JP2003065295A - Axial flow blower - Google Patents

Axial flow blower

Info

Publication number
JP2003065295A
JP2003065295A JP2001260218A JP2001260218A JP2003065295A JP 2003065295 A JP2003065295 A JP 2003065295A JP 2001260218 A JP2001260218 A JP 2001260218A JP 2001260218 A JP2001260218 A JP 2001260218A JP 2003065295 A JP2003065295 A JP 2003065295A
Authority
JP
Japan
Prior art keywords
blade
trailing edge
line segment
center
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001260218A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Ishijima
嶋 満 義 石
Akihiro Takeuchi
内 章 洋 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001260218A priority Critical patent/JP2003065295A/en
Publication of JP2003065295A publication Critical patent/JP2003065295A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an axial flow blower which can keep load of a generator low even if a blowing amount is increased by raising the number of rotation. SOLUTION: In this axial flow blower with a plurality of blades 12 integrally formed around a hub 11, at a corner part where a blade rear edge part 21 which is an air outflow part during rotation crosses a blade outer circumference part 22, an expanded part 23 expanding in the protruding state in the air outflow direction is formed, and the expansion part is formed within the range of 0.6R to R where a radius from the center of a rotation shaft to the outermost circumference of the blade is R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機の室外
機等に使用される軸流送風機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial blower used for an outdoor unit of an air conditioner.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】この種
の軸流送風機として、図13や図14に示す構成のもの
が知られている。このうち、図13に示した軸流送風機
10Aは、ハブ11と複数の翼12(ここでは、1個の
みを示す)とが一体的に成形される。この軸流送風機1
0Aが矢印X方向に回転するものとして、翼12の空気
流出部に当たる翼後縁部21は略直線状に形成されてい
たため、風量の増加を図る場合、送風機を駆動する電動
機の負荷が大きくなったり、送風音が増大したりすると
いう問題があった。
2. Description of the Related Art As an axial blower of this type, one having a structure shown in FIGS. 13 and 14 is known. Among these, in the axial blower 10A shown in FIG. 13, the hub 11 and the plurality of blades 12 (only one is shown here) are integrally formed. This axial blower 1
Since 0A rotates in the direction of the arrow X, the blade trailing edge portion 21 that is in contact with the air outflow portion of the blade 12 is formed in a substantially linear shape. Therefore, when increasing the air volume, the load of the electric motor that drives the blower becomes large. There was also a problem that the blowing noise increased.

【0003】一方、図14に示した軸流送風機10Bの
翼後縁部21は略円弧状に湾曲しており、翼後縁部21
と翼外周部22とが交わる角部が凸状に膨出する膨出部
23になっている。しかし、膨出部23を形成する範囲
が、回転軸の中心Oから翼外周部22までの半径をrと
したとき、0.5rを超える広い領域に存在するため、
前述したと同様に送風機の回転数を上昇させて風量の増
大を図った場合、翼後縁部21における流れ損失が増大
し、送風機駆動用電動機の負荷が大きくなったり、送風
音が増大したりするという問題があった。
On the other hand, the blade trailing edge portion 21 of the axial blower 10B shown in FIG. 14 is curved in a substantially arc shape, and the blade trailing edge portion 21 is formed.
The corner portion where the blade and the blade outer peripheral portion 22 intersect is a bulging portion 23 that bulges in a convex shape. However, the range forming the bulging portion 23 exists in a wide region exceeding 0.5r, where r is the radius from the center O of the rotating shaft to the blade outer peripheral portion 22,
When the rotational speed of the blower is increased to increase the air volume in the same manner as described above, the flow loss at the blade trailing edge portion 21 increases, the load on the blower drive motor increases, and the blower noise increases. There was a problem of doing.

【0004】本発明は、上記の問題点を解決するために
なされたもので、その目的は回転数を上昇させて送風量
の増加を図った場合でも、電動機の負荷を低く抑えるこ
とのできる軸流送風機を提供するにある。
The present invention has been made to solve the above problems, and its purpose is to reduce the load on the electric motor even when the number of rotations is increased to increase the amount of blown air. To provide a blower.

【0005】本発明の他の目的は、翼後縁部に発生する
渦を抑制し、送風騒音の増加を抑えることのできる軸流
送風機を提供するにある。
Another object of the present invention is to provide an axial blower capable of suppressing vortices generated at the trailing edge of the blade and suppressing an increase in blast noise.

