JP2003068659A - Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device - Google Patents

Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device

Info

Publication number
JP2003068659A
JP2003068659A JP2001259011A JP2001259011A JP2003068659A JP 2003068659 A JP2003068659 A JP 2003068659A JP 2001259011 A JP2001259011 A JP 2001259011A JP 2001259011 A JP2001259011 A JP 2001259011A JP 2003068659 A JP2003068659 A JP 2003068659A
Authority
JP
Japan
Prior art keywords
small electrodes
small
high frequency
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001259011A
Other languages
Japanese (ja)
Inventor
Takashi Inamasu
崇 稲増
Kenji Wada
健司 和田
Haruyuki Morita
春雪 森田
Hisashi Hayakawa
尚志 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001259011A priority Critical patent/JP2003068659A/en
Publication of JP2003068659A publication Critical patent/JP2003068659A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To solve the problem of film thickness being made locally non-uniform by a strong electric field, since that strong electric field is generated between adjacent small electrodes when there is a phase difference between the high-frequency voltages of the adjacent small electrodes, even though film thickness distribution or distribution of an etching rate is improved by controlling the phase of the high-frequency voltage which is to be impressed to each of small electrodes, since a too large or too small electric field is generated close to a gap on each of small electrode surfaces by superimposing of a high-frequency impressed to each of small electrodes and it is not enouch to generate uniform plasma, when a high-frequency electrode is just divided into a plurality of small electrodes. SOLUTION: In the plasma treatment apparatus for impressing the high frequency voltage to a plurality of small electrodes comprising high frequency electrode, while shifting the phase of the high-frequency voltage, a size dc of the gap between the adjacent small electrodes can be controlled and the relation with a distance da between a plurality of small electrodes and a member to be treated is controlled to be within the range of 0.5<=dc/da<=3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ処理装置に
係り、被処理部材に対し膜堆積、エッチングあるいは表
面改質を行うのに好適な処理装置及びこの処理装置を用
いた処理方法、ならびにこれらの処理装置または処理方
法を用いて作製した薄膜、基板、半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, a processing apparatus suitable for performing film deposition, etching or surface modification on a member to be processed, a processing method using this processing apparatus, and a processing method using these processing apparatuses. The present invention relates to a thin film, a substrate, and a semiconductor device manufactured by using a processing device or a processing method.

【0002】[0002]

【従来の技術】今日、半導体装置の製造プロセスにおい
て、プラズマエネルギーを利用した薄膜堆積、エッチン
グ、表面改質等の処理が必要不可欠になっており、これ
らのプラズマ処理工程では、液晶ディスプレイや太陽電
池等の半導体装置の大型化、及び処理能力向上の要求に
対応した被処理面積の大型化や処理速度の向上、そして
処理品質の向上が重要な課題である。
2. Description of the Related Art Today, in semiconductor device manufacturing processes, processing such as thin film deposition, etching and surface modification using plasma energy is indispensable. In these plasma processing steps, liquid crystal displays and solar cells are used. It is important to increase the size of the semiconductor device such as the above, and to increase the area to be processed, the processing speed, and the processing quality in response to the demand for the improvement of the processing capacity.

【0003】このようなプラズマ処理の現状について説
明する。代表的な膜堆積処理方法であるプラズマCVD
法を例に取ると、堆積される膜として、代表的にはシリ
コンの多結晶薄膜、微結晶薄膜、非晶質薄膜があり、シ
リコンの化合物としては酸化シリコン膜、窒化シリコン
膜、珪化金属膜などがある。プラズマCVD法における
量産性を向上させるために、高周波電力を高める、また
は原料ガスの供給量を増加させることで、製膜速度を増
大させることが可能である。しかしながら、高周波電力
として13.56MHzのRF帯高周波を用いた従来の
方法において、そのような条件で膜堆積を行うと、多量
のパウダーが生成し、パウダーが被処理部材へ付着する
ことによる膜質の低下、引いては歩留まりの低下を引き
起こすために、製膜速度を著しく向上させることが実現
困難である。
The current state of such plasma processing will be described. Plasma CVD, which is a typical film deposition treatment method
Taking the method as an example, the deposited film is typically a polycrystalline silicon thin film, a microcrystalline thin film, or an amorphous thin film, and the silicon compound is a silicon oxide film, a silicon nitride film, or a metal silicide film. and so on. In order to improve mass productivity in the plasma CVD method, it is possible to increase the film forming rate by increasing the high frequency power or increasing the supply amount of the source gas. However, in the conventional method using the RF band high frequency of 13.56 MHz as the high frequency power, when film deposition is performed under such conditions, a large amount of powder is generated and the film quality due to the powder adhering to the member to be processed is It is difficult to realize a significant increase in the film-forming speed because it causes a decrease in the yield and a decrease in the yield.

【0004】このような良好な膜品質と高い製膜速度の
両立という課題の解決策として、印加電圧の高周波数化
が有望視されている。周波数を更に増加させたVHF帯
高周波を用いることで、プラズマ温度の低減と、プラズ
マ密度の向上が同時に成し得ることが知られており、V
HF帯高周波を用いることで、高品質な膜をより高速で
堆積できると期待される。
As a solution to the problem of achieving both good film quality and high film forming speed, it is considered promising to increase the frequency of the applied voltage. It is known that the plasma temperature can be reduced and the plasma density can be improved at the same time by using a VHF band high frequency with an increased frequency.
It is expected that a high quality film can be deposited at a higher speed by using the HF band high frequency.

【0005】しかしながら、VHF帯高周波はRF帯高
周波よりも波長が短いため、高周波電極の表面最大寸法
が大きくなるほど、電極上で発生する定在波の影響が大
きくなることが知られている。その結果、プラズマ密度
の電極面内均一性が悪くなるため、膜堆積の場合は膜厚
や膜特性の面内均一性の悪化、エッチングの場合はエッ
チングレートの面内均一性の悪化を引き起こしてしま
う。また、周波数が高くなるほど浮遊容量の影響が大き
くなり、電極間以外での高周波電力の損失が大きくなる
ため、安定なプラズマ生成が困難になる。これらのこと
から、RF帯高周波に対応した従来の装置では、VHF
帯高周波を用いた大面積処理を行うことは、実用上困難
である。
However, since the VHF band high frequency has a shorter wavelength than the RF band high frequency, it is known that the larger the maximum surface dimension of the high frequency electrode, the greater the influence of the standing wave generated on the electrode. As a result, the in-plane uniformity of the plasma density in the electrode is deteriorated, which causes the in-plane uniformity of the film thickness and the film characteristics in the case of film deposition, and the in-plane uniformity of the etching rate in the case of etching. I will end up. Further, as the frequency becomes higher, the influence of the stray capacitance becomes larger and the loss of the high frequency power other than between the electrodes becomes large, so that stable plasma generation becomes difficult. From these things, in the conventional device corresponding to the RF band high frequency, the VHF
It is practically difficult to perform a large area treatment using a high frequency band.

【0006】このような課題を鑑み、VHF帯高周波を
用いて大面積処理を可能とする手法が特開2000−2
68994号公報に開示されている。図19により、特
開2000−268994号公報に開示されているプラ
ズマCVD装置の概要を説明する。ガス導入手段51と
真空排気手段52を備えた反応容器4において、高周波
電源1から高周波電力が印加され、整合器9を経た後に
高周波電力が分配され、複数に分割された高周波電極2
1〜24の各々に高周波電力が印加される。このよう
な、複数に分割された高周波電極を用いることにより、
大面積でも均一なプラズマ生成が可能であるとしてい
る。
In view of these problems, a method for enabling large area processing by using VHF band high frequency is disclosed in Japanese Patent Laid-Open No. 2000-2.
It is disclosed in Japanese Patent No. 68994. The outline of the plasma CVD apparatus disclosed in Japanese Patent Laid-Open No. 2000-268994 will be described with reference to FIG. In the reaction container 4 provided with the gas introducing means 51 and the vacuum exhausting means 52, the high frequency power is applied from the high frequency power supply 1, the high frequency power is distributed after passing through the matching device 9, and the high frequency electrode 2 is divided into a plurality of parts.
High frequency power is applied to each of 1 to 24. By using such a high-frequency electrode divided into a plurality,
It says that uniform plasma generation is possible even in a large area.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、特開2
000−268994号公報に開示されているような、
高周波電極を複数に分割する手法の効果について詳細な
検討を行った。本発明者らは、図2に示すような、50
cm角のステンレス鋼平板からなり、互いに12mm離
間されている4つの小電極21〜24からなる高周波電
極を仮定し、さらに、それぞれの電極に側面および裏面
での放電を防止するためのアースシールドを設けて、各
々の小電極に100MHzの高周波電力を同出力かつ同
位相となるように印加した時の電界強度分布を電磁界計
算により求めた。このとき、高周波電極と被処理部材と
の距離は30mmとした。ここで、図1に示すように、
小電極から被処理部材へと向かう方向をx方向とし、x
方向と直交する小電極面と平行の2方向をy方向、z方
向とする。電磁界計算の結果得られたx方向の電界Ex
の強度分布を図3に示す。図の曲線から分かるように、
図3の横軸は高周波電極面上の対角方向における位置を
示しており、矢印イが高周波電極の大きさ、矢印ロ、ハ
が小電極の大きさをそれぞれ示している。また、縦軸は
電界強度を示す。複数の小電極から構成される高周波電
極全体に対する中心付近(図3のA部)で電界が過大と
なる分布が生じる。これは、各々の小電極に印加される
高周波の畳重により生ずるものと考えられる。逆に、B
部に示すように、各小電極の間隙では電界が過小とな
る。このことは、プラズマ処理の際に複数の小電極から
構成される高周波電極全体に対する中心付近(A部)で
過大なプラズマが発生し、各小電極の間隙付近(B部)
で過小なプラズマが発生すると予測される。このような
プラズマにより処理を行うと、処理の均一性や品質に問
題が生じることは明らかである。つまり、均一なプラズ
マを生成させるためには、高周波電極を複数に分割する
ほかにも、さらなる改良が必要である。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
No. 000-268994,
A detailed study was conducted on the effect of the method of dividing the high frequency electrode into a plurality of parts. The inventors of the present invention have shown that, as shown in FIG.
Assume a high-frequency electrode consisting of four small electrodes 21 to 24 made of a cm square stainless steel flat plate and separated from each other by 12 mm, and further, each electrode is provided with an earth shield for preventing discharge on the side surface and the back surface. An electric field strength distribution was calculated by electromagnetic field calculation when high frequency power of 100 MHz was applied to each small electrode so as to have the same output and the same phase. At this time, the distance between the high frequency electrode and the member to be processed was 30 mm. Here, as shown in FIG.
The direction from the small electrode to the member to be processed is defined as the x direction, and x
Two directions, which are parallel to the small electrode surface orthogonal to the direction, are defined as ay direction and az direction. Electric field Ex in x direction obtained as a result of electromagnetic field calculation
The intensity distribution of is shown in FIG. As you can see from the curve in the figure,
The horizontal axis of FIG. 3 shows the position on the surface of the high-frequency electrode in the diagonal direction, and arrow a shows the size of the high-frequency electrode, and arrows b and c show the size of the small electrode. The vertical axis represents the electric field strength. A distribution in which the electric field becomes excessive near the center (A in FIG. 3) of the entire high-frequency electrode composed of a plurality of small electrodes occurs. It is considered that this is caused by the high-frequency folding applied to each small electrode. Conversely, B
As shown in the section, the electric field is too small in the gap between the small electrodes. This means that during plasma processing, excessive plasma is generated near the center (A part) with respect to the entire high-frequency electrode composed of a plurality of small electrodes, and near the gap between the small electrodes (B part).
It is predicted that an undersized plasma will be generated. It is clear that processing with such plasma causes problems in processing uniformity and quality. That is, in order to generate a uniform plasma, further improvement is required in addition to dividing the high frequency electrode into a plurality of parts.

