JP2003059499A - Sea water power generation method and sea water power generation device - Google Patents

Sea water power generation method and sea water power generation device

Info

Publication number
JP2003059499A
JP2003059499A JP2001239489A JP2001239489A JP2003059499A JP 2003059499 A JP2003059499 A JP 2003059499A JP 2001239489 A JP2001239489 A JP 2001239489A JP 2001239489 A JP2001239489 A JP 2001239489A JP 2003059499 A JP2003059499 A JP 2003059499A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
power generation
seawater
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001239489A
Other languages
Japanese (ja)
Inventor
Doko Cho
張道光
Shisei Chin
陳志聲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001239489A priority Critical patent/JP2003059499A/en
Publication of JP2003059499A publication Critical patent/JP2003059499A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sea water power generation method and a sea water power generation device capable of producing electric energy from sea water by the electrochemical reaction of the sea water acting as an electrolyte. SOLUTION: This sea water power generation method is composed of (A) a step 10 forming a positive electrode using silver chloride (AgCl) as a material for reduction reaction; (B) a step 20 forming a negative electrode using pressed magnesium (Mg) or aluminum (Al) alloy as a material for oxidation reaction; (C) a step 30 fitting the positive electrode and the negative electrode to the inside of a reaction storage tank having a sea water inlet and a sea water outlet and covering a polymer separating layer between the positive electrode and the negative electrode; and (D) a step 40 introducing sea water into the reaction storage tank. This sea water power generation device produces electric energy with the positive electrode and the negative electrode from the sea water in the reaction storage tank as the electrolyte of the positive electrode and the negative electrode by causing the oxidation of Mg<+2> +2e<-> in the negative electrode to loose an electron, and causing the reduction of 2AgCl+2e<-> →2Ag+2 Cl<-> in the positive electrode to get an electron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、海水発電方法と海
水発電装置に係り、特に海水を環境保護の動力エネルギ
ーとして使用し、電気化学反応を発生することで、電気
エネルギーへ変換できる海水発電方法と海水発電装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seawater power generation method and a seawater power generation device, and more particularly to a seawater power generation method capable of converting seawater into electric energy by generating an electrochemical reaction by using seawater as motive energy for environmental protection. And the seawater power generation equipment.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】石
油、煤等の石油化学を使用するため、産業革命が生じら
れたのである。石油化学燃料は工業で必要とする動力源
を提供できるが、石油化学のエネルギーが段段なくなる
恐れがある。また石油化学燃料が動力を提供する場合
は、炭素、窒素、硫等の化合物が排出されるため、長い
間に亘って地球生態の汚染問題が深刻になりつつある。
BACKGROUND OF THE INVENTION The use of petrochemicals such as petroleum and soot has created an industrial revolution. Although petrochemical fuels can provide the power source needed for industry, petrochemical energy can be staggered. Further, when petrochemical fuel provides power, compounds such as carbon, nitrogen, and sulfur are emitted, so that the pollution problem of global ecology is becoming serious for a long time.

【0003】上記のエネルギーの不足問題と石油化学燃
料の環境汚染問題を解決するために、全世界の各国は一
生懸命に新エネルギーの研究開発を進めている。その
中、電池エネルギーは、環境保護に相応しいグリーンエ
ネルギーであり、最も注目を浴びている。
In order to solve the above-mentioned energy shortage problem and environmental pollution problem of petrochemical fuel, each country in the world is working hard to research and develop new energy. Among them, the battery energy is the green energy suitable for environmental protection, and has received the most attention.

【0004】電池の工作原理は水素及び酸素を利用し
て、化学反応を行なうことで、電力を生じさせるのであ
る。前記電気エネルギーは直接化学反応から変換したた
め、従来の公知の発電システムと比較すると、より清潔
で、汚染が少なく、且つ効率が高い等の長所がある。
The working principle of a battery is to generate electric power by utilizing hydrogen and oxygen to perform a chemical reaction. Since the electric energy is directly converted from the chemical reaction, it has advantages such as cleaner, less pollution, and higher efficiency as compared with the conventionally known power generation system.