【0006】本発明のもう一つ他の目的は、成形性やコ
スト低減に優れた軸流送風機を提供するにある。
Another object of the present invention is to provide an axial-flow blower excellent in moldability and cost reduction.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
ハブの周囲に複数の翼を一体的に形成してなる軸流送風
機において、回転中の空気流出部に当たる翼後縁部と翼
外周部とが交わる角部を空気の流出方向に凸状に膨出す
る膨出部を形成すると共に、回転軸の中心から翼の最外
周までの半径をRとしたとき、膨出部を0.6R〜Rの
範囲に形成したことを特徴とする。
The invention according to claim 1 is
In an axial-flow blower in which a plurality of blades are integrally formed around the hub, the corner where the trailing edge of the blade, which is the rotating air outlet, and the outer periphery of the blade intersect is expanded in a convex shape in the air outlet direction. The bulging portion is formed in the range of 0.6R to R, where R is the radius from the center of the rotating shaft to the outermost periphery of the blade.

【0008】請求項2に係る発明は、請求項1に記載の
軸流送風機において、膨出部は3つ以上の互いに異なる
円弧を連ねた輪郭を有することを特徴とする。
According to a second aspect of the present invention, in the axial blower according to the first aspect, the bulging portion has a contour in which three or more different arcs are connected.

【0009】請求項3に係る発明は、請求項1又は2に
記載の軸流送風機において、膨出部から回転軸方向に連
なる翼後縁部は風が流入する方向へ湾曲し、湾曲した後
縁は2つ以上の円弧を連ねたものでなる。
According to a third aspect of the present invention, in the axial blower according to the first or second aspect, the blade trailing edge portion extending from the bulging portion in the rotation axis direction is curved in a wind inflow direction, and after being curved. The edge is made up of two or more arcs.

【0010】請求項4に係る発明は、請求項3に記載の
軸流送風機において、一つの翼の外周縁の弧長をCLと
したとき、翼後縁部の湾曲部の弧長を0.4〜0.6C
Lの範囲としたことを特徴とする。
According to a fourth aspect of the present invention, in the axial blower according to the third aspect, when the arc length of the outer peripheral edge of one blade is CL, the arc length of the curved portion at the trailing edge of the blade is 0. 4-0.6C
It is characterized in that the range is L.

【0011】請求項5に係る発明は、請求項3に記載の
軸流送風機において、回転軸の中心をOとし、この中心
Oから導出して翼後縁部の湾奥部(Q)と接触する線分
をKm、中心Oから導出して膨出部の先端部(T)と接
触する線分をKn、中心Oから導出して回転中の空気流
入部に当たる翼前縁部の外周端(S)と接触する線分を
Kfとし、線分Kmと線分Knとの間の中心角をα1、
線分Knと線分Kfとの間の中心角をα2とした場合、
α1=0.05×α2〜0.15×α2としたことを特
徴とする。
According to a fifth aspect of the present invention, in the axial blower according to the third aspect, the center of the rotary shaft is O, and the center is derived from this center O to contact the inner part (Q) of the bay at the trailing edge of the blade. Km, a line segment that is derived from the center O and comes into contact with the tip (T) of the bulge portion is Kn, and a line segment that is derived from the center O and that corresponds to the rotating air inflow portion is the outer peripheral end of the blade leading edge ( Sf) is a line segment that comes into contact with Kf, and the central angle between the line segment Km and the line segment Kn is α1,
When the central angle between the line segment Kn and the line segment Kf is α2,
It is characterized in that α1 = 0.05 × α2 to 0.15 × α2.

【0012】請求項6に係る発明は、請求項3に記載の
軸流送風機において、翼後縁部の径方向内側の湾曲部の
始点をUとし、回転軸の中心Oから導出して翼後縁部の
湾奥部(Q)と接触する線分をKmとし、点Uから線分
Kmに下ろした垂線の脚の長さをL1とし、膨出部の先
端部(T)から線分Kmに下ろした垂線の脚の長さをL
2としたとき、L2=0.5×L1〜0.7×L1とし
たことを特徴とする。
According to a sixth aspect of the invention, in the axial blower according to the third aspect, the starting point of the curved portion on the radially inner side of the blade trailing edge portion is U, and the blade is derived from the center O of the rotary shaft and is located behind the blade. The line segment that contacts the inner part of the bay (Q) at the edge is Km, the leg length of the perpendicular line drawn from the point U to the line segment Km is L1, and the line segment Km from the tip of the bulge (T). The length of the leg of the perpendicular line
When set to 2, it is characterized in that L2 = 0.5 × L1 to 0.7 × L1.

