JP2003062406A - Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process - Google Patents

Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process

Info

Publication number
JP2003062406A
JP2003062406A JP2001257507A JP2001257507A JP2003062406A JP 2003062406 A JP2003062406 A JP 2003062406A JP 2001257507 A JP2001257507 A JP 2001257507A JP 2001257507 A JP2001257507 A JP 2001257507A JP 2003062406 A JP2003062406 A JP 2003062406A
Authority
JP
Japan
Prior art keywords
sludge
pond
sedimentation
floc
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257507A
Other languages
Japanese (ja)
Inventor
Kohei Inoue
公平 井上
Koji Yoshida
孝次 吉田
Tokio Oto
時喜雄 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001257507A priority Critical patent/JP2003062406A/en
Publication of JP2003062406A publication Critical patent/JP2003062406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controlling method capable of efficiently removing a sludge in a precipitation pond and selectively discharging a high concentration sludge without reducing a function of the sedimentation pond while solving problems that in a sludge- discharge control in the sedimentation pond, a grasp of an amount of the deposited sludge in the sedimentation pond is difficult, an appropriate operation timing and operating period of a sludge-discharge equipment can not be determined, there is a bad influence to finally treated water at the time of fluctuation of an amount of raw water and a turbidity because the sludge-discharge equipment is intermittently operated for a constant time, a deposited position and a deposited amount of the sludge cannot be grasped and a low concentration of sludge is possibly discharged. SOLUTION: An average grain diameter and an average number concentration of floc in flowing-out water in a floc-formation pond are continuously measured and when a flowing-out floc volume integration value per a calculated unit time exceeds a removal permission deposition value in the sedimentation pond, a command signal of an operation starting timing and an operation time is transmitted to a sludge- discharge means controlling device and the sludge deposited in the sedimentation pond is discharged by operating a sludge-discharge mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浄水プロセスの凝
集沈殿処理過程における沈殿池のスラッジ排泥制御に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to sludge mud control in a sedimentation tank during a coagulation sedimentation treatment process in a water purification process.

【0002】[0002]

【従来の技術】図4は、浄水場の凝集沈殿処理過程の一
例を示した概念図である。図4において、凝集沈殿処理
は、原水31に凝集剤32を添加して微小フロックを生
成させる急速混和池33と、生成した微小フロックを成
長させるフロック形成池34と、成長フロックを重力沈
降作用により沈澱除去する沈殿池35と、沈澱池35で
未除去のフロックを除去するろ過池36とにより行なわ
れる。
2. Description of the Related Art FIG. 4 is a conceptual diagram showing an example of a coagulation sedimentation treatment process in a water purification plant. In FIG. 4, the coagulation-sedimentation treatment is performed by adding a coagulant 32 to the raw water 31 to generate a fine floc, a flocculation pond 34 for growing the generated microflocs, and a growth floc by gravity sedimentation. It is performed by a settling basin 35 for removing sedimentation and a filter basin 36 for removing unremoved flocs in the settling basin 35.

【0003】この中で沈殿池は、最終処理水質を決定す
る重要な役割を担っており、その機能として沈殿、緩
衝、排泥の三つの機能がある。沈殿および緩衝の機能に
ついては、沈殿池構造と沈澱池前段(フロック形成池)
までの処理法によりほぼ決定される。これに対し、排泥
の機能、つまり原水水質および運転条件の履歴と沈殿池
構造を考慮した適切な池底スラッジ排出が、後段の処理
性に直接影響を及ぼす。ところが、現在、沈殿池のスラ
ッジ状態を計測するための実用的な手段が殆どなく、人
間の勘と経験により間欠的に沈殿池既設のスラッジかき
寄せ機操作範囲を限定せずに稼動させている。その上、
スラッジ排出口からのスラッジ排出は、排出口設置の開
閉弁を一定の時間(例えば、タイマー設定などで)開け
ることで行なっている。
Of these, the settling basin plays an important role in determining the quality of the final treated water, and has three functions of settling, buffering and sludge. Regarding the functions of sedimentation and buffer, the sedimentation tank structure and the first stage of the sedimentation tank (flock formation tank)
It is almost determined by the processing method up to. On the other hand, the function of the sludge, that is, the appropriate bottom bottom sludge discharge considering the history of raw water quality and the history of operating conditions and the structure of the sedimentation basin directly affects the processability of the latter stage. However, at present, there are few practical means for measuring the sludge condition of the sedimentation tank, and the sludge scraper of the existing sedimentation tank is intermittently operated without limitation by human intuition and experience. Moreover,
The sludge discharge from the sludge discharge port is performed by opening an on-off valve installed at the discharge port for a certain period of time (for example, by setting a timer).