【0005】上記の問題点に鑑み、これを改善するため
に、本発明者は、長年の経験に基づき、日夜苦心研鑚の
結果、遂に本発明による海水発電方法と海水発電装置の
開発の成功に至った。
In view of the above problems, in order to improve the problems, the present inventor, based on his many years of experience, as a result of the day and night painstaking study, finally succeeded in developing the seawater power generation method and the seawater power generation device according to the present invention. Came to.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明の請求項1は、海水発電方法にお
いて、(A)塩化銀(AgCl)を還元反応の材料とした正
極を形成するステップと、(B)マグネシウム(Mg)又
はアルミニウム(Al)合金をプレスした酸化反応の材料と
した負極を形成するステップと、(C)海水入口と海水
出口を有する反応貯蔵槽内に、前記正極と負極を取り付
ける一方、前記正極と負極間に、高分子隔離層を被覆す
るステップと、(D)海水を前記反応貯蔵槽内に導入す
るステップとからなり、海水を反応貯蔵槽内の正極と負
極の電解質とし、負極に、例えば、Mg+2+2e-の酸化作用
を生じさせて電子を失わせる一方、正極に、例えば、2A
gCl+2e-→2Ag+2C-の還元作用を生じて電子を獲得するこ
とで、正極と負極より電気エネルギーを生成することを
特徴とする、海水発電方法である。また、本発明の請求
項2は、請求項1に記載の海水発電方法において、前記
ステップ(A)の正極形成は、(a)銀塊を硝酸(NHO
3)の溶液の中に溶かしてから、形成された硝酸銀(AgN
O3)に塩化ナトリウム(NaCl)パウダーを添加すること
で、塩化銀(AgCl)の沈殿物を形成するステップと、
(b)前記塩化銀(AgCl)の沈殿物を濾過することで、
他の雑質を除去する濾過処理を行なうステップと、
(c)高純度の塩化銀(AgCl)を得る純化処理を行なう
ステップと、(d)粉末状態を呈する高純度の塩化銀
(AgCl)を得る乾燥処理を行なうステップと、(e)塩
化銀(AgCl)の粉末の高温融解処理を行なうステップ
と、(f)冷却後の金型剥離処理を行なうステップと、
(g)熱間圧延処理を行なうステップと、(h)プレス
処理を行なうステップと、(i)現像処理を行なうステ
ップとからなり、外形は固体状態を呈する正極が成型さ
れることを特徴とする、海水発電方法である。
[Means for Solving the Problems] As means for solving the above problems, the first aspect of the present invention is to provide a positive electrode using (A) silver chloride (AgCl) as a material for a reduction reaction in a seawater power generation method. And (B) forming a negative electrode using (B) magnesium (Mg) or aluminum (Al) alloy as a material for the oxidation reaction, and (C) in a reaction storage tank having a seawater inlet and a seawater outlet. While attaching the positive electrode and the negative electrode, a step of coating a polymer isolation layer between the positive electrode and the negative electrode, and (D) introducing seawater into the reaction storage tank, the seawater being the positive electrode in the reaction storage tank. And the electrolyte of the negative electrode, and the negative electrode, for example, causes the oxidation of Mg +2 + 2e- to lose electrons, while the positive electrode has,
It is a seawater power generation method characterized in that electric energy is generated from a positive electrode and a negative electrode by obtaining electrons by reducing action of gCl + 2e- → 2Ag + 2C-. According to claim 2 of the present invention, in the seawater power generation method according to claim 1, in the step (A) of forming the positive electrode, (a) a silver lump is converted into nitric acid (NHO).
After being dissolved in the solution of 3), the formed silver nitrate (AgN
Adding a sodium chloride (NaCl) powder to O3) to form a silver chloride (AgCl) precipitate;
(B) By filtering the silver chloride (AgCl) precipitate,
Performing a filtering process to remove other contaminants,
(C) a step of performing purification treatment to obtain high-purity silver chloride (AgCl); (d) a step of drying treatment to obtain high-purity silver chloride (AgCl) in a powder state; and (e) silver chloride ( (AgCl) powder high temperature melting treatment step, (f) cooling die separation treatment step,
It is characterized in that a positive electrode having a solid outer shape is formed by (g) performing a hot rolling treatment, (h) performing a pressing treatment, and (i) performing a developing treatment. , Seawater power generation method.

