JP2003057508A - Coated optical fiber ribbon - Google Patents

Coated optical fiber ribbon

Info

Publication number
JP2003057508A
JP2003057508A JP2001246480A JP2001246480A JP2003057508A JP 2003057508 A JP2003057508 A JP 2003057508A JP 2001246480 A JP2001246480 A JP 2001246480A JP 2001246480 A JP2001246480 A JP 2001246480A JP 2003057508 A JP2003057508 A JP 2003057508A
Authority
JP
Japan
Prior art keywords
coating layer
optical fiber
layer
batch
tape core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001246480A
Other languages
Japanese (ja)
Other versions
JP4712244B2 (en
Inventor
Minoru Saito
稔 斉藤
Nobunao Ishii
伸尚 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001246480A priority Critical patent/JP4712244B2/en
Publication of JP2003057508A publication Critical patent/JP2003057508A/en
Application granted granted Critical
Publication of JP4712244B2 publication Critical patent/JP4712244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coated optical fiber ribbon which never has its coating broken when its ribbon batch-coating layer is removed. SOLUTION: The coated optical fiber ribbon constituted by arranging a plurality of colored coated optical fibers each formed by providing a primary coating layer, a secondary coating layer, and a colored layer around an optical fiber in parallel and uniting them by coating them with the batch-coating layer is characterized by that the value K obtained by dividing the total of the products of sectional secondary moments and Young's moduli of the primary coating, layer, secondary coating layer, and colored layer by the product of the optical fiber adhesive strength of the primary coating material and the number of the optical fibers of the ribbon is >=1.7 in an atmosphere of heating temperature in the removal of the batch-coating layer of the coated optical fiber ribbon.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は光ファイバテープ心線に
関するもので、特に光ファイバテープ心線の被覆層の一
括除去時に被覆層が形崩れせずに姿抜けできる光ファイ
バテープ心線に関するものである 【0002】 【従来の技術】近年、大容量データ伝送の需要の増大、
特にインターネットに代表される個人の通信回線利用量
の飛躍的な増大等により、FTTH(Fiber to the hom
e)化の需要が急激に増大し、光ケーブルネットワークの
敷設が急がれている。これらの光ケーブルとして複数本
の光ファイバ心線をテープ状に一体化した光ファイバテ
ープ心線を複数本、スロット内に積層した状態で収納し
た構造の光ファイバケーブルが用いられている。 【0003】図1はこのような光ケーブルネットワーク
用光ファイバケーブルに用いられる光ファイバ心線1の
断面図である。光ファイバ心線1は光ファイバ裸線2の
外周表面にファイバ被覆層8が形成されている。このフ
ァイバ被服層8は、光ファイバ裸線2の外周表面に紫外
線硬化型樹脂で形成した一次被覆層3、さらにその外周
に紫外線硬化型樹脂で形成した二次被覆層4、さらにそ
の外周表面に着色紫外線硬化型樹脂で形成した着色層5
で構成されている。 【0004】図2は図1に示した光ファイバ心線1を複
数本並べ紫外線硬化型樹脂からなる一括被覆層6にてテ
ープ状に一体化した光ファイバテープ心線7の断面図で
ある。このテープ心線7同士を接続する場合、まずテー
プ心線7端末から一括被覆層6とファイバ被覆層8を加
熱型被覆層除去装置で一括して除去する。その後ファイ
バカッターにて光ファイバ裸線2を切断し、最後に光フ
ァイバ裸線2同士をつき合わせて融着接続する。 【0005】図3にテープ心線端末から一括被覆層6と
ファイバ被覆層8とを一括除去した後のテープ心線端末
部の一例を示す。図3(イ)は被覆層除去後、被覆層全
体が崩れることなくそのままの形状で姿抜けした状態を
示すもので、このように被覆層全体が除去できるのが理
想的である。しかし、光ファイバ裸線2と一次被覆層3
の密着力が被覆層の剛性に比べ著しく強い場合には、被
覆層除去時の圧縮応力に被覆層8が抗しきれず被覆層全
体が破壊されて図3(ロ)に示すように蛇腹状に折れ曲
がったり、各被覆層同士が剥がれて光ファイバ裸線2上
にファイバ被覆層8の一部が残存してしまう場合があ
る。従って接続作業の観点から一括被覆層除去時に図3
(イ)に示すように、ファイバ被覆層全体が形崩れせず
にそのままの形状でパイプ状に姿抜けし、かつ、光ファ
イバ裸線2上に被覆樹脂が残らないような光ファイバテ
ープ心線が望ましい。 【0006】一方、光ケーブルネットワーク用光ファイ
バケーブルは前述のようにデータトラフィックの増大に
よりケーブル実装心数の増大と細径化が図られている。
そのため、ファイバ被覆層8の薄肉化による集積効率の
向上が進められている。また、近年では海外向けに輸出
された光ファイバ心線1が海外メーカーによってテープ
化され、ケーブルに使用されているが、海外で用いられ
ている光ファイバテープ心線は国内で一般的に用いられ
ている光ファイバテープ心線に比べ一括被覆層6が薄
く、被覆崩れが起き易い。 【0007】更に、従来の光ファイバケーブルは、電話
局間を接続するいわゆる幹線系で主として使用されてき
たが、FTTH化は電話局から末端の個入宅まで光ファ
イバケーブルが敷設されることを意味する。そのため敷
設後のケーブルが従来にはない様々な環境に曝される機
会が大幅に増加する。このような悪環境に曝されると光
ファイバケーブルのシースが損傷してケーブル内に水が
浸入し、光ファイバが長時間浸水した状態に置かれる場
合も十分考えられ、浸水に対する配慮も必要となる。 【0008】光ファイバは、浸水によってロス増するこ
とが少なからず報告されている。光ファイバ心線が長期
間浸水された場合、浸水により例えば光ファイバ裸線2
と一次被覆層3との界面の密着力が低下した部分に剥離
が生じ、そこに水が溜まりブリスタを発生する。光ファ
イバ裸線2と一次被覆3との界面にブリスタが発生する
と光ファイバ裸線2に側圧が加えられる結果となり、マ
イクロベンドロス増が発生する。従って耐水性を改善す
る為には光ファイバ裸線2と一次被覆層3との界面の密
着力を上げて界面に水が侵入するのを防止する必要があ
る。 【0009】 【本発明が解決しようとする課題】光ファイバ裸線2と
一次被覆層3との密着力を、浸水しても剥離しない程度
とし、かつテープ心線1を薄肉化しても一括被覆層除去
時に被覆層の形崩れが生じないようにするためには、光
ファイバ裸線2との密着力に応じた剛性を一次被覆層3
に持たせる必要がある。このような被覆層除去性の改善
については、特開2000−111767、特開200
0−155248、特開2000−56191などが開
示されている。しかし、これらの公開技術は主に被覆層
除去後のカス残りを抑制するためのものであり、テープ
薄肉化に対する被覆層の形崩れを抑制できるような技術