【0004】[0004]

【発明が解決しようとする課題】一般に浄水場では、毎
日一定量の浄水を生産している。従って、日々変化する
原水の濁度によりスラッジ発生量が変化することは明ら
かであり、特に、雨季や融雪期においては高濁度の原水
を処理する頻度が増すために、必然的に通常時より多く
のスラッジが発生する。このようなスラッジ発生量の変
動を、定量化できない現状では、高濃度スラッジを短時
間で排泥するような理想的な排泥操作は困難に近い。従
って、前記の従来技術には以下のような問題がある。 (1)沈殿池に沈降したスラッジ量を把握することが困
難なため、適切な排泥設備の操作時期や操作時間を把握
できない。 (2)排泥設備は間欠的で一定時間の運転であるため、
原水量や原水濁度の変動時には、最終処理水への悪影響
を及ぼすことがある。 (3)スラッジの沈積位置や沈積量を把握できないた
め、フロック濃度の比較的低いスラッジを排泥する可能
性がある。
[Problems to be Solved by the Invention] Generally, a water purification plant produces a certain amount of purified water every day. Therefore, it is clear that the amount of sludge generated changes depending on the turbidity of the raw water, which changes daily.In particular, during the rainy season and the snowmelt season, the frequency of treatment of high-turbidity raw water increases, so that it is inevitably higher than normal. A lot of sludge is generated. Under the present circumstances where such fluctuations in the amount of sludge generation cannot be quantified, it is almost difficult to perform an ideal sludge operation in which high concentration sludge is discharged in a short time. Therefore, the above-mentioned prior art has the following problems. (1) Since it is difficult to grasp the amount of sludge settled in the sedimentation basin, it is impossible to grasp the proper operation timing and operation time of the sludge discharge equipment. (2) Since the sludge discharge equipment is operated intermittently for a certain period of time,
Fluctuations in raw water volume and turbidity may adversely affect the final treated water. (3) Since the sludge sedimentation position and the amount of sedimentation cannot be grasped, sludge with a relatively low floc concentration may be discharged.

【0005】本発明は、上述の問題点を解決するために
なされたものであり、その目的は、沈澱池機能を低下さ
せることなく、沈澱池池底のスラッジを適宜効率良く除
去し、また、比較的濃度の高いスラッジを選択的に排泥
するための排泥制御方法を提供することにある。
The present invention has been made to solve the above problems, and its purpose is to remove sludge from the bottom of a sedimentation pond efficiently and efficiently without lowering the function of the sedimentation pond. An object of the present invention is to provide a sludge control method for selectively sludge sludge having a relatively high concentration.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の排泥制御方法は、次の2つの方法を用い
る。第一の方法は、フロック形成池の流出水中のフロッ
クの平均粒径Dn と平均個数濃度Nn とを同時に計測可
能な手段により連続計測し、このフロック平均粒径Dn
と平均個数濃度Nn とからフロック形成池の流出水の平
均フロック体積率を計算し、この平均フロック体積率に
単位時間あたりのフロック形成池の流出水量QOUT を乗
じて求まる単位時間あたりに流出するフロック体積の積
算値VSUM が、沈殿池での除去機能を妨げないよう予め
設定された許容堆積値VUPを越えたとき、沈殿池に設置
されている排泥手段制御装置に操作開始時期や操作時間
の命令信号を送信し、前記沈殿池に堆積するスラッジを
排泥機構を操作して排出する方法である。
In order to solve the above problems, the sludge control method of the present invention uses the following two methods. The first method, by simultaneously measurable means the average particle diameter D n of flocs in the effluent of the flocculation basin average number and concentration N n consecutive measurement, the flock average particle size D n
And the average number concentration N n , the average floc volume ratio of the outflow water of the floc formation pond is calculated, and the average floc volume ratio is multiplied by the outflow water amount Q OUT of the floc formation pond per unit time to flow out per unit time. When the integrated value V SUM of the floc volume to be exceeded exceeds the allowable accumulation value V UP preset so as not to interfere with the removal function in the sedimentation basin, the operation start time is set to the sludge removal means control device installed in the sedimentation basin. And a command signal of operation time are transmitted, and the sludge accumulated in the sedimentation tank is discharged by operating the sludge discharge mechanism.