【0013】請求項7に係る発明は、請求項1に記載の
軸流送風機において、回転の中心から翼の外周までの半
径をRとして、この外周の円弧長をCL、回転の中心か
ら0.6×Rの半径を有する円弧のうち、空気流入部に
当たる翼前縁部から空気流出部に当たる翼後縁部までの
円弧長をYeとしたとき、Ye=0.4CL〜0.6C
Lとしたことを特徴とする。
According to a seventh aspect of the present invention, in the axial blower according to the first aspect, the radius from the center of rotation to the outer circumference of the blade is R, the arc length of the outer circumference is CL, and the radius from the center of rotation is 0. Among the arcs having a radius of 6 × R, Ye = 0.4CL to 0.6C, where Ye is the arc length from the blade leading edge portion that hits the air inflow portion to the blade trailing edge portion that hits the air outflow portion.
It is characterized in that it is L.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面に示す好適な
実施形態に基づいて詳細に説明する。図1は本発明に係
る軸流送風機の全体的な構成を示した、軸方向で見る平
面図である。この軸流送風機1はハブ11と3枚の翼1
2とが一体的に成形され、矢印X方向に回転するものと
する。図2は図1に示した軸流送風機1の一つの翼12
を拡大して示したもので、矢印X方向に回転する翼12
の空気流出部に当たる翼後縁部21と、翼外周部22と
が交わる部分を空気が流れる方向に凸状に膨出させて膨
出部23を形成している。この場合、膨出部23は回転
軸の中心Oから翼外周部22までの半径をRとしたと
き、膨出部23は翼後縁部21のうち、0.6RからR
に至る範囲に形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail based on the preferred embodiments shown in the drawings. FIG. 1 is a plan view showing the overall configuration of an axial blower according to the present invention as viewed in the axial direction. This axial blower 1 has a hub 11 and three blades 1.
2 and 1 are integrally formed and rotate in the direction of arrow X. 2 shows one blade 12 of the axial blower 1 shown in FIG.
Is an enlarged view of the wing 12 rotating in the direction of the arrow X.
The bulging portion 23 is formed by bulging a portion of the blade trailing edge portion 21 corresponding to the air outflow portion and the blade outer peripheral portion 22 in a convex shape in the air flowing direction. In this case, when the radius of the bulging portion 23 from the center O of the rotating shaft to the blade outer peripheral portion 22 is R, the bulging portion 23 is 0.6R to R of the blade trailing edge portion 21.
Is formed in the range.

【0015】図3は膨出部23の形成範囲と、送風量及
び電動機の入力との関係を示す線図であり、膨出部23
を翼後縁部21のうち、0.6RからRに至る範囲に形
成することにより、翼後縁部21の付近の流れ損失を抑
制し、電動機に与える負荷を小さくできる。従って、翼
外周部22の周速増大を図って送風量を増大させなが
ら、電動機に与える負荷を小さくできるため、空気調和
機等の省エネ性能を向上させることができる。
FIG. 3 is a diagram showing the relationship between the range of formation of the bulging portion 23 and the amount of air blow and the input of the electric motor.
Is formed in the range from 0.6R to R in the blade trailing edge portion 21, flow loss near the blade trailing edge portion 21 can be suppressed, and the load applied to the electric motor can be reduced. Therefore, the load applied to the electric motor can be reduced while increasing the peripheral speed of the blade outer peripheral portion 22 to increase the blown air amount, so that the energy saving performance of the air conditioner or the like can be improved.

【0016】図4は図2に示した翼後縁部21及び膨出
部23の輪郭形状を説明するためのもので、先ず、膨出
部23は翼外周部22に連なり、径方向外側に比較的大
きな曲率半径で内側に入りこむ円弧31と、最も小さな
曲率半径で空気の流出方向に凸状をなす円弧32と、こ
の円弧32よりも大きな曲率半径で空気の流出方向に凹
状をなす円弧33とを順次連ねた形状を有している。ま
た、膨出部23よりも径方向内側の翼後縁部21は曲率
半径が比較的大きく、空気の流出方向に凹状をなす円弧
34と、この円弧34よりも小さい曲率半径で、空気の
流出方向に凹状をなす円弧35とを順に連ねた形状を有
している。
FIG. 4 is for explaining the contour shapes of the blade trailing edge portion 21 and the bulging portion 23 shown in FIG. 2. First, the bulging portion 23 is connected to the blade outer peripheral portion 22 and is radially outward. An arc 31 with a relatively large radius of curvature that enters the inside, an arc 32 with a smallest radius of curvature that is convex in the air outflow direction, and an arc 33 that has a radius of curvature larger than this arc 32 and is concave in the air outflow direction. It has a shape in which and are sequentially connected. Further, the blade trailing edge portion 21 on the radially inner side of the bulging portion 23 has a relatively large radius of curvature, and the arc 34 that is concave in the air outflow direction and the air outflow with the radius of curvature smaller than this arc 34. It has a shape in which a circular arc 35 having a concave shape in the direction is sequentially connected.