ではない。 【0010】 【問題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、光ファイバ裸線の外周に
一次被覆層、二次被覆層、着色層を設けてなる光ファイ
バ心線を複数本平行に並べ、その上に一括被覆層を被覆
して一体化した光ファイバテープ心線において、前記、
一次被覆層、二次被覆層、着色層、一括被覆層の各々の
断面2次モーメントとヤング率の積の合計と、一次被覆
層を形成する樹脂の光ファイバ裸線との密着力とテープ
心線の心数の積がテープ心線の一括被覆層除去時におけ
る加熱温度の雰囲気において下記数2式の関係であるこ
とを特徴とする光ファイバテープ心線を提供するもので
ある。 【0011】 【数2】 【0012】Ep:テープ心線の一括被覆層除去時の加
熱温度における一次被覆層のヤング率(kgf/mm2) Es:テープ心線の一括被覆層除去時の加熱温度におけ
る二次被覆層のヤング率(kgf/mm2) Ec:テープ心線の一括被覆層除去時の加熱温度におけ
る着色層のヤング率(kgf/mm2) Er:テープ心線の一括被覆層除去時の加熱温度におけ
る一括被覆層のヤング率(kgf/mm2) Ip:一次被覆層の断面二次モーメント(mm4) Is:二次被覆層の断面二次モーメント(mm4) Ic:着色層の断面二次モーメント(mm4) Ir:一括被覆層の断面二次モーメント(mm4) n :テープ心線の心数 Gp:光ファイバテープ心線一括被覆層除去時の加熱温
度における一次被覆層のガラス密着力(kgf/mm) 【0013】本発明は被覆層の物性と被覆層の構造を上
記の範囲に限定することにより、被覆層一括除去時の加
熱温度における被覆層の剛性が一次被覆層の光ファイバ
裸線との密着力による圧縮応力よりも大きいので被覆層
が形崩れすることなくそのままの形状で姿抜けする。 【0014】 【発明の実施形態】次に本発明を実施例を参照しながら
説明する。本発明の対象となる一括被覆層除去工程を図
4に示す。図において11は市販のホットストリッパー
(加熱型被覆層除去装置)で、ヒーター13を内蔵して
いる。テープ心線7の端末から被覆層を一括除去するに
は、該ホットストリッパー11に光ファイバテープ心線
7の端末部を所定長セットし、図4(イ)に示すように
ホットストリッパー11の上下の刃12で一括被覆層
6、被覆層8に切り込みを入れる。その後ヒーター部1
3により一定時間加熱して光ファイバ裸線2と一次被覆
層3との密着力を低下させ、密着力が低下した後に光フ
ァイバテープ心線7を図(ロ)に示すように他端の方向
に引っ張り一括被覆層6と被覆層8を除去する。図4
(ハ)は被覆層を除去した状態を示す。 【0015】光ファイバテープ心線7の端末から被覆層
を一括除去する際、光ファイバ裸線2と一次被覆層3と
の界面密着力が被覆層の剛性に比べて著しく高いと、光
ファイバ裸線2と一次被覆層3との界面で剥離が進行す
る前に刃部分から加えられる圧縮応力により被覆層8が
破壊されてしまう。そのため、一般的には、光ファイバ
テープ心線7の一括被覆層除去作業は光ファイバ裸線2
と一次被覆層3との界面の密着力を下げるため、例えば
70〜100℃程度に加熱して行われる。 【0016】そこで本発明者等はテープ被覆層除去作業
時の加熱温度における一次被覆層3を形成する樹脂の光
ファイバ裸線2に対する密着力と、各被覆層のヤング率
及び被覆厚さが光ファイバテープ心線の被覆層一括除去
時の被覆層の形崩れに与える影響を調べた。その結果、
被覆層除去温度における光ファイバ裸線2に対する一次
被覆層3の密着力と、各被覆層のヤング率と断面二次モ
ーメントを用いたパラメーターをある範囲に限定すれば
一括して被覆層を除去する時の被覆崩れを抑制できるこ
とを見出した。 【0017】そこで本発明者等は、ウレタンアクリレー
ト系紫外線硬化型オリゴマーとモノマーの配合量及ぴ種
類を調整して一次被覆層3、二次被覆層4、着色層5及
び一括被覆層6用の紫外線硬化型(UV)樹脂を準備し
表1の組み合わせで常法により光ファイバテープ心線を
作成し、各被覆層のヤング率と断面二次モーメントを用
いたパラメーターとの関係を検討した。 【0018】 【表1】 【0019】かかる検討において、一次被覆層3を形成
する樹脂の光ファイバ裸線2との密着力は90°ピール
試験にて評価した。即ち、一次被覆層3を形成する樹脂
を石英ガラス基板上に厚さ200μmで塗布後100m
J/cm2の紫外線を照射して硬化させた。このシート
を1cm幅で切り出し、常温にて50mm/minで90
°の方向に引っ張って剥がした際の力を測定した。次い
で、この測定を90℃に加熱した恒温槽にて行った。 【0020】また、一次被覆層形成樹脂のヤング率を測
定するため、一次被覆層形成樹脂をガラス基板上に20
0μm塗布後1000mmJ/cm2の紫外線を照射し
てシートを作成した。このシートから幅6mmの短冊片を
切り出し、標線間距離25mm、引張速度1mm/min
で90℃の恒温槽内で引張り2.5%歪み時の応力から
ヤング率を測定した。更に、光ファイバテープ心線の被
覆層除去性を評価するため各光ファイバテープ心線を図
4に示すホットストリッパー(古河電工製S218C)11
を使用し引張速度50mm/minで一括被覆層除去を行
い、被覆層がパイプ状に姿抜けするか否かを試験した。
この時の加熱部の温度は90℃とした。 【0021】一般に柱に加重が加わり座屈が生じるとき
の座屈加重Wkは数3式で示される。 【数3】 C:端末係数、E:ヤング率、I:断面二次モーメント、L:柱
の長さ 【0022】従って光ファイバテープ心線の一括被覆層
除去時の加熱温度における被覆部分の座屈加重Wk(t
otal)は数4式のように表される。 【0023】 【数4】 【0024】一方光ファイバテープ心線の一括被覆層除
去時に、被覆層部分は圧縮応力を受ける。この圧縮応力
は光ファイバ裸線2と一次被覆層3の密着力が強いほど
大きくなると考えられる。従ってこのWk(total)を一次
被覆層形成樹脂の光ファイバ裸線に対する密着力と光フ
ァイバテープ心線の光ファイバ裸線心数の積で割った値
は座屈加重と光ファイバテープ心線の一括被覆層除去時
に被覆層に加わる圧縮応力の比Kとなる。従って、この
値Kが大きいほど被覆層は崩れ難くパイプ状に姿抜けし
易くなる。 【0025】 【数5】 【0026】表1にこれらの実施例1〜3、比較例1〜
3の評価結果を併記して示す。表1から分かるように、
座屈加重と光ファイバテープ心線の一括被覆層除去時に
被覆層に加わる圧縮応力の比Kを1.7以上、即ち、各
被覆層を形成する樹脂の物性と光ファイバテープ心線の
被覆構造が前記数1式を満足すれば、座屈加重が光ファ
イバ裸線と一次被覆層界面との密着力の合計よりも充分
に大きいので被覆層除去時の被覆崩れを抑制でき被覆層
除去性の良好な光ファイバテープ心線が得られる。 【0027】本発明は、上記実施例で明らかなように、
数1式を満足するように各被覆層を形成する樹脂の物性
と光ファイバテープ心線の被覆構造とを選定することに
より、光ファイバテープ心線相互の接続時に、心線端末
部から被覆層を一括して、被覆層が形崩れすることなく
除去でき、接続作業が極めて容易になる。また、光ファ
イバ裸線2と一次被覆層3との界面の密着力を光ファイ
バケーブルが長時間浸水した状態に置かれても、該界面
が剥離しない強度に保ち、かつ、接続作業が容易となる
被覆層の設計が可能となり、FTTH化に適した光ファ
イバテープ心線を提供することができる。 【0028】 【発明の効果】本発明によれば、上記のように光ファイ
バ裸線の外周に一次被覆層、二次被覆層、着色層を設け
てなる光ファイバ着色心線を複数本平行に並べ、その上
に一括被覆層を被覆して一体化した光ファイバテープ心
線において、前記、一次被覆層、二次被覆層、着色層、
一括被覆層の各々の断面2次モーメントとヤング率の積
の合計と一次被覆材の光ファイバ裸線密着力とテープ心
数の積がテープ心線の一括被覆層除去時にかける加熱温
度の雰囲気において数1式の関係を満足しているのでテ
ープ一括被覆層除去時の被覆崩れがなく接続性の良好な
光ファイバテープ心線を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber ribbon, and more particularly, to a method of removing a coating layer of an optical fiber ribbon without removing the coating layer. BACKGROUND OF THE INVENTION In recent years, the demand for large-capacity data transmission has been increasing.
In particular, the FTTH (Fiber to the homing)