【0007】第二の方法は、フロック形成池の流出水中
のフロックの平均粒径Dn と平均個数濃度Nn および平
均粒径より計算されるフロックの平均沈降速度とを同時
に計測可能な手段により連続計測し、この平均沈降速度
と単位時間あたりのフロック形成池の流出水量および沈
殿池の大きさから、フロックが沈殿池底面へ沈降到達す
る位置および堆積量を予測し、堆積量の多い位置近傍の
排泥機構を選択的に操作し、沈殿池のスラッジを排出す
る方法である。
The second method is a means capable of simultaneously measuring the average particle size D n of the flocs in the outflow water of the floc formation pond, the average number concentration N n, and the average settling velocity of the flocs calculated from the average particle size. Continuous measurement is performed to predict the position where the flocs reach the bottom of the sedimentation basin and the amount of sedimentation based on the average settling velocity, the amount of outflow water from the floc formation basin per unit time, and the size of the sedimentation basin. This is a method of selectively operating the sludge removal mechanism of the above to discharge sludge from the sedimentation tank.

【0008】上記のように、本発明の排泥制御方法で
は、フロック形成池流出水中のフロックの粒径や単位体
積あたりの個数、平均沈降速度、粒度分布をもとに、沈
殿池で沈降するフロックの積算量や沈殿分布を算出、推
定し、沈殿池の大きさや処理水流量などから予め算出可
能なスラッジ最大許容堆積量を越えないように、沈殿池
既設の排泥機構を操作する適切な時期と時間を決定でき
る。さらに、排泥機構の運転、操作範囲を限定し、沈殿
池に堆積したスラッジを効率よく排出し、その上、スラ
ッジと同時に排出される沈殿処理水を最小限に留めるこ
とができる。
As described above, in the sludge control method of the present invention, sedimentation is performed in the sedimentation basin based on the particle size of flocs in the effluent of the flocculation basin, the number of flocs per unit volume, the average sedimentation velocity, and the particle size distribution. It is necessary to calculate and estimate the accumulated amount of flocs and sedimentation distribution, and operate the existing sludge removal mechanism of the sedimentation basin so as not to exceed the maximum allowable amount of sludge that can be calculated in advance from the size of the sedimentation basin and the flow rate of treated water. You can decide when and when. Furthermore, it is possible to limit the operation and operation range of the sludge discharge mechanism, to efficiently discharge the sludge accumulated in the sedimentation tank, and further to minimize the precipitation treated water discharged simultaneously with the sludge.

【0009】[0009]

【発明の実施の形態】以下、本発明の方法を実施例に基
づき説明する。図1は、本発明の方法が適用される浄水
処理プロセスの急速混和池1、フロック形成池2、沈殿
池3、排泥機構4、排泥機構制御装置5を示すプロセス
断面概念図である。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention will be described below based on Examples. FIG. 1 is a process cross-sectional conceptual diagram showing a rapid mixing basin 1, a floc formation basin 2, a sedimentation basin 3, a sludge discharging mechanism 4, and a sludge discharging mechanism control device 5 in a water purification process to which the method of the present invention is applied.

【0010】はじめに、浄水処理過程において形成され
るフロックの沈降速度Wは、(1)式のストークスの式
により求められる。 W=(1/18)・g・{(ρs −ρ)/μ}・D2 ────(1) ここで、gは重力の加速度、ρs はフロック密度、ρは
水の密度、μは水の粘性係数、Dはフロックの直径であ
る。
First, the sedimentation velocity W of flocs formed in the water purification process is determined by the Stokes equation (1). W = (1/18) · g · {(ρ s −ρ) / μ} · D 2 ───── (1) where g is the acceleration of gravity, ρ s is the floc density, and ρ is the water density. , Μ is the viscosity coefficient of water, and D is the diameter of the floc.