【0008】そこで、本発明者らは、各小電極に印加す
る高周波電圧の位相を調整して、複数の小電極から構成
される高周波電極全体に対する中心付近(A部)での電
界を互いに打ち消すことで、高周波電極全体でほぼ一様
な電界強度を得ることが可能であることを見出した。図
4に本発明者らが電磁界計算から求めた、各小電極に印
加する高周波電圧の位相をずらした時の、x方向の電界
Exの強度分布を示す。図4の横軸と縦軸は図3と同じ
である。この計算を行う条件として、図2に示す高周波
電極を仮定し、4つの小電極から任意に第1の小電極、
例えば21を選択すると、この第1の小電極21と隣接
する第2の小電極22および23に印加される高周波電
圧の位相は、第1の小電極21に印加される高周波電圧
の位相に対して135度ずらされており、第1の小電極
21とは隣接せず、第2の小電極22および23とは隣
接する第3の小電極24に印加される高周波電圧の位相
は、第1の小電極21に印加される高周波電圧の位相と
同じにされている。図3のA部に示すような過大な電界
が抑制されており、各小電極に印加する高周波電圧の位
相を調整することで、より均一なプラズマ処理を大きな
面積の被処理部材に施すことが可能となることが分かっ
た。さらに、位相のずれを種々変化させて同様の検討を
行った結果、図3のA部に示すような過大な電界を抑制
するには、隣接する小電極に印加する高周波電圧の位相
をずらすことが好適であり、図4に示すような、各小電
極面上において均一となる電界強度分布を得られること
が分かった。
Therefore, the inventors of the present invention adjust the phase of the high-frequency voltage applied to each small electrode to cancel the electric fields near the center (A portion) with respect to the entire high-frequency electrode composed of a plurality of small electrodes. By doing so, it was found that it is possible to obtain a substantially uniform electric field strength over the entire high frequency electrode. FIG. 4 shows the intensity distribution of the electric field Ex in the x direction when the phase of the high-frequency voltage applied to each small electrode is deviated, which is obtained by the present inventors through electromagnetic field calculation. The horizontal axis and the vertical axis in FIG. 4 are the same as those in FIG. As a condition for performing this calculation, it is assumed that the high frequency electrode shown in FIG.
For example, when 21 is selected, the phase of the high-frequency voltage applied to the second small electrodes 22 and 23 adjacent to the first small electrode 21 is relative to the phase of the high-frequency voltage applied to the first small electrode 21. Of the first small electrode 21 and the third small electrode 24 which is not adjacent to the first small electrode 21 and is adjacent to the second small electrodes 22 and 23. The phase of the high frequency voltage applied to the small electrode 21 is set to the same. An excessive electric field as shown in part A of FIG. 3 is suppressed, and by adjusting the phase of the high-frequency voltage applied to each small electrode, a more uniform plasma treatment can be performed on a member having a large area. It turned out to be possible. Further, as a result of performing the same examination by changing the phase shift variously, as a result, in order to suppress an excessive electric field as shown in A part of FIG. 3, it is necessary to shift the phase of the high frequency voltage applied to the adjacent small electrode. Was preferable, and it was found that a uniform electric field intensity distribution can be obtained on each small electrode surface as shown in FIG.

【0009】図4に示す均一となる電界分布と実際の膜
厚分布との相関を調べるため、製膜実験を行った。その
結果得られた膜厚分布を図5に示す。図5の横軸は図3
に示すそれと同じであり、縦軸は膜厚分布を示す。小電
極面上に相当する部分の膜厚は、図4の計算結果と同様
の均一な分布を示したが、各小電極の間隙に相当するB
部分では、図4の結果からは電界が小さいため膜厚が小
さくなることが予測されたにもかかわらず、むしろ膜厚
が大きくなる傾向が見られた。
In order to investigate the correlation between the uniform electric field distribution shown in FIG. 4 and the actual film thickness distribution, a film forming experiment was conducted. The film thickness distribution obtained as a result is shown in FIG. The horizontal axis of FIG. 5 is shown in FIG.
Is the same as that shown in, and the vertical axis shows the film thickness distribution. The film thickness of the portion corresponding to the small electrode surface showed a uniform distribution similar to the calculation result of FIG. 4, but B corresponding to the gap of each small electrode
In the portion, although it was predicted from the result of FIG. 4 that the electric field was small, the film thickness was decreased, but the film thickness tended to be increased.

【0010】そこで、反応容器のポートより、高周波電
極と被処理部材の間にラングミュアプローブを挿入し、
プラズマ電子密度分布を測定した結果を図6に示す。図
6の横軸は図3に示すそれと同じであり、縦軸は電子密
度を示している。図6に示すように、各小電極の間隙に
相当するB部分において、電子密度が大きくなっている
ことが分かった。
Therefore, a Langmuir probe is inserted from the port of the reaction vessel between the high frequency electrode and the member to be treated,
The result of measuring the plasma electron density distribution is shown in FIG. The horizontal axis of FIG. 6 is the same as that shown in FIG. 3, and the vertical axis shows the electron density. As shown in FIG. 6, it was found that the electron density was high in the portion B corresponding to the gap between the small electrodes.

【0011】そこで、x方向の電界Exのみならず、各
小電極と平行のy方向の電界Eyおよびz方向の電界E
zをも含めた電界E=(Ex2+Ey2+Ez21/2の、
小電極主面より被処理部材側に3mm離れた位置におけ
る面内分布を、図4と同じ条件で計算した結果として図
7に示す。図7の電界Eは、各小電極の間隙に相当する
B部でむしろ強くなることが分かった。隣接する小電極
間に印加される高周波電圧に位相差がある場合には、隣
接する小電極間に電位差が生じるため、図8に示すC領
域のような間隙部の小電極に近い領域において、隣接す
る小電極間の電界(小電極面と平行のyもしくはz方向
の電界)が生じているためであると考えられる。その結
果、各小電極の間隙に相当する部分での膜厚が大きくな
ったと考えられる。
Therefore, not only the electric field Ex in the x direction, but also the electric field Ey in the y direction and the electric field E in the z direction parallel to the respective small electrodes.
of the electric field E = (Ex 2 + Ey 2 + Ez 2 ) 1/2 including z
FIG. 7 shows the in-plane distribution at a position 3 mm away from the main surface of the small electrode on the side of the member to be processed under the same conditions as in FIG. It was found that the electric field E in FIG. 7 was rather strong in the B portion corresponding to the gap between the small electrodes. When there is a phase difference in the high-frequency voltage applied between the adjacent small electrodes, a potential difference occurs between the adjacent small electrodes, so that in a region near the small electrode in the gap portion such as the region C shown in FIG. It is considered that this is because an electric field between adjacent small electrodes (electric field in the y or z direction parallel to the small electrode surface) is generated. As a result, it is considered that the film thickness at the portion corresponding to the gap between the small electrodes was increased.

【0012】本発明は、上記課題を鑑みなされたもので
あり、半導体装置の大型化や処理能力向上に対応した被
処理面積の大型化や処理速度の向上、及び処理品質の向
上を可能とするプラズマ処理装置及びプラズマ処理方
法、そして、それを用いて作製した薄膜、基板、半導体
装置を提供することにある。
The present invention has been made in view of the above problems, and makes it possible to increase the area to be processed, improve the processing speed, and improve the processing quality in response to the increase in the size of semiconductor devices and the improvement in processing capacity. A plasma processing apparatus and a plasma processing method, and a thin film, a substrate, and a semiconductor device manufactured by using the plasma processing apparatus.

【0013】[0013]

【課題を解決するための手段】本発明の第1の態様は、
反応容器内に、複数の小電極に分割されてなる電極と、
被処理部材配設部を備え、該複数の小電極に分割されて
なる電極に、高周波電源から位相をずらした高周波電力
を印加することでプラズマを発生させて、被処理部材に
対し処理を行う装置において、隣接する小電極間の間隙
の大きさが、調節可能であることを特徴とするプラズマ
処理装置である。
The first aspect of the present invention comprises:
In the reaction vessel, an electrode divided into a plurality of small electrodes,
A plasma is generated by applying a high-frequency power whose phase is shifted from a high-frequency power source to an electrode that is provided with a member-to-be-processed portion and is divided into a plurality of small electrodes, and the member-to-be-processed is processed. In the plasma processing apparatus, the size of the gap between adjacent small electrodes is adjustable.

【0014】本発明の第2の態様は、反応容器内に、複
数の小電極に分割されてなる電極と、被処理部材配設部
を備え、該複数の小電極に分割されてなる電極に、高周
波電源から位相をずらした高周波電力を印加することで
プラズマを発生させて、被処理部材に対し処理を行う装
置において、隣接する小電極間の間隙の大きさdcと、
該複数の小電極と被処理部材との距離daが、 0.5≦dc/da≦3 の関係にあることを特徴とするプラズマ処理装置であ
る。
A second aspect of the present invention is an electrode divided into a plurality of small electrodes, which comprises an electrode divided into a plurality of small electrodes and a member disposition portion to be treated in a reaction vessel. In a device for generating plasma by applying high-frequency power whose phase is shifted from a high-frequency power source to perform processing on a member to be processed, a size dc of a gap between adjacent small electrodes,
The plasma processing apparatus is characterized in that the distance da between the plurality of small electrodes and the member to be processed has a relationship of 0.5 ≦ dc / da ≦ 3.