e) The demand for conversion is rapidly increasing, and the laying of optical cable networks is urgent. As these optical cables, an optical fiber cable having a structure in which a plurality of optical fiber ribbons in which a plurality of optical fiber ribbons are integrated in a tape shape and stored in a state of being stacked in a slot is used. FIG. 1 is a sectional view of an optical fiber core 1 used for such an optical fiber cable for an optical cable network. The optical fiber core 1 has a fiber coating layer 8 formed on the outer peripheral surface of the bare optical fiber 2. The fiber coating layer 8 includes a primary coating layer 3 formed of an ultraviolet-curable resin on the outer peripheral surface of the bare optical fiber 2, a secondary coating layer 4 formed of an ultraviolet-curable resin on the outer periphery thereof, and an outer peripheral surface thereof. Colored layer 5 formed of colored ultraviolet curable resin
It is composed of FIG. 2 is a cross-sectional view of an optical fiber ribbon 7 in which a plurality of optical fibers 1 shown in FIG. 1 are arranged and integrated into a tape by a collective coating layer 6 made of an ultraviolet curable resin. When the tape cores 7 are connected to each other, first, the collective coating layer 6 and the fiber coating layer 8 are collectively removed from a terminal of the tape core 7 by a heating type coating layer removing device. Thereafter, the bare optical fiber 2 is cut by a fiber cutter, and finally, the bare optical fiber 2 is joined and fused. FIG. 3 shows an example of the tape core end portion after the collective coating layer 6 and the fiber coating layer 8 have been collectively removed from the tape core end. FIG. 3A shows a state in which the entire coating layer has disappeared in its original shape without collapse after the removal of the coating layer. Ideally, the entire coating layer can be removed in this way. However, the bare optical fiber 2 and the primary coating layer 3
If the adhesive force of the coating layer is extremely strong compared to the rigidity of the coating layer, the coating layer 8 cannot completely resist the compressive stress at the time of removing the coating layer, and the entire coating layer is destroyed, thus forming a bellows shape as shown in FIG. In some cases, the fiber coating layer 8 may be bent or the coating layers may be peeled off from each other to leave a part of the fiber coating layer 8 on the bare optical fiber 2. Therefore, from the viewpoint of the connection work, when the collective coating layer is removed as shown in FIG.
As shown in (a), the entire fiber coating layer does not lose its shape and falls out in a pipe shape as it is, and the optical fiber tape core wire does not leave the coating resin on the bare optical fiber 2. Is desirable. On the other hand, as described above, an increase in data traffic has led to an increase in the number of cable mounting cores and a reduction in the diameter of an optical fiber cable for an optical cable network.
For this reason, the integration efficiency has been improved by reducing the thickness of the fiber coating layer 8. In recent years, optical fiber cores 1 exported overseas have been taped by foreign manufacturers and used for cables. Optical fiber tapes used overseas are generally used in Japan. The collective coating layer 6 is thinner than the existing optical fiber tape core wire, and the coating is easily broken. Further, the conventional optical fiber cable has been mainly used in a so-called trunk system for connecting telephone offices. However, the FTTH system requires that the optical fiber cable be laid from the telephone office to the terminal home. means. Therefore, the opportunity of exposing the cable after laying to various unconventional environments greatly increases. Exposure to such an adverse environment may damage the sheath of the optical fiber cable and cause water to enter the cable, leaving the optical fiber in a flooded state for a long time. Become. [0008] It has been reported that the loss of an optical fiber increases due to flooding. If the optical fiber core is submerged for a long time, the submersion may cause, for example, the bare optical fiber 2