【0017】このように、膨出部23を3つ以上の異な
る円弧を連ねた形状にすることにより、渦の発生を抑制
し、騒音を低減することができる。また、膨出部23の
径方向内側の部位を2つの円弧を連ねた形状とすること
により、1つの円弧で形成した場合と比較して翼面積を
増大させることができ、送風量を増大させることができ
る。
As described above, by forming the bulging portion 23 into a shape in which three or more different arcs are connected, it is possible to suppress the generation of vortices and reduce noise. Further, by making the portion on the radially inner side of the bulging portion 23 into a shape in which two circular arcs are connected, the blade area can be increased as compared with the case where it is formed by one circular arc, and the air flow rate is increased. be able to.

【0018】図5は翼12の翼外周部22の弧長CLと
翼後縁部21の湾曲部の弧長LWとの関係を示したもの
で、翼後縁部21における湾曲部の弧長LWを、0.4
CL〜0.6CLの範囲となるように設定している。
FIG. 5 shows the relationship between the arc length CL of the blade outer peripheral portion 22 of the blade 12 and the arc length LW of the curved portion of the blade trailing edge portion 21. The arc length of the curved portion of the blade trailing edge portion 21 is shown in FIG. LW 0.4
The range is set to CL to 0.6 CL.

【0019】図6は弧長CLに対する湾曲部LWの比率
と送風量及び電動機入力との関係を示した線図であり、
弧長CLに対して湾曲部の弧長LWを40%〜60%の
範囲に設定することにより、送風量を一定量に確保しな
がら、電動機に与える負荷を小さく抑えることができ
る。
FIG. 6 is a diagram showing the relationship between the ratio of the curved portion LW to the arc length CL, the air flow rate, and the motor input.
By setting the arc length LW of the curved portion in the range of 40% to 60% with respect to the arc length CL, it is possible to suppress the load given to the electric motor while securing a constant amount of air flow.

【0020】図7は膨出部23が翼12の周方向に占有
する割合を説明する図であり、回転軸の中心をOとし、
この中心Oから導出して翼後縁部21の湾奥部Qと接触
する線分をKm、中心Oから導出して膨出部23の先端
部Tと接触する線分をKn、中心Oから導出して回転中
の空気流入部に当たる翼前縁部の外周端Sと接触する線
分をKfとし、線分Kmと線分Knとの間の中心角をα
1、線分Knと線分Kfとの間の中心角をα2とした場
合、α1=0.05×α2〜0.15×α2としたこと
を示している。
FIG. 7 is a view for explaining the ratio of the bulging portion 23 occupied in the circumferential direction of the blade 12, where the center of the rotation axis is O,
A line segment that is derived from this center O and comes into contact with the inner part Q of the blade trailing edge portion 21 is Km, and a line segment that is derived from this center O and is in contact with the tip portion T of the bulging part 23 is from Kn and from the center O. Let Kf be the line segment that comes out and contacts the outer peripheral edge S of the blade leading edge that hits the rotating air inflow portion, and let the central angle between the line segment Km and the line segment Kn be α.
1, when the central angle between the line segment Kn and the line segment Kf is α2, α1 = 0.05 × α2 to 0.15 × α2 is shown.

【0021】図8はα1/α2と送風量及び電動機入力
との関係を示す線図であり、送風機の回転数を上昇さ
せ、送風量の増加を図った場合においても、送風騒音を
上昇させることなく、電動機に与える負荷を小さく抑え
ることができる。
FIG. 8 is a diagram showing the relationship between α1 / α2 and the amount of blown air and the input of the electric motor. When the number of revolutions of the blower is increased and the amount of blown air is increased, the blowing noise is increased. Therefore, the load applied to the electric motor can be reduced.