【0015】本発明の第3の態様は、第1および第2の
態様のプラズマ処理装置において、互いに隣接する小電
極に印加される高周波電圧の位相のずれが120〜24
0度の範囲にあるように調整することを特徴とするプラ
ズマ処理方法である。
According to a third aspect of the present invention, in the plasma processing apparatus of the first and second aspects, the phase shift of the high frequency voltage applied to the small electrodes adjacent to each other is 120 to 24.
It is a plasma processing method characterized by adjusting so as to be in a range of 0 degree.

【0016】本発明の第4の態様は、周波数が20〜5
00MHzの範囲にある高周波を用いたプラズマCVD
法により、最大寸法が1m以上である基板上に堆積され
た、膜厚分布が10%以内である薄膜である。
In a fourth aspect of the present invention, the frequency is 20-5.
Plasma CVD using high frequency in the range of 00MHz
By the method, it is a thin film deposited on a substrate having a maximum dimension of 1 m or more and having a film thickness distribution within 10%.

【0017】本発明の第5の態様は、第4の態様の薄膜
が少なくとも1主面上に形成されてなる基板である。
A fifth aspect of the present invention is a substrate having the thin film of the fourth aspect formed on at least one main surface.

【0018】本発明の第6の態様は、第4の態様の薄
膜、あるいは第5の態様の基板を用いて作製された半導
体装置である。
A sixth aspect of the present invention is a semiconductor device manufactured using the thin film of the fourth aspect or the substrate of the fifth aspect.

【0019】[0019]

【発明の実施の形態】複数の小電極に分割された電極
に、同位相の電力を印加した場合には、小電極の間隙部
では電界が生じないため、間隙部でのプラズマ処理の不
均一が生じる。したがって、間隙部をできるだけ小さく
することによって、間隙部の電界の落ち込みを抑制し、
プラズマ処理の不均一を防ぐことが一般的である。
BEST MODE FOR CARRYING OUT THE INVENTION When electric power of the same phase is applied to electrodes divided into a plurality of small electrodes, an electric field is not generated in the gaps between the small electrodes, so that the plasma treatment in the gaps becomes uneven. Occurs. Therefore, by making the gap as small as possible, the electric field drop in the gap is suppressed,
It is common to prevent non-uniformity in plasma processing.

【0020】一方、隣接する小電極間に印加される高周
波電圧に位相差がある場合には、間隙部において隣接す
る小電極間に電位差が生じるため、隣接する小電極の間
隙では、図8に示すC領域のように小電極に近い領域
で、隣接する小電極間に小電極面と平行となるyもしく
はz方向の電界が生じる。そのため、隣接する小電極の
間隙の大きさを小さくしすぎると、隣接する小電極間の
電界が強くなりすぎて、不均一なプラズマとなってしま
う。したがって、隣接する小電極間にかかる電界の大き
さを、プラズマ処理が均一になるように調節することが
必要となる。
On the other hand, when there is a phase difference in the high-frequency voltage applied between the adjacent small electrodes, a potential difference occurs between the adjacent small electrodes in the gap portion, so that the gap between the adjacent small electrodes is as shown in FIG. In a region close to the small electrode, such as the C region, an electric field in the y or z direction parallel to the small electrode surface is generated between the adjacent small electrodes. Therefore, if the size of the gap between the adjacent small electrodes is made too small, the electric field between the adjacent small electrodes becomes too strong, resulting in non-uniform plasma. Therefore, it is necessary to adjust the magnitude of the electric field applied between the adjacent small electrodes so that the plasma treatment becomes uniform.

【0021】プラズマ処理の均一性に大きく影響する電
界分布は、隣接する小電極間にかかる電界の大きさと、
小電極と被処理部材との間にかかる電界の大きさにより
決まる。隣接する小電極間にかかる電界は、隣接する小
電極間の間隙の大きさと関係している。一方、小電極と
被処理部材との間にかかる電界の大きさは、小電極と被
処理部材との間の距離と関係している。
The electric field distribution that greatly affects the uniformity of the plasma treatment depends on the magnitude of the electric field applied between the adjacent small electrodes and
It is determined by the magnitude of the electric field applied between the small electrode and the member to be processed. The electric field applied between the adjacent small electrodes is related to the size of the gap between the adjacent small electrodes. On the other hand, the magnitude of the electric field applied between the small electrode and the member to be processed is related to the distance between the small electrode and the member to be processed.

【0022】したがって、隣接する小電極間の間隙の大
きさと、複数の小電極と被処理部材との間の距離との関
係が重要となる。具体的には、隣接する小電極間の間隙
の大きさが、複数の小電極と被処理部材との距離と比較
して小さすぎる場合には、小電極と被処理部材間にかか
る電界よりも、隣接する小電極間の電界が強くなりす
ぎ、間隙部でのプラズマ生成が過剰になるため、プラズ
マ処理は不均一となる。逆に、隣接する小電極間の間隙
の大きさが、複数の小電極と被処理部材との間の距離と
比較して、大きすぎると、小電極と被処理部材間にかか
る電界よりも、隣接する小電極間の電界のほうが弱くな
りすぎ、間隙部でのプラズマ生成が少なすぎるため、プ
ラズマ処理は不均一となる。
Therefore, the relationship between the size of the gap between the adjacent small electrodes and the distance between the plurality of small electrodes and the member to be processed becomes important. Specifically, when the size of the gap between the adjacent small electrodes is too small as compared with the distance between the plurality of small electrodes and the member to be processed, the electric field applied between the small electrodes and the member to be processed is smaller than that. The electric field between the adjacent small electrodes becomes too strong, and the plasma is excessively generated in the gap, so that the plasma treatment becomes nonuniform. On the contrary, if the size of the gap between the adjacent small electrodes is too large as compared with the distance between the plurality of small electrodes and the member to be processed, the electric field applied between the small electrodes and the member to be processed is larger than that. The electric field between adjacent small electrodes becomes too weak, and the amount of plasma generated in the gap is too small, resulting in non-uniform plasma treatment.

【0023】そこで、プラズマ生成条件に合わせて、隣
接する小電極の間隙の大きさを調節して、隣接する小電
極間にかかる電界の大きさを調節することにより、プラ
ズマ処理を均一とすることを可能とした。
Therefore, the plasma processing is made uniform by adjusting the size of the gap between the adjacent small electrodes in accordance with the plasma generation conditions and the size of the electric field applied between the adjacent small electrodes. Made possible.

【0024】複数の小電極に印加する電力に位相差を与
えた場合には、隣接する小電極間の間隙の大きさdc
と、該複数の小電極と被処理部材との距離daが、0.
5≦dc/da≦3の関係にあることで、良好な膜厚分
布を得ることが可能となる。
When a phase difference is given to the electric power applied to the plurality of small electrodes, the size dc of the gap between the adjacent small electrodes
And the distance da between the plurality of small electrodes and the member to be processed is 0.
By satisfying the relationship of 5 ≦ dc / da ≦ 3, it is possible to obtain a good film thickness distribution.

【0025】さらに、プラズマ処理の均一性をよくする
には、互いに隣接する小電極に印加される高周波電圧の
位相のずれを120度〜240度の範囲とすることがよ
り好ましい。この場合には位相差が大きいために隣接す
る電極間の電位差が大きくなるため、隣接する小電極間
の間隙の大きさdcと、該複数の小電極と被処理部材と
の距離daが、0.7≦dc/da≦2の関係にあるこ
とがより望ましい。
Further, in order to improve the uniformity of the plasma treatment, it is more preferable that the phase shift of the high-frequency voltage applied to the small electrodes adjacent to each other is in the range of 120 to 240 degrees. In this case, since the phase difference is large and the potential difference between the adjacent electrodes is large, the gap size dc between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed are 0. It is more desirable to have a relationship of 0.7 ≦ dc / da ≦ 2.

【0026】高品質なプラズマ処理を行うために、形成
される薄膜が受けるイオンダメージが少ない、例えば、
圧力が200Pa以上2000Pa以下のプロセス条件
において、複数の小電極に印加する電力に位相差を与え
た場合には、圧力が高いために反応が頻繁に起こり、粒
子の平均自由行程が小さくなるため、隣接する小電極間
の間隙の大きさは、より小さい方が適切となり、隣接す
る小電極間の間隙の大きさdcと、該複数の小電極と被
処理部材との距離daが、0.5≦dc/da≦2の関
係にある場合、プラズマ処理の均一性が向上する。さら
にプラズマ処理の均一性を向上させるには、互いに隣接
する小電極に印加される高周波電圧の位相のずれを12
0度〜240度の範囲とすることが好ましい。この場合
には位相差が大きいために隣接する電極間の電位差が大
きくなるため、隣接する小電極間の間隙の大きさdcと
該複数の小電極と被処理部材との距離daが、0.7≦
dc/da≦1.5の関係にあることがより好ましい。
In order to carry out high-quality plasma treatment, the thin film to be formed is less ion-damaged, for example,
Under a process condition of a pressure of 200 Pa or more and 2000 Pa or less, when a phase difference is applied to the electric power applied to the plurality of small electrodes, the reaction is frequently caused due to the high pressure, and the mean free path of the particles becomes small, It is appropriate that the size of the gap between the adjacent small electrodes is smaller, and the size dc of the gap between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed are 0.5. In the case of ≦ dc / da ≦ 2, the uniformity of plasma processing is improved. In order to further improve the uniformity of the plasma treatment, the phase shift of the high frequency voltage applied to the small electrodes adjacent to each other should be 12%.
It is preferably in the range of 0 to 240 degrees. In this case, since the phase difference is large and the potential difference between the adjacent electrodes is large, the gap size dc between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed are 0. 7 ≦
More preferably, the relationship of dc / da ≦ 1.5 is satisfied.

【0027】なお、隣接する小電極間の間隙の大きさと
は、実質的に高周波が印加される小電極間の距離であ
り、各小電極を取り囲むように誘電体やアースシールド
が設置されている場合や、隣接する小電極間に誘電体が
充填されている場合においても、図8に示す距離Dのよ
うに実質的に高周波が印加される小電極間の距離であ
る。
The size of the gap between adjacent small electrodes is substantially the distance between the small electrodes to which a high frequency is applied, and a dielectric or a ground shield is installed so as to surround each small electrode. Even in the case where the dielectric is filled between the adjacent small electrodes, the distance is a distance between the small electrodes to which a high frequency is substantially applied, as in the distance D shown in FIG.