Separation occurs at a portion where the adhesive force at the interface between the coating and the primary coating layer 3 is reduced, and water accumulates there and generates blisters. When blisters are generated at the interface between the bare optical fiber 2 and the primary coating 3, lateral pressure is applied to the bare optical fiber 2, resulting in an increase in microbend loss. Therefore, in order to improve the water resistance, it is necessary to increase the adhesion at the interface between the bare optical fiber 2 and the primary coating layer 3 to prevent water from entering the interface. [0009] The adhesive force between the bare optical fiber 2 and the primary coating layer 3 is set so as not to be peeled off even when immersed in water. In order to prevent the shape of the coating layer from being deformed when the layer is removed, the rigidity according to the adhesive force with the bare optical fiber 2 should be increased.
It is necessary to have. Regarding the improvement of the removability of the coating layer, JP-A-2000-111767 and JP-A-200
0-155248 and JP-A-2000-56191 are disclosed. However, these disclosed techniques are mainly for suppressing residue remaining after the removal of the coating layer, and are not techniques for suppressing the deformation of the coating layer due to tape thinning. [0010] The present invention has been made to solve the above-mentioned problems, and comprises a primary coating layer, a secondary coating layer, and a coloring layer provided on the outer periphery of a bare optical fiber. A plurality of optical fiber cores are arranged in parallel, and the optical fiber tape cores integrated by coating a collective coating layer thereon,
The sum of the product of the second moment of area and the Young's modulus of each of the primary coating layer, the secondary coating layer, the coloring layer, and the collective coating layer, the adhesion of the resin forming the primary coating layer to the bare optical fiber, and the tape core The present invention provides an optical fiber ribbon, wherein the product of the number of cores of the wire is expressed by the following equation (2) in an atmosphere of a heating temperature at the time of removing the covering layer of the tape. ## EQU2 ## Ep: Young's modulus (kgf / mm2) of the primary coating layer at the heating temperature at the time of removing the batch covering layer of the tape cores. Es: Young of the secondary coating layer at the heating temperature at the time of removing the batch covering layer of the tape cores. Rate (kgf / mm2) Ec: Young's modulus of the colored layer at the heating temperature at the time of removing the batch covering layer of the tape core wire (kgf / mm2) Er: of the batch covering layer at the heating temperature at the time of removing the batch covering layer of the tape core wire Young's modulus (kgf / mm2) Ip: Second moment of area of primary coating layer (mm4) Is: Second moment of area of secondary coating layer (mm4) Ic: Second moment of area of colored layer (mm4) Ir: Batch coating Second moment of area of layer (mm4) n: Number of cores of tape core wire Gp: Glass adhesion force of primary coating layer at heating temperature (kgf / mm) at the time of removing optical fiber tape core coating layer collectively (kgf / mm) Limits the physical properties of the coating layer and the structure of the coating layer to the above ranges. As a result, the stiffness of the coating layer at the heating temperature during the simultaneous removal of the coating layer is greater than the compressive stress due to the adhesion of the primary coating layer to the bare optical fiber, so the coating layer does not collapse and remains undisturbed. I do. Next, the present invention will be described with reference to embodiments. FIG. 4 shows a collective coating layer removing step which is an object of the present invention. In the figure, reference numeral 11 denotes a commercially available hot stripper (heating type coating layer removing device), in which a heater 13 is incorporated. In order to remove the covering layer from the end of the tape core wire 7 at a time, the end portion of the optical fiber tape core 7 is set in the hot stripper 11 for a predetermined length, and as shown in FIG. A cut is made in the batch coating layer 6 and the coating layer 8 with the blade 12 of FIG. Then heater part 1