【0011】ただし、浄水処理では、例外なくフロック
の間隙に水が含まれるため(1)式中の密度ρs −ρは
一般に(2)式で近似できるので(1)式は(3)式で
表せる。 ρs −ρ=1/D1.5 ──────────────────(2) W=(1/18)・g・D0.5 /μ────────────(3) 一方、図1中の沈殿池3において、全て沈殿除去される
最小粒径(沈降速度の遅い)フロックの沈殿池流入初期
の沈降速度W0 (表面負荷率)は、(4)式で表され
る。
However, in water purification treatment, since water is contained in the gaps of the flocs without exception, the density ρ s −ρ in the equation (1) can be generally approximated by the equation (2), and therefore the equation (1) is given by the equation (3). Can be expressed as ρ s −ρ = 1 / D 1.5 ────────────────── (2) W = (1/18) ・ g ・ D 0.5 / μ─────── ─────── (3) On the other hand, in the sedimentation tank 3 in Fig. 1, the sedimentation speed W 0 (surface load factor) of the minimum particle size (slow sedimentation speed) of flocs completely removed from the sedimentation tank Is expressed by equation (4).

【0012】 W0 =Qin/A─────────────────────(4) ここで、Aは沈殿池3の底面積、Qinは沈殿池流入水量
である。このとき、沈殿池3の沈降速度W0 より大きな
沈降速度W≧W0 をもつフロックの除去率は100%と
なるから、(3)と(4)式から(5)式のように図1
の沈殿池3で完全に沈殿除去可能な沈殿池流入初期の最
小フロック粒径Dmin が求められる。
W 0 = Q in / A ────────────────────── (4) Here, A is the bottom area of the sedimentation basin 3, and Q in is sedimentation. It is the amount of water flowing into the pond. At this time, the removal rate of flocs having a sedimentation velocity W ≧ W 0 that is greater than the sedimentation velocity W 0 of the sedimentation basin 3 is 100%, and therefore, as shown in equation (5) from equations (3) and (4),
The minimum floc particle diameter D min at the initial stage of inflow into the settling basin capable of completely removing the precipitate in the settling basin 3 is obtained.

【0013】 Dmin ={(Qin/A)・(18μ/g)}2 ───────(5) そこで、第一の方法では、図1において、フロック形成
池流出水中に直接浸漬設置したセンサ6により、フロッ
ク形成池流出のフロックの平均粒径Dn 、平均個数濃度
n を連続的に同時に計測し、センサ計測値7(平均粒
径Dn と平均個数濃度Nn )は、その都度、計算機8へ
入力される。また、水温計9での測定値θn も同様のタ
イミングで計算機8へ入力される。このとき、計算機8
において、混和池前段にある流量計10で計測される単
位時間あたりの原水取水流量QRと、フロック形成池流
出水量QOUT 及び沈殿池流入水量Qinが全て等しいとし
て、(5)式より求まるDmin に対し、Dn ≧Dmin
満たすフロック平均粒径D n のみを判別選択し、図2に
示した処理手順により、沈殿池に堆積する総フロック体
積の積算値VSUM を演算する。
[0013]       Dmin= {(Qin/ A) ・ (18μ / g)}2─────── (5) Therefore, in the first method, in FIG.
The sensor 6 installed directly in the pond runoff water
Average particle size D of flocs discharged from Ku formation pondn, Average number concentration
NnContinuously measured at the same time, sensor measurement value 7 (average grain
Diameter DnAnd the average number concentration Nn) To computer 8 each time
Is entered. Also, the measured value θ with the water temperature gauge 9nIs similar to
It is input to the computer 8 by iming. At this time, computer 8
, The unit measured by the flowmeter 10 in front of the mixing basin
Raw water intake per unit time QRAnd the floc formation pond style
Water outflow QOUTAnd settling basin inflow QinAre all equal
D obtained from equation (5)minOn the other hand, Dn≧ DminTo
Flock average particle size D nSelect and select only
Total flocs deposited in the sedimentation basin by the treatment procedure shown.
Integrated value V of productSUMIs calculated.

【0014】この図2に示した各計算は下記の(6)〜
(8)式を用いて行う。 Vn =π・Dn 3 ・Nn /6 ─────────────(6) VUNIT=π・Dn 3 ・Nn ・QOUT /6──────────(7) VSUM =∫VUNIT────────────────────(8) T1 =VSUM /Q3 ───────────────────(9) ここで、Vn はフロック体積、VUNITは沈殿池3に堆積
する単位時間あたりのフロック体積、VSUM は沈殿池3
に堆積する総フロック体積の積算値、T1 はスラッジ排
出時間、Q3 は単位時間あたりのスラッジ排出流量であ
る。
Each of the calculations shown in FIG.
This is performed using the equation (8). V n = π ・ D n 3・ N n / 6 ───────────── (6) V UNIT = π ・ D n 3・ N n・ Q OUT / 6 ───── ───── (7) V SUM = ∫V UNIT ───────────────────── (8) T 1 = V SUM / Q 3 ───── ─────────────── (9) where V n is the floc volume, V UNIT is the floc volume per unit time deposited in the sedimentation tank 3, and V SUM is the sedimentation tank 3
The integrated value of the total flock volume accumulated on the surface, T 1 is the sludge discharge time, and Q 3 is the sludge discharge flow rate per unit time.

