JP2003064350A - Method for producing cubic boron nitride abrasive grain - Google Patents

Method for producing cubic boron nitride abrasive grain

Info

Publication number
JP2003064350A
JP2003064350A JP2002145525A JP2002145525A JP2003064350A JP 2003064350 A JP2003064350 A JP 2003064350A JP 2002145525 A JP2002145525 A JP 2002145525A JP 2002145525 A JP2002145525 A JP 2002145525A JP 2003064350 A JP2003064350 A JP 2003064350A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
abrasive grains
range
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002145525A
Other languages
Japanese (ja)
Inventor
Eiji Ihara
栄治 井原
Hirohiko Otsubo
裕彦 大坪
Takuya Okubo
卓也 大久保
Makoto Kasahara
真 笠原
Makoto Iizuka
飯塚  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002145525A priority Critical patent/JP2003064350A/en
Publication of JP2003064350A publication Critical patent/JP2003064350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide cubic boron nitride abrasive grain capable of forming a whetstone having excellent cutting quality, and to provide a method for producing the abrasive grain. SOLUTION: This cubic boron nitride abrasive grain is obtained by maintaining a mixture comprising hexagonal boron nitride and seed crystal of cubic boron nitride under a pressure and temperature condition where the cubic boron nitride is thermodynamically stable, wherein twin crystal of the cubic boron nitride is included in the seed crystal of the cubic boron nitride. The obtained cubic boron nitride abrasive grain is crushed with a roller crusher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、砥石等に用いられ
る立方晶窒化ホウ素砥粒の製造方法および立方晶窒化ホ
ウ素砥粒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cubic boron nitride abrasive grain manufacturing method and cubic boron nitride abrasive grain used for a grindstone or the like.

【0002】[0002]

【従来の技術】立方晶窒化ホウ素は、ダイヤモンドに次
ぐ硬さと、それを凌ぐ化学的安定性を持ち、研削・研磨
・切削材用の砥粒としての需要が増大している。
2. Description of the Related Art Cubic boron nitride has hardness second only to diamond and chemical stability surpassing that of diamond, and the demand for abrasive grains for grinding, polishing and cutting materials is increasing.

【0003】立方晶窒化ホウ素の製造方法は種々考案さ
れているが、この中で最も良く知られ、工業的にも広く
利用されているのは、六方晶窒化ホウ素を、触媒物質等
の存在下で、約4〜6GPa、約1400〜1600℃
程度の立方晶窒化ホウ素の熱力学的安定領域内に保持
し、六方晶窒化ホウ素を直接立方晶窒化ホウ素に変換す
る方法である(例えば特公昭59−39362号公報、
特公平3−14495号公報、特公平3−47132号
公報、特公平3−15488号公報が例示できる。)。
Various methods for producing cubic boron nitride have been devised. Among them, the best known method and widely used industrially are hexagonal boron nitride in the presence of a catalyst substance and the like. At about 4-6 GPa, about 1400-1600 ° C
It is a method of maintaining hexagonal boron nitride in the thermodynamically stable region of cubic boron nitride to some extent and directly converting hexagonal boron nitride into cubic boron nitride (for example, Japanese Patent Publication No. 59-39362).
For example, Japanese Patent Publication No. 3-14495, Japanese Patent Publication No. 3-47132, and Japanese Patent Publication No. 3-15488 can be exemplified. ).

【0004】これらの方法によって得られる立方晶窒化
ホウ素砥粒は前述したように優れた硬さと化学的安定性
を保有しており、電着砥石、メタルボンド砥石等にも使
用されている。
The cubic boron nitride abrasive grains obtained by these methods have excellent hardness and chemical stability as described above, and are also used in electrodeposition grindstones, metal bond grindstones and the like.

【0005】[0005]

【発明が解決しようとする課題】前述した方法により得
られた立方晶窒化ホウ素砥粒は、比較的形状が球形に近
いブロッキーな砥粒であり、切れ味が要求されるビトリ
ファイドボンド砥石を用いる様な研削用途には適してい
なかった。
The cubic boron nitride abrasive grain obtained by the above-mentioned method is a blocky abrasive grain having a shape relatively close to a sphere, and a vitrified bond grindstone requiring sharpness is used. It was not suitable for grinding applications.

【0006】このため、特開平9−169971号公報
には、立方晶窒化ホウ素砥粒を用いた砥石の切れ味を向
上させるため、「形状がシャープで且つ肉質が比較的緻
密な立方晶窒化ホウ素粒子」を用いることによって「良
好な切れ味が持続する」ことが開示されている。しかし
この方法によって得られる立方晶窒化ホウ素砥粒を用い
た砥石は、従来のブロッキーな形状の砥粒を用いた場合
に比べ砥石の切れ味が改善されたものの、産業界からは
より切れ味の高い砥石が求められていた。
For this reason, Japanese Patent Application Laid-Open No. 9-169971 discloses, in order to improve the sharpness of a grindstone using cubic boron nitride abrasive grains, "cubic boron nitride particles having a sharp shape and a relatively dense meat quality". It is disclosed that "good sharpness is maintained" by using "." However, the grindstone using cubic boron nitride abrasive grains obtained by this method has improved sharpness of the grindstone compared to the case of using the conventional blocky-shaped abrasive grains, but from the industrial world a sharper grindstone Was required.

【0007】また砥石の面では、ビトリファイドボンド
砥石における結合材は、焼成中に溶化して砥粒間隙を融
着し、冷却後強固な結合力を示す。ビトリファイドボン
ド砥石の様な有気孔砥石において良好な切れ味を得るた
めには、気孔の増大を図る必要がある。
In terms of the grindstone, the binder in the vitrified bond grindstone is melted during firing to fuse the gaps between the abrasive grains, and exhibits a strong bonding force after cooling. In order to obtain a good sharpness in a porous grindstone such as a vitrified bond grindstone, it is necessary to increase the number of pores.

【0008】しかしながら気孔を増大させるために結合
材量を減少させると、砥粒を保持する力が弱まり、研削
時の負荷による砥粒の脱落が多くなってしまう。その結
果被削材の面粗度が低下しドレスインターバルが短くな
るため、充分な研削比が得られなくなっていた。また、
砥粒率を減少させると、結合材による砥粒の保持力は充
分であるが、砥粒間のブリッジが減少することで砥石の
硬度が低下し、研削時の負荷に耐えられず砥粒の脱落が
増加するため、充分な研削比が得られなくなっていた。
However, when the amount of the bonding material is decreased to increase the pores, the force for holding the abrasive grains is weakened, and the abrasive grains are more likely to come off due to the load during grinding. As a result, the surface roughness of the work material is reduced and the dressing interval is shortened, so that a sufficient grinding ratio cannot be obtained. Also,
When the abrasive grain ratio is reduced, the holding power of the abrasive grains by the binder is sufficient, but the hardness of the grindstone decreases due to the decrease in the bridges between the abrasive grains, and the load at the time of grinding cannot be withstood. Since the amount of falling off increases, a sufficient grinding ratio cannot be obtained.

【0009】これらの問題を解決する方法として、砥粒
やボンドを減少させた分を骨材の添加により補う方法も
提案されているが、骨材を添加すると砥石内の気孔が減
少し、切れ味の向上の妨げとなっていた。
As a method for solving these problems, a method of compensating for the reduced amount of abrasive grains and bonds by adding an aggregate has been proposed, but when the aggregate is added, the pores in the grindstone are reduced and the sharpness is improved. Was hindering the improvement of

【0010】[0010]

【課題を解決するための手段】本発明者は上記の問題点
を解決すべく鋭意努力検討した結果、特に超高圧法を用
いた立方晶窒化ホウ素砥粒の製造方法において、立方晶
窒化ホウ素の種結晶として多重双晶結晶を用いることに
よって、ビトリファイドボンド砥石に適した形状の立方
晶窒化ホウ素砥粒(「砥粒」を単に「粒」と言うことも
ある。)が得られることを見出し本発明を完成させた。
Means for Solving the Problems As a result of diligent efforts and studies to solve the above problems, the present inventor has found that in a method for producing cubic boron nitride abrasive grains using an ultrahigh pressure method, cubic boron nitride It has been found that by using a multiple twin crystal as a seed crystal, cubic boron nitride abrasive grains (“abrasive grains” may be simply referred to as “grains”) having a shape suitable for a vitrified bond grindstone can be obtained. Completed the invention.

【0011】即ち本発明は、以下に関する。 (1)六方晶窒化ホウ素と立方晶窒化ホウ素の種結晶と
を含む混合物を、立方晶窒化ホウ素の熱力学的に安定で
ある圧力温度条件下に保持することによって、立方晶窒
化ホウ素砥粒を製造する方法において、立方晶窒化ホウ
素の種結晶が立方晶窒化ホウ素の双晶結晶を含むことを
特徴とする立方晶窒化ホウ素砥粒の製造方法。 (2)前項1に記載の立方晶窒化ホウ素砥粒の製造方法
により製造した立方晶窒化ホウ素砥粒を、粉砕すること
を特徴とする立方晶窒化ホウ素砥粒の製造方法。 (3)立方晶窒化ホウ素砥粒の粉砕にロール粉砕機を用
いることを特徴とする前項2に記載の立方晶窒化ホウ素
砥粒の製造方法。 (4)前項1乃至3の何れか1項に記載の方法により製
造した立方晶窒化ホウ素砥粒から、立方晶窒化ホウ素砥
粒の3軸径の長径をL(μm)、厚みをT(μm)とし
た場合のL/Tが1.5以下の砥粒を取り除くことを特
徴とする立方晶窒化ホウ素砥粒の製造方法。 (5)前項1乃至4の何れか1項に記載の立方晶窒化ホ
ウ素砥粒の製造方法により製造した立方晶窒化ホウ素砥
粒。
That is, the present invention relates to the following: (1) A cubic boron nitride abrasive grain is obtained by maintaining a mixture containing hexagonal boron nitride and a seed crystal of cubic boron nitride under a pressure-temperature condition that is thermodynamically stable for cubic boron nitride. A method for producing cubic boron nitride abrasive grains, wherein the seed crystal of cubic boron nitride includes twin crystals of cubic boron nitride. (2) A method for producing a cubic boron nitride abrasive grain, which comprises pulverizing the cubic boron nitride abrasive grain produced by the method for producing a cubic boron nitride abrasive grain as described in 1 above. (3) The method for producing cubic boron nitride abrasive grains according to item 2, wherein a roll pulverizer is used for pulverizing the cubic boron nitride abrasive grains. (4) From the cubic boron nitride abrasive grains manufactured by the method according to any one of the preceding items 1 to 3, the triaxial major axis of the cubic boron nitride abrasive grains is L (μm), and the thickness is T (μm). The method for producing cubic boron nitride abrasive grains is characterized in that the abrasive grains having L / T of 1.5 or less are removed. (5) A cubic boron nitride abrasive grain produced by the method for producing a cubic boron nitride abrasive grain according to any one of items 1 to 4 above.