【0022】図9は翼後縁部21の湾曲部の径方向外側
部位と、径方向内側部位の風流出方向への突出状態を示
したもので、翼後縁部21の径方向内側の湾曲部の始点
をUとし、回転軸の中心Oから導出して翼後縁部21の
湾奥部Qと接触する線分をKmとし、点Uから線分Km
に下ろした垂線の脚の長さをL1とし、膨出部23の先
端部Tから線分Kmに下ろした垂線の脚の長さをL2と
したとき、L2=0.5×L1〜0.7×L1に設定し
ている。
FIG. 9 shows the radially outer portion of the curved portion of the blade trailing edge portion 21 and the radially inner portion thereof protruding in the air outflow direction. The radially inner portion of the blade trailing edge portion 21 is curved. The starting point of the section is U, the line segment that is derived from the center O of the rotating shaft and comes into contact with the inner part Q of the blade trailing edge portion 21 is Km, and the line segment Km from the point U
Let L1 be the length of the leg of the perpendicular drawn down to L2, and let L2 be the length of the leg of the perpendicular drawn from the tip T of the bulging portion 23 to the line segment Km. It is set to 7 × L1.

【0023】この構成によれば、図10に示したL1に
対するL2の比率と送風量及び電動機入力との関係から
明らかなように、送風量を低下させることなく、電動機
に与える負荷を小さく抑えることができる。
According to this configuration, as is apparent from the relationship between the ratio of L2 to L1 shown in FIG. 10, the air flow rate, and the motor input, the load applied to the electric motor can be suppressed to a low level without reducing the air flow rate. You can

【0024】図11は翼12の翼外周部22の弧長と翼
後縁部21の湾奥部に対応する部位の周方向の弧長との
関係を表したもので、回転の中心から翼の外周までの半
径をRとして、この外周の円弧長をCL、回転の中心か
ら0.6×Rの半径を有する円弧のうち、空気流入部に
当たる翼前縁部から空気流出部に当たる翼後縁部までの
円弧長をYeとしたとき、Ye=0.4CL〜0.6C
Lに設定している。
FIG. 11 shows the relationship between the arc length of the blade outer peripheral portion 22 of the blade 12 and the circumferential arc length of the portion of the blade trailing edge portion 21 corresponding to the inner part of the bay. R is the radius to the outer periphery of the blade, and CL is the arc length of the outer periphery, and among the arcs having a radius of 0.6 × R from the center of rotation, the blade trailing edge that contacts the air inflow portion to the air outflow portion Ye = 0.4CL to 0.6C when the arc length to the part is Ye
It is set to L.

【0025】図12は外周の円弧長CLに対する翼前縁
部から翼後縁部までの円弧長Yeの比率と騒音値及び電
動機入力との関係を示した線図であり、この線図から明
らかなように、送風騒音を増大することなく、電動機の
負荷を小さく抑えることができる。
FIG. 12 is a diagram showing the relationship between the ratio of the arc length Ye from the blade leading edge to the blade trailing edge with respect to the arc length CL of the outer circumference, the noise value, and the motor input, which is clear from this diagram. As described above, the load on the electric motor can be reduced without increasing the blowing noise.

【0026】[0026]

【発明の効果】以上の説明によって明らかなように、本
発明によれば、回転数を上昇させて送風量の増加を図っ
た場合でも、電動機の負荷を低く抑えることのできる軸
流送風機が得られる。
As is apparent from the above description, according to the present invention, there is provided an axial blower capable of suppressing the load on the electric motor even when the rotation speed is increased to increase the blown air volume. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る軸流送風機の全体的な構成を示し
た、軸方向で見る平面図。
FIG. 1 is a plan view showing the overall configuration of an axial blower according to the present invention as viewed in the axial direction.

【図2】図1に示した軸流送風機1の一つの翼を拡大し
て示した図。
FIG. 2 is an enlarged view showing one blade of the axial blower 1 shown in FIG.

【図3】膨出部の形成範囲と、送風量及び電動機の入力
との関係を示す線図。
FIG. 3 is a diagram showing a relationship between a formation range of a bulge portion, an air flow rate and an input of an electric motor.

【図4】図2に示した翼後縁部及び膨出部の輪郭形状を
説明するたの図。
FIG. 4 is a diagram for explaining contour shapes of a blade trailing edge portion and a bulging portion shown in FIG. 2;

【図5】翼外周部の弧長と翼後縁部2湾曲部の弧長との
関係を示し平面図。
FIG. 5 is a plan view showing the relationship between the arc length of the blade outer peripheral portion and the arc length of the blade trailing edge portion 2 curved portion.

