JP2003065132A - Fuel injection control device for cylinder direct injection type internal combustion engine - Google Patents

Fuel injection control device for cylinder direct injection type internal combustion engine

Info

Publication number
JP2003065132A
JP2003065132A JP2001258299A JP2001258299A JP2003065132A JP 2003065132 A JP2003065132 A JP 2003065132A JP 2001258299 A JP2001258299 A JP 2001258299A JP 2001258299 A JP2001258299 A JP 2001258299A JP 2003065132 A JP2003065132 A JP 2003065132A
Authority
JP
Japan
Prior art keywords
fuel
stroke
injection
fuel injection
thinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001258299A
Other languages
Japanese (ja)
Other versions
JP3818100B2 (en
Inventor
Hideaki Takahashi
秀明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001258299A priority Critical patent/JP3818100B2/en
Publication of JP2003065132A publication Critical patent/JP2003065132A/en
Application granted granted Critical
Publication of JP3818100B2 publication Critical patent/JP3818100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To avoid the generation of thermal impact by rapid burning of fuel in a catalyst by an injection of fuel at an expansion stroke (or exhaust stroke) for solving a problem of the catalyst poisoning in a cylinder direct injection type internal combustion engine. SOLUTION: During releasing/controlling the poisoning, the defined number countinj of the number of thinning out is gradually reduced and varied by characteristics corresponding to a load and a rotation of an engine. When the actual number of thinning out count1 does not reach at the defined number countinj, while an injection amount TI1st at an intake stroke is made to a basic amount TI × coefficient part, an injection amount TI2nd at the expansion stroke is made to zero, thereby thinning out the injection. When the actual number of thinning out count t1 reaches at the defined number countinj, the injection amount TI2nd at the expansion stroke is made to TI2nd=(TI-TI×part)×(mincount+1) based on a final value mincount of the defined number countinj and a total injection amount TI=TI×air/fuel ratio correction coefficient COEF to carry out the fuel injection at the expansion stroke.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒内直接噴射式内
燃機関の燃料噴射制御装置に関し、詳しくは、触媒の昇
温を図るための燃料噴射技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for a direct injection type internal combustion engine, and more particularly to a fuel injection technique for increasing the temperature of a catalyst.

【0002】[0002]

【従来の技術】従来から、筒内直接噴射式内燃機関にお
いて、触媒のイオウなどによる被毒を解除するために、
膨張行程から排気行程の間で燃料噴射を行わせ、該噴射
燃料を触媒で燃焼させることで触媒の昇温を図る装置が
知られている(特開2000−130236号公報,特
開2000−054900号公報参照)。
2. Description of the Related Art Conventionally, in a cylinder direct injection internal combustion engine, in order to release poisoning by sulfur etc. of a catalyst,
BACKGROUND ART There is known a device that performs a fuel injection between an expansion stroke and an exhaust stroke and burns the injected fuel with a catalyst to raise the temperature of the catalyst (Japanese Patent Laid-Open Nos. 2000-130236 and 2000-054900). (See the official gazette).

【0003】[0003]

【発明が解決しようとする課題】ところで、上記のよう
に、膨張行程から排気行程の間で燃料噴射を行わせる場
合、触媒内部での燃焼が急激に行われ、触媒内で温度差
が発生し、特にセル厚が薄いセミック担体を用いる触媒
では、前記セラミック担体の割れが発生する可能性があ
った。
By the way, as described above, when fuel injection is performed between the expansion stroke and the exhaust stroke, combustion inside the catalyst is rapidly performed, and a temperature difference occurs inside the catalyst. Especially, in the case of a catalyst using a ceramic support having a thin cell thickness, the ceramic support may be cracked.

【0004】そこで、触媒内部での急激な燃焼を避ける
方法として、膨張行程から排気行程の間での燃料噴射量
を、開始直後は少なく設定し、その後徐々に増やして、
要求温度まで徐々に昇温させる方法を検討した。しか
し、一般的に膨張行程から排気行程の間での噴射量は少
ないため、急激な燃焼を避けるためには、燃料噴射弁に
おいて噴射可能な最小燃料量を下回る燃料噴射量の設定
が要求されることになってしまい、噴射量の変化で昇温
を制御することは実質的に不可能であった。
Therefore, as a method of avoiding the rapid combustion inside the catalyst, the fuel injection amount between the expansion stroke and the exhaust stroke is set small immediately after the start and then gradually increased,
A method of gradually raising the temperature to the required temperature was examined. However, since the injection amount from the expansion stroke to the exhaust stroke is generally small, in order to avoid sudden combustion, it is necessary to set the fuel injection amount below the minimum fuel amount that can be injected at the fuel injection valve. As a result, it is virtually impossible to control the temperature rise by changing the injection amount.

【0005】本発明は上記問題点に鑑みなされたもので
あり、膨張行程から排気行程の間での燃料噴射によっ
て、触媒を徐々に昇温させることができる筒内直接噴射
式内燃機関の燃料噴射制御装置を提供することを目的と
する。
The present invention has been made in view of the above problems, and the fuel injection of a direct injection type internal combustion engine capable of gradually raising the temperature of the catalyst by the fuel injection between the expansion stroke and the exhaust stroke. An object is to provide a control device.

【0006】[0006]

【課題を解決するための手段】そのため、請求項1記載
の発明は、筒内に燃料を直接噴射する燃料噴射弁を備え
た内燃機関において、膨張行程から排気行程の間での燃
料噴射によって排気通路に介装される触媒を昇温させる
燃料噴射制御装置であって、前記膨張行程から排気行程
の間での燃料噴射を間引いて行わせると共に、間引き率
を徐々に小さくする構成とした。
Therefore, according to the first aspect of the invention, in an internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder, exhaust gas is produced by fuel injection between an expansion stroke and an exhaust stroke. A fuel injection control device for raising the temperature of a catalyst interposed in a passage, which is configured such that fuel injection between the expansion stroke and the exhaust stroke is thinned out and the thinning rate is gradually reduced.

【0007】かかる構成によると、膨張行程から排気行
程の間で噴射させた燃料を触媒で燃焼させることで、触
媒を昇温させるが、各気筒の膨張行程から排気行程の間
で毎回燃料を噴射させるのではなく、一部の噴射を実行
せずに間引くことで、触媒に供給される燃料量を減量制
御する構成とし、かつ、間引きの率を徐々に小さくして
(間引く噴射回数を徐々に少なくし)、触媒に供給され
る燃料量を徐々に増大させる。
According to this structure, the temperature of the catalyst is raised by burning the fuel injected between the expansion stroke and the exhaust stroke with the catalyst, but the fuel is injected every time between the expansion stroke and the exhaust stroke of each cylinder. Instead of performing some injection, the amount of fuel supplied to the catalyst is controlled to be reduced by thinning out without performing some injection, and the thinning rate is gradually reduced (the number of thinned injections is gradually reduced. Decrease) and gradually increase the amount of fuel supplied to the catalyst.