【0012】(6)立方晶窒化ホウ素砥粒において、そ
のカサ比重(単位:g/cm3)を、立方晶窒化ホウ素
の真密度(3.48g/cm3)で除して算出される立
方晶窒化ホウ素砥粒の充填率が、JIS−B4130に
規定される粒度区分で、
[0012] (6) In the cubic boron nitride abrasive grains, the bulk specific gravity (unit: g / cm 3) cubic a, is calculated by dividing the true density of cubic boron nitride (3.48 g / cm 3) The filling rate of the crystalline boron nitride abrasive grains is the particle size classification defined in JIS-B4130,

【0013】40/50 の砥粒では、0.482〜
0.282の範囲内、50/60 の砥粒では、0.4
80〜0.280の範囲内、60/80 の砥粒では、
0.478〜0.278の範囲内、80/100の砥粒
では、0.474〜0.274の範囲内、100/12
0の砥粒では、0.469〜0.269の範囲内、12
0/140の砥粒では、0.464〜0.264の範囲
内、140/170の砥粒では、0.459〜0.25
9の範囲内、170/200の砥粒では、0.453〜
0.253の範囲内、200/230の砥粒では、0.
446〜0.246の範囲内、230/270の砥粒で
は、0.440〜0.240の範囲内、270/325
の砥粒では、0.433〜0.233の範囲内、325
/400の砥粒では、0.426〜0.226の範囲内
であることを特徴とする立方晶窒化ホウ素砥粒。
With a 40/50 abrasive grain, 0.482-
Within the range of 0.282, with 50/60 abrasive grains, 0.4
In the range of 80 to 0.280, 60/80 abrasive grains,
In the range of 0.478 to 0.278, in the case of 80/100 abrasive grains, in the range of 0.474 to 0.274, 100/12
In the case of 0 grain, within the range of 0.469 to 0.269, 12
0/140 abrasive grains are in the range of 0.464 to 0.264, and 140/170 abrasive grains are in the range of 0.459 to 0.25.
In the range of 9 and 170/200 abrasive grains, 0.453-
In the range of 0.253, 200/230 abrasive grains, 0.
In the range of 446 to 0.246, in the case of 230/270 abrasive grains, in the range of 0.440 to 0.240, 270/325
For the abrasive grains of No. 3, within the range of 0.433 to 0.233, 325
/ 400 abrasive grains are in the range of 0.426 to 0.226, and are cubic boron nitride abrasive grains.

【0014】(7)立方晶窒化ホウ素砥粒が実質的に単
結晶質であることを特徴とする前項6に記載の立方晶窒
化ホウ素砥粒。
(7) The cubic boron nitride abrasive grains as described in 6 above, wherein the cubic boron nitride abrasive grains are substantially monocrystalline.

【0015】(8)前項5乃至7の何れか1項に記載の
立方晶窒化ホウ素砥粒と結合材とを用いて作製した砥
石。 (9)結合材としてビトリファイドボンドを用いること
を特徴とする前項8に記載の砥石。 (10)砥石中のビトリファイドボンドの配合量が、1
0〜30体積%の範囲内であることを特徴とする前項9
に記載の砥石。 (11)砥石内の砥粒率が、((立方晶窒化ホウ素砥粒
の充填率−0.1)×100)体積%〜((立方晶窒化
ホウ素砥粒の充填率+0.05)×100)体積%の範
囲内であることを特徴とする前項8乃至10の何れか1
項に記載の砥石。 (12)砥石内の砥粒率が、((立方晶窒化ホウ素砥粒
の充填率−0.05)×100)体積%〜((立方晶窒
化ホウ素砥粒の充填率+0.05)×100)体積%の
範囲内であることを特徴とする前項8乃至10の何れか
1項に記載の砥石。
(8) A grindstone produced by using the cubic boron nitride abrasive grains according to any one of the above 5 to 7 and a binder. (9) The grindstone according to the above item 8, wherein a vitrified bond is used as the binder. (10) The compounding amount of vitrified bond in the grindstone is 1
The above item 9 characterized in that it is in the range of 0 to 30% by volume.
The whetstone described in. (11) The abrasive grain ratio in the grindstone is ((cubic boron nitride abrasive grain filling rate−0.1) × 100) volume% to ((cubic boron nitride abrasive grain filling rate + 0.05) × 100. ) Any one of the above items 8 to 10, characterized in that it is within a volume% range.
The whetstone according to item. (12) Abrasive grain ratio in the grindstone is ((cubic boron nitride abrasive grain filling factor−0.05) × 100) volume% to ((cubic boron nitride abrasive grain filling factor + 0.05) × 100. ) The grindstone according to any one of items 8 to 10 above, which is in a volume% range.

【0016】(13)前項5乃至7の何れか1項に記載
の立方晶窒化ホウ素砥粒を、綿布又はこれに準ずる布に
接着剤で固定して製造した研磨布紙。
(13) A polishing cloth paper produced by fixing the cubic boron nitride abrasive grains according to any one of items 5 to 7 above to a cotton cloth or a cloth equivalent thereto with an adhesive.

【0017】[0017]

【発明の実施の形態】本発明の立方晶窒化ホウ素砥粒
は、立方晶窒化ホウ素砥粒のカサ比重(単位:g/cm
3)を、立方晶窒化ホウ素の真密度(3.48g/c
3)で除して得られる立方晶窒化ホウ素砥粒の充填率
がJIS−B4130に規定される粒度区分で、
BEST MODE FOR CARRYING OUT THE INVENTION The cubic boron nitride abrasive grain of the present invention has a bulk specific gravity (unit: g / cm) of the cubic boron nitride abrasive grain.
3 ) is the true density of cubic boron nitride (3.48 g / c
m 3 ), the packing ratio of cubic boron nitride abrasives obtained by dividing by m 3 ) is a particle size classification defined in JIS-B4130,

【0018】40/50 の砥粒では、0.482〜
0.282の範囲内、50/60 の砥粒では、0.4
80〜0.280の範囲内、60/80 の砥粒では、
0.478〜0.278の範囲内、80/100の砥粒
では、0.474〜0.274の範囲内、100/12
0の砥粒では、0.469〜0.269の範囲内、12
0/140の砥粒では、0.464〜0.264の範囲
内、140/170の砥粒では、0.459〜0.25
9の範囲内、170/200の砥粒では、0.453〜
0.253の範囲内、200/230の砥粒では、0.
446〜0.246の範囲内、230/270の砥粒で
は、0.440〜0.240の範囲内、270/325
の砥粒では、0.433〜0.233の範囲内、325
/400の砥粒では、0.426〜0.226の範囲内
である。
With a 40/50 abrasive grain, 0.482-
Within the range of 0.282, with 50/60 abrasive grains, 0.4
In the range of 80 to 0.280, 60/80 abrasive grains,
In the range of 0.478 to 0.278, in the case of 80/100 abrasive grains, in the range of 0.474 to 0.274, 100/12
In the case of 0 grain, within the range of 0.469 to 0.269, 12
0/140 abrasive grains are in the range of 0.464 to 0.264, and 140/170 abrasive grains are in the range of 0.459 to 0.25.
In the range of 9 and 170/200 abrasive grains, 0.453-
In the range of 0.253, 200/230 abrasive grains, 0.
In the range of 446 to 0.246, in the case of 230/270 abrasive grains, in the range of 0.440 to 0.240, 270/325
For the abrasive grains of No. 3, within the range of 0.433 to 0.233, 325
With an abrasive grain of / 400, it is within the range of 0.426 to 0.226.

【0019】従来より用いられている立方晶窒化ホウ素
砥粒の充填率は、本発明の砥粒の充填率より高く、この
立方晶窒化ホウ素砥粒を用いた砥石の砥粒保持力を得る
ためには、砥粒同士のブリッジを充分に得る必要があ
り、結果として研削比を維持したまま砥粒率を下げるこ
とができなかった。
The filling rate of the cubic boron nitride abrasive grains conventionally used is higher than the filling rate of the abrasive grains of the present invention, and in order to obtain the abrasive grain holding force of the grindstone using the cubic boron nitride abrasive grains. In this case, it was necessary to obtain a sufficient bridge between the abrasive grains, and as a result, the abrasive grain ratio could not be lowered while maintaining the grinding ratio.