【0007】さらに、本発明の請求項3は、海水発電装
置において、塩化銀(AgCl)を還元反応の材料とした正
極と、マグネシウム(Mg)又はアルミニウム(Al)合金
を酸化反応の材料とした負極と、海水入口と海水出口を
有する反応貯蔵槽と、からなり、負極を反応貯蔵槽の
上、下側に取り付けるとともに、前記負極に一本の導線
を溶接することで、反応貯蔵槽の外部へ突出する負極出
力端が形成される一方、正極を上下の負極の間に取り付
けるとともに、前記正極に一枚のニッケル・ガイドプレ
ートを溶接することで、反応貯蔵槽の外部へ突出する正
極出力端が形成され、負極と正極の間に一層の高分子隔
離層を被覆することで、前記負極と正極の間に、電気接
触の発生を防止できるようにするとともに、前記正極と
負極に電気化学反応を発生させて電気エネルギーへ変換
することを特徴とする、海水発電装置である。
Further, according to claim 3 of the present invention, in the seawater power generation device, a positive electrode using silver chloride (AgCl) as a material for reduction reaction and a magnesium (Mg) or aluminum (Al) alloy as material for oxidation reaction. It consists of a negative electrode and a reaction storage tank having a seawater inlet and a seawater outlet, and the negative electrode is attached to the upper and lower sides of the reaction storage tank, and by welding one conductor to the negative electrode, the outside of the reaction storage tank The positive electrode output end protruding outside the reaction storage tank is formed by mounting the positive electrode between the upper and lower negative electrodes and welding one nickel guide plate to the positive electrode while forming the negative electrode output end protruding to the outside. By forming a polymer isolation layer between the negative electrode and the positive electrode, it is possible to prevent the occurrence of electrical contact between the negative electrode and the positive electrode, and the electrochemical reaction between the positive electrode and the negative electrode. To And converting it raised into electrical energy, it is seawater generator.

【0008】[0008]

【発明の実施の形態】以下、添付図面を参照して本発明
の好適な実施の形態を詳細に説明する。
Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0009】図1には、本発明に係る海水発電方法の主
要なステップを示す。ステップ10は、塩化銀(AgCl)
を還元反応の材料とした正極を形成する。
FIG. 1 shows the main steps of the seawater power generation method according to the present invention. Step 10 is silver chloride (AgCl)
To form a positive electrode using as a material for the reduction reaction.

【0010】ステップ20は、マグネシウム(Mg)、又
はアルミニウム(Al)合金をプレスした、酸化反応の材料
とした負極を形成する。
In step 20, magnesium (Mg) or aluminum (Al) alloy is pressed to form a negative electrode made of a material for oxidation reaction.

【0011】ステップ30は、前記正極と負極を反応貯
蔵槽内に取り付ける。ここで、前記反応貯蔵槽のサイド
には、海水入口と海水出口が設けられる。そして、海水
は前記反応貯蔵の内部に流通できるようにする。また、
前記正極と負極の間に、高分子隔離層を被覆すること
で、ワン・セクション電気の海水電池が形成される。
In step 30, the positive electrode and the negative electrode are installed in the reaction storage tank. Here, a seawater inlet and a seawater outlet are provided on the side of the reaction storage tank. Then, the seawater is allowed to flow inside the reaction storage. Also,
A one-section electric seawater battery is formed by coating a polymer isolation layer between the positive electrode and the negative electrode.

【0012】ステップ40は、海水を反応貯蔵槽内に導
入する。前記反応貯蔵槽において、海水は前記正極と負
極の電解質とすることで、負極にMg+2+2e-の酸化作用を
生じさせて、電子が失う一方、正極に2AgCl+2e-→2Ag+2
C-の還元作用が働き、電子が得られる。そのため、正極
と負極より電気エネルギーを生成する海水発電装置(海
水電池)が製造される。
Step 40 introduces seawater into the reaction storage tank. In the reaction storage tank, seawater is used as the electrolyte of the positive electrode and the negative electrode, causing an oxidation action of Mg +2 + 2e-in the negative electrode, while electrons are lost, while 2AgCl + 2e- → 2Ag + 2 in the positive electrode.
The reducing action of C- works and electrons are obtained. Therefore, a seawater power generation device (seawater battery) that produces electric energy from the positive electrode and the negative electrode is manufactured.