【0028】また、本発明のプラズマ処理装置におい
て、各小電極の最大寸法を、印加する高周波の波長の1
/4以下とすることにより、各小電極面上で定在波が発
生することを防止できるので、大きな面積の被処理部材
に対して、より均一なプラズマ処理を施すことが可能と
なる。なお、基板の最大寸法とは基板表面における任意
の2点間の距離が最大となる位置の寸法を意味してお
り、例えば、矩形平板上の場合は対角線長さ、円板状の
場合は直径に相当する。
In the plasma processing apparatus of the present invention, the maximum size of each small electrode is set to 1 of the wavelength of the applied high frequency.
By setting the ratio to / 4 or less, it is possible to prevent a standing wave from being generated on each small electrode surface, so that it is possible to perform more uniform plasma processing on a member to be processed having a large area. The maximum size of the substrate means the size of the position where the distance between any two points on the surface of the substrate is the maximum. For example, the diagonal length is for a rectangular flat plate, and the diameter is for a disc. Equivalent to.

【0029】さらに、位相のずれを種々変化させた結果
より、図3のA部に示すような過大な電界を抑制するに
は、隣接する小電極に印加する高周波電圧の位相を12
0〜240度の範囲内でずらすことが、プラズマ処理の
均一性を向上させるのに好適である。
Further, as a result of variously changing the phase shift, in order to suppress an excessive electric field as shown in the portion A of FIG. 3, the phase of the high frequency voltage applied to the adjacent small electrode is set to 12.
The offset within the range of 0 to 240 degrees is suitable for improving the uniformity of plasma treatment.

【0030】各小電極に印加される高周波電圧の周波数
を20〜500MHzの範囲とすることで、プラズマ中
の電子密度を増大させ、且つ、プラズマポテンシャルを
低く抑えることができるので、処理の高速化と処理品質
の向上が同時に可能となる。
By setting the frequency of the high frequency voltage applied to each small electrode in the range of 20 to 500 MHz, the electron density in the plasma can be increased and the plasma potential can be suppressed to a low level, so that the processing speed can be increased. And the processing quality can be improved at the same time.

【0031】本発明のプラズマ処理装置ならびにプラズ
マ処理方法は、半導体装置の製造工程における膜堆積、
エッチング、及び表面改質等のプラズマ処理において、
処理能力向上に対応した被処理面積の大型化、処理速度
の向上及び処理品質の向上をなし得るものであり、該装
置または方法を用いて作製された半導体装置は、高性能
かつ安価に製造できるという利点を有する。
A plasma processing apparatus and a plasma processing method according to the present invention are used for film deposition in a semiconductor device manufacturing process,
In plasma processing such as etching and surface modification,
The area to be processed can be increased, the processing speed can be improved, and the processing quality can be improved in response to the improvement in processing capacity. A semiconductor device manufactured by using the device or method can be manufactured at high performance and at low cost. Has the advantage.

【0032】以下、本発明の一実施例を、複数の角型小
電極および梯子型小電極に分割され、平板状となるよう
に配設されてなる高周波電極を有するプラズマCVD装
置により説明するが、本発明はこれにより何ら限定され
るものではない。例えば、小電極の形状も角型に限定さ
れるものではなく、棒型、円板型、球状等でもよく、各
小電極の配置も平板状に限定されるものではなく、格子
状、同心円状などでもよい。また、プラズマ処理として
膜堆積に限定されるものではなく、エッチングなどでも
同様に処理品質を向上せしめる。 (実施例1〜5および比較例1)本実施例に使用したプ
ラズマCVD装置の略断面図を図1に示す。ガス導入手
段51と真空排気手段52を備えたステンレス鋼製の反
応容器4内部に、複数の小電極21〜24に分割されて
なる平板状の高周波電極と、被処理部材3を載置するス
テンレス鋼製の被処理部材配設部31とが互いに平行と
なるように対向して配置されている。反応容器4と被処
理部材3を載置するステンレス鋼製の被処理部材配設部
31は電気的に接地されている。一方、複数の小電極2
1〜24に分割されてなる高周波電極は反応容器4と電
気的に絶縁されている。図2に高周波電極21〜24の
斜視図を示す。各々の小電極は50cm角のステンレス
鋼平板であり、これらを全体で正方形状となるように配
設して、平板状の高周波電極とする。小電極の側面およ
び裏面での異常放電を防ぐために、それぞれの小電極の
側面および裏面を囲むようにステンレス鋼製の平板によ
るアースシールド61〜64を設置した。さらに、隣接
する小電極間の間隙の大きさを調節するために、それぞ
れの小電極に対し、高周波電極全体の中心に向かって対
角方向に水平移動可能な水平方向移動機構71〜74を
設けた。また、被処理部材と小電極との距離を調節する
ため、被処理部材配設部に、垂直方向に移動可能な垂直
方向移動機構8を設けた。水平方向移動機構71〜7
4、垂直方向移動機構8は高真空直線導入端子により真
空を破らずに手動で移動可能な機構とした。高真空直線
導入端子とは、大気側から高真空中の真空容器内に直線
運動を導入する端子であり、大気側のハンドルを回転さ
せて、その回転をギアにより直線運動に変換すること
で、真空側の軸をスクロールさせる機構を持つものであ
る。
An embodiment of the present invention will be described below with reference to a plasma CVD apparatus having a high frequency electrode which is divided into a plurality of rectangular small electrodes and ladder small electrodes and which are arranged in a flat plate shape. However, the present invention is not limited thereby. For example, the shape of the small electrodes is not limited to the square shape, but may be a rod shape, a disc shape, a spherical shape, or the like, and the arrangement of each small electrode is not limited to the flat shape, but a lattice shape or a concentric shape. And so on. Further, the plasma treatment is not limited to film deposition, but etching or the like can similarly improve the treatment quality. (Examples 1 to 5 and Comparative Example 1) FIG. 1 is a schematic sectional view of the plasma CVD apparatus used in this example. Inside a stainless steel reaction vessel 4 equipped with a gas introduction means 51 and a vacuum exhaust means 52, a flat plate-shaped high-frequency electrode divided into a plurality of small electrodes 21 to 24 and stainless steel on which a member 3 to be processed is placed. The processed member disposing portion 31 made of steel is disposed so as to be parallel to each other. The processing member disposing portion 31 made of stainless steel on which the reaction container 4 and the processing target member 3 are placed is electrically grounded. On the other hand, a plurality of small electrodes 2
The high-frequency electrode divided into 1 to 24 is electrically insulated from the reaction container 4. FIG. 2 shows a perspective view of the high frequency electrodes 21 to 24. Each small electrode is a 50 cm square stainless steel flat plate, and these are arranged so as to have a square shape as a whole to form a flat plate-shaped high frequency electrode. In order to prevent abnormal discharge on the side surface and the back surface of the small electrode, ground shields 61 to 64 made of a stainless steel plate were installed so as to surround the side surface and the back surface of each small electrode. Further, in order to adjust the size of the gap between the adjacent small electrodes, horizontal movement mechanisms 71 to 74 capable of horizontally moving diagonally toward the center of the entire high frequency electrode are provided for each small electrode. It was Further, in order to adjust the distance between the member to be processed and the small electrode, a vertical moving mechanism 8 which is movable in the vertical direction is provided in the member to be processed arrangement portion. Horizontal movement mechanism 71-7
4. The vertical movement mechanism 8 is a mechanism that can be manually moved without breaking the vacuum by the high vacuum linear introduction terminal. The high-vacuum linear introduction terminal is a terminal that introduces a linear motion from the atmosphere side into a vacuum container in a high vacuum.By rotating the handle on the atmosphere side and converting the rotation into a linear motion by a gear, It has a mechanism to scroll the vacuum side axis.

【0033】高周波電源1から発振された高周波は、分
配器9によって4本の高周波伝送線路に分配され、各々
の高周波伝送線路ごとに設けられた電力モニタ101〜
104、整合器111〜114及び位相調整器121〜
124を経て、各々の小電極21〜24に印加される。
各小電極21〜24に印加する高周波電圧の位相を可変
とする位相調整器121〜124はインダクタンスおよ
びキャパシタンスから構成される電気回路である。ま
た、各小電極21〜24ごとに設けられた電力モニタ1
01〜104の値を読み取り、整合器111〜114に
よって調整することで、各小電極21〜24に印加され
る高周波電力が調整される。
The high frequency oscillated from the high frequency power source 1 is distributed by the distributor 9 to the four high frequency transmission lines, and the power monitors 101 to 101 provided for the respective high frequency transmission lines.
104, matching devices 111 to 114, and phase adjuster 121 to
It is applied to each of the small electrodes 21 to 24 via 124.
The phase adjusters 121 to 124 for varying the phase of the high frequency voltage applied to each of the small electrodes 21 to 24 are electric circuits composed of inductance and capacitance. The power monitor 1 provided for each of the small electrodes 21 to 24
By reading the values of 01 to 104 and adjusting them by the matching devices 111 to 114, the high frequency power applied to each of the small electrodes 21 to 24 is adjusted.

【0034】本実施例では、原料ガスにモノシランと水
素を用いて非晶質シリコン薄膜を製膜した。主な製膜条
件は次の通りである。
In this example, an amorphous silicon thin film was formed by using monosilane and hydrogen as source gases. The main film forming conditions are as follows.

【0035】被処理部材:ガラス基板(1m角) 総ガス流量:SiH4 1300sccm H2 1800sccm 基板温度:200℃ 高周波電力:0.2Wcm-2 周波数:100MHz 圧力:30Pa 図9に各小電極21〜24に印加する高周波電圧の波形
図を示す。小電極21と小電極24に印加する高周波電
圧は同位相である。また、小電極22と小電極23に印
加する高周波電圧は同位相である。そして、小電極21
と小電極24に印加する高周波電圧と、小電極22と小
電極23に印加する電圧とは互いの位相差が30、6
0、120、135、180度となるようにずらしてい
る。このとき、各小電極21〜24へ印加される高周波
電力が同じとなるように調整した。小電極21と小電極
24に印加する高周波電圧と、小電極22と小電極23
に印加する電圧との位相差30度を実施例1、60度を
実施例2、120度を実施例3、135度を実施例4、
180度を実施例5とする。
Member to be treated: glass substrate (1 m square) Total gas flow rate: SiH 4 1300 sccm H 2 1800 sccm Substrate temperature: 200 ° C. High frequency power: 0.2 Wcm -2 Frequency: 100 MHz Pressure: 30 Pa In FIG. The waveform diagram of the high frequency voltage applied to 24 is shown. The high frequency voltages applied to the small electrode 21 and the small electrode 24 have the same phase. Further, the high frequency voltages applied to the small electrode 22 and the small electrode 23 have the same phase. And the small electrode 21
The phase difference between the high-frequency voltage applied to the small electrode 24 and the voltage applied to the small electrode 22 and the small electrode 23 is 30, 6
The angles are shifted to 0, 120, 135 and 180 degrees. At this time, the high frequency power applied to each of the small electrodes 21 to 24 was adjusted to be the same. The high frequency voltage applied to the small electrode 21 and the small electrode 24, and the small electrode 22 and the small electrode 23.
The phase difference of 30 degrees from the voltage applied to the first embodiment, 60 degrees in the second embodiment, 120 degrees in the third embodiment, 135 degrees in the fourth embodiment,
Example 5 is 180 degrees.