【図6】弧長と送風量及び電動機入力との関係を示した
線図。
FIG. 6 is a diagram showing the relationship between the arc length, the air flow rate, and the motor input.

【図7】膨出部が翼の周方向に占有する割合を説明する
ための図。
FIG. 7 is a diagram for explaining the ratio of the bulging portion occupied in the circumferential direction of the blade.

【図8】膨出部が翼の周方向に占有する割合と送風量及
び電動機入力との関係を示す線図。
FIG. 8 is a diagram showing the relationship between the ratio of the bulging portion occupied in the circumferential direction of the blade, the air flow rate, and the motor input.

【図9】翼後縁部の湾曲部の径方向外側部位と、径方向
内側部位の風流出方向への突出状態を示した図。
FIG. 9 is a view showing a radially outer side portion and a radially inner side portion of a curved portion of a blade trailing edge portion in a protruding state in a wind outflow direction.

【図10】図9に示した径方向外側部位と風流出方向の
突出部との比率と送風量及び電動機入力との関係を示し
た線図。
10 is a diagram showing the relationship between the ratio of the radially outer portion shown in FIG. 9 to the protruding portion in the air outflow direction, the air flow rate, and the motor input.

【図11】翼外周部の弧長と翼後縁部の湾奥部に対応す
る部位の周方向の弧長との関係を表した図。
FIG. 11 is a diagram showing the relationship between the arc length of the blade outer peripheral portion and the arc length in the circumferential direction of the portion of the blade trailing edge portion corresponding to the inner part of the bay.

【図12】外周の円弧長に対する翼前縁部から翼後縁部
までの円弧長の比率と騒音値及び電動機入力との関係を
示した線図。
FIG. 12 is a diagram showing a relationship between the ratio of the arc length from the blade leading edge portion to the blade trailing edge portion to the arc length of the outer circumference, the noise value, and the motor input.

【図13】従来の軸流送風機の構成を示すために、軸方
向から見た平面図。
FIG. 13 is a plan view seen from the axial direction to show the configuration of a conventional axial-flow blower.

【図14】従来の軸流送風機の他の構成を示すために、
軸方向から見た平面図。
FIG. 14 is a view showing another configuration of the conventional axial blower,
The top view seen from the axial direction.

【符号の説明】[Explanation of symbols]

1 軸流送風機 11 ハブ 12 翼 21 翼後縁部 22 翼外周部 23 膨出部 31〜34 円弧 1 axial blower 11 hubs 12 wings 21 Wing trailing edge 22 Wing periphery 23 bulge 31-34 arc