【0013】また、図2に開示するように、上記正極の
還元反応材料の製造ステップは下記の通りである。ステ
ップ101は、塩化銀(AgCl)の沈殿物を形成する。即
ち、銀塊を硝酸(NH03)の溶液の中に溶かしてから、形
成された硝酸銀(AgNO3)に塩化ナトリウム(NaCl)パウダ
ーを添加することで、塩化銀(AgCl)の沈殿物を生成さ
せて沸かす。
Further, as disclosed in FIG. 2, the steps of manufacturing the reduction reaction material for the positive electrode are as follows. Step 101 forms a silver chloride (AgCl) precipitate. That is, by dissolving a silver lump in a solution of nitric acid (NH03) and then adding sodium chloride (NaCl) powder to the formed silver nitrate (AgNO3), a precipitate of silver chloride (AgCl) is generated and boiled. .

【0014】その後、ステップ102の濾過処理を行な
う。即ち、前記塩化銀(AgCl)の沈殿物を濾過すること
で、その他の雑質を除去する。
Thereafter, the filtering process of step 102 is performed. That is, other contaminants are removed by filtering the silver chloride (AgCl) precipitate.

【0015】次に、ステップ103の純化処理を行なう
ことで、高純度の塩化銀(AgCl)を得る。続いて、ステッ
プ104の乾燥処理を行ない、粉末状態を呈する高純度
の塩化銀(AgCl)を得る。
Next, a high-purity silver chloride (AgCl) is obtained by performing the purification treatment in step 103. Then, the drying process of step 104 is performed to obtain high-purity silver chloride (AgCl) in a powder state.

【0016】ステップ105は、上記塩化銀(AgCl)粉
末の高温融解処理を行なう。その後、ステップ106の
冷却後の金型剥離処理、及びステップ107の熱間圧延
処理を順次行なう。最後はステップ108のプレス処
理、及びステップ109の現像処理を行なうことで、外
形は固体状態を呈する正極が成型される。
In step 105, the silver chloride (AgCl) powder is melted at a high temperature. After that, the mold peeling process after cooling in step 106 and the hot rolling process in step 107 are sequentially performed. Finally, by performing the pressing process in step 108 and the developing process in step 109, a positive electrode having a solid outer shape is molded.

【0017】上記のようにして製造された海水発電装置
の一例として、海水電池について説明する。図3に示す
ように、負極5を反応貯蔵槽7の上、下側に夫々位置決
めして取り付けるとともに、前記負極5に一本の導線を
溶接することで、反応貯蔵槽7の外部へ突出する負極出
力端51が形成される。一方、正極6を上下の負極5の
間に位置決めして取り付けるとともに、前記正極6に一
枚のニッケル・ガイドプレートを溶接することで、反応
貯蔵槽7の外部へ突出する正極出力端61が形成され
る。次に、負極5と正極6の間に一層の高分子隔離層8
を被覆することで、前記負極5と正極6の間に、電気接
触の発生を防止することができるのである。
A seawater battery will be described as an example of the seawater power generation device manufactured as described above. As shown in FIG. 3, the negative electrode 5 is positioned and mounted on the upper and lower sides of the reaction storage tank 7, respectively, and one conductive wire is welded to the negative electrode 5, so that the negative electrode 5 projects outside the reaction storage tank 7. A negative output 51 is formed. On the other hand, the positive electrode 6 is positioned and attached between the upper and lower negative electrodes 5, and a single nickel guide plate is welded to the positive electrode 6 to form a positive electrode output end 61 protruding to the outside of the reaction storage tank 7. To be done. Next, one polymer isolation layer 8 is provided between the negative electrode 5 and the positive electrode 6.
It is possible to prevent electrical contact between the negative electrode 5 and the positive electrode 6 by coating the above.