【0020】本発明の充填率の立方晶窒化ホウ素砥粒を
用いることによって、砥石の砥粒率を低下させても砥粒
間で充分なブリッジが得られることが明らかとなった。
その結果、砥粒率を下げても砥粒の砥石内での保持力は
低下せず、砥粒の脱落が防がれ、研削比が大幅に改善さ
れた。また砥石の気孔率も高められ大幅な切れ味の向上
が得られた。本発明における立方晶窒化ホウ素砥粒の充
填率は、立方晶窒化ホウ素砥粒のカサ比重を、立方晶窒
化ホウ素の真密度で除することにより得られる。カサ比
重の測定はJIS−R6126「人造研削材のカサ比重
試験方法」に準拠した方法で行う。
It has been clarified that by using the cubic boron nitride abrasive grains having the filling rate of the present invention, a sufficient bridge can be obtained between the abrasive grains even if the abrasive grain rate of the grindstone is reduced.
As a result, even if the abrasive grain ratio was reduced, the retaining force of the abrasive grains in the grindstone did not decrease, the abrasive grains were prevented from falling off, and the grinding ratio was significantly improved. In addition, the porosity of the grindstone was increased, and the sharpness was greatly improved. The filling rate of the cubic boron nitride abrasive grains in the present invention is obtained by dividing the bulk specific gravity of the cubic boron nitride abrasive grains by the true density of the cubic boron nitride grains. The bulk specific gravity is measured according to JIS-R6126 "Test method for bulk specific gravity of artificial abrasives".

【0021】以下にその測定方法を説明すると、漏斗の
出口をストッパーでふさぎ、測定試料20.0±0.1
gを漏斗内に入れる。容積8.0±0.1mlのシリン
ダーを漏斗出口の真下に配置する(漏斗出口からシリン
ダー上面までの落下距離を95.0±1.0mmとす
る)。ストッパーを引き抜き試料の全量をシリンダー内
に落下させた後、シリンダーの上面から盛り上がった試
料を、金属板を用いてすくい取るように取り除く。次に
シリンダー内に残った試料質量を測定し、シリンダー容
積で除してカサ比重を求める。
The measuring method will be described below. The outlet of the funnel was closed with a stopper, and the measurement sample was 20.0 ± 0.1.
Place g in the funnel. A cylinder with a volume of 8.0 ± 0.1 ml is placed just below the funnel outlet (falling distance from the funnel outlet to the top of the cylinder is 95.0 ± 1.0 mm). After pulling out the stopper and dropping the whole amount of the sample into the cylinder, the sample rising from the upper surface of the cylinder is removed by scooping using a metal plate. Next, the mass of the sample remaining in the cylinder is measured and divided by the cylinder volume to obtain the bulk specific gravity.

【0022】以上の方法によりカサ比重を測定するが、
正確なカサ比重を測定するためには、砥粒表面の付着
物、汚れ等による影響を取り除くため、測定前に砥粒を
希塩酸又は王水によって洗浄し、脱酸・乾燥した後測定
する必要がある。本発明の立方晶窒化ホウ素砥粒は、J
IS−B4130に規定される粒度区分で、前述した範
囲内の充填率を有するが、この立方晶窒化ホウ素砥粒を
複数の粒度区分でブレンドして用いても良い。また、本
発明の充填率の立方晶窒化ホウ素砥粒を、別の粒度区分
で区分し直して用いても良く、またJIS−B4130
と異なる方法で、粒度を区分し直しても良い。
The bulk specific gravity is measured by the above method,
In order to accurately measure the bulk specific gravity, it is necessary to wash the abrasive grains with dilute hydrochloric acid or aqua regia before measurement, deoxidize and dry them in order to remove the effects of deposits and dirt on the surface of the abrasive grains. is there. The cubic boron nitride abrasive grain of the present invention is J
The cubic boron nitride abrasive grains have a filling rate within the above-mentioned range in the particle size classification defined by IS-B4130, but may be used by blending in a plurality of particle size classifications. Further, the cubic boron nitride abrasive grains having the filling rate of the present invention may be re-classified and used according to another grain size classification, and JIS-B4130.
The particle size may be reclassified by a method different from.

【0023】本発明で使用される立方晶窒化ホウ素砥粒
の合成方法は特に限定されないが、生産性を考慮する
と、六方晶窒化ホウ素を触媒物質の存在下、立方晶窒化
ホウ素の熱力学的安定領域内に保持して、六方晶窒化ホ
ウ素を立方晶窒化ホウ素に変換する方法が望ましい。
The method of synthesizing the cubic boron nitride abrasive grains used in the present invention is not particularly limited, but considering productivity, hexagonal boron nitride is used in the presence of a catalytic substance to stabilize the cubic boron nitride thermodynamically. A method of holding in the region to convert hexagonal boron nitride to cubic boron nitride is desirable.

【0024】出発原料である六方晶窒化ホウ素は、市販
の六方晶窒化ホウ素粉末を使用できる。酸化ホウ素等の
形で混入する酸素不純物は、六方晶窒化ホウ素から立方
晶窒化ホウ素への変換を遅らせることがあるため、酸素
量の少ないものが好ましい。粒度は特に限定されない
が、一般的にはJIS−R6001に定められた粒度で
150メッシュ以下が好ましい。粒度が大きすぎると触
媒物質との反応性が低下する可能性があるからである。
As the starting material, hexagonal boron nitride, a commercially available hexagonal boron nitride powder can be used. Oxygen impurities mixed in the form of boron oxide or the like may delay the conversion of hexagonal boron nitride to cubic boron nitride, and therefore, those having a small amount of oxygen are preferable. The particle size is not particularly limited, but in general, the particle size defined in JIS-R6001 is preferably 150 mesh or less. This is because if the particle size is too large, the reactivity with the catalyst substance may decrease.

【0025】六方晶窒化ホウ素を立方晶窒化ホウ素に変
換する方法に用いる触媒は特に限定されず、既知の触媒
は全て使用できる。例をあげると、アルカリ金属(Li
等)と、これらの窒化物(Li3N等)及びホウ窒化物
(Li3BN2等)、アルカリ土類金属(Ca,Mg,S
r,Ba等)と、これらの窒化物(Ca32、Mg
32、Sr32、Ba32等)及びホウ窒化物(Ca3
24、Mg324、Sr324、Ba32
4等)、アルカリ金属とアルカリ土類金属の複合ホウ窒
化物(LiCaBN2、LiBaBN2等)を用いること
ができる。触媒の粒度は特に限定されないが150メッ
シュ以下が好ましい。触媒の粒度が大きすぎると六方晶
窒化ホウ素との反応性が低下する可能性があるからであ
る。また触媒物質の六方晶窒化ホウ素への配合比率は、
六方晶窒化ホウ素100質量部に対し、触媒物質として
5〜50質量部の範囲内で混合するのが好ましい。触媒
物質と六方晶窒化ホウ素を共存させる方法としては、こ
れらの粉末を混合する方法があるが、反応容器中に六方
晶窒化ホウ素層と触媒物質層を交互に積層するように配
置しても良い。
The catalyst used in the method of converting hexagonal boron nitride into cubic boron nitride is not particularly limited, and all known catalysts can be used. For example, alkali metal (Li
Etc.) and their nitrides (Li 3 N, etc.) and boronitrides (Li 3 BN 2, etc.), alkaline earth metals (Ca, Mg, S)
r, Ba, etc.) and their nitrides (Ca 3 N 2 , Mg
3 N 2 , Sr 3 N 2 , Ba 3 N 2, etc.) and boronitride (Ca 3
B 2 N 4 , Mg 3 B 2 N 4 , Sr 3 B 2 N 4 , Ba 3 B 2 N
4 etc.), and a composite boronitride of alkali metal and alkaline earth metal (LiCaBN 2 , LiBaBN 2, etc.) can be used. The particle size of the catalyst is not particularly limited, but 150 mesh or less is preferable. This is because if the particle size of the catalyst is too large, the reactivity with hexagonal boron nitride may decrease. The mixing ratio of the catalytic substance to hexagonal boron nitride is
It is preferable to mix the hexagonal boron nitride in an amount of 5 to 50 parts by mass as a catalyst substance with respect to 100 parts by mass. As a method of coexisting the catalyst substance and hexagonal boron nitride, there is a method of mixing these powders, but the hexagonal boron nitride layers and the catalyst substance layers may be arranged to be alternately laminated in the reaction vessel. .

【0026】実際には、六方晶窒化ホウ素と触媒物質を
混合した後、あるいはそれぞれ別々に、1〜2ton/
cm2程度の圧力で成形してから反応容器に充填するこ
とが好ましい。この様にすることにより、原料粉末の取
り扱い性が向上すると共に、反応容器内での収縮量が減
少し、立方晶窒化ホウ素砥粒の生産性が向上する効果が
ある。
In practice, after mixing the hexagonal boron nitride and the catalyst substance, or separately, 1 to 2 ton /
It is preferable to fill the reaction vessel after molding at a pressure of about cm 2 . By doing so, the handling property of the raw material powder is improved, the shrinkage amount in the reaction vessel is reduced, and the productivity of the cubic boron nitride abrasive grains is improved.

【0027】また本発明では、上記の触媒物質と六方晶
窒化ホウ素との成形体または積層体に前もって立方晶窒
化ホウ素を種結晶として添加し、これを核として立方晶
窒化ホウ素の結晶成長を促進させる方法を用いるのが好
ましい。この場合、立方晶窒化ホウ素の種結晶表面に上
記触媒物質を被覆しても良い。上記の触媒物質と六方晶
窒化ホウ素等との成形体等を、反応容器中に充填し、周
知の高温高圧発生装置に装填し、立方晶窒化ホウ素の熱
力学的安定領域内の温度圧力条件下に保持する。この熱
力学的安定領域については、O.Fukunaga,D
iamond Relat. Mater.,9(20
00),7−12に示されており、一般的には約4〜約
6GPa、約1400〜約1600℃の範囲内であり、
また保持時間は一般的には約1秒〜約6時間程度であ
る。上記の立方晶窒化ホウ素の熱力学的安定領域に保持
することにより、六方晶窒化ホウ素は立方晶窒化ホウ素
に変換され、一般的には六方晶窒化ホウ素、立方晶窒化
ホウ素および触媒物質からなる合成塊が得られる。この
合成塊を解砕し、立方晶窒化ホウ素を単離精製する。
In the present invention, cubic boron nitride is added in advance as a seed crystal to a molded body or laminated body of the above-mentioned catalyst substance and hexagonal boron nitride, and this is used as a nucleus to promote crystal growth of cubic boron nitride. It is preferable to use the method. In this case, the surface of the seed crystal of cubic boron nitride may be coated with the above catalyst substance. A molded body of the above-mentioned catalyst substance and hexagonal boron nitride or the like is filled in a reaction vessel and loaded into a well-known high temperature and high pressure generator, under a temperature and pressure condition within a thermodynamically stable region of cubic boron nitride. Hold on. Regarding this thermodynamic stable region, O. Fukunaga, D
iamond Relat. Mater. , 9 (20
00), 7-12, generally in the range of about 4 to about 6 GPa, about 1400 to about 1600 ° C,
The holding time is generally about 1 second to about 6 hours. By holding in the thermodynamically stable region of the cubic boron nitride described above, the hexagonal boron nitride is converted to cubic boron nitride, which is generally composed of hexagonal boron nitride, cubic boron nitride and a catalytic material. A lump is obtained. This synthetic mass is crushed and cubic boron nitride is isolated and purified.