【0015】さらに、計算機8では、逐次演算されるV
SUM が、オペレーターが予め設定した値VUP(ただし、
予め設定した値VUP≦沈殿池におけるスラッジ最大許容
堆積量VMAX )を越えたとき、スラッジ排出時間T1
決定し、沈殿池既設のスラッジ排出機構制御装置5に対
し、操作開始および動作時間の命令信号11を送信し、
これにより沈殿池3に堆積したスラッジ13を効率的に
排出する。また、排出終了後は、計算機8に格納された
総フロック体積の積算値VSUM はリセットされ再度0か
らカウントを開始する。
Further, in the computer 8, V which is sequentially calculated
SUM is the value V UP preset by the operator (however,
When the preset value V UP ≤ maximum sludge deposit allowable amount V MAX in the sedimentation basin is exceeded, the sludge discharge time T 1 is determined, and operation start and operation time are set for the sludge discharge mechanism controller 5 already installed in the sedimentation basin. Command signal 11 of
As a result, the sludge 13 accumulated in the sedimentation tank 3 is efficiently discharged. Further, after the discharging is completed, the integrated value V SUM of the total flock volume stored in the computer 8 is reset and the counting is started again from 0.

【0016】なお、前述した用途のセンサとしては、例
えば特願平2−43064号「液体中に含まれる複数成
分の凝集過程を検出する方法とその装置」に記載のセン
サなどが適用できる。次に、第二の方法について、第一
の方法と同様に図1、2を用いて説明する。第二の方法
では、第一の方法と同様にして、計算機8により沈殿池
3に堆積するフロックを判別選択して、図2に示す処理
手順により逐次演算した沈殿池堆積の総フロック体積積
算値VSUM が、オペレーターが予め設定した値VUPを越
えたとき、スラッジ排出時間を決定するが、(5)式よ
り求まるDmin に対しDn ≧D min を満たすフロック平
均粒径Dn のみを判別選択した後、フロック堆積量が多
い位置の限定を行うために以下の処理を行う。この処理
は、フロック平均粒径D n と同時計測した平均個数濃度
n および(3)式により求まる沈降速度Wn とにより
導かれる(10)式を用いて、沈殿池3におけるフロッ
クの推定到達距離(沈殿池での底面位置)Xn を計算す
る。図3には矩形沈殿池の奥行(水処理進行)方向の沈
殿池断面X−X' に対するフロック体積積算分布の状態
を示す模式図を示してあるが、実際の矩形沈殿池の寸法
に応じて同様の図を逐次計算して作成する。なお、前記
分布の区分は沈殿池の排泥機構の配置に従い予め決定し
ておく。
An example of the sensor for the above-mentioned application is
For example, Japanese Patent Application No. 2-43064 "A plurality of compounds contained in a liquid
And apparatus for detecting the agglomeration process of
It can be applied. Next, regarding the second method, the first
The method will be described with reference to FIGS. Second way
Then, in the same way as the first method, the settling tank is calculated by the computer 8.
The process shown in FIG.
Total Flock Volume Product of Sedimentation Tank Sediment Calculated Sequentially by Procedure
Calculated value VSUMHowever, the value V preset by the operatorUPOver
The sludge discharge time is determined by the formula (5).
D foundminAgainst Dn≧ D minMeet Flock Taira
Average particle size DnAfter selecting and selecting only
The following process is performed to limit the number of positions. This process
Is the average particle size of floc D nAverage number concentration measured simultaneously with
NnAnd the sedimentation velocity W obtained by the equation (3)nAnd by
Using the derived equation (10), the floc in the sedimentation tank 3 is
Estimated distance of Ku (bottom position in sedimentation tank) XnCalculate
It Figure 3 shows the sedimentation in the depth (water treatment progress) direction of the rectangular sedimentation tank.
Flock volume cumulative distribution for Tonoike cross section XX '
It shows a schematic diagram showing the actual dimensions of the rectangular sedimentation tank.
A similar diagram is sequentially calculated and created according to. In addition, the above
The distribution category is determined in advance according to the arrangement of the sludge removal mechanism in the sedimentation tank.
Keep it.