【0018】化学反応の電解質として、反応貯蔵槽7内
には、海水を導入する。これは、海水中に、多種の化学
元素を含有するためである。例えば、二塩化マグネシウ
ム(MgCl2)及び塩化ナトリウム(NaCl)は、海水の中
に含まれる化学元素です。そして、海水が反応貯蔵槽7
の海水入口、出口から入ったり、出たりする場合は、マ
グネシウム(Mg)又はアルミニウム(Al)合金を酸化反
応の材料とした負極に、例えば、Mg→Mg+2+2e-の酸化作
用を発生させて電子が失い、負極出力端51より出力さ
れる。一方、塩化銀(AgCl)を還元反応の材料とした正
極6に、例えば、2AgCl+2e-→2Ag+2Cl-の還元作用が働
き、電子が得られて正極出力端61より出力される。よ
って、前記正極6及び負極5に電気化学反応が生じて、
電気エネルギーに変換できるため、前記正、負極出力端
より、ワシ・セクションの電気エネルギーが得られるこ
とで、一般の小型動力の発電機及び動力推進器に有効に
応用できるものである。
Seawater is introduced into the reaction storage tank 7 as an electrolyte for the chemical reaction. This is because seawater contains various chemical elements. For example, magnesium dichloride (MgCl2) and sodium chloride (NaCl) are chemical elements contained in seawater. And the seawater is the reaction storage tank 7.
When entering or exiting from the seawater inlet or outlet of, the negative electrode using magnesium (Mg) or aluminum (Al) alloy as the material for the oxidation reaction produces, for example, an oxidation effect of Mg → Mg +2 + 2e- Then, the electrons are lost and the electrons are output from the negative electrode output terminal 51. On the other hand, for example, a reduction action of 2AgCl + 2e- → 2Ag + 2Cl- acts on the positive electrode 6 using silver chloride (AgCl) as a material for the reduction reaction, and electrons are obtained and output from the positive electrode output terminal 61. Therefore, an electrochemical reaction occurs in the positive electrode 6 and the negative electrode 5,
Since it can be converted into electric energy, the electric energy of the eagle section can be obtained from the positive and negative electrode output terminals, so that it can be effectively applied to a general small power generator and power propulsion device.

【0019】また、上記のようなワン・セクションの電
気エネルギーを有する海水電池を数組直列又は並列すれ
ば、より大きい電気エネルギーの出力が得られるので、
大型の発電所の設備にも応用できるものである。
Further, if several sets of seawater batteries having one section of electric energy as described above are connected in series or in parallel, a larger electric energy output can be obtained.
It can also be applied to the equipment of large power plants.

【0020】[0020]

【発明の効果】以上を総合すると、本発明に係る海水発
電方法と海水発電装置は、海水を電解質として使用し、
電気化学反応を発生させることで、電気エネルギーへ変
換することができ、しかもグリーンエネルギーが得られ
るので、環境保全に役立つと同時に、産業上の利用価値
が極めて高いという効果を奏する。
Summarizing the above, the seawater power generation method and the seawater power generation device according to the present invention use seawater as an electrolyte,
By generating an electrochemical reaction, it can be converted into electric energy and green energy can be obtained. Therefore, it is useful for environmental protection and has an extremely high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る海水発電方法のフローチャートで
ある。
FIG. 1 is a flowchart of a seawater power generation method according to the present invention.

【図2】本発明に係る海水発電方法における正極を製造
する方法のフローチャートである。
FIG. 2 is a flowchart of a method of manufacturing a positive electrode in the seawater power generation method according to the present invention.

【図3】本発明に係る海水発電装置を海水電池とした場
合の説明図である。
FIG. 3 is an explanatory diagram when the seawater power generation device according to the present invention is a seawater battery.

【符号の説明】[Explanation of symbols]

5 負極 6 正極 7 反応貯蔵槽 51 負極出力端 61 正極出力端 8 高分子隔離層 5 Negative electrode 6 Positive electrode 7 Reaction storage tank 51 Negative output terminal 61 Positive output terminal 8 Polymer isolation layer