【0008】請求項2記載の発明では、機関回転速度が
高いときほど、前記間引き率を大きくする構成とした。
かかる構成によると、機関回転速度が高いほど一般的に
は触媒温度が高く、また、時間当たりの間引き率として
は機関回転速度が高いほど小さくなるので、機関回転速
度が高いほど、間引き率を大きく(間引く噴射回数を多
く)する。
According to the second aspect of the invention, the thinning rate is increased as the engine speed increases.
With such a configuration, the higher the engine speed, the higher the catalyst temperature in general, and the higher the engine rotation speed, the smaller the decimation rate per hour. Therefore, the higher the engine speed, the higher the decimation rate. (Increase the number of thinned injections).

【0009】請求項3記載の発明では、機関負荷が大き
いときほど、前記間引き率を大きくする構成とした。か
かる構成によると、機関負荷が大きいほど一般的には触
媒温度が高く、また、吸気量に見合う噴射量の一定割合
を、膨張行程から排気行程の間で噴射させる場合には、
機関負荷が高いほど膨張行程での噴射量の絶対量が大き
くなるので、機関負荷が大きいほど、間引きの率を大き
く(間引く噴射回数を多く)する。
According to a third aspect of the invention, the thinning rate is increased as the engine load increases. According to such a configuration, the catalyst temperature is generally higher as the engine load is larger, and when a certain proportion of the injection amount commensurate with the intake amount is injected between the expansion stroke and the exhaust stroke,
The higher the engine load, the larger the absolute amount of the injection amount in the expansion stroke. Therefore, the higher the engine load, the higher the decimation rate (the greater the number of decimation injections).

【0010】請求項4記載の発明では、機関回転速度及
び機関負荷に応じて、前記間引き率の初期値,最終値及
び減少率を設定する構成とした。かかる構成によると、
機関回転速度及び機関負荷に応じた間引き率の初期値か
ら、回転・負荷に応じた減少率で間引き率を徐々に減少
させ、最終的には回転・負荷に応じた最終値にまで減少
させる。
According to the fourth aspect of the invention, the initial value, the final value and the reduction rate of the thinning rate are set according to the engine speed and the engine load. According to this configuration,
From the initial value of the thinning rate according to the engine speed and the engine load, the thinning rate is gradually reduced at a decreasing rate according to the rotation / load, and finally to the final value according to the rotation / load.

【0011】請求項5記載の発明では、前記膨張行程か
ら排気行程の間での燃料噴射量を、前記間引き率に応じ
て変化させる構成とした。かかる構成によると、膨張行
程から排気行程の間での燃料噴射における間引き率、換
言すれば、間引かれた噴射の回数に応じて、膨張行程か
ら排気行程の間での燃料噴射量を変更し、間引きを行わ
ない場合を基準としたトータル噴射量の制御を行う。
According to the fifth aspect of the present invention, the fuel injection amount from the expansion stroke to the exhaust stroke is changed according to the thinning rate. According to this configuration, the fuel injection amount between the expansion stroke and the exhaust stroke is changed according to the thinning rate in the fuel injection between the expansion stroke and the exhaust stroke, in other words, the number of thinned injections. , The total injection amount is controlled based on the case where no thinning is performed.

【0012】請求項6記載の発明では、吸気行程又は圧
縮行程での燃料噴射量を、前記間引き率に応じて変化さ
せ、燃料の残部を前記膨張行程から排気行程の間で噴射
させる構成とした。かかる構成によると、燃料を、吸気
行程又は圧縮行程での噴射と、膨張行程から排気行程の
間での噴射とに分けて噴射する構成であって、吸気行程
又は圧縮行程で噴射させる燃料量が、間引き率、換言す
れば、必要温度上昇代に応じて変更され、吸気行程又は
圧縮行程での噴射による燃焼排気中の酸素量を制御す
る。
In a sixth aspect of the present invention, the fuel injection amount in the intake stroke or the compression stroke is changed according to the thinning rate, and the rest of the fuel is injected between the expansion stroke and the exhaust stroke. . According to such a configuration, the fuel is injected separately in the injection stroke or the compression stroke and the injection stroke between the expansion stroke and the exhaust stroke, and the amount of fuel injected in the intake stroke or the compression stroke is The thinning rate, in other words, is changed according to the required temperature rise margin to control the amount of oxygen in the combustion exhaust gas by the injection in the intake stroke or the compression stroke.

【0013】[0013]

【発明の効果】請求項1記載の発明によると、膨張行程
から排気行程の間での噴射を間引くことで、触媒におけ
る急激な燃焼が回避され、かつ、間引き率を徐々に減少
させることで必要な温度上昇代を確保することができる
という効果がある。請求項2記載の発明によると、機関
回転速度が高いときほど間引き率を大きくすることで、
時間当たりの間引き率を一定にして、回転速度が異なっ
ても一定の温度上昇率に制御でき、また、機関回転速度
が高く必要温度上昇代が小さいときに、過剰に温度上昇
することが回避されるという効果がある。
According to the invention of claim 1, by thinning out the injection between the expansion stroke and the exhaust stroke, rapid combustion in the catalyst is avoided and the thinning rate is gradually reduced. This has the effect of ensuring a sufficient temperature rise margin. According to the second aspect of the present invention, the thinning rate is increased as the engine speed increases,
The decimation rate per time can be kept constant, and the temperature rise rate can be controlled to a constant value even if the rotation speed is different, and excessive temperature rise can be avoided when the engine rotation speed is high and the required temperature rise margin is small. Has the effect of

【0014】請求項3記載の発明によると、機関負荷が
大きく必要温度上昇代が小さいときに大きな間引き率が
設定され、かつ、機関負荷の増大に伴って膨張行程から
排気行程の間で噴射量が増大するときに、大きな間引き
率が設定されることになるので、過剰に温度上昇するこ
とが回避されるという効果がある。請求項4記載の発明
によると、必要温度上昇代に応じた間引き率の変化幅を
設定でき、かつ、一定の温度上昇率に制御することがで
き、触媒における急激な燃焼を回避しつつ、一定の上昇
率で必要な温度にまで上昇させることができるという効
果がある。
According to the third aspect of the present invention, a large decimation rate is set when the engine load is large and the required temperature rise margin is small, and the injection amount is increased from the expansion stroke to the exhaust stroke as the engine load increases. Since a large thinning rate is set when the temperature increases, there is an effect that an excessive temperature rise is avoided. According to the invention described in claim 4, the variation width of the thinning rate according to the required temperature rise margin can be set, and the temperature rise rate can be controlled to a constant temperature rise rate. There is an effect that the temperature can be raised to a required temperature at a rising rate of.