3 for a certain period of time to reduce the adhesion between the bare optical fiber 2 and the primary coating layer 3, and after the adhesion is reduced, move the optical fiber ribbon 7 toward the other end as shown in FIG. Then, the batch covering layer 6 and the covering layer 8 are removed. FIG.
(C) shows a state in which the coating layer has been removed. When the covering layer is collectively removed from the end of the optical fiber ribbon 7, if the interface adhesion between the bare optical fiber 2 and the primary covering layer 3 is significantly higher than the rigidity of the covering layer, the bare optical fiber may be removed. Before the peeling proceeds at the interface between the wire 2 and the primary coating layer 3, the coating layer 8 is broken by the compressive stress applied from the blade portion. Therefore, generally, the operation of removing the coating layer of the optical fiber tape core wire 7 is performed by the bare optical fiber 2.
For example, in order to reduce the adhesion at the interface between the coating and the primary coating layer 3, the heating is performed at about 70 to 100 ° C. Therefore, the present inventors have found that the adhesive force of the resin forming the primary coating layer 3 to the bare optical fiber 2 and the Young's modulus and the coating thickness of each coating layer at the heating temperature at the time of the tape coating layer removing operation are light. The effect of the removal of the coating layer of the fiber ribbon on the shape of the coating layer was investigated. as a result,
If the adhesion force of the primary coating layer 3 to the bare optical fiber 2 at the coating layer removal temperature and the parameters using the Young's modulus and the second moment of area of each coating layer are limited to a certain range, the coating layers are removed at once. It has been found that coating collapse at the time can be suppressed. The present inventors adjusted the amounts and types of the urethane acrylate-based UV-curable oligomers and monomers to adjust the amounts of the primary coating layer 3, the secondary coating layer 4, the coloring layer 5 and the batch coating layer 6. An ultraviolet-curable (UV) resin was prepared, an optical fiber ribbon was prepared by a conventional method using the combinations shown in Table 1, and the relationship between the Young's modulus of each coating layer and a parameter using the second moment of area was examined. [Table 1] In this study, the adhesion of the resin forming the primary coating layer 3 to the bare optical fiber 2 was evaluated by a 90 ° peel test. That is, the resin for forming the primary coating layer 3 is coated on a quartz glass substrate to a thickness of 200 μm and then coated for 100 m.
The composition was cured by irradiating ultraviolet rays of J / cm 2. This sheet is cut out at a width of 1 cm, and 90 mm at 50 mm / min at room temperature.
The force at the time of pulling in the direction of ° and peeling was measured. Next, this measurement was performed in a thermostat heated to 90 ° C. In order to measure the Young's modulus of the resin for forming the primary coating layer, the resin for forming the primary coating layer is placed on a glass substrate.
After application of 0 μm, the sheet was irradiated with ultraviolet rays of 1000 mmJ / cm 2 to form a sheet. A 6 mm wide strip is cut out from this sheet, the distance between the marked lines is 25 mm, and the pulling speed is 1 mm / min.
The Young's modulus was measured from the stress at the time of 2.5% tensile strain in a 90 ° C. constant temperature bath. Further, in order to evaluate the coating layer removal property of the optical fiber ribbon, each optical fiber ribbon was subjected to a hot stripper (S218C manufactured by Furukawa Electric) 11 shown in FIG.