フロントページの続き Fターム(参考) 5H025 AA14 BB01 BB02 BB04 BB06 BB11 BB17 CC11 CC16 CC22Continued front page    F-term (reference) 5H025 AA14 BB01 BB02 BB04 BB06                       BB11 BB17 CC11 CC16 CC22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】海水発電方法において、(A)塩化銀(Ag
Cl)を還元反応の材料とした正極を形成するステップ
と、(B)マグネシウム(Mg)又はアルミニウム(Al)合
金をプレスした酸化反応の材料とした負極を形成するス
テップと、(C)海水入口と海水出口を有する反応貯蔵
槽内に、前記正極と負極を取り付ける一方、前記正極と
負極間に、高分子隔離層を被覆するステップと、(D)
海水を前記反応貯蔵槽内に導入するステップとからな
り、 海水を反応貯蔵槽内の正極と負極の電解質とし、負極に
酸化作用を生じさせて電子を失わせる一方、正極に還元
作用を生じて電子を獲得することで、正極と負極より電
気エネルギーを生成することを特徴とする、海水発電方
法。
1. A seawater power generation method, comprising: (A) silver chloride (Ag
(C) forming a positive electrode using a reduction reaction material, (B) forming a negative electrode using a magnesium (Mg) or aluminum (Al) alloy as a material for an oxidation reaction, and (C) seawater inlet Attaching the positive electrode and the negative electrode in a reaction storage tank having a seawater outlet, and coating a polymer isolation layer between the positive electrode and the negative electrode;
The step of introducing seawater into the reaction storage tank is used as an electrolyte for the positive electrode and the negative electrode in the reaction storage tank, causing oxidation and loss of electrons in the negative electrode while reducing the positive electrode. A seawater power generation method, characterized by generating electric energy from a positive electrode and a negative electrode by acquiring electrons.
【請求項2】請求項1に記載の海水発電方法において、 前記ステップ(A)の正極形成は、 (a)銀塊を硝酸(NHO3)の溶液の中に溶かしてから、
形成された硝酸銀(AgNO3)に塩化ナトリウム(NaCl)
パウダーを添加することで、塩化銀(AgCl)の沈殿物を
形成するステップと、 (b)前記塩化銀(AgCl)の沈殿物を濾過することで、
他の雑質を除去する濾過処理を行なうステップと、 (c)高純度の塩化銀(AgCl)を得る純化処理を行なう
ステップと、 (d)粉末状態を呈する高純度の塩化銀(AgCl)を得る
乾燥処理を行なうステップと、 (e)塩化銀(AgCl)の粉末の高温融解処理を行なうス
テップと、 (f)冷却後の金型剥離処理を行なうステップと、 (g)熱間圧延処理を行なうステップと、 (h)プレス処理を行なうステップと、 (i)現像処理を行なうステップとからなり、 外形は固体状態を呈する正極が成型されることを特徴と
する、海水発電方法。
2. The seawater power generation method according to claim 1, wherein the positive electrode formation in the step (A) comprises: (a) dissolving a silver ingot in a solution of nitric acid (NHO3);
Sodium chloride (NaCl) on the formed silver nitrate (AgNO3)
By adding a powder to form a silver chloride (AgCl) precipitate, and (b) filtering the silver chloride (AgCl) precipitate,
A step of performing a filtering process for removing other contaminants; (c) a purification process for obtaining high-purity silver chloride (AgCl); and (d) a high-purity silver chloride (AgCl) in a powder state. The steps of performing a drying process to obtain, (e) performing a high-temperature melting process of silver chloride (AgCl) powder, (f) performing a mold stripping process after cooling, and (g) performing a hot rolling process. A seawater power generation method comprising: a step of performing, (h) a step of performing a pressing process, and (i) a step of performing a developing process, wherein a positive electrode having a solid external shape is molded.
【請求項3】海水発電装置において、 塩化銀(AgCl)を還元反応の材料とした正極と、 マグネシウム(Mg)又はアルミニウム(Al)合金を酸化
反応の材料とした負極と、 海水入口と海水出口を有する反応貯蔵槽と、からなり、 負極を反応貯蔵槽の上、下側に取り付けるとともに、前
記負極に一本の導線を溶接することで、反応貯蔵槽の外
部へ突出する負極出力端が形成される一方、正極を上下
の負極の間に取り付けるとともに、前記正極に一枚のニ
ッケル・ガイドプレートを溶接することで、反応貯蔵槽
の外部へ突出する正極出力端が形成され、 負極と正極の間に一層の高分子隔離層を被覆すること
で、前記負極と正極の間に、電気接触の発生を防止でき
るようにするとともに、前記正極と負極に電気化学反応
を発生させて電気エネルギーへ変換することを特徴とす
る、海水発電装置。
3. In a seawater power generation device, a positive electrode using silver chloride (AgCl) as a material for a reduction reaction, a negative electrode using magnesium (Mg) or an aluminum (Al) alloy as a material for an oxidation reaction, and a seawater inlet and a seawater outlet. A reaction storage tank having a negative electrode is attached to the upper and lower sides of the reaction storage tank, and a single lead wire is welded to the negative electrode to form a negative electrode output end protruding to the outside of the reaction storage tank. On the other hand, the positive electrode is attached between the upper and lower negative electrodes, and a single nickel guide plate is welded to the positive electrode to form a positive electrode output end protruding outside the reaction storage tank. By covering one layer of the polymer isolation layer between them, it is possible to prevent the occurrence of electrical contact between the negative electrode and the positive electrode, and to generate an electrochemical reaction between the positive electrode and the negative electrode to generate electrical energy. A seawater power generation device characterized by conversion.
JP2001239489A 2001-08-07 2001-08-07 Sea water power generation method and sea water power generation device Pending JP2003059499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239489A JP2003059499A (en) 2001-08-07 2001-08-07 Sea water power generation method and sea water power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239489A JP2003059499A (en) 2001-08-07 2001-08-07 Sea water power generation method and sea water power generation device