【0017】 Xn =(Qin/B)・(18・μ)/(g・Dn 0.5 )───(10) ここで、Bは沈殿池3の横幅である。このようにして、
第二の方法では、計算機8で決定したスラッジ排出時期
において、沈殿池に堆積したフロック体積積算値VSUM
に占める割合が予め設定した値を越えたフロック体積積
算分布である位置XV MAX 近傍のスラッジ排出口弁12
を計算機8において選択、決定して、沈殿池3に既設の
スラッジ排出機構制御装置5に対し、スラッジ排出口弁
12の操作開始および動作時間T2 の命令信号14を送
信し、堆積量の比較的多い位置からスラッジ13を効率
的に排出する。ここで、前記動作時間はT2 は、沈殿池
3に堆積した総フロック体積積算値VSU M に対しての前
記位置XV MAX の体積積算値が占める割合と前記T1
乗じた値とする。また、排出終了後は、沈殿池3に堆積
したフロック体積積算値VSUM は、前記VSUM から排出
位置XV MAX の体積積算値を減じた値を初期値として再
び積算を開始する。なお、ここでは、スラッジ排出機構
の一つである排出口弁の操作を例にしたが、スラッジか
き寄せ機などの操作についても堆積位置による限定操作
が可能である。
[0017]       Xn= (Qin/ B) ・ (18 ・ μ) / (g ・ Dn 0.5) ─── (10) Here, B is the width of the sedimentation tank 3. In this way
In the second method, the sludge discharge timing determined by computer 8
At the sedimentation basin, the accumulated volume of flocs VSUM
Volume product of which the ratio of the flock exceeds the preset value
Position X which is the mathematical distributionV MAXSludge outlet valve 12 in the vicinity
Is selected and determined on the computer 8, and the existing
Sludge discharge valve for sludge discharge mechanism controller 5
12 operation start and operation time T2Command signal 14 of
Believe that the sludge 13 is efficient from the position where the amount of sediment is relatively large.
To be discharged. Here, the operating time is T2The settling pond
Total floc volume accumulated value V accumulated in 3SU MAgainst
Position XV MAXOf the volume integrated value of the1To
Multiply the value. Also, after the discharge is completed, it is deposited in the sedimentation tank 3.
Flock volume integrated value VSUMIs the VSUMDischarged from
Position XV MAXThe value obtained by subtracting the volume integrated value of
And start counting. In addition, here, sludge discharge mechanism
The operation of the outlet valve, which is one of the
Regarding operations such as gathering machines, limited operations depending on the deposition position
Is possible.

【0018】[0018]

【発明の効果】以上述べたように、沈殿池のスラッジ状
態を計測するための実用的な手段が殆どないために、効
率的にスラッジを排出するための排泥制御方法は存在し
なかったが、本発明によれば、実施例に述べたように、
フロック形成池流出水中のフロックの粒径や単位体積あ
たりの個数を連続計測する手段と平均沈降速度を演算す
る手段を用い、沈殿池で沈降する総フロック体積の積算
量や水の流れ方向のスラッジ体積分布の積算値を算出
し、沈殿池の大きさや処理水流量などから予め算出可能
なスラッジ最大許容堆積量を越えないようにして、沈殿
池既設の排泥機構を操作する最適な時期や時間を決定で
きる。また、排泥機構の運転操作範囲を、比較的スラッ
ジ堆積量の多い位置近傍に限定することができ、沈殿池
に堆積したスラッジを高濃度で排出し、スラッジと同時
に排出される処理水を最小限に留めることができる。
As described above, since there are few practical means for measuring the sludge condition of the sedimentation tank, there is no sludge control method for efficiently discharging sludge. According to the present invention, as described in the embodiment,
Flock formation pond The integrated amount of total floc volume settled in the settling basin and the sludge in the water flow direction are measured using a means for continuously measuring the particle size and number of flocs per unit volume in the outflow water and a means for calculating the average settling velocity. The optimum time and time to operate the existing sludge removal mechanism by calculating the integrated value of the volume distribution so as not to exceed the maximum allowable sludge accumulation amount that can be calculated in advance from the size of the sedimentation tank and the flow rate of treated water. Can be determined. Moreover, the operation range of the sludge discharge mechanism can be limited to the vicinity of the position where the sludge accumulation amount is relatively large, so that the sludge accumulated in the sedimentation tank can be discharged at a high concentration and the treated water discharged at the same time as the sludge can be minimized. It can be limited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法が適用される浄水処理プロセスの
プロセス断面概念図
FIG. 1 is a process cross-sectional conceptual diagram of a water purification process to which the method of the present invention is applied.