Was used to collectively remove the coating layer at a pulling speed of 50 mm / min, and it was tested whether or not the coating layer appeared in a pipe shape.
At this time, the temperature of the heating unit was 90 ° C. Generally, a buckling weight Wk when a buckling occurs when a weight is applied to a column is expressed by the following equation (3). [Equation 3] C: terminal modulus, E: Young's modulus, I: second moment of area, L: length of column Therefore, the buckling weight Wk ( t
total) is expressed as in Equation 4. (Equation 4) On the other hand, when the collective coating layer of the optical fiber ribbon is removed, the coating layer receives compressive stress. This compressive stress is considered to increase as the adhesion between the bare optical fiber 2 and the primary coating layer 3 increases. Therefore, the value obtained by dividing this Wk (total) by the product of the adhesion of the primary coating layer forming resin to the bare optical fiber and the number of bare optical fiber cores of the optical fiber ribbon is the buckling load and the optical fiber tape core. This is the ratio K of the compressive stress applied to the coating layer when the batch coating layer is removed. Therefore, as this value K is larger, the coating layer is less likely to collapse and is more likely to appear in a pipe shape. (Equation 5) Table 1 shows these Examples 1 to 3 and Comparative Examples 1 to
The evaluation results of No. 3 are also shown. As can be seen from Table 1,
The ratio K of the buckling load to the compressive stress applied to the coating layer when the coating layer of the optical fiber ribbon is removed at a time is 1.7 or more, that is, the physical properties of the resin forming each coating layer and the coating structure of the optical fiber ribbon. If the above expression 1 is satisfied, the buckling load is sufficiently larger than the total adhesive force between the bare optical fiber and the interface of the primary coating layer. A good optical fiber ribbon is obtained. According to the present invention, as is apparent from the above embodiment,
By selecting the physical properties of the resin forming each coating layer and the coating structure of the optical fiber ribbon so as to satisfy the expression 1, when the optical fiber ribbons are connected to each other, the coating layer starts from the core end portion. Can be collectively removed without deformation of the coating layer, and the connection work becomes extremely easy. In addition, even if the optical fiber cable is placed in a state where the optical fiber cable is flooded for a long time, the interface between the bare optical fiber 2 and the primary coating layer 3 is kept strong enough to prevent the interface from peeling off, and the connection work is easy. Thus, it is possible to design a coating layer, and to provide an optical fiber ribbon suitable for FTTH. According to the present invention, a plurality of colored optical fiber cores in which a primary coating layer, a secondary coating layer, and a coloring layer are provided on the outer periphery of the bare optical fiber as described above are provided in parallel. Side by side, the optical fiber tape core wire integrated by coating a batch coating layer thereon, the primary coating layer, the secondary coating layer, the coloring layer,
The product of the sum of the product of the second moment of area and Young's modulus of each collective coating layer, the product of the optical fiber bare wire adhesion of the primary coating material and the number of tape cores is determined by the heating temperature applied when removing the collective coating layer of the tape core wire. Since the relationship represented by the expression 1 is satisfied, it is possible to provide an optical fiber ribbon having good connectivity without coating collapse at the time of removing the tape collective coating layer.