【0015】請求項5記載の発明によると、膨張行程か
ら排気行程の間での噴射量を間引き率に応じて変化させ
ることで、例えば被毒解除に必要な空燃比状態に制御す
ることが可能になるという効果がある。請求項6記載の
発明によると、必要温度上昇代が大きく、吸気行程又は
圧縮行程での噴射による燃焼排気中の酸素量を増大させ
る必要があるときに、係る要求に応じて酸素量を制御で
き、触媒における燃料燃焼に必要な酸素量を確保して、
膨張行程から排気行程の間での噴射に見合う温度上昇が
確実に得られるという効果がある。
According to the fifth aspect of the present invention, by changing the injection amount from the expansion stroke to the exhaust stroke in accordance with the thinning rate, it is possible to control to the air-fuel ratio state necessary for releasing the poisoning, for example. Has the effect of becoming. According to the invention described in claim 6, when the required temperature rise amount is large and it is necessary to increase the oxygen amount in the combustion exhaust gas by the injection in the intake stroke or the compression stroke, the oxygen amount can be controlled according to the request. , Securing the amount of oxygen required for fuel combustion in the catalyst,
There is an effect that the temperature rise commensurate with the injection during the expansion stroke to the exhaust stroke can be surely obtained.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を図に
基づいて説明する。図1は、本発明に係る燃料噴射制御
装置が適用される筒内直接噴射式内燃機関を示すシステ
ム構成図である。図1に示す内燃機関1のシリンダヘッ
ド2には、筒内に直接燃料を噴射する燃料噴射弁3が設
けられると共に、混合気を火花点火する点火栓4が設け
られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram showing a cylinder direct injection internal combustion engine to which a fuel injection control device according to the present invention is applied. A cylinder head 2 of an internal combustion engine 1 shown in FIG. 1 is provided with a fuel injection valve 3 that directly injects fuel into a cylinder, and an ignition plug 4 that spark-ignites an air-fuel mixture.

【0017】前記シリンダヘッド2には各気筒毎に吸気
ポート5が形成され、スロットル弁6で流量調整された
空気が、吸気マニホールド7によって各気筒の吸気ポー
ト5に分配され、該吸気ポート5を介して筒内に導入さ
れる空気と、前記燃料噴射弁3から噴射される燃料とに
よって燃焼混合気が形成される。また、前記シリンダヘ
ッド2には各気筒毎に排気ポート8が形成され、該排気
ポート8に接続される排気マニホールド9によって各気
筒からの排気が集められ、フロント触媒10及びリア触
媒11によって浄化された後、大気中に放出される。
An intake port 5 is formed in the cylinder head 2 for each cylinder, and air whose flow rate is adjusted by a throttle valve 6 is distributed to the intake port 5 of each cylinder by an intake manifold 7, and the intake port 5 is connected to the intake port 5. A combustion mixture is formed by the air introduced into the cylinder via the fuel and the fuel injected from the fuel injection valve 3. An exhaust port 8 is formed in each cylinder of the cylinder head 2, and exhaust gas from each cylinder is collected by an exhaust manifold 9 connected to the exhaust port 8 and purified by a front catalyst 10 and a rear catalyst 11. And then released into the atmosphere.

【0018】前記排気マニホールド9と吸気コレクタ部
12とを連通する排気還流通路13が設けられ、圧力差
によって排気の一部が前記排気還流通路13を介して吸
気側に還流されるよう構成され、排気還流量は前記排気
還流通路13に介装される排気還流制御弁14によって
制御される。前記燃料噴射弁3には、燃料ポンプ15か
ら高圧の燃料が供給され、コントロールユニット16か
らの噴射パルス信号によって燃料噴射弁3が開弁する
と、開弁時間に比例する量の高圧燃料が筒内に噴射され
る。
An exhaust gas recirculation passage 13 that connects the exhaust manifold 9 and the intake collector portion 12 is provided, and a part of the exhaust gas is recirculated to the intake side through the exhaust gas recirculation passage 13 due to the pressure difference. The exhaust gas recirculation amount is controlled by an exhaust gas recirculation control valve 14 provided in the exhaust gas recirculation passage 13. High-pressure fuel is supplied to the fuel injection valve 3 from the fuel pump 15, and when the fuel injection valve 3 is opened by the injection pulse signal from the control unit 16, a high-pressure fuel in an amount proportional to the valve opening time is generated in the cylinder. Is injected into.

【0019】前記コントロールユニット16には、機関
1の吸入空気量を検出するエアフローメータ17,スロ
ットル弁6の開度を検出するスロットルセンサ18,機
関1の冷却水温度を検出する水温センサ19,フロント
触媒10上流側で排気中の酸素濃度に基づいて空燃比を
検出する空燃比センサ20,リア触媒11の温度を検出
する触媒温度センサ21,クランク軸(図示省略)から
機関1の回転信号を取り出す回転センサ22が設けられ
ている。
The control unit 16 includes an air flow meter 17 for detecting the intake air amount of the engine 1, a throttle sensor 18 for detecting the opening of the throttle valve 6, a water temperature sensor 19 for detecting the cooling water temperature of the engine 1, and a front. On the upstream side of the catalyst 10, an air-fuel ratio sensor 20 that detects the air-fuel ratio based on the oxygen concentration in the exhaust gas, a catalyst temperature sensor 21 that detects the temperature of the rear catalyst 11, and a rotation signal of the engine 1 are taken out from a crankshaft (not shown). A rotation sensor 22 is provided.

【0020】前記コントロールユニット16はマイクロ
コンピュータを含んで構成され、前記各種センサからの
検出信号に基づき、前記燃料噴射弁3に噴射パルス信号
を出力して燃料噴射を制御する他、前記点火栓4による
点火時期を制御し、また、排気還流制御弁14の開度を
制御することで排気還流量を制御する。図2のフローチ
ャートは、燃料噴射量(噴射パルス信号のパルス幅)の
計算ルーチンを示し、ステップS201では、燃料噴射
パルス幅TIを、 TI=TP×COEF×ALPHA として演算する。
The control unit 16 includes a microcomputer, which outputs an injection pulse signal to the fuel injection valve 3 to control fuel injection based on the detection signals from the various sensors, and the spark plug 4 as well. Control the ignition timing and control the opening degree of the exhaust gas recirculation control valve 14 to control the exhaust gas recirculation amount. The flowchart of FIG. 2 shows a routine for calculating the fuel injection amount (pulse width of the injection pulse signal). In step S201, the fuel injection pulse width TI is calculated as TI = TP × COEF × ALPHA.

【0021】上記TPは、吸入空気量と機関回転速度と
から演算される理論空燃比相当の基本噴射パルス幅、前
記COEFは空燃比補正係数、前記ALPHAは、空燃
比センサ20で検出される実空燃比を目標空燃比に一致
させるための空燃比フィードバック補正係数である。通
常、前記燃料噴射パルス幅TIによる燃料噴射を、各気
筒の吸気行程又は圧縮行程で行わせ、筒内に混合気を形
成させるが、前記触媒10のイオウなどによる被毒を解
除する目的で、膨張行程でも燃料噴射を行わせる。
TP is the basic injection pulse width corresponding to the theoretical air-fuel ratio calculated from the intake air amount and engine speed, COEF is the air-fuel ratio correction coefficient, and ALPHA is the actual detected by the air-fuel ratio sensor 20. This is an air-fuel ratio feedback correction coefficient for matching the air-fuel ratio with the target air-fuel ratio. Normally, fuel injection with the fuel injection pulse width TI is performed in the intake stroke or compression stroke of each cylinder to form a mixture in the cylinder, but for the purpose of removing poisoning of the catalyst 10 by sulfur or the like, Fuel is injected even during the expansion stroke.