【0028】単離精製の方法には、特公昭49―277
57号公報に記載されている方法を用いることができ
る。例えば、合成塊を5mm以下に解砕した後、水酸化
ナトリウムと少量の水を加え、300℃程度に加熱し、
六方晶窒化ホウ素を選択的に溶解させる。これを冷却
後、酸で洗浄、水洗後、ろ過することにより立方晶窒化
ホウ素砥粒を回収する。
The isolation and purification method is described in JP-B-49-277.
The method described in Japanese Patent No. 57 can be used. For example, after crushing the synthetic mass to 5 mm or less, add sodium hydroxide and a small amount of water and heat to about 300 ° C.
Hexagonal boron nitride is selectively dissolved. After cooling, washing with acid, washing with water, and filtration, the cubic boron nitride abrasive grains are recovered.

【0029】この様にして得られた立方晶窒化ホウ素砥
粒の中で本発明に適しているのは、実質的に単結晶質か
らなる砥粒である。立方晶窒化ホウ素砥粒には、単結晶
質の結晶の他に、多結晶質又は微細結晶質等の立方晶窒
化ホウ素砥粒が含まれるが、本発明ではこの中で、単結
晶質の結晶を用いることが好ましい。多結晶質又は微細
結晶質の立方晶窒化ホウ素砥粒は比較的砥粒強度が高く
欠け難い為、砥石として使用した場合には砥粒先端の切
れ刃が摩滅摩耗し易く、本発明の立方晶窒化ホウ素砥粒
には適していない。そのため本発明における実質的に単
結晶質からなる砥粒の概念には、多結晶質、微細結晶質
は含めない。
Among the cubic boron nitride abrasive grains thus obtained, those suitable for the present invention are the abrasive grains substantially made of single crystal. Cubic boron nitride abrasive grains, in addition to single crystalline crystals, include cubic boron nitride abrasive grains such as polycrystalline or fine crystalline, in the present invention, among them, single crystalline crystals Is preferably used. Polycrystalline or fine crystalline cubic boron nitride abrasive grains have a relatively high abrasive grain strength and are difficult to chip, so when used as a grindstone, the cutting edge of the abrasive grains is easily worn away, and the cubic crystal of the present invention is used. Not suitable for boron nitride abrasives. Therefore, the concept of the abrasive grains that are substantially single crystal in the present invention does not include polycrystalline and fine crystalline.

【0030】本発明の実質的に単結晶質の定義は、上記
の砥粒が立方晶窒化ホウ素砥粒の中に、90体積%以
上、好ましくは95体積%以上、より好ましくは99体
積%以上の比率で存在することを意味する。なお、この
比率には、立方晶窒化ホウ素以外の不純物は含めない。
The definition of "substantially single crystalline" in the present invention is that the above-mentioned abrasive grains are 90% by volume or more, preferably 95% by volume or more, more preferably 99% by volume or more in the cubic boron nitride abrasive grains. Is present in the ratio of. Note that this ratio does not include impurities other than cubic boron nitride.

【0031】上記により得られた立方晶窒化ホウ素砥粒
を、JIS−B4130に規定された粒度区分に分級し
た後、粒度区分毎に形状分離器等を用いてブロッキー砥
粒を取り除くことで、本発明の充填率を満たした立方晶
窒化ホウ素砥粒を得ることができる。
The cubic boron nitride abrasive particles obtained as described above are classified into particle size categories specified in JIS-B4130, and then the blocky abrasive particles are removed using a shape separator or the like for each particle size category to obtain It is possible to obtain cubic boron nitride abrasive grains satisfying the filling rate of the invention.

【0032】ブロッキー砥粒とは、結晶粒の形態が球形
に近い形状を示し、具体的には、結晶粒の3軸径の長径
をL(μm)、厚みをT(μm)とした場合の、L/T
の値が1に近い砥粒を示す。ここで言う3軸径とは、不
規則形状粒子を直方体に換算して粒子形状を定量化する
方法であり、粉体工学会編 粉体工学便覧、昭和61年
初版1刷発行の1頁に記載がある。
The term "blocky abrasive grains" means that the crystal grains have a shape close to a sphere. Specifically, when the triaxial major axis of the crystal grains is L (μm) and the thickness is T (μm). , L / T
Indicates an abrasive grain having a value of 1 close to 1. The triaxial diameter referred to here is a method of quantifying the particle shape by converting irregularly shaped particles into a rectangular parallelepiped. See the Powder Engineering Handbook, Powder Engineering Handbook, page 1 of the 1st edition of 1986, 1st edition. There is a description.

【0033】具体的には、任意の平面上に安定に配置し
た粒子の平面への投影図形に対して両側から平行線を接
近させ、その投影図形に接した時の平行線の間隔を測定
する。この間隔が最長である平行線間距離を粒の長径L
(μm)とし、それに直角方向の投影図形に接する平行
線間隔距離を粒の短径B(μm)とする。粒子が安定に
配置している面から粒子上端までの高さを粒の厚みT
(μm)とする。但し、本発明の3軸径の厚みT(μ
m)については、粒の短径B(μm)と粒の厚みT(μ
m)の内、値の小さいほうの厚みをT(μm)とする。
Specifically, parallel lines are brought close to each other from both sides with respect to a projected figure of a particle stably arranged on an arbitrary plane on the plane, and an interval between the parallel lines when the projected figure is contacted is measured. . The distance between parallel lines where this distance is the longest is the major axis L of the grain.
(Μm), and the distance between parallel lines contacting the projected figure in the direction perpendicular thereto is defined as the particle minor axis B (μm). The height from the surface where the particles are stably arranged to the upper end of the particle is defined as the thickness T of the particle.
(Μm). However, the thickness T (μ
m), the minor axis B (μm) of the grain and the thickness T (μ
The thickness of the smaller one of m) is T (μm).

【0034】すなわち本発明では、形状分離器等を用い
ることにより、L/Tが1.5以下の砥粒の比率を減少
させることで、本発明の充填率を満たす立方晶窒化ホウ
素砥粒を得ることができる。なお、本発明の製造方法の
「L/Tが1.5以下の砥粒を取り除く」とは、「L/
Tが1.5以下の砥粒の比率を減少させる」工程をい
う。
That is, in the present invention, by using a shape separator or the like, the ratio of the abrasive grains having L / T of 1.5 or less is reduced, so that the cubic boron nitride abrasive grains satisfying the filling rate of the present invention can be obtained. Obtainable. In the manufacturing method of the present invention, "removing abrasive grains having L / T of 1.5 or less" means "L / T
The step of reducing the ratio of abrasive grains having T of 1.5 or less ”.

【0035】形状分離器としては、上記の目的を達する
ものであれば何でも用いることができるが、例えば、振
動によってL/Tの低い砥粒を分離する方法が挙げられ
る。この方法による具体的な形状分離器の構造を例示す
ると、正三角形の振動板(各頂点をA、B、Cとする、
辺AB、辺ACには砥粒脱落防止のために縁が設けてあ
る)の、辺ACを軸に頂点Bが上になる様に振動板を傾
斜させる。傾斜角は水平に対して1〜45°の範囲が好
ましい。更に頂点Aから頂点Cに向かい俯角になる様に
傾斜させる。この時の俯角は水平に対して1〜30°の
範囲内が好ましい。
As the shape separator, any shape separator can be used as long as it achieves the above-mentioned purpose. For example, a method of separating abrasive grains having a low L / T by vibration can be mentioned. An example of a concrete structure of the shape separator by this method is an equilateral triangular vibration plate (each vertex is A, B, C,
The edges AB are provided on the sides AB and AC to prevent the abrasive grains from falling off), but the diaphragm is tilted so that the vertex B is on the axis of the sides AC. The tilt angle is preferably in the range of 1 to 45 ° with respect to the horizontal. Further, it is inclined from the vertex A toward the vertex C so as to form a depression angle. The depression angle at this time is preferably within the range of 1 to 30 with respect to the horizontal.

【0036】板を振動させながら砥粒を頂点Aに供給
し、辺BCから排出する。供給された砥粒は振動によっ
て頂点Aから辺BCの方向へ流れる。その過程で形状が
球に近いブロッキーな砥粒ほど低所に転がり落ち、辺A
Cに近い所を流れる。一方、形状がイレギュラーな砥粒
(ブロッキーでない砥粒)は振動により傾斜の高いとこ
ろまで登り、辺BCのB寄りのところから排出される。
辺BCの出口を分けることにより球形に近いブロッキー
な砥粒が分離された砥粒を得ることができる。JIS−
B4130「ダイヤモンド及び立方晶窒化ホウ素と粒の
粒度」に規定される粒度区分の内、本発明に関連する粒
度区分について表1に示す。なお、表1は電成篩いによ
る粒度分布である。
While vibrating the plate, the abrasive grains are supplied to the apex A and discharged from the side BC. The supplied abrasive grains flow from the apex A toward the side BC due to vibration. In the process, a blocky abrasive grain with a shape closer to a sphere will roll down to a lower place, and edge A
It flows near C. On the other hand, abrasive grains having irregular shapes (abrasive grains that are not blocky) climb to a high slope due to vibration, and are discharged from the side BC near B.
By dividing the outlets of the side BC, it is possible to obtain abrasive grains in which blocky abrasive grains having a nearly spherical shape are separated. JIS-
Table 1 shows the particle size classifications related to the present invention among the particle size classifications specified in B4130 “Diamond and cubic boron nitride and particle size”. In addition, Table 1 shows a particle size distribution by an electro-sieve.