【図2】沈殿池に堆積するフロック体積の積算値演算フ
ロー図
[Fig. 2] Flow chart for calculating the integrated value of the floc volume deposited in the sedimentation tank

【図3】水の流れ方向に平行な図1に示す沈殿池断面X
−X' のフロック体積積算分布の状態を示す模式図
FIG. 3 is a cross section X of the sedimentation basin shown in FIG. 1, which is parallel to the flow direction of water.
-X 'is a schematic diagram showing the state of the flock volume cumulative distribution

【図4】浄水場の凝集・沈殿・ろ過処理過程を示す概念
[Figure 4] Conceptual diagram showing the coagulation / precipitation / filtration process of the water purification plant

【符号の説明】[Explanation of symbols]

1: 急速混和池 2: フロック形成池 3: 沈殿池 4: 排泥機構 5: 排泥機構制御装置 6: センサ 7: センサ計測値 8: 計算機 9: 水温計 10: 流量計 11: 命令信号 12: スラッジ排出口弁 13: スラッジ 14: 命令信号 31: 原水 32: 凝集剤 33: 急速混和池 34: フロック形成池 35: 沈殿池 36: ろ過池 1: Rapid mixing pond 2: Flock formation pond 3: Settling tank 4: Sludge removal mechanism 5: Sludge removal mechanism control device 6: Sensor 7: Sensor measurement value 8: Calculator 9: Water thermometer 10: Flow meter 11: Command signal 12: Sludge outlet valve 13: Sludge 14: Command signal 31: Raw water 32: Flocculant 33: Rapid mixing pond 34: Flock formation pond 35: Settling tank 36: Filter pond

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大戸 時喜雄 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tokio Oto             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】混和池、フロック形成池、沈殿池、および
ろ過池からなる浄水システムの凝集沈殿処理過程におい
て、前記フロック形成池の流出水中の凝集体(以下、フ
ロックと記す)の平均粒径と平均個数濃度とを同時に計
測可能な手段により連続計測し、このフロック平均粒径
と平均個数濃度とからフロック形成池の流出水の平均フ
ロック体積率を計算し、この平均フロック体積率に単位
時間あたりのフロック形成池の流出水量を乗じて求まる
単位時間あたりに流出するフロック体積の積算値が、沈
殿池での除去機能を妨げないよう予め設定された許容堆
積値を越えたとき、沈殿池に設置されている排泥手段制
御装置に操作開始時期や操作時間の命令信号を送信し、
前記沈殿池に堆積する汚泥フロック(以下、スラッジと
記す)を排泥機構を操作して排出することを特徴とする
浄水プロセスの沈殿池スラッジ排泥制御方法。
1. An average particle size of aggregates (hereinafter referred to as flocs) in the effluent of the floc formation pond in a coagulation sedimentation treatment process of a water purification system comprising a mixing pond, a floc formation pond, a sedimentation pond, and a filtration pond. And the average number concentration are measured continuously by means capable of simultaneously measuring, and the average floc volume ratio of the outflow water of the floc formation pond is calculated from this floc average particle size and the average number concentration. When the integrated value of the volume of flocs flowing out per unit time, which is obtained by multiplying the amount of outflow water from the floc formation pond per unit, exceeds the preset allowable sedimentation value that does not interfere with the removal function in the sedimentation pond, Send a command signal of the operation start time and operation time to the installed sludge control device,
A method for controlling sludge sludge sludge discharge in a water purification process, characterized in that sludge flocs (hereinafter referred to as sludge) accumulated in the settling tank are discharged by operating a sludge discharging mechanism.
【請求項2】混和池、フロック形成池、沈殿池、および
ろ過池からなる浄水システムの凝集沈殿処理過程におい
て、前記フロック形成池の流出水中のフロックの平均粒
径と平均個数濃度および平均粒径より計算されるフロッ
クの平均沈降速度とを同時に計測可能な手段により連続
計測し、前記平均沈降速度と単位時間あたりのフロック
形成池の流出水量および沈澱池の大きさから、フロック
が沈殿池底面へ沈降到達する位置および堆積量を予測
し、堆積量の多い位置近傍の排泥機構を選択的に操作
し、沈殿池のスラッジを排出することを特徴とする浄水
プロセスの沈殿池スラッジ排泥制御方法。
2. The average particle size, the average number concentration and the average particle size of the flocs in the effluent water of the floc formation pond in the coagulation sedimentation treatment process of a water purification system comprising a mixing pond, a floc formation pond, a sedimentation pond and a filtration pond. The average settling velocity of flocs calculated from the above is continuously measured by means capable of simultaneously measuring, and from the average settling velocity and the amount of outflow water of the floc formation pond per unit time and the size of the sedimentation pond, the flocs are transferred to the bottom of the sedimentation pond. A method for controlling sludge sludge discharge in a water purification process, which predicts the position where sedimentation reaches and the amount of sedimentation, and selectively operates the sludge discharge mechanism near the position where the amount of sedimentation is large to discharge sludge from the sedimentation pond. .
JP2001257507A 2001-08-28 2001-08-28 Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process Pending JP2003062406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257507A JP2003062406A (en) 2001-08-28 2001-08-28 Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257507A JP2003062406A (en) 2001-08-28 2001-08-28 Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process