【図面の簡単な説明】 【図1】光ファイバ心線を示す断面図である。 【図2】光ファイバテープ心線を示す断面図である。 【図3】光ファイバテープ心線の被覆層除去状態を示す
説明図である。 【図4】光ファイバテープ心線のホットストリッパーに
よる一括被覆層除去工程の初期段階を示す説明図であ
る。 【符号の説明】 1 光ファイバ心線 2 光ファイバ裸線 3 一次被覆層 4 二次被覆層 5 着色層 6 一括被覆層 7 光ファイバテープ心線 8 ファイバ被服層 11 ホットストリッパー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an optical fiber core. FIG. 2 is a sectional view showing an optical fiber ribbon. FIG. 3 is an explanatory diagram showing a state in which a coating layer of an optical fiber ribbon is removed. FIG. 4 is an explanatory diagram showing an initial stage of a collective coating layer removing step of the optical fiber ribbon using a hot stripper. [Description of Signs] 1 Optical fiber core wire 2 Optical fiber bare wire 3 Primary coating layer 4 Secondary coating layer 5 Colored layer 6 Batch coating layer 7 Optical fiber tape core 8 Fiber coating layer 11 Hot stripper

Claims (1)

【特許請求の範囲】 【請求項1】光ファイバ裸線の外周に一次被覆層、二次
被覆層、着色層を設けてなる光ファイバ心線を複数本平
行に並べ、その上に一括被覆層を被覆して一体化した光
ファイバテープ心線において、前記、一次被覆層、二次
被覆層、着色層、一括被覆層の各々の断面2次モーメン
トとヤング率の積の合計と一次被覆層形成樹脂の光ファ
イバ裸線に対する密着力とテープ心線の心数の積がテー
プ心線の一括被覆層除去時における加熱温度の雰囲気に
おいて下記数1式の関係であることを特徴とする光ファ
イバテープ心線 【数1】 Ep:テープ心線の一括被覆層除去時の加熱温度におけ
る一次被覆層のヤング率(kgf/mm2) Es:テープ心線の一括被覆層除去時の加熱温度におけ
る二次被覆層のヤング率(kgf/mm2) Ec:テープ心線の一括被覆層除去時の加熱温度におけ
る着色層のヤング率(kgf/mm2) Er:テープ心線の一括被覆層除去時の加熱温度におけ
る一括被覆層のヤング率(kgf/mm2) Ip:一次被覆層の断面二次モーメント(mm4) Is:二次被覆層の断面二次モーメント(mm4) Ic:着色層の断面二次モーメント(mm4) Ir:一括被覆層の断面二次モーメント(mm4) n :テープ心線の心数 Gp:光ファイバテープ心線一括被覆層除去時の加熱温
度における一次被覆層のガラス密着力(kgf/mm)
Claims: 1. A plurality of optical fiber cores comprising a primary coating layer, a secondary coating layer, and a coloring layer provided on the outer periphery of a bare optical fiber are arranged in parallel, and a collective coating layer is formed thereon. In the optical fiber ribbon, the primary coating layer, the secondary coating layer, the coloring layer, and the collective coating layer each have the sum of the product of the secondary moment of area and the Young's modulus and form the primary coating layer. An optical fiber tape characterized in that the product of the adhesion of the resin to the bare optical fiber and the number of cores of the tape core is expressed by the following equation (1) in an atmosphere at a heating temperature when the batch coating layer of the tape core is removed. Core wire [Equation 1] Ep: Young's modulus (kgf / mm2) of the primary coating layer at the heating temperature at the time of removing the batch covering layer of the tape core (Ef): Young's modulus (kgf / mm2) of the secondary coating layer at the heating temperature at the time of removing the batch covering layer of the tape core / mm2) Ec: Young's modulus of the colored layer at the heating temperature when removing the batch covering layer of the tape core (kgf / mm2) Er: Young's modulus of the batch covering layer at the heating temperature when removing the batch covering layer of the tape core ( kgf / mm2) Ip: Second moment of area of primary coating layer (mm4) Is: Second moment of area of secondary coating layer (mm4) Ic: Second moment of area of colored layer (mm4) Ir: Cross section of batch coating layer Second moment (mm4) n: Number of cores of tape core wire Gp: Glass adhesion force of primary coating layer at heating temperature at the time of removing optical fiber tape core batch coating layer (kgf / mm)
JP2001246480A 2001-08-15 2001-08-15 Optical fiber ribbon Expired - Lifetime JP4712244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246480A JP4712244B2 (en) 2001-08-15 2001-08-15 Optical fiber ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246480A JP4712244B2 (en) 2001-08-15 2001-08-15 Optical fiber ribbon