【0022】尚、本実施形態では、膨張行程で噴射させ
るが、膨張行程から排気行程の間で、噴射燃料がそのま
ま排気側に流出する噴射タイミングであれば良い。前記
膨張行程で噴射された燃料は、触媒10内で燃焼し、こ
れによって触媒の温度が上昇する。触媒10が、排気空
燃比が理論空燃比よりもリーンであるときに排気中のN
Oxを吸収し、排気中の酸素濃度が低下すると吸収した
NOxを放出するNOx吸収剤を含んで構成される場
合、前記NOx吸収剤にイオウがNOxと共に吸収さ
れ、このイオウは空燃比をリッチ化しても放出されない
が、還元雰囲気下(排気空燃比のリッチ状態)でNOx
吸収剤を加熱することで、分解してNOx吸収剤から放
出される。
In this embodiment, the injection is performed in the expansion stroke, but the injection timing may be such that the injected fuel directly flows out to the exhaust side between the expansion stroke and the exhaust stroke. The fuel injected in the expansion stroke burns in the catalyst 10, which raises the temperature of the catalyst. When the exhaust air-fuel ratio of the catalyst 10 is leaner than the stoichiometric air-fuel ratio, the N in the exhaust gas
When the NOx absorbent that absorbs Ox and releases the absorbed NOx when the oxygen concentration in the exhaust gas decreases, sulfur is absorbed by the NOx absorbent together with NOx, and this sulfur enriches the air-fuel ratio. However, NOx is not emitted in a reducing atmosphere (exhaust air-fuel ratio rich state)
By heating the absorbent, it is decomposed and released from the NOx absorbent.

【0023】係る被毒解除のための膨張行程での燃料噴
射制御を、図3のフローチャートに従って説明する。
尚、図3のフローチャートに示されるルーチンは1噴射
毎に実行される。ステップS301では、被毒解除制御
中であるか否かを判別する。尚、被毒解除制御は、例え
ば被毒量の推定値が所定以上になったときや、一定の運
転時間・走行距離毎に行われる。
The fuel injection control in the expansion stroke for releasing the poisoning will be described with reference to the flowchart of FIG.
The routine shown in the flowchart of FIG. 3 is executed for each injection. In step S301, it is determined whether or not poisoning cancellation control is being performed. The poisoning release control is performed, for example, when the estimated value of the poisoning amount becomes equal to or greater than a predetermined value, or at constant driving time / running distance.

【0024】ステップS301で被毒解除制御中ではな
いと判別されたときには、ステップS311へ進み、前
記燃料噴射パルス幅TIに基づき吸気行程又は圧縮行程
で燃料噴射を行わせる通常の燃料噴射を行わせる。一
方、ステップS301で被毒解除制御中であると判別さ
れるとステップS302へ進み、前記空燃比補正係数C
OEFが所定値lambdaSOx以上であるか否かを判別する
ことで、被毒解除可能なリッチ空燃比制御状態であるか
否かを判別する。
When it is determined in step S301 that the poisoning release control is not in progress, the process proceeds to step S311, and the normal fuel injection for causing the fuel injection to be performed in the intake stroke or the compression stroke based on the fuel injection pulse width TI is performed. . On the other hand, if it is determined in step S301 that the poisoning release control is being performed, the process proceeds to step S302, and the air-fuel ratio correction coefficient C
By determining whether or not OEF is equal to or greater than the predetermined value lambdaSOx, it is determined whether or not the poisoning-releasable rich air-fuel ratio control state is set.

【0025】COEF≧lambdaSOxであれば、現状の燃
料噴射パルス幅TIで被毒解除可能な還元雰囲気とする
ことが可能であるので、ステップS303を迂回してス
テップS304へ進む。一方、COEF<lambdaSOxの
ときには、被毒解除に必要な還元雰囲気とすることがで
きないので、ステップS303へ進んで、空燃比補正係
数COEFに前記所定値lambdaSOxをセットする。
If COEF ≧ lambdaSOx, it is possible to create a reducing atmosphere in which poisoning can be released with the current fuel injection pulse width TI, so that the process bypasses step S303 and proceeds to step S304. On the other hand, when COEF <lambdaSOx, the reducing atmosphere necessary for releasing the poisoning cannot be established, so the routine proceeds to step S303, where the predetermined value lambdaSOx is set to the air-fuel ratio correction coefficient COEF.

【0026】ステップS304では、膨張行程噴射の間
引き回数count1が規定回数countinjに達しているか否か
を判別する。即ち、各気筒の膨張行程毎に燃料を噴射さ
せるのではなく、膨張行程での燃料噴射を1回行うと、
前記規定回数countinjだけ噴射を停止させ、規定回数co
untinjだけ噴射を間引いた後、膨張行程での噴射を行わ
せることを繰り返すようになっている(図6参照)。
In step S304, it is determined whether or not the number of times of thinning out the expansion stroke injection, count1, has reached a prescribed number of times countinj. That is, instead of injecting fuel in each expansion stroke of each cylinder, if fuel injection is performed once in the expansion stroke,
The injection is stopped for the specified number of times countinj, and the specified number of times co
After thinning out only untinj, the injection in the expansion stroke is repeated (see Fig. 6).

【0027】ステップS304で、間引き回数count1が
規定回数countinjに達していない(count1<countinj)
と判別されたときには、今回の膨張行程での噴射を停止
させることになり、ステップS308へ進んで、吸気行
程又は圧縮行程での噴射パルス幅TI1stをTI1st=T
I×partとして設定し、次のステップS309では、膨
張行程での噴射パルス幅TI2ndを0とし、更に、次の
ステップS310では、前記間引き回数count1をカウン
トアップする。
In step S304, the thinning-out count count1 has not reached the specified count countinj (count1 <countinj).
When it is determined that the injection pulse width TI1st in the intake stroke or the compression stroke is TI1st = T, the injection in the current expansion stroke is stopped, and the process proceeds to step S308.
I × part is set, in the next step S309, the injection pulse width TI2nd in the expansion stroke is set to 0, and in the next step S310, the thinning-out number count1 is incremented.

【0028】一方、ステップS304で、間引き回数co
unt1が規定回数countinjに達している(count1≧counti
nj)と判別されたときには、今回の膨張行程では噴射を
行わせるので、ステップS305へ進んで、吸気行程又
は圧縮行程での噴射パルス幅TI1stをTI1st=TI×
partとして設定し、次のステップS306では、膨張行
程での噴射パルス幅TI2ndを、TI2nd=(TI−TI
×part)×(mincount+1)として設定し、更に、次の
ステップS307では、前記間引き回数count1をクリア
する。
On the other hand, in step S304, the number of thinning times co
unt1 has reached the specified number of countinj (count1 ≧ counti
nj), the injection is performed in the expansion stroke this time, so the process proceeds to step S305, and the injection pulse width TI1st in the intake stroke or the compression stroke is set to TI1st = TI ×
Then, in the next step S306, the injection pulse width TI2nd in the expansion stroke is set to TI2nd = (TI-TI
Xpart) × (mincount + 1), and further, in the next step S307, the thinning-out number count1 is cleared.