【0036】垂直方向移動機構8によって、小電極と被
処理部材との距離を30mmに設定し、水平方向移動機
構71〜74によって小電極の間隙の大きさを調節し
た。
The vertical moving mechanism 8 set the distance between the small electrode and the member to be processed to 30 mm, and the horizontal moving mechanisms 71 to 74 adjusted the size of the gap between the small electrodes.

【0037】1時間の製膜処理の後、非晶質シリコン薄
膜が堆積されたガラス基板を反応容器4から取り出し、
ガラス基板の縦および横方向に対して9等分となるよう
に切断して膜厚測定用サンプルを81個作製した。奇数
により等分し、その中心部の膜厚を、段差計を用いて測
定することで、小電極面上の膜厚と各小電極の間隙部直
上の膜厚との比較評価を行うこととした。なお、81個
のサンプルの(最大値−最小値)/(最大値+最小値)
を膜厚分布として求めた。
After the film forming process for 1 hour, the glass substrate on which the amorphous silicon thin film was deposited was taken out from the reaction container 4,
The glass substrate was cut into 9 equal parts in the vertical and horizontal directions to produce 81 film thickness measurement samples. By equally dividing into odd numbers and measuring the film thickness at the center using a step gauge, it is possible to perform a comparative evaluation of the film thickness on the small electrode surface and the film thickness immediately above the gap between each small electrode. did. Note that (maximum value-minimum value) / (maximum value + minimum value) of 81 samples
Was calculated as the film thickness distribution.

【0038】水平方向移動機構71〜74により小電極
の間隙の大きさを変化させたときの膜厚分布を図10に
示す。図10の横軸は小電極の間隙dcと被処理部材と
の距離daのdc/daの関係を示し、縦軸は膜厚分布
を示す。また、比較のため小電極21〜24に印加する
高周波電圧を同位相とし、他の条件は実施例1〜5と全
く同じとして製膜した比較例1の膜厚分布を図10に併
せて示す。ここで、位相差は0度(同位相)から180
度までの範囲で変化させているが、位相差の対称性を考
慮すると位相差0度から360度までの範囲で変化させ
ていることと同様となる。
FIG. 10 shows the film thickness distribution when the size of the gap between the small electrodes is changed by the horizontal moving mechanisms 71 to 74. The horizontal axis of FIG. 10 shows the relationship of dc / da of the distance da between the small electrode and the member to be processed, and the vertical axis shows the film thickness distribution. In addition, for comparison, the high-frequency voltage applied to the small electrodes 21 to 24 has the same phase and the other conditions are exactly the same as those of Examples 1 to 5, and the film thickness distribution of Comparative Example 1 is also shown in FIG. . Here, the phase difference is from 0 degree (the same phase) to 180
The phase difference is changed in the range of 0 degrees to 360 degrees in consideration of the symmetry of the phase difference.

【0039】図10の結果より、隣接する小電極間の間
隙の大きさdcと、該複数の小電極と被処理部材との距
離daが、0.5≦dc/da≦3の関係にあるとき
に、同位相で高周波電力を印加した場合よりも膜厚分布
が低減可能となる。
From the results of FIG. 10, the size dc of the gap between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed are in the relationship of 0.5 ≦ dc / da ≦ 3. At times, the film thickness distribution can be reduced as compared with the case where high frequency power is applied in the same phase.

【0040】特に、位相差が120度〜180度の範囲
のとき、10%以内の膜厚分布の膜が得られる。位相差
の対称性を考慮すると、位相差が120度〜240度の
範囲であることが、より均一な膜を得るのに好ましい。
In particular, when the retardation is in the range of 120 ° to 180 °, a film having a film thickness distribution within 10% can be obtained. Considering the symmetry of the phase difference, it is preferable that the phase difference is in the range of 120 degrees to 240 degrees in order to obtain a more uniform film.

【0041】さらに、位相差が120度〜180度の範
囲、位相差の対称性を考慮すると120度〜240度の
範囲のとき、複数の小電極と被処理部材との距離da
と、隣接する小電極間の間隙の大きさdcは、0.7≦
dc/da≦2の範囲にあるとき、10%以内の膜厚分
布のより均一な膜が得られる。 (実施例6〜10および比較例2)垂直方向移動機構8
により複数の小電極と被処理部材との距離を20mm、
圧力を200Paとし、それ以外は実施例1と同様の条
件で製膜したものを実施例6、以下実施例2〜5と同様
の位相差のものを順に実施例7〜10とする。実施例6
〜10の膜厚分布を評価した。また、比較のため小電極
21〜24に印加する高周波電圧を同位相とし、他の条
件は実施例6と全く同じとして、製膜した比較例2の膜
厚分布を併せて図11に示す。
Furthermore, when the phase difference is in the range of 120 to 180 degrees, and in consideration of the symmetry of the phase difference, in the range of 120 to 240 degrees, the distance da between the plurality of small electrodes and the member to be processed is da.
And the size dc of the gap between the adjacent small electrodes is 0.7 ≦
When dc / da ≦ 2, a more uniform film with a film thickness distribution within 10% can be obtained. (Examples 6 to 10 and Comparative Example 2) Vertical movement mechanism 8
The distance between the plurality of small electrodes and the member to be processed is 20 mm,
The film was formed under the same conditions as in Example 1 except that the pressure was set to 200 Pa, and Example 6 was followed, and those having the same phase difference as Examples 2 to 5 below were taken as Examples 7 to 10. Example 6
The film thickness distribution of 10 to 10 was evaluated. Further, for comparison, the high frequency voltage applied to the small electrodes 21 to 24 has the same phase and the other conditions are exactly the same as in Example 6, and the film thickness distribution of Comparative Example 2 formed is also shown in FIG.

【0042】図11の結果より、圧力が200Paの場
合には、隣接する小電極間の間隙の大きさdcと、該複
数の小電極と被処理部材との距離daが、0.5≦dc
/da≦2の関係にあるときに、同位相で高周波電力を
印加した場合よりも膜厚分布が低減される。
From the result of FIG. 11, when the pressure is 200 Pa, the size dc of the gap between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed are 0.5 ≦ dc.
When / da ≦ 2, the film thickness distribution is reduced as compared with the case where high frequency power is applied in the same phase.

【0043】また、圧力が200Paの場合には、位相
差が120度〜180度の範囲のとき、10%以内の膜
厚分布の膜が得られ、位相差の対称性を考慮すると、位
相差が120度〜240度の範囲であることが、より均
一な膜を得るのに好ましい。
When the pressure is 200 Pa, a film having a film thickness distribution of 10% or less is obtained when the phase difference is in the range of 120 ° to 180 °. Considering the symmetry of the phase difference, the phase difference Is preferably in the range of 120 degrees to 240 degrees in order to obtain a more uniform film.

【0044】さらに、圧力が200Paの場合には、位
相差が120度〜180度の範囲のとき、つまり位相差
の対称性を考慮して120度〜240度の範囲のとき、
複数の小電極と被処理部材との距離daと、隣接する小
電極間の間隙の大きさdcは、0.7≦dc/da≦
1.5の範囲にあるとき、10%以内の膜厚分布のより
均一な膜が得られる。 (実施例11〜20および比較例3、4)垂直方向移動
機構8により複数の小電極と被処理部材との距離を15
mmとし、圧力を500Paとし、それ以外は実施例1
と同様の条件で製膜したものを実施例11、以下実施例
2〜5と同様の位相差のものを順に実施例12〜15と
した。実施例11〜15の膜厚分布を評価した。また、
比較として小電極21〜24に印加する高周波電圧を同
位相とし、他の条件は全く同じとして、製膜した比較例
3の膜厚分布を併せて図12に示す。
Further, when the pressure is 200 Pa, when the phase difference is in the range of 120 to 180 degrees, that is, in the range of 120 to 240 degrees in consideration of the symmetry of the phase difference,
The distance da between the plurality of small electrodes and the member to be processed and the size dc of the gap between the adjacent small electrodes are 0.7 ≦ dc / da ≦.
In the range of 1.5, a more uniform film having a film thickness distribution within 10% can be obtained. (Examples 11 to 20 and Comparative Examples 3 and 4) The distance between the plurality of small electrodes and the member to be processed is set to 15 by the vertical movement mechanism 8.
mm, the pressure was 500 Pa, and other than that, Example 1
The film formed under the same conditions as in Example 11 was referred to as Example 11, and the films having the same retardation as Examples 2 to 5 below were referred to as Examples 12 to 15 in order. The film thickness distributions of Examples 11 to 15 were evaluated. Also,
For comparison, the high-frequency voltage applied to the small electrodes 21 to 24 has the same phase and the other conditions are exactly the same, and the film thickness distribution of Comparative Example 3 formed is also shown in FIG.

【0045】垂直方向移動機構8により複数の小電極と
被処理部材との距離を7mmとし、圧力を2,000P
aとし、それ以外は実施例1と同様の条件で製膜したも
のを実施例16、以下実施例2〜5と同様の位相差のも
のを順に実施例17〜20とした。実施例16〜20の
膜厚分布を評価した。また、小電極21〜24に印加す
る高周波電圧を同位相とし、他の条件はと全く同じとし
て、製膜した比較例4の膜厚分布を併せて図13に示
す。
The distance between the plurality of small electrodes and the member to be processed is set to 7 mm by the vertical movement mechanism 8 and the pressure is set to 2,000 P.
The film was formed under the same conditions as in Example 1 except that a was formed as a, and Example 16 was made in the same manner as in Example 1 and those having a phase difference similar to those in Examples 2 to 5 were made in order to Examples 17 to 20. The film thickness distributions of Examples 16 to 20 were evaluated. Also, the high-frequency voltage applied to the small electrodes 21 to 24 has the same phase and the other conditions are exactly the same as those shown in FIG.

【0046】図12、図13および図11の結果より、
圧力が大きくなるに従い、隣接する小電極間の間隙の大
きさdcを、複数の小電極と被処理部材との距離daで
除したdc/daの、同位相で高周波電力を印加した比
較例よりも膜厚分布が低減可能となる範囲は、上限が小
さくなる。したがって、圧力が200Pa以上2,00
0Pa以下では、0.5≦dc/da≦2の範囲にある
ときに、膜厚分布が低減可能となる。
From the results shown in FIGS. 12, 13 and 11,
As the pressure increases, the size dc of the gap between adjacent small electrodes is divided by the distance da between the plurality of small electrodes and the member to be processed, which is dc / da. Also, the upper limit of the range in which the film thickness distribution can be reduced becomes smaller. Therefore, the pressure is 200 Pa or more and 2,000
At 0 Pa or less, the film thickness distribution can be reduced in the range of 0.5 ≦ dc / da ≦ 2.