【0037】また本発明の充填率を満たす立方晶窒化ホ
ウ素砥粒の収率を高めるためには、立方晶窒化ホウ素砥
粒の製造工程において、立方晶窒化ホウ素砥粒を粉砕す
る工程を含めることが好ましい。具体的な粉砕方法とし
ては、立方晶窒化ホウ素砥粒を圧壊するような粉砕方法
が好ましく、具体的には、ロール粉砕機による粉砕が好
ましい。
In order to increase the yield of the cubic boron nitride abrasive grains satisfying the filling rate of the present invention, a step of pulverizing the cubic boron nitride abrasive grains should be included in the process of producing the cubic boron nitride abrasive grains. Is preferred. As a specific crushing method, a crushing method of crushing cubic boron nitride abrasive grains is preferable, and specifically, crushing with a roll crusher is preferable.

【0038】ロール粉砕機による粉砕方法とは、砥粒を
二つのロール間に挟み砥粒を粉砕する方法である。この
方法は、砥粒に圧縮及びせん断力を加えて粉砕する方法
であり、比較的強い力で短時間で粉砕される為、必要以
上に微細化したり、砥粒の角がとれてブロッキーになる
ことが少なく、本発明の充填率を満たす立方晶窒化ホウ
素砥粒の収率を向上させることができる。
The crushing method using a roll crusher is a method of sandwiching abrasive grains between two rolls and crushing the abrasive grains. This method is a method of crushing abrasive grains by applying compression and shearing force, and because it is crushed in a short time with a relatively strong force, it becomes finer than necessary and the grains of the abrasive grains become blocky and become blocky. It is possible to improve the yield of cubic boron nitride abrasive grains that satisfy the filling rate of the present invention.

【0039】本発明の充填率を満たす立方晶窒化ホウ素
砥粒を得る別の方法としては、六方晶窒化ホウ素を触媒
物質の存在下、超高圧高温条件で立方晶窒化ホウ素に変
換する方法において、直接、本発明の充填率を満たす砥
粒を得る方法が挙げられる。具体的には、六方晶窒化ホ
ウ素と立方晶窒化ホウ素の種結晶とを含む混合物を、立
方晶窒化ホウ素の熱力学的に安定である圧力温度条件下
に保持することによって、立方晶窒化ホウ素砥粒を製造
する際、立方晶窒化ホウ素の種結晶として双晶結晶また
は多重双晶結晶を用いることにより本発明の充填率を満
たす立方晶窒化ホウ素砥粒を得ることができる。
As another method of obtaining cubic boron nitride abrasives satisfying the filling factor of the present invention, a method of converting hexagonal boron nitride into cubic boron nitride in the presence of a catalyst substance under ultrahigh pressure and high temperature conditions, A direct method is to obtain the abrasive grains that satisfy the filling rate of the present invention. Specifically, a mixture containing a hexagonal boron nitride and a seed crystal of cubic boron nitride is kept under a pressure-temperature condition which is thermodynamically stable for the cubic boron nitride. By using twin crystals or multiple twin crystals as seed crystals of cubic boron nitride in the production of grains, cubic boron nitride abrasive grains satisfying the filling rate of the present invention can be obtained.

【0040】双晶結晶とは、互いに対称的関係を持つ二
つの部分を持つ結晶の事である。双晶結晶の具体的な結
晶形態を図1に模式的に示す。種結晶として双晶結晶を
用いることにより、本発明の充填率を満たす立方晶窒化
ホウ素砥粒が得られる理由は、双晶が持つ凹入角では核
発生が一次元、すなわち一つの結晶方位に進行するた
め、他の結晶方位への結晶成長に比べ成長速度に差が生
じ易くなり、異方成長する結晶粒が多くなる。その結
果、イレギュラーな砥粒が成長し易くなり、本発明の充
填率を満たす立方晶窒化ホウ素砥粒が得られ易くなる。
The twin crystal is a crystal having two parts having a symmetrical relationship with each other. A specific crystal form of a twin crystal is schematically shown in FIG. By using a twin crystal as a seed crystal, the reason why the cubic boron nitride abrasive grains satisfying the filling rate of the present invention can be obtained is that the nucleation is one-dimensional in the recessed angle of the twin, that is, one crystal orientation. Since it progresses, a difference in the growth rate is more likely to occur as compared with the crystal growth in other crystal orientations, and the number of crystal grains that grow anisotropically increases. As a result, irregular abrasive grains are easily grown, and cubic boron nitride abrasive grains satisfying the filling rate of the present invention are easily obtained.

【0041】例えば図1(A)の様な双晶結晶では3つ
の矢印方向の成長が優先的に起こる。また図1(B)の
様な双晶面を2つ以上持つ多重双晶結晶を種結晶として
用いた場合は、凹入角を持つ面が増え、図1(A)の様
な結晶を用いた場合に比べ本発明の充填率を満たす立方
晶窒化ホウ素砥粒がより成長しやすくなる。本発明の立
方晶窒化ホウ素砥粒を用いて砥石を製造した場合、高い
研削比と切れ味が得られる。特に有気孔のビトリファイ
ドボンド砥石の場合この効果が顕著となる。
For example, in a twin crystal as shown in FIG. 1 (A), growth in the directions of three arrows occurs preferentially. Moreover, when a multiple twin crystal having two or more twin planes as shown in FIG. 1 (B) is used as a seed crystal, the number of planes having a recessed angle increases, and the crystal as shown in FIG. 1 (A) is used. The cubic boron nitride abrasive grains satisfying the filling rate of the present invention are more likely to grow than in the case of the above. When a grindstone is produced using the cubic boron nitride abrasive grains of the present invention, a high grinding ratio and sharpness can be obtained. This effect is particularly remarkable in the case of a vitrified bond grindstone having pores.

【0042】ビトリファイドボンド砥石における砥粒率
は、((立方晶窒化ホウ素砥粒の充填率−0.1)×1
00)体積%〜((立方晶窒化ホウ素砥粒の充填率+
0.05)×100)体積%、の範囲内とするのが好ま
しく、特に、ビトリファイドボンド砥石における砥粒率
を、((立方晶窒化ホウ素砥粒の充填率−0.05)×
100)体積%〜((立方晶窒化ホウ素砥粒の充填率+
0.05)×100)体積%、の範囲内とすることが好
ましい。砥粒率を、((立方晶窒化ホウ素砥粒の充填率
−0.1)×100)体積%より小さくすると、砥粒同
士のブリッジが充分に形成されず、砥粒の保持力が充分
に得られないため研削比が低下してしまう。一方砥粒率
を、((立方晶窒化ホウ素砥粒の充填率+0.05)×
100)体積%より大きくすると、砥粒同士のブリッジ
は充分得られるが、砥石成形時に砥粒を無理に押し込む
ことになり、砥粒のエッジが欠けたり、砥粒自体が破砕
してしまうため、研削時にこれらの欠けたり破損した砥
粒が脱落するので、研削比の低下がおこる。
The abrasive grain ratio in the vitrified bond grindstone is ((filling ratio of cubic boron nitride abrasive grains−0.1) × 1
00) volume% ~ ((cubic boron nitride abrasive grain filling rate +
0.05) × 100)% by volume, and in particular, the abrasive grain ratio in the vitrified bond grindstone is ((packing ratio of cubic boron nitride abrasive grains−0.05) ×
100)% by volume to ((filling rate of cubic boron nitride abrasive grains +
It is preferably within the range of 0.05) × 100) volume%. If the abrasive grain ratio is smaller than ((cubic crystal boron nitride abrasive grain filling rate−0.1) × 100) volume%, bridges between the abrasive grains are not sufficiently formed, and the retention force of the abrasive grains is sufficient. Since it cannot be obtained, the grinding ratio is reduced. On the other hand, the abrasive grain ratio is ((cubic crystal boron nitride abrasive grain filling ratio +0.05) x
If it is larger than 100% by volume, a bridge between the abrasive grains can be sufficiently obtained, but the abrasive grains are forced to be pressed at the time of forming the grindstone, and the edges of the abrasive grains are chipped or the abrasive grains themselves are crushed. Since these broken or broken abrasive grains fall off during grinding, the grinding ratio decreases.

【0043】なお、砥粒率とは砥石体積に占める砥粒体
積を百分率であらわしたものである。
The abrasive grain ratio is the percentage of the abrasive grain volume in the grindstone volume.

【0044】ビトリファイドボンド砥石の結合材として
は、通常立方晶窒化ホウ素砥粒用として使用されている
結合材を使用目的に応じて用いることができる。結合材
としては例えば、SiO2,Al23をベースとした物
が例示できる。また砥石中の結合材の配合量は10〜3
0体積%の範囲内とすることが好ましい。結合材の配合
量が10体積%を下回ると、砥粒の保持力が低下し、そ
の結果砥粒の脱落が多くなり、研削比が低下して研削工
具としては不適当なものとなる。一方結合材の配合量が
30体積%を超えると、気孔が減少し切れ味が低下した
砥石になると共に、砥石焼成時の体積膨張(発泡現象)
が起こり易くなるので好ましくない。
As the binder for the vitrified bond grindstone, a binder usually used for cubic boron nitride abrasive grains can be used according to the purpose of use. Examples of the binder include those based on SiO 2 and Al 2 O 3 . Further, the compounding amount of the binder in the grindstone is 10 to 3
It is preferably within the range of 0% by volume. When the compounding amount of the binder is less than 10% by volume, the holding force of the abrasive grains is reduced, and as a result, the abrasive grains are more likely to fall off and the grinding ratio is reduced, which is unsuitable as a grinding tool. On the other hand, when the compounding amount of the binder exceeds 30% by volume, the grindstone has reduced porosity and reduced sharpness, and the volume expansion during foaming of the grindstone (foaming phenomenon)
Is likely to occur, which is not preferable.