【0029】前記間引きの規定回数countinjは、後述す
るように初期値から徐々に減少設定されて最終値mincou
ntにまで変化し、これにより間引き率が徐々に減少され
るようになっている(図6参照)。前記噴射パルス幅T
I1stの演算に用いる係数partは、1.0よりも僅かに小さ
い値であり、これにより吸気行程又は圧縮行程で噴射さ
れる燃料の燃焼時にリーンとして、膨張行程での噴射を
触媒10内で燃焼させるための酸素を確保する。
The specified number of times of thinning, countinj, is set to be gradually decreased from the initial value and the final value mincou
It changes to nt, whereby the thinning rate is gradually reduced (see FIG. 6). The injection pulse width T
The coefficient part used in the calculation of I1st is a value slightly smaller than 1.0, so that the fuel injected in the intake stroke or the compression stroke becomes lean when the fuel is injected in the expansion stroke to burn in the catalyst 10. To secure oxygen.

【0030】また、必要温度上昇代が大きく膨張行程で
多くの燃料を噴射させ、触媒10内で多くの燃料を燃焼
させる必要がある場合ほど、吸気行程又は圧縮行程で噴
射される燃料の燃焼時においてよりリーンとする必要が
ある。前記必要温度上昇代は、前記間引きの規定回数co
untinjの最終値mincountから判断でき、最終値mincount
が小さいほど必要温度上昇代が大きいと判断されるの
で、最終値mincountが小さいほど前記係数partをより小
さな値に設定するようにしてある。
Further, when it is necessary to inject a large amount of fuel in the expansion stroke to burn a large amount of fuel in the expansion stroke because the required temperature rise margin is large, the combustion time of the fuel injected in the intake stroke or the compression stroke is increased. Need to be leaner in. The required temperature rise amount is the specified number of thinning times co
It can be judged from the final value mincount of untinj, and the final value mincount
Since it is determined that the required temperature rise amount is larger as the value of the above is smaller, the coefficient part is set to a smaller value as the final value mincount is smaller.

【0031】但し、最終値mincountが固定値として与え
られる構成であれば、前記係数partも固定値となる。ま
た、膨張行程での噴射パルス幅TI2ndは、通常の噴射
パルス幅TIから吸気行程又は圧縮行程での噴射パルス
幅TI1st=TI×partを減算した残部を基本として、
該基本値に、前記間引き回数の最終値mincountに1を加
算した値を乗算して設定される。
However, if the final value mincount is given as a fixed value, the coefficient part is also a fixed value. The injection pulse width TI2nd in the expansion stroke is based on the remainder obtained by subtracting the injection pulse width TI1st = TI × part in the intake stroke or compression stroke from the normal injection pulse width TI.
It is set by multiplying the basic value by a value obtained by adding 1 to the final value mincount of the thinning times.

【0032】 TI2nd=(TI−TI×part)×(mincount+1) 例えば、間引きの最終値mincountが1だとすると、基本
値の2倍が噴射されることになり、トータルとして間引
きを行わなかった場合と同じ量の燃料が噴射され、間引
きの最終値mincountに達して被毒の解除に必要な温度に
まで達したときには、トータルとして被毒解除に必要な
リッチ排気空燃比とすることができる。
TI2nd = (TI-TI × part) × (mincount + 1) For example, if the final value mincount of decimation is 1, twice the basic value will be injected, which is the same as the case without decimation as a total. When a certain amount of fuel is injected and the final value of thinning, mincount, is reached and the temperature required to release poisoning is reached, the rich exhaust air-fuel ratio required to release poisoning can be obtained as a total.

【0033】尚、簡素化した制御として、被毒解除制御
時に、空燃比補正係数COEFを1として、吸気又は圧
縮行程での噴射パルス幅TI1stをTI1st=TIとし、
膨張行程での噴射パルス幅TI2ndを、TI2nd=TI×
afterinj(afterinjは定数)とすることも可能である。
上記のように、膨張行程の噴射を、間引き率を徐々に減
少させつつ間引いて行わせる構成であれば、図7に示す
ように、間引きを行わない場合に比べて、触媒中央部の
温度が徐々に上昇するので、ヒートショックによる担体
の割れなどを回避できる。
As a simplified control, during the poisoning release control, the air-fuel ratio correction coefficient COEF is set to 1, the injection pulse width TI1st in the intake or compression stroke is set to TI1st = TI,
The injection pulse width TI2nd in the expansion stroke is given by TI2nd = TI ×
It can also be afterinj (afterinj is a constant).
As described above, if the expansion stroke injection is performed by thinning while gradually reducing the thinning rate, as shown in FIG. 7, the temperature of the central portion of the catalyst is lower than that when no thinning is performed. Since the temperature rises gradually, it is possible to avoid cracking of the carrier due to heat shock.

【0034】図4のフローチャートは、前記間引き規定
回数countinjの設定制御の第1実施形態を示すものであ
り、一定時間毎に実行される。ステップS401では、
被毒解除制御中であるか否かを判別し、被毒解除制御中
でない場合には、そのまま終了させる。一方、ステップ
S401で被毒解除制御中であると判別されると、ステ
ップS402へ進み、被毒解除制御の開始直後であるか
否かを判別する。
The flow chart of FIG. 4 shows the first embodiment of the setting control of the specified thinning count countinj, which is executed at regular time intervals. In step S401,
It is determined whether or not the poisoning cancellation control is being performed, and if the poisoning cancellation control is not being performed, the processing ends. On the other hand, when it is determined in step S401 that the poisoning release control is being performed, the process proceeds to step S402, and it is determined whether or not it is immediately after the start of the poisoning release control.

【0035】被毒解除制御の開始直後であれば、規定回
数countinjに予め記憶された初期値countstartをセット
する。また、ステップS402で被毒解除制御の開始直
後ではないと判別されると、ステップS404へ進み、
規定回数countinjが予め記憶された最終値mincount以下
であるか否かを判別する。
Immediately after the poisoning release control is started, the preset initial value countstart is set in the specified number of times countinj. If it is determined in step S402 that the poisoning release control has not just started, the process proceeds to step S404.
It is determined whether the specified number of times countinj is less than or equal to the previously stored final value mincount.

【0036】ここで、countinj>mincountであるときに
は、ステップS406へ進み、規定回数countinjを予め
記憶された減少補正値(減少率)decountだけ減少させ
る設定を行う。上記ステップS406での減少制御の結
果、ステップS404でcountinj≦mincountであると判
別されるようになると、ステップS404からステップ
S405へ進み、規定回数countinjに最終値mincountが
セットされる。
Here, when countinj> mincount, the process proceeds to step S406, and the specified number of times countinj is set to be decreased by the previously stored decrease correction value (reduction rate) decount. As a result of the decrease control in step S406, when it is determined in step S404 that countinj ≦ mincount, the process proceeds from step S404 to step S405, and the specified value mincount is set to the specified number of times countinj.