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ハブの周囲に複数の翼を一体的に形成して
なる軸流送風機において、 回転中の空気流出部に当たる翼後縁部と翼外周部とが交
わる角部を空気の流出方向に凸状に膨出する膨出部を形
成すると共に、回転軸の中心から翼の最外周までの半径
をRとしたとき、前記膨出部を0.6R〜Rの範囲に形
成したことを特徴とする軸流送風機。
1. An axial flow blower in which a plurality of blades are integrally formed around a hub, wherein a corner portion where a trailing edge portion of the blade, which corresponds to an air outlet portion during rotation, intersects with an outer peripheral portion of the blade, is formed in an air outlet direction. In addition to forming a bulging portion that bulges in a convex shape at the same time, and assuming that the radius from the center of the rotating shaft to the outermost periphery of the blade is R, the bulging portion is formed in the range of 0.6R to R. A characteristic axial-flow blower.
【請求項2】前記膨出部は3つ以上の互いに異なる円弧
を連ねた輪郭を有することを特徴とする請求項1に記載
の軸流送風機。
2. The axial blower according to claim 1, wherein the bulging portion has a contour in which three or more different arcs are connected.
【請求項3】前記膨出部から回転軸方向に連なる翼後縁
部は風が流入する方向へ湾曲し、湾曲した後縁は2つ以
上の円弧を連ねたものでなる請求項1又は2に記載の軸
流送風機。
3. The blade trailing edge portion extending from the bulging portion in the rotation axis direction is curved in the direction in which wind flows, and the curved trailing edge portion is formed by connecting two or more arcs. Axial blower described in.
【請求項4】一つの翼の外周縁の弧長をCLとしたと
き、前記翼後縁部の湾曲部の弧長を0.4〜0.6CL
の範囲としたことを特徴とする請求項3に記載の軸流送
風機。
4. When the arc length of the outer peripheral edge of one blade is CL, the arc length of the curved portion at the trailing edge of the blade is 0.4 to 0.6 CL.
The axial flow blower according to claim 3, wherein
【請求項5】回転軸の中心をOとし、この中心Oから導
出して前記翼後縁部の湾奥部(Q)と接触する線分をK
m、中心Oから導出して前記膨出部の先端部(T)と接
触する線分をKn、中心Oから導出して回転中の空気流
入部に当たる翼前縁部の外周端(S)と接触する線分を
Kfとし、線分Kmと線分Knとの間の中心角をα1、
線分Knと線分Kfとの間の中心角をα2とした場合、
α1=0.05×α2〜0.15×α2としたことを特
徴とする請求項3に記載の軸流送風機。
5. A line segment that is derived from the center O and contacts the inner part of the blade (Q) at the trailing edge of the blade is K.
m, a line segment that is derived from the center O and comes into contact with the tip end portion (T) of the bulge portion is Kn, and an outer peripheral end (S) of the blade leading edge portion that is derived from the center O and abuts the rotating air inflow portion. The contacting line segment is Kf, and the central angle between the line segment Km and the line segment Kn is α1,
When the central angle between the line segment Kn and the line segment Kf is α2,
The axial blower according to claim 3, wherein α1 = 0.05 × α2 to 0.15 × α2.
【請求項6】前記翼後縁部の径方向内側の湾曲部の始点
をUとし、回転軸の中心Oから導出して前記翼後縁部の
湾奥部(Q)と接触する線分をKmとし、点Uから線分
Kmに下ろした垂線の脚の長さをL1とし、前記膨出部
の先端部(T)から線分Kmに下ろした垂線の脚の長さ
をL2としたとき、L2=0.5×L1〜0.7×L1
としたことを特徴とする請求項3に記載の軸流送風機。
6. A line segment that is derived from the center O of the rotating shaft and is in contact with the deep part (Q) of the trailing edge of the blade, where U is the starting point of the curved portion on the radially inner side of the trailing edge of the blade. Km, the length of the leg of the perpendicular drawn from the point U to the line Km is L1, and the length of the leg of the perpendicular drawn from the tip (T) of the bulge to the line Km is L2. , L2 = 0.5 × L1 to 0.7 × L1
The axial-flow blower according to claim 3, wherein
【請求項7】回転の中心から翼の外周までの半径をRと
して、この外周の円弧長をCL、回転の中心から0.6
×Rの半径を有する円弧のうち、空気流入部に当たる翼
前縁部から空気流出部に当たる翼後縁部までの円弧長を
Yeとしたとき、Ye=0.4CL〜0.6CLとした
ことを特徴とする請求項1に記載の軸流送風機。
7. The radius from the center of rotation to the outer circumference of the blade is R, the arc length of the outer circumference is CL, and the arc length from the center of rotation is 0.6.
Among the arcs having a radius of × R, when Ye is the arc length from the blade leading edge portion that hits the air inflow portion to the blade trailing edge portion that hits the air outflow portion, Ye = 0.4CL to 0.6CL. The axial blower according to claim 1, which is characterized in that.
JP2001260218A 2001-08-29 2001-08-29 Axial flow blower Pending JP2003065295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260218A JP2003065295A (en) 2001-08-29 2001-08-29 Axial flow blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260218A JP2003065295A (en) 2001-08-29 2001-08-29 Axial flow blower

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006182113A Division JP2006258107A (en) 2006-06-30 2006-06-30 Axial blower

Publications (1)

Publication Number Publication Date
JP2003065295A true JP2003065295A (en) 2003-03-05

Family

ID=19087454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260218A Pending JP2003065295A (en) 2001-08-29 2001-08-29 Axial flow blower

Country Status (1)