【0045】その他骨材、補助結合材等、通常立方晶窒
化ホウ素砥粒を用いた砥石を製造する際に使用される添
加剤等を使用できる。
In addition, additives such as aggregates, auxiliary binders and the like which are usually used in producing a grindstone using cubic boron nitride abrasive grains can be used.

【0046】本発明の立方晶窒化ホウ素砥粒は前述した
ビトリファイドボンド砥石の他にも、他の種類のボンド
を用いた砥石や、研磨布紙等に用いるのにも適してい
る。研磨布紙とは、布に接着剤を用いて砥粒を固定した
物であり、具体的には、綿又はこれに準ずる布に、にか
わ、ゼラチン、合成樹脂等を接着剤として用いて固定す
ることにより製造される。
The cubic boron nitride abrasive grains of the present invention are suitable for use in not only the above-mentioned vitrified bond grindstone but also grindstones using other kinds of bonds, polishing cloth paper and the like. Abrasive cloth paper is one in which abrasive particles are fixed to a cloth with an adhesive, and specifically, it is fixed to cotton or a cloth similar thereto by using glue, gelatin, synthetic resin or the like as an adhesive. It is manufactured by

【0047】[0047]

【実施例】以下、実施例により本発明を説明するが、本
発明はこの実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0048】(実施例1)hBN(昭和電工(株)製U
HP−1、平均粒径8〜10ミクロン、純度98%)1
00質量部に対してcBN合成触媒LiCaBN2を1
5質量部、種結晶として図1に示す平均粒径30ミクロ
ンで双晶結晶を多く含む立方晶窒化ホウ素砥粒を0.5
質量部添加し、試料を成形した。試料の成形密度は1.
92g/cm3であった。成形した試料を反応容器に充
填し高温高圧発生装置に装填して、5GPa、1500
℃で15分間保持し合成を行った。合成後、合成塊を装
置から取り出し、合成塊を5mm以下に解砕した後、水
酸化ナトリウムと少量の水を加え、300℃程度に加熱
し、六方晶窒化ホウ素を選択的に溶解させた。これを冷
却後、酸で洗浄、水洗後、ろ過することにより黄色透明
な立方晶窒化ホウ素砥粒を単離精製した。得られた立方
晶窒化ホウ素砥粒は、単結晶質が99%以上の立方晶窒
化ホウ素砥粒であった。
(Example 1) hBN (U manufactured by Showa Denko KK)
HP-1, average particle size 8-10 microns, purity 98%) 1
1 part of cBN synthesis catalyst LiCaBN 2 with respect to 00 parts by mass
0.5 parts by mass of cubic boron nitride abrasive grains having a mean grain size of 30 microns and a large amount of twin crystals shown in FIG. 1 as seed crystals.
A mass part was added and a sample was molded. The molding density of the sample is 1.
It was 92 g / cm 3 . The molded sample was filled in a reaction vessel and loaded in a high temperature and high pressure generator, and then 5 GPa, 1500
Synthesis was carried out by holding at 15 ° C for 15 minutes. After the synthesis, the synthetic lump was taken out of the apparatus, crushed into 5 mm or less, sodium hydroxide and a small amount of water were added, and the mixture was heated to about 300 ° C. to selectively dissolve hexagonal boron nitride. After cooling, this was washed with acid, washed with water, and filtered to isolate and purify yellow and transparent cubic boron nitride abrasive grains. The obtained cubic boron nitride abrasive grains were cubic boron nitride abrasive grains with a single crystal quality of 99% or more.

【0049】(実施例2)実施例1において、立方晶窒
化ホウ素の種結晶を添加せずに試料を作製し、他の条件
は実施例1と同様にして立方晶窒化ホウ素砥粒を合成し
単離精製した。なお、得られた立方晶窒化ホウ素砥粒
は、単結晶質が99%以上の立方晶窒化ホウ素砥粒であ
った。
(Example 2) A cubic boron nitride abrasive grain was prepared in the same manner as in Example 1 except that the seed crystal of cubic boron nitride was not added and the other conditions were the same as in Example 1. It was isolated and purified. The obtained cubic boron nitride abrasive grains were cubic boron nitride abrasive grains with a single crystal quality of 99% or more.

【0050】(実施例3)実施例1で得られた立方晶窒
化ホウ素砥粒をJIS−B4130に規定された粒度区
分に分級し、粒度区分100/120の砥粒について、
希塩酸で洗浄し、脱酸・乾燥後、カサ比重を測定して充
填率を求めた。
(Example 3) The cubic boron nitride abrasive grains obtained in Example 1 were classified into the grain size categories specified in JIS-B4130.
After washing with dilute hydrochloric acid, deoxidizing and drying, the bulk density was measured to determine the filling rate.

【0051】カサ比重の測定は、漏斗の出口をストッパ
ーでふさぎ、立方晶窒化ホウ素砥粒20.0±0.1g
を漏斗内に入れた。容積8.0±0.1mlのシリンダ
ーを漏斗出口の真下に配置し、漏斗出口からシリンダー
上面までの落下距離を95.0±1.0mmとした。ス
トッパーを引き抜き立方晶窒化ホウ素砥粒の全量をシリ
ンダー内に落下させた後、シリンダーの上面から盛り上
がった立方晶窒化ホウ素砥粒を、金属板を用いてすくい
取るように取り除いた。次にシリンダー内に残った立方
晶窒化ホウ素砥粒の質量を測定し、シリンダー容積で除
してカサ比重を求めた。粒度区分100/120の砥粒
の充填率を表2に示す。
The bulk specific gravity was measured by closing the outlet of the funnel with a stopper and adding 20.0 ± 0.1 g of cubic boron nitride abrasive grains.
Was placed in the funnel. A cylinder having a volume of 8.0 ± 0.1 ml was arranged immediately below the funnel outlet, and the dropping distance from the funnel outlet to the upper surface of the cylinder was 95.0 ± 1.0 mm. After pulling out the stopper and dropping the whole amount of the cubic boron nitride abrasive grains into the cylinder, the cubic boron nitride abrasive grains rising from the upper surface of the cylinder were removed by scooping using a metal plate. Next, the mass of the cubic boron nitride abrasive particles remaining in the cylinder was measured and divided by the cylinder volume to obtain the bulk specific gravity. Table 2 shows the filling rate of the abrasive grains in the grain size classification 100/120.

【0052】(実施例4)実施例2で得られた立方晶窒
化ホウ素砥粒をJIS−B4130に規定された粒度区
分に分級し、粒度区分100/120の砥粒について、
前述した形状分離器を用いてブロッキー砥粒を取り除い
た。
(Example 4) The cubic boron nitride abrasive grains obtained in Example 2 were classified into the grain size categories defined in JIS-B4130.
The blocky abrasive grains were removed using the shape separator described above.

【0053】形状分離器は、一辺の長さが約1メートル
の正三角形の振動板を用いたものを使用した。振動板
(各頂点をA、B、Cとする)は、辺ACを軸に頂点B
が上になる様に13°傾斜させ、更に頂点Aから頂点C
に向かい俯角になる様に7°傾斜させた。
As the shape separator, a shape separator using an equilateral triangular diaphragm having a side length of about 1 meter was used. The vibrating plate (each vertex is A, B, C) has a vertex B with the side AC as an axis.
Is tilted 13 ° so that
It was tilted by 7 ° so that it became a depression angle.

【0054】この形状分離器を用いて、立方晶窒化ホウ
素砥粒に含まれて行いたL/Tが1.5以下の砥粒の比
率を減少させた後、この立方晶窒化ホウ素砥粒を希塩酸
で洗浄し、脱酸・乾燥後、実施例3と同様の方法でカサ
比重を測定して充填率を求めた。粒度区分100/12
0の砥粒の充填率を表2に示す。
Using this shape separator, the ratio of the abrasive grains having an L / T of 1.5 or less contained in the cubic boron nitride abrasive grains was reduced, and then the cubic boron nitride abrasive grains were removed. After washing with dilute hydrochloric acid, deoxidizing and drying, the bulk specific gravity was measured by the same method as in Example 3 to obtain the filling rate. Grain size classification 100/12
Table 2 shows the filling rate of the abrasive grains of No. 0.

【0055】(実施例5)実施例2で得られた立方晶窒
化ホウ素砥粒をロール粉砕機で粉砕した。
(Example 5) The cubic boron nitride abrasive grains obtained in Example 2 were pulverized by a roll pulverizer.

【0056】ロール粉砕機には吉田製作所製のロールク
ラッシャーを用いた。ロールは直径140mm、長さ1
40mmの焼入れ鋼ロールで、ロールには50kgf
(490N)の加重を加え、100rpmの回転速度の
ロールに、立方晶窒化ホウ素砥粒を20g/分で供給し
粉砕を行った。
A roll crusher manufactured by Yoshida Seisakusho was used as the roll crusher. The roll has a diameter of 140 mm and a length of 1.
40mm hardened steel roll with 50kgf
(490 N) was added, and cubic boron nitride abrasive grains were supplied at 20 g / min to a roll having a rotation speed of 100 rpm for pulverization.

【0057】立方晶窒化ホウ素砥粒を粉砕後、JIS−
B4130に規定された粒度区分に分級し、粒度区分1
00/120の砥粒について、希塩酸で洗浄し、脱酸・
乾燥後、実施例3と同様の方法でカサ比重を測定して充
填率を求めた。粒度区分100/120の砥粒の充填率
を表2に示す。
After pulverizing the cubic boron nitride abrasive grains, JIS-
Classified into the particle size classification specified in B4130, and the particle size classification 1
Abrasive grains of 00/120 were washed with dilute hydrochloric acid and deoxidized.
After drying, the bulk density was determined by measuring the bulk specific gravity in the same manner as in Example 3. Table 2 shows the filling rate of the abrasive grains in the grain size classification 100/120.