【0037】上記の処理によって、規定回数countinj
は、初期値countstartから一定の速度で最終値mincount
にまで減少されることになる。上記図4のフローチャー
トでは、機関1の運転条件とは無関係に、一定の間引き
回数に基づいて膨張行程での噴射が間引かれることにな
るが、間引き回数を運転条件に応じて変化させることが
より好ましく、運転条件に応じて間引き規定回数counti
njの設定制御を行う第2実施形態を、図5のフローチャ
ートに従って説明する。
By the above processing, the specified number of countinj
Is the final value mincount at a constant speed from the initial value countstart
Will be reduced to. In the flowchart of FIG. 4 described above, the injection in the expansion stroke is thinned out based on the constant number of thinning-out regardless of the operating condition of the engine 1, but the number of thinning-out can be changed according to the operating condition. More preferable, counti specified number of times counti according to operating conditions
A second embodiment for controlling the setting of nj will be described with reference to the flowchart of FIG.

【0038】ステップS501では、機関負荷,機関回
転速度を読み込む。尚、機関負荷は、基本噴射パルス幅
TPで代表させることができる。次のステップS502
では、被毒解除制御中であるか否かを判別し、被毒解除
制御中でない場合には、そのまま終了させる。一方、被
毒解除制御中であるときには、ステップS503へ進
み、間引き回数の最終値の基本値mincountrevを機関回
転速度に応じて設定する。
In step S501, the engine load and engine speed are read. The engine load can be represented by the basic injection pulse width TP. Next step S502
Then, it is determined whether or not the poisoning cancellation control is being performed, and if the poisoning cancellation control is not being performed, the processing is ended as it is. On the other hand, when the poisoning release control is being performed, the process proceeds to step S503, and the basic value mincountrev of the final value of the number of times of thinning is set according to the engine rotation speed.

【0039】前記基本値mincountrevは、図8に示すよ
うに、機関回転速度が高いほど大きな値に設定される。
機関回転速度が高いときには、図9に示すように、一般
的に触媒温度が高く、また、時間当たりの間引き率で
は、回転速度が高いほど小さくなって、膨張行程での噴
射による温度上昇が大きくなるので、機関回転速度が高
いほど、膨張行程での噴射の必要性が低くなるから、機
関回転速度が高いほど前記基本値mincountrevは大きな
値(高い間引き率)に設定される。
As shown in FIG. 8, the basic value mincountrev is set to a larger value as the engine speed increases.
As shown in FIG. 9, when the engine rotation speed is high, the catalyst temperature is generally high, and the decimation rate per hour becomes smaller as the rotation speed becomes higher, and the temperature rise due to the injection in the expansion stroke is large. Therefore, the higher the engine speed, the lower the need for injection in the expansion stroke. Therefore, the higher the engine speed, the larger the basic value mincountrev is set (higher decimation rate).

【0040】次のステップS504では、間引き回数の
最終値の負荷補正値minloadhoseiを、そのときの機関負
荷に応じて設定する。前記負荷補正値minloadhoseiは、
図10に示すように、機関負荷が高いほど大きな値に設
定される。機関負荷が高いときには、図11に示すよう
に、一般的に触媒温度が高く、また、機関負荷が高い場
合には、膨張行程での噴射量絶対値が大きくなって、膨
張行程での噴射1回当たりの温度上昇が大きくなるか
ら、機関負荷が高いほど前記負荷補正値minloadhoseiは
大きな値(高い間引き率)に設定される。
In the next step S504, the load correction value minloadhosei, which is the final value of the number of times of thinning, is set according to the engine load at that time. The load correction value minloadhosei is
As shown in FIG. 10, the higher the engine load, the larger the value set. As shown in FIG. 11, when the engine load is high, the catalyst temperature is generally high, and when the engine load is high, the absolute value of the injection amount in the expansion stroke becomes large, and the injection 1 Since the temperature rise per turn becomes large, the load correction value minloadhosei is set to a larger value (higher thinning rate) as the engine load increases.

【0041】ステップS505では、間引き回数の最終
値mincountを、 mincount=mincountrev×minloadhosei として算出する。ステップS506では、被毒解除制御
の開始直後であるか否かを判別する。開始直後であれば
ステップS507へ進み、間引き回数の初期値の基本値
stcountrevを機関回転速度に応じて設定する。
In step S505, the final value mincount of the number of times of thinning is calculated as mincount = mincountrev × minloadhosei. In step S506, it is determined whether or not the poisoning cancellation control has just started. If it is immediately after the start, the process proceeds to step S507, and is the basic value of the initial value of the number of thinning-outs.
Set stcountrev according to the engine speed.

【0042】前記初期値の基本値stcountrevは、値は前
記最終値の基本値mincountrevより大きいが、前記最終
値の基本値mincountrevと同様にして、機関回転速度が
高いほど大きな値(高い間引き率)に設定される(図8
参照)。次のステップS508では、間引き回数の初期
値の負荷補正値stloadhoseiを、そのときの機関負荷に
応じて設定する。
Although the basic value stcountrev of the initial value is larger than the basic value mincountrev of the final value, a larger value (higher decimation rate) becomes higher as the engine speed increases, like the basic value mincountrev of the final value. Is set to (Fig. 8
reference). In the next step S508, the load correction value stloadhosei, which is the initial value of the number of times of thinning, is set according to the engine load at that time.

【0043】前記初期値の負荷補正値stloadhoseiは、
値は前記最終値の負荷補正値minloadhoseiよりも大きい
が、前記最終値の負荷補正値minloadhoseiと同様にし
て、機関負荷が高いほど大きな値(高い間引き率)に設
定される(図10参照)。ステップS509では、間引
きの規定回数countinjにstcountrev×stloadhoseiをセ
ットすることで、初期設定を行う。
The load correction value stloadhosei of the initial value is
Although the value is larger than the final value of the load correction value minloadhosei, it is set to a larger value (higher thinning rate) as the engine load is higher, similarly to the final value of the load correction value minloadhosei (see FIG. 10). In step S509, the initial setting is performed by setting stcountrev × stloadhosei in the specified number of times of thinning, countinj.

【0044】ステップS506で開始直後ではないと判
別されると、ステップS510へ進み、間引きの規定回
数countinjが最終値mincount以下になっているか否かを
判別する。countinj≦mincountであるときには、ステッ
プS511へ進んで、間引きの規定回数countinjに最終
値mincountをセットする。
When it is determined in step S506 that it is not immediately after the start, the process proceeds to step S510, and it is determined whether or not the specified number of thinnings, countinj, is equal to or less than the final value mincount. When countinj ≦ mincount, the process proceeds to step S511, and the final value mincount is set to the specified number of times thinning out countinj.

【0045】一方、countinj>mincountであれば、ステ
ップS512へ進み、間引き率の減少率基本値decountr
evを機関回転速度に応じて設定する。前記減少率基本値
decountrevは、図12に示すように、機関回転速度が高
いほど小さい値に設定される。機関回転速度が高いとき
には、触媒の必要温度上昇代が小さいから、間引きの回
数を大きいまま少しずつ減少変化させることで、必要充
分な温度上昇が得られる。
On the other hand, if countinj> mincount, the process proceeds to step S512 and the reduction rate basic value decountr of the thinning rate.
Set ev according to the engine speed. The basic value of the reduction rate
As shown in FIG. 12, decountrev is set to a smaller value as the engine rotation speed is higher. When the engine rotation speed is high, the required temperature rise margin of the catalyst is small, and therefore, the necessary and sufficient temperature rise can be obtained by gradually decreasing the number of thinning-outs while maintaining a large number.