【0047】また、圧力が200Pa以上2000Pa
以下の場合には、位相差が120度〜180度の範囲の
とき、10%以内の膜厚分布の膜が得られ、位相差の対
称性を考慮すると120度〜240度の範囲であること
が、均一性のよい膜を得るのに好ましい。
Further, the pressure is 200 Pa or more and 2000 Pa.
In the following cases, when the phase difference is in the range of 120 degrees to 180 degrees, a film having a film thickness distribution of 10% or less is obtained, and considering the symmetry of the phase difference, it is in the range of 120 degrees to 240 degrees. However, it is preferable to obtain a film having good uniformity.

【0048】さらに、圧力が200Pa以上2000P
a以下の場合には、位相差が120度〜180度の範囲
のとき、つまり位相差の対称性を考慮して120度〜2
40度の範囲のとき、複数の小電極と被処理部材との距
離daと、隣接する小電極間の間隙の大きさdcとの関
係は、0.7≦dc/da≦1.5の範囲にあるとき、
10%以内の膜厚分布の、均一性のよい膜が得られる。 (実施例21〜25および比較例5)実施例1において
用いた50cm角のステンレス鋼平板小電極21〜24
の代わりに、図14に示すようにステンレス鋼製の角型
棒状材を溶接し、梯子型に加工した小電極25〜28を
用いた。梯子型小電極の外形は50cm角であり、角型
の棒状材の太さは19mm、隣接する棒状材間のギャッ
プは18mmであった。実施例1と同様の条件で製膜し
たものを実施例21、以下実施例2〜5と同様の位相差
のものを順に実施例22〜25とした。実施例21〜2
5の膜厚分布を評価した。また、梯子型に加工した小電
極25〜28に印加する高周波電圧を同位相とし、他の
条件は全く同じとして、製膜した比較例5の膜厚分布を
併せて図15に示す。
Further, the pressure is 200 Pa or more and 2000 P
In the case of a or less, when the phase difference is in the range of 120 degrees to 180 degrees, that is, 120 degrees to 2 in consideration of the symmetry of the phase difference.
In the range of 40 degrees, the relationship between the distance da between the plurality of small electrodes and the member to be processed and the size dc of the gap between the adjacent small electrodes is in the range of 0.7 ≦ dc / da ≦ 1.5. When
A film having a uniform film thickness distribution of 10% or less can be obtained. (Examples 21 to 25 and Comparative Example 5) 50 cm square stainless steel flat plate small electrodes 21 to 24 used in Example 1
In place of the above, as shown in FIG. 14, small electrodes 25 to 28 were used which were obtained by welding a rectangular rod-shaped member made of stainless steel and processed into a ladder shape. The outer shape of the ladder-type small electrode was 50 cm square, the thickness of the rectangular rod-shaped member was 19 mm, and the gap between the adjacent rod-shaped members was 18 mm. The film formed under the same conditions as in Example 1 was set as Example 21, and the films having the same phase difference as those in Examples 2 to 5 were set as Examples 22 to 25 in this order. Examples 21 and 2
The film thickness distribution of No. 5 was evaluated. Further, FIG. 15 also shows the film thickness distribution of Comparative Example 5 in which the high-frequency voltage applied to the small electrodes 25 to 28 processed into the ladder shape has the same phase and the other conditions are exactly the same.

【0049】図15の結果より、複数の小電極形状が、
平板でなく、梯子型状であっても、平板状と同等の結果
が得られた。
From the result of FIG. 15, a plurality of small electrode shapes are
Even if it was a ladder type instead of a flat plate, the same result as that of the flat plate was obtained.

【0050】上述の各実施例においては、1枚の大きさ
が50cm角である正方形状の小電極もしくは梯子型の
小電極を4枚並べたものとしたが、その形状は、長方
形、多角形、円形等種々の形状であってもよく、各小電
極の最大寸法が、印加する高周波電圧の波長の1/4以
下である場合に、特に顕著な効果が得られる。また、本
例においては、隣接する小電極間の間隙の大きさdcと
複数の小電極と被処理部材との距離daのうち、隣接す
る小電極間の間隙の大きさdcを変化させることでdc
/daを調節したが、複数の小電極と被処理部材との距
離daを変化させることでもdc/daを調節すること
が可能である。 (実施例26)本例では、図1に示すプラズマCVD装
置を用いて、非晶質シリコン薄膜からなる光電変換層を
形成することで、薄膜太陽電池を作製した。本例におい
て作製した薄膜太陽電池の略断面図を図16に示す。基
板131として80cm角で厚さ1.1mmのガラス基
板を用い、この上に透明電極132として、スパッタリ
ング法によりZnOを約1μmの膜厚となるように形成
した。その後、透明電極132が形成された側が複数の
小電極からなる高周波電極に対向するように、基板13
1を図1に示すプラズマCVD装置の反応容器内部に装
入する。透明電極132の上に、膜厚30nmのp型非
晶質シリコン薄膜133、膜厚300nmのi型非晶質
シリコン薄膜134、膜厚30nmのn型非晶質シリコ
ン薄膜135の順に製膜することで光電変換層を形成し
た。p、i、n型各々の非晶質シリコン薄膜の製膜条件
を以下に示す。なお、印加した高周波の周波数は、いず
れの場合も100MHzであり、各小電極21〜24に
印加する高周波電圧に対して、図9に示した135度の
位相のずれを生じさせている。また、垂直方向移動機構
8によって、小電極と被処理部材との距離を30mmに
設定し、水平方向移動機構71〜74によって小電極の
間隙の大きさを40mmに調節した。p型非晶質シリコ
ン薄膜の製膜条件 高周波電力:0.05W/cm2 原料ガス:SiH4 150sccm H2 1500sccm B26(2.0%/H2) 300sccm 圧力:30Pa 基板温度:200℃ 小電極と被処理部材との距離:30mm 複数小電極の間隙の大きさ:40mm i型非晶質シリコン薄膜の製膜条件 高周波電力:0.2W/cm2 原料ガス:SiH4 600SCCM H2 900SCCM 圧力:30Pa 基板温度:200℃ 小電極と被処理部材との距離:30mm 複数小電極の間隙の大きさ:40mm n型非晶質シリコン薄膜の製膜条件 高周波電力:0.04W/cm2 原料ガス:SiH4 100sccm H2 1200sccm PH3(2.0%/H2) 100sccm 圧力:30Pa 基板温度:200℃ 小電極と被処理部材との距離:30mm 複数小電極の間隙の大きさ:40mm 反応容器から基板131を取り出した後、裏面電極13
6として、スパッタリング法によりAgを300nmの
厚さとなるように形成した。裏面電極136は、光電変
換層を一旦透過した光を反射させることで、発電効率を
改善する役割をも有している。
In each of the above-described embodiments, four small square electrodes or ladder-shaped small electrodes each having a size of 50 cm square are arranged side by side, but the shape is rectangular or polygonal. It may have various shapes such as a circular shape, and when the maximum size of each small electrode is ¼ or less of the wavelength of the applied high frequency voltage, a particularly remarkable effect is obtained. Further, in the present example, by changing the size dc of the gap between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed, the size dc of the gap between the adjacent small electrodes is changed. dc
Although / da is adjusted, it is also possible to adjust dc / da by changing the distance da between the plurality of small electrodes and the member to be processed. (Example 26) In this example, a thin film solar cell was produced by forming a photoelectric conversion layer made of an amorphous silicon thin film using the plasma CVD apparatus shown in FIG. FIG. 16 shows a schematic cross-sectional view of the thin-film solar cell manufactured in this example. A glass substrate 80 cm square and 1.1 mm thick was used as the substrate 131, and ZnO was formed thereon as the transparent electrode 132 by a sputtering method so as to have a film thickness of about 1 μm. Then, the substrate 13 is placed so that the side on which the transparent electrode 132 is formed faces the high frequency electrode composed of a plurality of small electrodes.
1 is loaded into the reaction vessel of the plasma CVD apparatus shown in FIG. A p-type amorphous silicon thin film 133 having a film thickness of 30 nm, an i-type amorphous silicon thin film 134 having a film thickness of 300 nm, and an n-type amorphous silicon thin film 135 having a film thickness of 30 nm are sequentially formed on the transparent electrode 132. Thus, the photoelectric conversion layer was formed. The film forming conditions for the p-type, i-type, and n-type amorphous silicon thin films are shown below. The frequency of the applied high frequency is 100 MHz in any case, and the phase shift of 135 degrees shown in FIG. 9 is caused with respect to the high frequency voltage applied to each of the small electrodes 21 to 24. Further, the vertical movement mechanism 8 set the distance between the small electrodes and the member to be processed to 30 mm, and the horizontal movement mechanisms 71 to 74 adjusted the size of the small electrode gap to 40 mm. Film-forming conditions for p-type amorphous silicon thin film High frequency power: 0.05 W / cm 2 Source gas: SiH 4 150 sccm H 2 1500 sccm B 2 H 6 (2.0% / H 2 ) 300 sccm Pressure: 30 Pa Substrate temperature: 200 ℃ Distance between small electrode and member to be treated: 30 mm Size of gap between multiple small electrodes: 40 mm Film forming conditions for i-type amorphous silicon thin film High frequency power: 0.2 W / cm 2 Source gas: SiH 4 600SCCM H 2 900 SCCM Pressure: 30 Pa Substrate temperature: 200 ° C. Distance between small electrode and member to be processed: 30 mm Gap size between multiple small electrodes: 40 mm Film forming conditions for n-type amorphous silicon thin film High frequency power: 0.04 W / cm 2 source gas: SiH 4 100sccm H 2 1200sccm PH 3 (2.0% / H 2) 100sccm pressure: 30 Pa substrate temperature: 200 ° C. small The distance between the pole To the member to be processed: 30mm plurality small electrode gap size: After removing the substrate 131 from 40mm reaction vessel, the back electrode 13
As No. 6, Ag was formed by sputtering to have a thickness of 300 nm. The back electrode 136 also has a role of improving the power generation efficiency by reflecting the light that has once passed through the photoelectric conversion layer.