【0058】(実施例6)実施例2で得られた立方晶窒
化ホウ素砥粒を実施例5と同様の条件で粉砕した。立方
晶窒化ホウ素砥粒を粉砕後、JIS−B4130に規定
された粒度区分に分級し、粒度区分100/120の砥
粒について、実施例4と同じ条件で形状分離器を用いて
L/Tが1.5以下の砥粒の比率を減少させ、希塩酸で
洗浄し、脱酸・乾燥後、実施例3と同様の方法でカサ比
重を測定して充填率を求めた。粒度区分100/120
の砥粒の充填率を表2に示す。
Example 6 The cubic boron nitride abrasive grains obtained in Example 2 were ground under the same conditions as in Example 5. After crushing the cubic boron nitride abrasive grains, the particles were classified into the particle size classifications defined in JIS-B4130, and the L / T values of the abrasive particles of the particle size classifications 100/120 were measured using a shape separator under the same conditions as in Example 4. After reducing the ratio of abrasive grains of 1.5 or less, washing with dilute hydrochloric acid, deoxidizing and drying, the bulk specific gravity was measured by the same method as in Example 3 to obtain the filling rate. Grain size classification 100/120
Table 2 shows the filling rate of the abrasive grains.

【0059】(比較例1)実施例2で得られた立方晶窒
化ホウ素砥粒をJIS−B4130に規定された粒度区
分に分級し、粒度区分100/120の砥粒について希
塩酸で洗浄し、脱酸・乾燥後、実施例3と同様の方法で
カサ比重を測定して充填率を求めた。粒度区分100/
120の砥粒の充填率を表2に示す。
(Comparative Example 1) The cubic boron nitride abrasive grains obtained in Example 2 were classified into the grain size categories specified in JIS-B4130, and the abrasive grains in the grain size category 100/120 were washed with dilute hydrochloric acid and removed. After acid and drying, the bulk specific gravity was measured by the same method as in Example 3 to obtain the filling rate. Grain size classification 100 /
The filling rate of 120 abrasive grains is shown in Table 2.

【0060】(実施例7、8、比較例2〜6)実施例3
及び比較例1の砥粒を用いて砥石セグメントを作製し
た。砥粒、結合剤としてのホウ珪酸系ガラス質結合材、
バインダー(フェノール系樹脂)の混合物を調製し、1
50℃で加圧成形後、1000℃(大気雰囲気)で焼成
した。使用したバインダーは砥石焼成時に燃焼し気孔と
なった。このようにして得られた砥石セグメントの使用
砥粒、配合比率、砥石焼成後の気孔率と砥粒率、セグメ
ントの抗折力を表3に示す。
(Examples 7 and 8, Comparative Examples 2 to 6) Example 3
And a grindstone segment was produced using the abrasive grains of Comparative Example 1. Abrasive grains, borosilicate glassy binder as a binder,
Prepare a mixture of binders (phenolic resins), 1
After pressure molding at 50 ° C, firing was performed at 1000 ° C (atmosphere atmosphere). The binder used burned during firing of the grindstone and became pores. Table 3 shows the abrasive grains used, the compounding ratio, the porosity and abrasive grain ratio after firing of the stone, and the transverse rupture strength of the segment of the thus obtained stone segment.

【0061】(実施例9、10、比較例7〜11)上記
実施例7、8、及び比較例2〜6で作製した砥石セグメ
ントをアルミ台金に接着して砥石化した後に、以下の研
削条件で研削試験を行った。研削結果を表4に示す。
(Examples 9, 10 and Comparative Examples 7 to 11) The grindstone segments prepared in Examples 7 and 8 and Comparative Examples 2 to 6 were adhered to an aluminum base metal to be grinded, and then the following grinding was performed. A grinding test was performed under the conditions. The grinding results are shown in Table 4.

【0062】 砥石 1A1形、150D×10U×3X×76.2H 研削盤 横軸平面研削盤(砥石軸モーター 3.7kW) 被削材 SKH−51(HRc=62〜64) 被削材面 200mm×100mm 研削方式 湿式平面トラバース研削方式 研削条件 砥石周速度 1800m/分 テーブル速度 15m/分 クロス送り 5mm/パス 切り込み25μm 研削液 JIS W2種 cBN専用液(50倍希釈)[0062]   Whetstone 1A1 type, 150D x 10U x 3X x 76.2H   Grinding machine Horizontal axis surface grinding machine (3.7 kW whetstone axis motor)   Work Material SKH-51 (HRc = 62-64)                   Work material surface 200 mm x 100 mm   Grinding method Wet surface traverse grinding method   Grinding condition Wheel speed 1800m / min                   Table speed 15m / min                   Cross feed 5mm / pass                   Notch 25 μm Grinding fluid JIS W2 class cBN dedicated fluid (50 times dilution)

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【表3】 [Table 3]

【0066】[0066]

【表4】 [Table 4]

【0067】[0067]

【発明の効果】本発明の立方晶窒化ホウ素砥粒は、従来
の立方晶窒化ホウ素砥粒より充填率が低く、砥粒率を下
げても砥粒間のブリッジが維持できる特性を有する。そ
の為、本発明の立方晶窒化ホウ素砥粒を用いた砥石は、
気孔率を高くしても、高い砥石硬度、高い抗折力、高い
砥粒保持力が得られた。更に、本発明の立方晶窒化ホウ
素砥粒を用いることにより、砥石の研削比を低下させる
こと無く良好な切れ味を有する砥石が作製可能となっ
た。
The cubic boron nitride abrasive grains of the present invention have a filling rate lower than that of conventional cubic boron nitride abrasive grains, and have a characteristic that a bridge between the abrasive grains can be maintained even if the abrasive grain ratio is reduced. Therefore, a grindstone using the cubic boron nitride abrasive grains of the present invention,
High grindstone hardness, high transverse rupture strength, and high grain retention were obtained even with high porosity. Furthermore, by using the cubic boron nitride abrasive grains of the present invention, it becomes possible to manufacture a grindstone having good sharpness without lowering the grinding ratio of the grindstone.

【0068】特に本発明の立方晶窒化ホウ素砥粒はビト
リファイドボンド砥石に適しており、本発明の立方晶窒
化ホウ素砥粒を用いたビトリファイドボンド砥石は有気
孔砥石として優れた研削特性を有する。
In particular, the cubic boron nitride abrasive grain of the present invention is suitable for a vitrified bond grindstone, and the vitrified bond grindstone using the cubic boron nitride abrasive grain of the present invention has excellent grinding characteristics as a pored grindstone.

【0069】[0069]

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)立方晶窒化ホウ素の双晶結晶を示す。矢
印は優先的に成長が起こる方向を示す。 (B)立方晶窒化ホウ素の多重双晶結晶を示す。矢印は
優先的に成長が起こる方向を示す。
FIG. 1A shows twin crystals of cubic boron nitride. The arrow indicates the direction of preferential growth. (B) shows multiple twin crystals of cubic boron nitride. The arrow indicates the direction of preferential growth.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 21/06 C01B 21/06 N (72)発明者 大久保 卓也 長野県塩尻市大字宗賀1番地 昭和電工株 式会社塩尻生産・技術統括部内 (72)発明者 笠原 真 長野県塩尻市大字宗賀1番地 昭和電工株 式会社塩尻生産・技術統括部内 (72)発明者 飯塚 誠 長野県塩尻市大字宗賀1番地 昭和電工株 式会社塩尻生産・技術統括部内 Fターム(参考) 3C063 AA02 AB03 AB07 BA03 BB02 BC05 BG15 BH07 CC02 FF23 FF30 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C01B 21/06 C01B 21/06 N (72) Inventor Takuya Okubo 1-sect Suga, Shiojiri City, Nagano Showa Denko KK In-house Shiojiri Production and Technology Management Department (72) Inventor Makoto Kasahara No. 1 Soga, Shiojiri City, Nagano Prefecture Showa Denko Co. Electric Works Co., Ltd. Shiojiri Production / Technology Division F Term (Reference) 3C063 AA02 AB03 AB07 BA03 BB02 BC05 BG15 BH07 CC02 FF23 FF30