【0046】一方、機関回転速度が低い場合には、初期
の急激な温度上昇を大きな間引き率で抑制しつつ、触媒
における大きな必要温度上昇代を確保すべく、速やかに
間引き率を減少させる必要があるため、減少率基本値de
countrevとして大きな値が要求される。次のステップS
513では、間引き率の減少率負荷補正値deloadhosei
を機関負荷に応じて設定する。
On the other hand, when the engine rotation speed is low, it is necessary to quickly reduce the thinning-out rate in order to secure a large required temperature rise margin in the catalyst while suppressing the initial rapid temperature rise with a large thinning-out rate. Therefore, the reduction rate basic value de
A large value is required for countrev. Next step S
In 513, the reduction rate load correction value deloadhosei of the thinning rate
Is set according to the engine load.

【0047】前記減少率負荷補正値deloadhoseiは、図
13に示すように、機関負荷が高いほど小さい値に設定
される。機関負荷が高いときには、触媒の必要温度上昇
代が小さいから、間引きの回数を大きいまま少しずつ減
少変化させることで、必要充分な温度上昇が得られる。
一方、機関負荷が低い場合には、初期の急激な温度上昇
を大きな間引き率で抑制しつつ、触媒における大きな必
要温度上昇代を確保すべく、速やかに間引き率を減少さ
せる必要があるため、減少率負荷補正値deloadhoseiと
して大きな値が要求される。
The decrease rate load correction value deloadhosei is set to a smaller value as the engine load is higher, as shown in FIG. When the engine load is high, the required temperature rise of the catalyst is small. Therefore, the necessary and sufficient temperature rise can be obtained by gradually changing the number of thinning-outs with a large number.
On the other hand, when the engine load is low, it is necessary to quickly reduce the thinning rate in order to secure a large necessary temperature rise margin in the catalyst while suppressing the initial rapid temperature rise with a large thinning rate. A large value is required as the rate load correction value deloadhosei.

【0048】ステップS514では、間引き減少率deco
untを、 decount=decountrev×deloadhosei として算出する。ステップS515では、間引きの規定
回数countinjを間引き減少率decountだけ減少させる。
In step S514, the thinning reduction rate deco
Calculate unt as decount = decountrev x deloadhosei. In step S515, the prescribed number of thinnings, countinj, is reduced by the thinning reduction rate decount.

【0049】上記のように、間引きの規定回数countinj
(間引き率)の初期値,最終値、減少率を、機関回転速
度・機関負荷に応じて設定する構成とすれば、急激な燃
焼によるヒートショックの発生を回避しつつ、必要な温
度上昇代を得ることができ、更に、過剰な温度上昇を回
避することができる。尚、上記実施形態では、1回膨張
行程での噴射を行わせると規定回数countinjだけ噴射を
間引き、該間引きの後に膨張行程噴射を1回だけ行わせ
る構成とし、前記間引きの規定回数countinjを徐々に減
少させる構成としたが、所定の噴射回数当たりの間引き
回数を変化させるよう構成し、例えば開始時には2回の
連続噴射後に8回連続して噴射を停止し、その後連続噴
射回数を徐々に増大させると共に、これに対応して間引
きの回数を徐々に減らして、最終的には、8回の連続噴
射後に2回だけ噴射を間引くというように、連続噴射回
数と間引き回数とを相対的に増減させる構成とすること
ができる。
As described above, the specified number of thinnings countinj
If the initial value, the final value, and the rate of decrease of (thinning rate) are set according to the engine speed and engine load, the necessary temperature rise margin can be obtained while avoiding heat shock due to rapid combustion. In addition, it is possible to avoid excessive temperature rise. In addition, in the above-described embodiment, when the injection is performed in the expansion stroke once, the injection is thinned by the specified number of countinj, and the expansion stroke injection is performed only once after the thinning, and the specified number of countinj of the thinning is gradually performed. However, the number of thinning-outs per predetermined number of injections is changed so that, for example, at the start, the injections are stopped eight times in succession after two continuous injections, and then the number of continuous injections is gradually increased. In response to this, the number of thinning-outs is gradually reduced, and finally, the number of continuous injections and the number of thinning-outs are relatively increased or decreased such that the number of injections is thinned out only twice after eight consecutive injections. It can be configured to.

【0050】また、上記実施形態では、膨張行程(排気
行程)での燃料噴射のみによって触媒を昇温させる構成
としたが、点火時期の遅角制御や排気還流の停止制御な
どと組み合わせるようにすることができる。
In the above embodiment, the catalyst is heated only by the fuel injection in the expansion stroke (exhaust stroke), but it may be combined with the ignition timing retard control or the exhaust gas recirculation stop control. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態における内燃機関のシステム構成
図。
FIG. 1 is a system configuration diagram of an internal combustion engine according to an embodiment.

【図2】実施の形態における燃料噴射量の演算を示すフ
ローチャート。
FIG. 2 is a flowchart showing calculation of a fuel injection amount in the embodiment.

【図3】実施の形態における被毒解除のための噴射制御
を示すフローチャート。
FIG. 3 is a flowchart showing injection control for releasing poisoning in the embodiment.

【図4】間引き回数設定の第1の実施形態を示すフロー
チャート。
FIG. 4 is a flowchart showing a first embodiment of thinning-out frequency setting.

【図5】間引き回数設定の第2の実施形態を示すフロー
チャート。
FIG. 5 is a flowchart showing a second embodiment of setting the number of thinning-outs.

【図6】実施の形態における吸気行程噴射と膨張行程噴
射との相関を示すタイムチャート。
FIG. 6 is a time chart showing the correlation between intake stroke injection and expansion stroke injection in the embodiment.

【図7】実施の形態における効果を説明するためのタイ
ムチャート。
FIG. 7 is a time chart for explaining the effect of the embodiment.

【図8】実施の形態における機関回転速度と間引き回数
の初期値・最終値との相関を示す線図。
FIG. 8 is a diagram showing a correlation between an engine rotation speed and an initial value / final value of the number of times of thinning according to the embodiment.

【図9】機関回転速度と触媒温度との相関を示す線図。FIG. 9 is a diagram showing a correlation between engine speed and catalyst temperature.

【図10】実施の形態における機関負荷と間引き回数の
初期値・最終値との相関を示す線図。
FIG. 10 is a diagram showing a correlation between an engine load and an initial value / final value of the number of times of thinning according to the embodiment.

【図11】機関負荷と触媒温度との相関を示す線図。FIG. 11 is a diagram showing a correlation between engine load and catalyst temperature.

【図12】実施の形態における機関回転速度と間引き回
数の減少率との相関を示す線図。
FIG. 12 is a diagram showing a correlation between an engine speed and a reduction rate of the number of times of thinning according to the embodiment.