【0051】1枚のガラス基板当たり、9個×9個の単
位セル(4cm角)を作成し、その光電変換効率の分布
を測定した。図17は、81個の単位セルにおける光電
変換効率の平均値を1とした時の、そのバラツキを示し
たものである。 (比較例6)図19に示したプラズマCVD装置を用
い、複数の小電極に同位相で高周波電力を印加、垂直方
向移動機構8によって、小電極と被処理部材との距離を
30mmに設定し、水平方向移動機構71〜74によっ
て小電極の間隙の大きさを6mmに調節したほかは、実
施例6と同様の製膜条件で作製した場合における、81
個の単位セルにおける光電変換効率のバラツキを、図1
8に示す。
9 × 9 unit cells (4 cm square) were prepared for each glass substrate, and the distribution of photoelectric conversion efficiency was measured. FIG. 17 shows the variation when the average value of the photoelectric conversion efficiencies in the 81 unit cells is 1. (Comparative Example 6) Using the plasma CVD apparatus shown in FIG. 19, high frequency power is applied to a plurality of small electrodes in the same phase, and the vertical movement mechanism 8 sets the distance between the small electrodes and the member to be processed to 30 mm. In the case where the film was formed under the same film forming conditions as in Example 6, except that the size of the gap between the small electrodes was adjusted to 6 mm by the horizontal movement mechanisms 71 to 74.
Fig. 1 shows the variation in the photoelectric conversion efficiency in each unit cell.
8 shows.

【0052】本発明のプラズマCVD装置を用いて作製
した薄膜太陽電池の光電変換効率のバラツキは小さく、
本発明のプラズマCVD装置及びプラズマCVD方法に
より、歩留の向上をなし得ることが確認できた。
The variation in photoelectric conversion efficiency of the thin film solar cell produced by using the plasma CVD apparatus of the present invention is small,
It was confirmed that the yield can be improved by the plasma CVD apparatus and the plasma CVD method of the present invention.

【0053】本実施例では、本発明のプラズマCVD装
置及びプラズマCVD方法を、非晶質シリコン薄膜を光
電変換層とする薄膜太陽電池の製造プロセスに適用した
が、本発明の効果はこれに限らない。例えば、多結晶シ
リコン薄膜の製膜、あるいは非晶質シリコン薄膜や多結
晶シリコン薄膜のエッチング等においても、半導体装置
の大型化や処理能力向上に対応した被処理面積の大型化
や処理速度の向上、及び処理品質の向上が可能であり、
本発明により、膜堆積やエッチング等のプラズマ処理工
程において、歩留まり、信頼性、量産性が向上されるこ
とは言うまでもない。しかるに、薄膜太陽電池の製造プ
ロセスのみならず、薄膜トランジスタ等の製造プロセス
に適用できることは言うまでもない。
In this example, the plasma CVD apparatus and the plasma CVD method of the present invention were applied to the manufacturing process of a thin film solar cell using an amorphous silicon thin film as a photoelectric conversion layer, but the effect of the present invention is not limited to this. Absent. For example, in forming a polycrystalline silicon thin film or etching an amorphous silicon thin film or a polycrystalline silicon thin film, the area to be processed is increased and the processing speed is increased in response to the increase in the size of the semiconductor device and the improvement in the processing capacity. , And improvement of processing quality are possible,
It goes without saying that the present invention improves yield, reliability, and mass productivity in plasma processing steps such as film deposition and etching. However, it goes without saying that the present invention can be applied not only to the manufacturing process of thin film solar cells but also to the manufacturing process of thin film transistors and the like.

【0054】[0054]

【発明の効果】本発明により、高周波電極を構成する複
数の小電極に対して、高周波電圧の位相差をずらして印
加するプラズマ処理装置において、隣接する小電極間の
間隙の大きさdcを調節可能とし、複数の小電極と被処
理部材との距離daとの関係を、0.5≦dc/da≦
3の範囲に調節することで、膜厚分布やエッチング速度
の分布が改善される。
According to the present invention, the size dc of the gap between adjacent small electrodes is adjusted in a plasma processing apparatus which applies a high frequency voltage with a phase difference shifted to a plurality of small electrodes constituting the high frequency electrode. And the relationship between the distance da between the plurality of small electrodes and the member to be processed is 0.5 ≦ dc / da ≦
By adjusting the range to 3, the film thickness distribution and the etching rate distribution are improved.

【0055】したがって、本発明により、半導体装置製
造プロセスにおける製膜及びエッチング工程等のプラズ
マ処理工程において、半導体装置の大型化や処理能力向
上に対応した被処理面積の大型化や処理速度の向上、及
び処理品質の向上が可能であり、その結果、歩留まり、
信頼性、量産性を向上させることが可能となる。
Therefore, according to the present invention, in a plasma processing step such as a film forming step and an etching step in a semiconductor device manufacturing process, an area to be processed is increased and a processing speed is increased in response to an increase in size of a semiconductor device and an increase in processing capability. It is possible to improve the processing quality, and as a result, the yield,
It is possible to improve reliability and mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1つの態様であるプラズマCVD装置
の略断面図を示す。
FIG. 1 shows a schematic cross-sectional view of a plasma CVD apparatus that is one embodiment of the present invention.

【図2】プラズマCVD装置における高周波電圧を印加
する分割した小電極の略斜視図を示す。
FIG. 2 is a schematic perspective view of divided small electrodes for applying a high frequency voltage in a plasma CVD apparatus.

【図3】従来のプラズマCVD方法における高周波電極
面上の小電極から被処理部材へと向かう電界の強度分布
を示す図である。
FIG. 3 is a diagram showing an intensity distribution of an electric field from a small electrode on a high frequency electrode surface toward a member to be processed in a conventional plasma CVD method.

【図4】高周波電圧の位相をずらして印加するプラズマ
CVD装置における高周波電極面上の小電極から被処理
部材へと向かう電界の強度分布を示す図である。
FIG. 4 is a diagram showing an intensity distribution of an electric field from a small electrode on a surface of a high frequency electrode in a plasma CVD apparatus in which a high frequency voltage is applied with a phase shift;

【図5】高周波電圧の位相をずらして印加するプラズマ
CVD装置において、堆積したサンプルの膜厚分布を示
す図である。
FIG. 5 is a diagram showing a film thickness distribution of a sample deposited in a plasma CVD apparatus in which a high frequency voltage is applied with a phase shift.

【図6】高周波電圧の位相をずらして印加するプラズマ
CVD装置におけるプラズマ電子密度分布を示す図であ
る。
FIG. 6 is a diagram showing a plasma electron density distribution in a plasma CVD apparatus in which a high frequency voltage is applied with a phase shift.

【図7】高周波電圧の位相をずらして印加するプラズマ
CVD装置における高周波電極面上の電界強度分布を示
す図である。
FIG. 7 is a diagram showing an electric field intensity distribution on a high-frequency electrode surface in a plasma CVD apparatus that applies a high-frequency voltage with a shifted phase.

【図8】プラズマCVD装置の略断面図を示す。FIG. 8 shows a schematic cross-sectional view of a plasma CVD apparatus.

【図9】各々の小電極に印加する高周波電圧の波形図を
示す。
FIG. 9 shows a waveform diagram of a high-frequency voltage applied to each small electrode.

【図10】実施例1〜5および比較例1にかかるdc/
daと膜厚分布の相関図を示す。
FIG. 10 shows dc / according to Examples 1 to 5 and Comparative Example 1.
The correlation diagram of da and film thickness distribution is shown.

【図11】実施例6〜10および比較例2にかかるdc
/daと膜厚分布の相関図を示す。
FIG. 11: dc according to Examples 6 to 10 and Comparative Example 2
The correlation diagram of / da and film thickness distribution is shown.

【図12】実施例11〜15および比較例3にかかるd
c/daと膜厚分布の相関図を示す。
FIG. 12 d according to Examples 11 to 15 and Comparative Example 3
The correlation diagram of c / da and film thickness distribution is shown.

【図13】実施例16〜20および比較例4にかかるd
c/daと膜厚分布の相関図を示す。
FIG. 13 d according to Examples 16 to 20 and Comparative Example 4
The correlation diagram of c / da and film thickness distribution is shown.

【図14】プラズマCVD装置における高周波電圧を印
加する分割した梯子型小電極の略斜視図である。
FIG. 14 is a schematic perspective view of a divided ladder type small electrode for applying a high frequency voltage in the plasma CVD apparatus.

【図15】実施例21〜25および比較例5にかかるd
c/daと膜厚分布の相関図を示す。
FIG. 15 d according to Examples 21 to 25 and Comparative Example 5
The correlation diagram of c / da and film thickness distribution is shown.

【図16】本発明の半導体装置である薄膜太陽電池の略
断面図を示す。
FIG. 16 shows a schematic cross-sectional view of a thin film solar cell that is a semiconductor device of the present invention.

【図17】本発明のプラズマCVD方法により作製した
薄膜太陽電池における光電変換効率のバラツキを示す。
FIG. 17 shows variations in photoelectric conversion efficiency in a thin film solar cell manufactured by the plasma CVD method of the present invention.

【図18】従来のプラズマCVD方法により作製した薄
膜太陽電池における光電変換効率のバラツキを示す。
FIG. 18 shows variations in photoelectric conversion efficiency in a thin film solar cell manufactured by a conventional plasma CVD method.

【図19】従来のプラズマCVD装置の略断面図を示
す。
FIG. 19 shows a schematic sectional view of a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1…高周波電源 21〜24…小電極 25〜28…梯子型小電極 3…被処理部材 31…被処理部材配設部 4…反応容器 51…ガス導入手段 52…真空排気手段 61〜64…ステンレス鋼製のアースシールド 71〜74…水平方向移動機構 8…垂直方向移動機構 9…分配器 101〜104…電力モニタ 111〜114…整合器 121〜124…位相調整器 131…ガラス基板 132…透明電極 133…p型非晶質シリコン 134…i型非晶質シリコン 135…n型非晶質シリコン 136…裏面電極 1 ... High frequency power supply 21-24 ... Small electrodes 25-28 ... Ladder type small electrode 3 ... Treated member 31 ... Arrangement part for processed member 4 ... Reaction vessel 51 ... Gas introduction means 52 ... Evacuation means 61-64 ... Earth shield made of stainless steel 71-74 ... Horizontal movement mechanism 8 ... Vertical movement mechanism 9 ... Distributor 101-104 ... Electric power monitor 111-114 ... Matching device 121-124 ... Phase adjuster 131 ... Glass substrate 132 ... Transparent electrode 133 ... p-type amorphous silicon 134 ... i-type amorphous silicon 135 ... n-type amorphous silicon 136 ... Back electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 春雪 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 早川 尚志 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 4K030 AA06 AA17 BA30 CA06 FA03 JA01 JA03 JA09 JA18 JA19 KA30 LA16 5F045 AA08 AB04 AC01 AD06 AE19 AF07 BB02 BB09 BB15 CA13 CA15 DP05 EH04 EH06 EH07 EH14 EH20 5F051 AA05 BA14 CA02 CA03 CA04 CA07 CA15 CA26 CA34 CA40 DA04 FA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Haruki Morita             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Naoshi Hayakawa             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company F-term (reference) 4K030 AA06 AA17 BA30 CA06 FA03                       JA01 JA03 JA09 JA18 JA19                       KA30 LA16                 5F045 AA08 AB04 AC01 AD06 AE19                       AF07 BB02 BB09 BB15 CA13                       CA15 DP05 EH04 EH06 EH07                       EH14 EH20                 5F051 AA05 BA14 CA02 CA03 CA04                       CA07 CA15 CA26 CA34 CA40                       DA04 FA02