Country Link
JP (1) JP2003065295A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343489A (en) * 2002-05-30 2003-12-03 Mitsubishi Electric Corp Air blower, controlling method and air cleaner
CN100465458C (en) * 2007-01-31 2009-03-04 广东美的电器股份有限公司 Axial-flow windwheel
KR101018925B1 (en) 2004-03-19 2011-03-02 한라공조주식회사 Axial flow fan
WO2014103702A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
EP2607714A3 (en) * 2011-12-21 2014-08-13 Toshiba Carrier Corporation Propeller Fan and Heat Source Unit including same
JP5905985B1 (en) * 2015-08-18 2016-04-20 山洋電気株式会社 Axial flow fan and serial type axial flow fan
JP2016056772A (en) * 2014-09-11 2016-04-21 日立アプライアンス株式会社 Propeller fan and air conditioner with the same
CN107165862A (en) * 2017-06-23 2017-09-15 广东美的制冷设备有限公司 Wind wheel and the refrigeration plant with it
JP2021088932A (en) * 2019-12-02 2021-06-10 株式会社コロナ Propeller fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181006A (en) * 1975-01-14 1976-07-15 Matsushita Seiko Kk SOFUKINO HANEGURUMA
JPS59173598A (en) * 1983-03-23 1984-10-01 Nippon Denso Co Ltd Axial fan
JPS60114300U (en) * 1984-12-13 1985-08-02 トリン コーポレーシヨン axial flow wheel
JPH02253000A (en) * 1989-03-27 1990-10-11 Mitsubishi Heavy Ind Ltd Low-noise blade
JPH06249197A (en) * 1993-03-01 1994-09-06 Matsushita Refrig Co Ltd Blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181006A (en) * 1975-01-14 1976-07-15 Matsushita Seiko Kk SOFUKINO HANEGURUMA
JPS59173598A (en) * 1983-03-23 1984-10-01 Nippon Denso Co Ltd Axial fan
JPS60114300U (en) * 1984-12-13 1985-08-02 トリン コーポレーシヨン axial flow wheel
JPH02253000A (en) * 1989-03-27 1990-10-11 Mitsubishi Heavy Ind Ltd Low-noise blade
JPH06249197A (en) * 1993-03-01 1994-09-06 Matsushita Refrig Co Ltd Blower

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343489A (en) * 2002-05-30 2003-12-03 Mitsubishi Electric Corp Air blower, controlling method and air cleaner
KR101018925B1 (en) 2004-03-19 2011-03-02 한라공조주식회사 Axial flow fan
CN100465458C (en) * 2007-01-31 2009-03-04 广东美的电器股份有限公司 Axial-flow windwheel
EP2607714A3 (en) * 2011-12-21 2014-08-13 Toshiba Carrier Corporation Propeller Fan and Heat Source Unit including same
US9897108B2 (en) 2012-12-27 2018-02-20 Mitsubishi Electric Corporation Propeller fan, air blower, outdoor unit
WO2014103702A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
WO2014102970A1 (en) * 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
JP5933759B2 (en) * 2012-12-27 2016-06-15 三菱電機株式会社 Propeller fan, blower, outdoor unit
JP2016056772A (en) * 2014-09-11 2016-04-21 日立アプライアンス株式会社 Propeller fan and air conditioner with the same
JP5905985B1 (en) * 2015-08-18 2016-04-20 山洋電気株式会社 Axial flow fan and serial type axial flow fan
JP2017040179A (en) * 2015-08-18 2017-02-23 山洋電気株式会社 Axial blower and serial type axial blower
US10344764B2 (en) 2015-08-18 2019-07-09 Sanyo Denki Co., Ltd. Axial blower and series-type axial blower
CN107165862A (en) * 2017-06-23 2017-09-15 广东美的制冷设备有限公司 Wind wheel and the refrigeration plant with it
JP2021088932A (en) * 2019-12-02 2021-06-10 株式会社コロナ Propeller fan

Similar Documents

Publication Publication Date Title
JP3204208B2 (en) Mixed-flow blower impeller
JP3291654B2 (en) Axial fan
JP5880288B2 (en) Blower
JP3960776B2 (en) Blower impeller for air conditioning
JP6277415B2 (en) Propeller fan for electric fan
WO2003072948A1 (en) Fan
JP2007024004A (en) Axial fan
JP2008507652A (en) Axial impeller with increased flow rate
JP2008025983A (en) Outdoor unit for air conditioner
JP2003065295A (en) Axial flow blower
WO2019069374A1 (en) Propeller fan and axial flow blower
JP3812537B2 (en) Centrifugal blower
JP2006258107A (en) Axial blower
JP2002106494A (en) Axial flow type fan
JP2006090178A (en) Blower impeller
JPS62233497A (en) Propeller for electric fan
JP2007247494A (en) Diagonal flow blower impeller
JPH05202893A (en) Air blower
JP3805538B2 (en) Air conditioner outdoor unit
KR20030016175A (en) Vortex flow fan
JP3855533B2 (en) Mixed flow fan
JP4233359B2 (en) Blower impeller for air conditioner
JP2000009083A (en) Impeller
JP4491711B2 (en) Jet fan
JP4152158B2 (en) Axial fan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080523