【図13】実施の形態における機関負荷と間引き回数の
減少率との相関を示す線図。
FIG. 13 is a diagram showing a correlation between an engine load and a reduction rate of the number of thinning-outs in the embodiment.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…シリンダヘッド 3…燃料噴射弁 4…点火栓 5…吸気ポート 6…スロットル弁 7…吸気マニホールド 8…排気ポート 9…排気マニホールド 10…フロント触媒 11…リア触媒 16…コントロールユニット 17…エアフローメータ 18…スロットルセンサ 19…水温センサ 20…空燃比センサ 1 ... Internal combustion engine 2 ... Cylinder head 3 ... Fuel injection valve 4 ... Spark plug 5 ... Intake port 6 ... Throttle valve 7 ... Intake manifold 8 ... Exhaust port 9 ... Exhaust manifold 10 ... Front catalyst 11 ... Rear catalyst 16 ... Control unit 17 ... Air flow meter 18 ... Throttle sensor 19 ... Water temperature sensor 20 ... Air-fuel ratio sensor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G084 BA13 BA15 CA03 CA04 CA09 DA19 DA37 EA11 EB09 EB22 EC01 EC03 FA00 FA07 FA10 FA20 FA29 FA33 3G301 JA33 KA06 KA23 MA11 MA19 MA26 NC04 PA01Z PA11Z PD02Z PD12Z PE01Z PE08Z   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G084 BA13 BA15 CA03 CA04 CA09                       DA19 DA37 EA11 EB09 EB22                       EC01 EC03 FA00 FA07 FA10                       FA20 FA29 FA33                 3G301 JA33 KA06 KA23 MA11 MA19                       MA26 NC04 PA01Z PA11Z                       PD02Z PD12Z PE01Z PE08Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】筒内に燃料を直接噴射する燃料噴射弁を備
えた内燃機関において、 膨張行程から排気行程の間での燃料噴射によって排気通
路に介装される触媒を昇温させる燃料噴射制御装置であ
って、 前記膨張行程から排気行程の間での燃料噴射を間引いて
行わせると共に、間引き率を徐々に小さくすることを特
徴とする筒内直接噴射式内燃機関の燃料噴射制御装置。
1. An internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder, in which fuel injection control is performed to raise a temperature of a catalyst interposed in an exhaust passage by fuel injection between an expansion stroke and an exhaust stroke. A fuel injection control device for a direct injection type internal combustion engine, comprising: a device for thinning fuel injection between the expansion stroke and the exhaust stroke; and gradually reducing a thinning ratio.
【請求項2】機関回転速度が高いときほど、前記間引き
率を大きくすることを特徴とする請求項1記載の筒内直
接噴射式内燃機関の燃料噴射制御装置。
2. The fuel injection control device for a direct injection type internal combustion engine according to claim 1, wherein the thinning rate is increased as the engine speed increases.
【請求項3】機関負荷が大きいときほど、前記間引き率
を大きくすることを特徴とする請求項1又は2記載の筒
内直接噴射式内燃機関の燃料噴射制御装置。
3. The fuel injection control device for a direct injection type internal combustion engine according to claim 1, wherein the thinning rate is increased as the engine load is increased.
【請求項4】機関回転速度及び機関負荷に応じて、前記
間引き率の初期値,最終値及び減少率を設定することを
特徴とする請求項1記載の筒内直接噴射式内燃機関の燃
料噴射制御装置。
4. The fuel injection of a direct injection type internal combustion engine for a cylinder according to claim 1, wherein an initial value, a final value and a reduction rate of the thinning rate are set according to an engine speed and an engine load. Control device.
【請求項5】前記膨張行程から排気行程の間での燃料噴
射量を、前記間引き率に応じて変化させることを特徴と
する請求項1〜4のいずれか1つに記載の筒内直接噴射
式内燃機関の燃料噴射制御装置。
5. The in-cylinder direct injection according to claim 1, wherein the fuel injection amount between the expansion stroke and the exhaust stroke is changed according to the thinning rate. Injection control device for internal combustion engine.
【請求項6】吸気行程又は圧縮行程での燃料噴射量を、
前記間引き率に応じて変化させ、燃料の残部を前記膨張
行程から排気行程の間で噴射させることを特徴とする請
求項1〜5のいずれか1つに記載の筒内直接噴射式内燃
機関の燃料噴射制御装置。
6. A fuel injection amount in an intake stroke or a compression stroke,
The in-cylinder direct injection internal combustion engine according to any one of claims 1 to 5, characterized in that the remaining portion of the fuel is injected between the expansion stroke and the exhaust stroke by changing according to the thinning rate. Fuel injection control device.
JP2001258299A 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine Expired - Lifetime JP3818100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001258299A JP3818100B2 (en) 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001258299A JP3818100B2 (en) 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003065132A true JP2003065132A (en) 2003-03-05
JP3818100B2 JP3818100B2 (en) 2006-09-06

Family

ID=19085847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001258299A Expired - Lifetime JP3818100B2 (en) 2001-08-28 2001-08-28 Fuel injection control device for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3818100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100528A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Control device of internal combustion engine
US20110023467A1 (en) * 2009-07-31 2011-02-03 Ford Global Technologies, Llc Controlling regeneration of an emission control device
JP2020111138A (en) * 2019-01-10 2020-07-27 トヨタ自動車株式会社 Control device of hybrid vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100528A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Control device of internal combustion engine
US20110023467A1 (en) * 2009-07-31 2011-02-03 Ford Global Technologies, Llc Controlling regeneration of an emission control device
US8607549B2 (en) * 2009-07-31 2013-12-17 Ford Global Technologies, Llc Controlling regeneration of an emission control device
JP2020111138A (en) * 2019-01-10 2020-07-27 トヨタ自動車株式会社 Control device of hybrid vehicle
US11440529B2 (en) 2019-01-10 2022-09-13 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle
JP7163779B2 (en) 2019-01-10 2022-11-01 トヨタ自動車株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP3818100B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP4023115B2 (en) Control device for direct-injection spark ignition engine
JP2005214041A (en) Control device for direct spark ignition type internal combustion engine
JP2009115010A (en) Control device of direct injection internal combustion engine
JP2000282848A (en) Exhaust emission control device for internal combustion engine
US10208695B2 (en) Control apparatus of internal combustion engine
JP3584738B2 (en) In-cylinder direct injection spark ignition engine
US8302380B2 (en) Desulfation systems and methods for lean NOx trap (LNT)
JPH09105374A (en) Engine controller
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2001098972A (en) Controller for spark-ignition direct injection engine
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2003065132A (en) Fuel injection control device for cylinder direct injection type internal combustion engine
JP3582415B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP5326502B2 (en) Exhaust gas purification device for internal combustion engine
JP4269279B2 (en) Control device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2009041532A (en) Fuel injection control device for diesel engine
JP4263286B2 (en) In-cylinder injection engine combustion control device
JP3561142B2 (en) Control device for internal combustion engine
JP3528315B2 (en) Engine air-fuel ratio control device
JP4525468B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2004308542A (en) Control device for internal combustion engine
JP4844462B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4