Publications (2)

Publication Number Publication Date
JP2003057508A true JP2003057508A (en) 2003-02-26
JP4712244B2 JP4712244B2 (en) 2011-06-29

Family

ID=19076015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246480A Expired - Lifetime JP4712244B2 (en) 2001-08-15 2001-08-15 Optical fiber ribbon

Country Status (1)

Country Link
JP (1) JP4712244B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056191A (en) * 1998-08-10 2000-02-25 Sumitomo Electric Ind Ltd Coated optical fiber
JP2001100067A (en) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd Ribbon of coated optical fiber and optical fiber cable
JP2001108874A (en) * 1999-10-07 2001-04-20 Sumitomo Electric Ind Ltd Coated optical fiber
WO2001035143A1 (en) * 1999-11-05 2001-05-17 Sumitomo Electric Industries, Ltd. Coated optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056191A (en) * 1998-08-10 2000-02-25 Sumitomo Electric Ind Ltd Coated optical fiber
JP2001100067A (en) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd Ribbon of coated optical fiber and optical fiber cable
JP2001108874A (en) * 1999-10-07 2001-04-20 Sumitomo Electric Ind Ltd Coated optical fiber
WO2001035143A1 (en) * 1999-11-05 2001-05-17 Sumitomo Electric Industries, Ltd. Coated optical fiber

Also Published As

Publication number Publication date
JP4712244B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
TWI666471B (en) Optical fiber ribbon core and optical fiber cable
JP5323664B2 (en) Optical fiber core
US6028976A (en) Split type ribbon optical fiber core cable
JP6273847B2 (en) Optical fiber and optical cable
JPWO2008012926A1 (en) Optical fiber
JP5027318B2 (en) Optical fiber core
JP5479687B2 (en) Optical fiber core and optical fiber cable
JP2010217800A (en) Optical fiber
JP2003057508A (en) Coated optical fiber ribbon
JP2000155248A (en) Coated optical fiber ribbon and method for removing its coating
JP2000292661A (en) Coated optical fiber
JP2006208940A (en) Optical fiber ribbon and optical cable
JP2010210711A (en) Optical-fiber core line
JPH1123919A (en) Coated optical fiber and its manufacture
JPH095587A (en) Optical fiber
JP2001083381A (en) Coated optical fiber
JP2007079603A (en) Method of manufacturing glass optical fiber strand for fiber grating
JP2007272099A (en) Optical fiber ribbon and optical cable
JP3923386B2 (en) Glass optical fiber for fiber grating
JPH11202174A (en) Coated optical fiber tapes
JP4630210B2 (en) Optical fiber ribbon and its adhesion measurement method
JP3067763B1 (en) Split type optical fiber tape
JP2003241039A (en) Coated optical fiber ribbon and method for manufacturing the same
JP4353029B2 (en) Fiber optic cable
JP4144613B2 (en) Optical fiber core, optical fiber tape unit and optical fiber cable using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R151 Written notification of patent or utility model registration

Ref document number: 4712244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3