Publications (1)

Publication Number Publication Date
JP2003062406A true JP2003062406A (en) 2003-03-04

Family

ID=19085152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257507A Pending JP2003062406A (en) 2001-08-28 2001-08-28 Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process

Country Status (1)

Country Link
JP (1) JP2003062406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517802A (en) * 2017-04-28 2020-06-18 レコンドイル・スウェーデン・アクチエボラグRecondoil Sweden AB Oil purification
CN113591317A (en) * 2021-08-06 2021-11-02 金盛 Control method for accurate sludge discharge model of water plant reaction sedimentation tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517802A (en) * 2017-04-28 2020-06-18 レコンドイル・スウェーデン・アクチエボラグRecondoil Sweden AB Oil purification
JP7102441B2 (en) 2017-04-28 2022-07-19 レコンドイル・スウェーデン・アクチエボラグ Oil purification
CN113591317A (en) * 2021-08-06 2021-11-02 金盛 Control method for accurate sludge discharge model of water plant reaction sedimentation tank
CN113591317B (en) * 2021-08-06 2023-12-29 金盛 Control method for accurate mud discharging model of water plant reaction sedimentation tank

Similar Documents

Publication Publication Date Title
CA2695315A1 (en) Wastewater treatment system
JP2002205076A (en) Flocculating agent injection control system
JP2003062406A (en) Sludge-discharge controlling method for sludge in sedimentation pond of water-purifying process
JPH1085761A (en) Method and apparatus for treating drainage containing fluorine
JP2007098236A (en) Method and apparatus for injecting flocculant in water clarifying process
JP2007098287A (en) Method for controlling operation of water purifying process
JP4780946B2 (en) Water treatment process operation support device, program and recording medium
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
KR100797170B1 (en) Settling pond
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
JPH05240767A (en) Floc measuring/controlling device
JP5210948B2 (en) Chemical injection control method for water purification plant
JPS63162007A (en) Method for controlling chemical feeding in water purification
RU2688619C1 (en) Method and apparatus for treating water
JP3973967B2 (en) Coagulation separation device
JP2007007601A (en) Purified water treatment method and system
JP4493473B2 (en) Water treatment process operation support equipment
JP3933991B2 (en) Coagulation separation device
JP3958990B2 (en) Processed liquid supply amount adjustment method and coagulation sedimentation equipment
JP6823513B2 (en) Operation method of sludge blanket type coagulation sedimentation device and sludge blanket type coagulation sedimentation device
JP2907657B2 (en) Operation method of floc blanket type coagulating sedimentation equipment
JP6042666B2 (en) Filtration aid injection control method and filtration aid injection control device
RU2684370C1 (en) Method and machine for processing water
JPS58156312A (en) Method for discharging sludge of precipitation basin
JP3186205B2 (en) Flock measurement control device