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】六方晶窒化ホウ素と立方晶窒化ホウ素の種
結晶とを含む混合物を、立方晶窒化ホウ素の熱力学的に
安定である圧力温度条件下に保持することによって、立
方晶窒化ホウ素砥粒を製造する方法において、立方晶窒
化ホウ素の種結晶が立方晶窒化ホウ素の双晶結晶を含む
ことを特徴とする立方晶窒化ホウ素砥粒の製造方法。
1. A cubic boron nitride abrasive by holding a mixture containing hexagonal boron nitride and cubic boron nitride seed crystals under pressure temperature conditions which are thermodynamically stable for cubic boron nitride. In the method for producing grains, a method for producing cubic boron nitride abrasive grains, wherein the seed crystal of cubic boron nitride includes twin crystals of cubic boron nitride.
【請求項2】請求項1に記載の立方晶窒化ホウ素砥粒の
製造方法により製造した立方晶窒化ホウ素砥粒を、粉砕
することを特徴とする立方晶窒化ホウ素砥粒の製造方
法。
2. A method for producing a cubic boron nitride abrasive grain, comprising pulverizing the cubic boron nitride abrasive grain produced by the method for producing a cubic boron nitride abrasive grain according to claim 1.
【請求項3】立方晶窒化ホウ素砥粒の粉砕にロール粉砕
機を用いることを特徴とする請求項2に記載の立方晶窒
化ホウ素砥粒の製造方法。
3. The method for producing cubic boron nitride abrasive grains according to claim 2, wherein a roll pulverizer is used for pulverizing the cubic boron nitride abrasive grains.
【請求項4】請求項1〜3の何れか1項に記載の方法に
より製造した立方晶窒化ホウ素砥粒から、立方晶窒化ホ
ウ素砥粒の3軸径の長径をL(μm)、厚みをT(μ
m)とした場合のL/Tが1.5以下の砥粒を取り除く
ことを特徴とする立方晶窒化ホウ素砥粒の製造方法。
4. From the cubic boron nitride abrasive grain produced by the method according to claim 1, the cubic boron nitride abrasive grain has a triaxial major axis of L (μm) and a thickness of T (μ
A method for producing cubic boron nitride abrasive grains, characterized in that the abrasive grains having L / T of 1.5 or less are removed.
【請求項5】請求項1〜4の何れか1項に記載の立方晶
窒化ホウ素砥粒の製造方法により製造した立方晶窒化ホ
ウ素砥粒。
5. A cubic boron nitride abrasive produced by the method for producing a cubic boron nitride abrasive according to any one of claims 1 to 4.
【請求項6】立方晶窒化ホウ素砥粒において、そのカサ
比重(単位:g/cm3)を、立方晶窒化ホウ素の真密
度(3.48g/cm3)で除して算出される立方晶窒
化ホウ素砥粒の充填率が、JIS−B4130に規定さ
れる粒度区分で、 40/50 の砥粒では、0.482〜0.282の範
囲内、 50/60 の砥粒では、0.480〜0.280の範
囲内、 60/80 の砥粒では、0.478〜0.278の範
囲内、 80/100の砥粒では、0.474〜0.274の範
囲内、100/120の砥粒では、0.469〜0.2
69の範囲内、120/140の砥粒では、0.464
〜0.264の範囲内、140/170の砥粒では、
0.459〜0.259の範囲内、170/200の砥
粒では、0.453〜0.253の範囲内、200/2
30の砥粒では、0.446〜0.246の範囲内、2
30/270の砥粒では、0.440〜0.240の範
囲内、270/325の砥粒では、0.433〜0.2
33の範囲内、325/400の砥粒では、0.426
〜0.226の範囲内であることを特徴とする立方晶窒
化ホウ素砥粒。
6. The cubic boron nitride abrasive grains, the bulk specific gravity (unit: g / cm 3) the cubic is calculated by dividing the true density of cubic boron nitride (3.48 g / cm 3) crystal The filling rate of boron nitride abrasive grains is a particle size classification defined in JIS-B4130. In the case of 40/50 abrasive grains, it is within the range of 0.482 to 0.282, and in the case of 50/60 abrasive grains, it is 0.480. Within the range of 0.280, within the range of 0.478 to 0.278 for the 60/80 abrasive grains, within the range of 0.474 to 0.274 for the 80/100 abrasive grains, within the range of 100/120. Abrasive grains 0.469-0.2
In the range of 69, 120/140 abrasive grains, 0.464
In the range of ~ 0.264, 140/170 abrasive grains,
In the range of 0.459 to 0.259, in the case of 170/200 abrasive grains, in the range of 0.453 to 0.253, 200/2
In the case of 30 abrasive grains, within the range of 0.446 to 0.246, 2
Within the range of 0.440 to 0.240 for the 30/270 abrasive grains, 0.433 to 0.2 for the 270/325 abrasive grains.
Within the range of 33, 0.426 with 325/400 abrasive grains
A cubic boron nitride abrasive grain characterized by being in the range of ˜0.226.
【請求項7】立方晶窒化ホウ素砥粒が実質的に単結晶質
であることを特徴とする請求項6に記載の立方晶窒化ホ
ウ素砥粒。
7. The cubic boron nitride abrasive grain according to claim 6, wherein the cubic boron nitride abrasive grain is substantially single crystalline.
【請求項8】請求項5〜7の何れか1項に記載の立方晶
窒化ホウ素砥粒と結合材とを用いて作製した砥石。
8. A grindstone produced using the cubic boron nitride abrasive grains according to claim 5 and a binder.
【請求項9】結合材としてビトリファイドボンドを用い
ることを特徴とする請求項8に記載の砥石。
9. The grindstone according to claim 8, wherein a vitrified bond is used as the bonding material.
【請求項10】砥石中のビトリファイドボンドの配合量
が、10〜30体積%の範囲内であることを特徴とする
請求項9に記載の砥石。
10. The grindstone according to claim 9, wherein the compounding amount of the vitrified bond in the grindstone is within a range of 10 to 30% by volume.
【請求項11】砥石内の砥粒率が、((立方晶窒化ホウ
素砥粒の充填率−0.1)×100)体積%〜((立方
晶窒化ホウ素砥粒の充填率+0.05)×100)体積
%の範囲内であることを特徴とする請求項8〜10の何
れか1項に記載の砥石。
11. An abrasive grain ratio in a grindstone is ((filling ratio of cubic boron nitride abrasive grains−0.1) × 100) volume% to ((filling ratio of cubic boron nitride abrasive grains + 0.05). It is in the range of x100) volume%, The grindstone in any one of Claims 8-10 characterized by the above-mentioned.
【請求項12】砥石内の砥粒率が、((立方晶窒化ホウ
素砥粒の充填率−0.05)×100)体積%〜((立
方晶窒化ホウ素砥粒の充填率+0.05)×100)体
積%の範囲内であることを特徴とする請求項8〜10の
何れか1項に記載の砥石。
12. An abrasive grain ratio in a grindstone is ((filling ratio of cubic boron nitride abrasive grains−0.05) × 100) volume% to ((filling ratio of cubic boron nitride abrasive grains + 0.05). It is in the range of x100) volume%, The grindstone in any one of Claims 8-10 characterized by the above-mentioned.
【請求項13】請求項5〜7の何れか1項に記載の立方
晶窒化ホウ素砥粒を、綿布又はこれに準ずる布に接着剤
で固定して製造した研磨布紙。
13. A polishing cloth paper produced by fixing the cubic boron nitride abrasive grains according to any one of claims 5 to 7 to a cotton cloth or a cloth equivalent thereto with an adhesive.
JP2002145525A 2001-05-21 2002-05-21 Method for producing cubic boron nitride abrasive grain Pending JP2003064350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145525A JP2003064350A (en) 2001-05-21 2002-05-21 Method for producing cubic boron nitride abrasive grain

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001150457 2001-05-21
JP2001-150457 2001-05-21
JP2002145525A JP2003064350A (en) 2001-05-21 2002-05-21 Method for producing cubic boron nitride abrasive grain

Publications (1)

Publication Number Publication Date
JP2003064350A true JP2003064350A (en) 2003-03-05

Family

ID=26615391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145525A Pending JP2003064350A (en) 2001-05-21 2002-05-21 Method for producing cubic boron nitride abrasive grain

Country Status (1)

Country Link
JP (1) JP2003064350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251222A (en) * 2002-02-28 2003-09-09 Showa Denko Kk Method of manufacturing cubic boron nitride
JP2015110266A (en) * 2008-09-16 2015-06-18 ダイヤモンド イノベイションズ インコーポレーテッド Grind grain having unique configuration
JP2015529611A (en) * 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
US20160237558A1 (en) * 2015-02-12 2016-08-18 Samsung Electronics Co., Ltd. Seamless hexagonal boron nitride atomic monolayer thin film and method of fabricating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251222A (en) * 2002-02-28 2003-09-09 Showa Denko Kk Method of manufacturing cubic boron nitride
JP2015110266A (en) * 2008-09-16 2015-06-18 ダイヤモンド イノベイションズ インコーポレーテッド Grind grain having unique configuration
JP2015529611A (en) * 2012-08-03 2015-10-08 燕山大学 Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
US9422161B2 (en) 2012-08-03 2016-08-23 Yanshan University Ultrahard nanotwinned boron nitride bulk materials and synthetic method thereof
US20160237558A1 (en) * 2015-02-12 2016-08-18 Samsung Electronics Co., Ltd. Seamless hexagonal boron nitride atomic monolayer thin film and method of fabricating the same
US9963346B2 (en) * 2015-02-12 2018-05-08 Samsung Electronics Co., Ltd. Seamless hexagonal boron nitride atomic monolayer thin film and method of fabricating the same

Similar Documents

Publication Publication Date Title
KR100567289B1 (en) Method for Producing Cubic Boron Nitride Abrasive Grains
JP5669764B2 (en) Abrasive article comprising fused zirconia alumina abrasive grains having improved shape
JP5518871B2 (en) Abrasive grains with unique morphology
US9884982B2 (en) Abrasive grain based on melted spherical corundum
JPH04336971A (en) Binder grinding body abrasive grain, and its manufacture
JP4684599B2 (en) Method for producing cubic boron nitride
CN102177000A (en) Abrasive grain agglomerates, process for the production thereof and the use thereof for producing abrasives
CN102295285B (en) A kind of recovery method of silicon chip dicing waste mortar
US4373934A (en) Metal bonded diamond aggregate abrasive
ZA200505431B (en) Cubic boron nitride abrasive grains and method for producing the same, and grindstone and polishing cloth or paper using the same
EP3475378B1 (en) Electrofused alumina grains, production method for electrofused alumina grains, grinding stone, and coated abrasive
KR100525962B1 (en) Method for producing cubic boron nitride and product obtained through the method
JP2003064350A (en) Method for producing cubic boron nitride abrasive grain
EP1615746B1 (en) Multi-carbide material manufacture and use
KR100736291B1 (en) Cubic Boron Nitride, Catalyst for Synthesizing Cubic Boron Nitride, and Process for Producing Cubic Boron Nitride
JP2012533172A (en) Abrasive suspension
US20050081456A1 (en) Cubic boron nitride abrasive grain, production method therefor, and grinding wheel and coated abrasive using the same
KR100903910B1 (en) Cubic Boron Nitride and Grinding Stone Using the Same
JPH0594B2 (en)
CN1317230C (en) Method for producing cubic boron nitride abrasive grains
JPH09169971A (en) Cubic boron nitride abrasive grain and its production
JPH022827B2 (en)
WO2013003816A2 (en) A method of polishing a workpiece with an abrasive segment comprising abrasive aggregates having silicon carbide particles
Fritz Klocke et al. Structure and Composition of Grinding Sheels
JPS6054909B2 (en) Manufacturing method of diamond sintered abrasive grains for resin bonding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109