material composition, and optical component constituted by including the same
JP2003073564A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Thermoplastic material composition, and optical component constituted by including the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376157A3 (en) * 2002-06-17 2004-09-01 Olympus Optical Co., Ltd. Optical element
EP1376157A2 (en) * 2002-06-17 2004-01-02 Olympus Optical Co., Ltd. Optical element
WO2004015007A1 (en) * 2002-08-09 2004-02-19 Nagoya Industrial Science Research Institute Resin composition
US7545724B2 (en) 2003-07-11 2009-06-09 Konica Minolta Opto, Inc. Optical pickup apparatus, optical element for optical pickup apparatus and producing method of optical element
WO2005006322A1 (en) * 2003-07-11 2005-01-20 Konica Minolta Opto, Inc. Optical pickup device, optical element used for optical pickup device, and method for producing optical element
JPWO2005006322A1 (en) * 2003-07-11 2006-08-24 コニカミノルタオプト株式会社 Optical pickup device, optical element used in optical pickup device, and optical element manufacturing method
US7649035B2 (en) 2004-12-10 2010-01-19 Konica Minolta Opto, Inc. Thermoplastic composite material and optical element
DE102004061867B4 (en) * 2004-12-22 2008-09-11 Siemens Ag X-ray detector with optically transparent curing adhesive
US7368718B2 (en) 2004-12-22 2008-05-06 Siemens Aktiengesellschaft X-ray detector
DE102004061867A1 (en) * 2004-12-22 2006-07-06 Siemens Ag Optically transparent curing adhesive
US7864425B2 (en) 2005-09-16 2011-01-04 Panasonic Corporation Composite material and optical component using the same
US7897711B2 (en) * 2006-02-10 2011-03-01 Fujifilm Corporation Organic-inorganic hybrid composition, method for producing the same, molding and optical component
US8158688B2 (en) 2008-03-12 2012-04-17 Fujifilm Corporation Dispersion liquid of metal oxide fine particles, and molding products using the same
US9000111B2 (en) 2008-08-28 2015-04-07 Fujifilm Corporation Thermoplastic resin, organic-inorganic hybrid composition and optical parts
CN103360746A (en) * 2013-07-24 2013-10-23 上海冠旗电子新材料股份有限公司 Method for preparing nano-ZnS / polycarbonate composite film

Similar Documents

Publication Publication Date Title
JP4485717B2 (en) Thermoplastic material composition and optical component comprising the same
JP4485716B2 (en) Thermoplastic material composition and optical component comprising the same
US7897712B2 (en) Organic-inorganic hybrid composition, method for producing the same, molding and optical component
JP2007238930A (en) Organic-inorganic composite composition, its preparation process, molded item, and optical component
WO2009096253A1 (en) Composite material for optical use and optical device using the same
JP2003073563A (en) Thermoplastic material composition, and optical component constituted by including the same
JP2009520075A (en) Composition comprising a modified metal oxide
JP4911120B2 (en) Eyeglass lenses
JP4731681B2 (en) Polycarbonate resin and lens comprising the same
JP2009227835A (en) Organic-inorganic composite composition, manufacturing method of molded article, and optical component
JP5217644B2 (en) Optical lens and manufacturing method thereof
US8367757B2 (en) Polymer composite material, optical material including the same, and thermoplastic aromatic polymer
US8450406B2 (en) Organic-inorganic hybrid material and its shaped article, optical component and lens
JP2002114842A (en) Polycarbonate resin and optical part composed by including the same
JP2007308693A (en) High-refractive-index linear polymer and its preparation method
WO2006049015A1 (en) Thermoplastic resin composition and optical device using same
JP2002201262A (en) Polycarbonate resin and optical parts fabricated by incorporating it
WO2009113738A1 (en) Organic-inorganic hybrid composition, transparent molding, optical component and lens
WO2002024787A1 (en) Resin composition and articles molded therefrom
US6333821B1 (en) Optical elements
JP4731680B2 (en) Polyester resin and lens comprising the same
JP2022074289A (en) Organic-inorganic composite composition
JP4514080B2 (en) Polycarbonate resin composition and optical component comprising the same
WO2010024463A1 (en) Thermoplastic resin, organic-inorganic hybrid composition and optical parts
JP7160272B2 (en) organic-inorganic composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100414