Publications (1)

Publication Number Publication Date
JP2003059499A true JP2003059499A (en) 2003-02-28

Family

ID=19070235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239489A Pending JP2003059499A (en) 2001-08-07 2001-08-07 Sea water power generation method and sea water power generation device

Country Status (1)

Country Link
JP (1) JP2003059499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318331B1 (en) * 2012-03-16 2013-10-16 한국에너지기술연구원 Concentration gradient power production device using flow electrode
JP5681307B1 (en) * 2014-02-26 2015-03-04 博幸 塩谷 Magnesium battery and power generator including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318331B1 (en) * 2012-03-16 2013-10-16 한국에너지기술연구원 Concentration gradient power production device using flow electrode
JP5681307B1 (en) * 2014-02-26 2015-03-04 博幸 塩谷 Magnesium battery and power generator including the same

Similar Documents

Publication Publication Date Title
US20030022058A1 (en) Power generating method using seawater and power generating apparatus using the method
CN109778218B (en) Device and method for co-production of hydrogen production and lithium extraction by electrochemistry
CN109192940B (en) Titanium dioxide/graphene multi-element modified Mxene composite material and preparation method thereof
CN103515657B (en) Battery
CN102602978B (en) Preparation method of CuO micro-/nano-array electrode for lithium ion battery
CN100449828C (en) Titanium base foam lead positive and negative electrode plate grating material for lead acid accumulator and its producing method
CN109860514A (en) A method of changing lithium battery copper foil of affluxion body surface topography
KR101308159B1 (en) Method of forming a high surface-area powder
US7311991B2 (en) Hydrogen storage-based electrochemical system and method of preparation
CN109103534B (en) Recovery method of waste cobalt-containing lithium ion battery
CN105895871B (en) A kind of porous Si-C composite material and preparation method and application
CN110635185A (en) Discharge method of waste lithium battery
JP2011034913A (en) Lithium battery electrode, method of manufacturing the same, and lithium battery
CN110759644A (en) Method for synthesizing iron phosphate and iron oxide film by using waste lithium iron phosphate battery
WO2014205553A1 (en) Anode element for electrochemical reactions
JP2003059499A (en) Sea water power generation method and sea water power generation device
CN107827091A (en) A kind of protonation is modified class graphitic nitralloy carbon material and its preparation and the application in lithium ion battery negative material
CN106602001A (en) Preparation method and application of porous negative electrode material for lithium ion battery
CN108232076A (en) A kind of explosion-proof graphene battery
CN115347196A (en) Three-dimensional porous current collector for lithium battery and preparation method and application thereof
CN1393950A (en) Method and product for using seawater to provide electric energy
CN111952595B (en) Dendritic-crystal-free metal negative electrode carrier based on tip effect and preparation method thereof
CA2225738C (en) Purification process for lithium battery electrolytes
CN108054022A (en) A kind of non-crystaline amorphous metal combination electrode of surface layer porous structure nickel cobalt oxide and preparation method thereof
EP1280216A1 (en) Battery using seawater and power generating method