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 反応容器内に、複数の小電極に分割され
てなる電極と、被処理部材配設部を備え、 該複数の小電極に分割されてなる電極に、高周波電源か
ら位相をずらした高周波電力を印加することでプラズマ
を発生させて、被処理部材に対し処理を行う装置におい
て、 隣接する小電極間の間隙の大きさが、調節可能であるこ
とを特徴とするプラズマ処理装置。
1. A reaction vessel comprising an electrode divided into a plurality of small electrodes and a member-to-be-treated arrangement portion, and the electrode divided into the plurality of small electrodes is out of phase with a high frequency power source. A plasma processing apparatus in which plasma is generated by applying high-frequency power to perform processing on a member to be processed, wherein a size of a gap between adjacent small electrodes is adjustable.
【請求項2】 反応容器内に、複数の小電極に分割され
てなる電極と、被処理部材配設部を備え、 該複数の小電極に分割されてなる電極に、高周波電源か
ら位相をずらした高周波電力を印加することでプラズマ
を発生させて、被処理部材に対し処理を行う装置におい
て、 隣接する小電極間の間隙の大きさdcと、該複数の小電
極と被処理部材との距離daが、 0.5≦dc/da≦3 の関係にあることを特徴とするプラズマ処理装置。
2. A reaction container is provided with an electrode divided into a plurality of small electrodes and a member disposition part to be treated, and the electrode divided into the plurality of small electrodes is shifted in phase from a high frequency power source. In a device that generates plasma by applying high-frequency power to perform processing on a member to be processed, a size dc of a gap between adjacent small electrodes and a distance between the plurality of small electrodes and the member to be processed. A plasma processing apparatus, wherein da has a relationship of 0.5 ≦ dc / da ≦ 3.
【請求項3】 互いに隣接する小電極に印加される高周
波電圧の位相のずれを120〜240度の範囲とするこ
とを特徴とする請求項1または2に記載のプラズマ処理
装置。
3. The plasma processing apparatus according to claim 1, wherein the phase shift of the high-frequency voltage applied to the small electrodes adjacent to each other is in the range of 120 to 240 degrees.
【請求項4】 前記隣接する小電極間の間隙の大きさd
cと、該複数の小電極と被処理部材との距離daが、 0.7≦dc/da≦2 の関係にあることを特徴とする請求項3に記載のプラズ
マ処理装置。
4. The size d of the gap between the adjacent small electrodes.
4. The plasma processing apparatus according to claim 3, wherein c and a distance da between the plurality of small electrodes and the member to be processed have a relationship of 0.7 ≦ dc / da ≦ 2.
【請求項5】 圧力が200Pa以上2000Pa以下
のプロセス条件において、 前記隣接する小電極間の間隙の大きさdcと、該複数の
小電極と被処理部材との距離daが、 0.5≦dc/da≦2 の関係にあることを特徴とする請求項1または2に記載
のプラズマ処理装置。
5. Under a process condition where the pressure is 200 Pa or more and 2000 Pa or less, the size dc of the gap between the adjacent small electrodes and the distance da between the plurality of small electrodes and the member to be processed are 0.5 ≦ dc. The plasma processing apparatus according to claim 1 or 2, wherein the relationship is / da ≦ 2.
【請求項6】 互いに隣接する小電極に印加される高周
波電圧の位相のずれを120〜240度の範囲とするこ
とを特徴とする請求項5に記載のプラズマ処理装置。
6. The plasma processing apparatus according to claim 5, wherein the phase shift of the high frequency voltage applied to the adjacent small electrodes is in the range of 120 to 240 degrees.
【請求項7】 前記隣接する小電極間の間隙の大きさd
cと、該複数の小電極と被処理部材との距離daが、 0.7≦dc/da≦1.5 の関係にあることを特徴とする請求項6に記載のプラズ
マ処理装置。
7. The size d of the gap between the adjacent small electrodes.
7. The plasma processing apparatus according to claim 6, wherein c and a distance da between the plurality of small electrodes and the member to be processed have a relationship of 0.7 ≦ dc / da ≦ 1.5.
【請求項8】 前記各々の小電極の最大寸法が、前記高
周波の波長の1/4以下であることを特徴とする請求項
1〜7のいずれかに記載のプラズマ処理装置。
8. The plasma processing apparatus according to claim 1, wherein the maximum size of each of the small electrodes is ¼ or less of the wavelength of the high frequency.
【請求項9】 周波数が20〜500MHzの範囲にあ
る高周波を用い、最大寸法が1m以上である基板上に、
膜厚分布が10%以内である薄膜を堆積する請求項1〜
8のいずれかに記載のプラズマ装置。
9. Using a high frequency having a frequency in the range of 20 to 500 MHz on a substrate having a maximum dimension of 1 m or more,
A thin film having a film thickness distribution within 10% is deposited.
9. The plasma device according to any one of 8.
【請求項10】 請求項1〜9に記載のプラズマ処理装
置における前記複数の小電極において、互いに隣接する
小電極に印加される高周波電圧の位相のずれを120〜
240度の範囲とすることを特徴とするプラズマ処理方
法。
10. The plurality of small electrodes in the plasma processing apparatus according to claim 1, wherein a phase shift of a high frequency voltage applied to adjacent small electrodes is 120 to 120.
A plasma processing method, wherein the range is 240 degrees.
【請求項11】 請求項1〜9に記載のプラズマ処理装
置において、互いに隣接する小電極に印加される前記高
周波の周波数を20MHzから500MHzとすること
を特徴とするプラズマ処理方法。
11. The plasma processing method according to claim 1, wherein the frequency of the high frequency applied to the small electrodes adjacent to each other is 20 MHz to 500 MHz.
【請求項12】 請求項1〜9に記載のプラズマ処理装
置において、周波数が20〜500MHzの範囲にある
高周波を用いたプラズマCVD法により、最大寸法が1
m以上である基板上に堆積された、膜厚分布が10%以
内である薄膜。
12. The plasma processing apparatus according to claim 1, wherein the maximum dimension is 1 by a plasma CVD method using a high frequency having a frequency in the range of 20 to 500 MHz.
A thin film having a film thickness distribution within 10%, deposited on a substrate having a thickness of m or more.
【請求項13】 請求項12に記載の薄膜が少なくとも
1主面上に形成されてなる基板。
13. A substrate having the thin film according to claim 12 formed on at least one main surface.
【請求項14】 請求項12に記載の薄膜、あるいは請
求項13に記載の基板を用いて作製された半導体装置。
14. A semiconductor device manufactured using the thin film according to claim 12 or the substrate according to claim 13.
JP2001259011A 2001-08-29 2001-08-29 Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device Pending JP2003068659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259011A JP2003068659A (en) 2001-08-29 2001-08-29 Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259011A JP2003068659A (en) 2001-08-29 2001-08-29 Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2003068659A true JP2003068659A (en) 2003-03-07

Family

ID=19086443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259011A Pending JP2003068659A (en) 2001-08-29 2001-08-29 Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2003068659A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040183A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Silicon-based thin film photoelectric converter, and method and apparatus for manufacturing same
JP2009144205A (en) * 2007-12-14 2009-07-02 Mitsubishi Heavy Ind Ltd Vacuum treatment system
WO2009081855A1 (en) * 2007-12-21 2009-07-02 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric conversion device, and photoelectric conversion device
KR101061673B1 (en) 2008-02-18 2011-09-01 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method and storage medium
WO2022201242A1 (en) * 2021-03-22 2022-09-29 株式会社Kokusai Electric Electrodes, substrate treatment device, method for manufacturing semiconductor device, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040183A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Silicon-based thin film photoelectric converter, and method and apparatus for manufacturing same
JP5259189B2 (en) * 2005-10-03 2013-08-07 シャープ株式会社 Manufacturing method of silicon-based thin film photoelectric conversion device
JP2009144205A (en) * 2007-12-14 2009-07-02 Mitsubishi Heavy Ind Ltd Vacuum treatment system
WO2009081855A1 (en) * 2007-12-21 2009-07-02 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric conversion device, and photoelectric conversion device
JP2009152441A (en) * 2007-12-21 2009-07-09 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric converter, and photoelectric converter
KR101061673B1 (en) 2008-02-18 2011-09-01 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method and storage medium
WO2022201242A1 (en) * 2021-03-22 2022-09-29 株式会社Kokusai Electric Electrodes, substrate treatment device, method for manufacturing semiconductor device, and program

Similar Documents

Publication Publication Date Title
KR101512761B1 (en) Plasma CVD apparatus method for manufacturing microcrystalline semiconductor layer and method for manufacturing thin film transistor
US8278195B2 (en) Plasma CVD apparatus
US8968838B2 (en) Plasma processing in a capacitively-coupled reactor with trapezoidal-waveform excitation
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
US20060124455A1 (en) Thin film forming device and thin film forming method
EP0686708A1 (en) Film forming method and film forming apparatus
JP2003068659A (en) Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device
JP2003031504A (en) Plasma processing apparatus and method and semiconductor device manufactured by using them
JP2003109908A (en) Device and method for plasma treatment, substrate, and semiconductor device
JP2002025919A (en) Capacitively coupled plasma device and manufacturing method of electronic device
US20100062585A1 (en) Method for forming silicon thin film
EP0678894B1 (en) Plasma processing apparatus
JP2003059840A (en) Apparatus and method for plasma treatment
JP2003068651A (en) Plasma treatment apparatus, plasma cvd system, plasma treatment method, thin film produced using them, substrate, and semiconductor device
JPH0776781A (en) Plasma vapor growth device
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JPH10125665A (en) Plasma processing system
US20020056415A1 (en) Apparatus and method for production of solar cells
JP2003059839A (en) Apparatus and method for plasma treatment
JP2003059838A (en) Apparatus and method for plasma treatment
JP2925399B2 (en) Plasma CVD apparatus and deposition film forming method using the same
JP2003059841A (en) Apparatus and method for plasma treatment
JP3359128B2 (en) Plasma CVD deposited film forming apparatus and deposited film forming method
JP2009097037A (en) Plasma cvd film-forming apparatus and film-forming method using the same
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd