JP2003057392A - Method and device for generating high energy - Google Patents

Method and device for generating high energy

Info

Publication number
JP2003057392A
JP2003057392A JP2001248101A JP2001248101A JP2003057392A JP 2003057392 A JP2003057392 A JP 2003057392A JP 2001248101 A JP2001248101 A JP 2001248101A JP 2001248101 A JP2001248101 A JP 2001248101A JP 2003057392 A JP2003057392 A JP 2003057392A
Authority
JP
Japan
Prior art keywords
nuclear
energy
generated
radioactive waste
core part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001248101A
Other languages
Japanese (ja)
Other versions
JP4585718B2 (en
Inventor
Kazuo Imazaki
一夫 今崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute for Laser Technology
Original Assignee
Institute for Laser Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute for Laser Technology filed Critical Institute for Laser Technology
Priority to JP2001248101A priority Critical patent/JP4585718B2/en
Publication of JP2003057392A publication Critical patent/JP2003057392A/en
Application granted granted Critical
Publication of JP4585718B2 publication Critical patent/JP4585718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To generate thermal energy by performing nuclear annihilation treatment of radioactive waste at an economical cost using radiant light with energy and the number of photons that can cause nuclear transformation by Compton scattering, and carrying out the fission of nuclear fuel with high efficiency using generated neutrons. SOLUTION: The high energy generating device is provided with a radiation irradiating means 20; a nuclear reactor 10 having an auxiliary core part 12S and a main core part 12M; and a coolant circulating means 30 for transmitting generated thermal energy to the outside. The gamma-ray radiant light with energy and the number of photons that can cause nuclear transformation by Compton scattering is irradiated to perform the nuclear transformation of radioactive waste in the auxiliary core part 12S to thereby perform nuclear annihilation treatment, and the nuclear fuel in the main core part 12M is irradiated with the generated neutrons to generate thermal energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、放射性廃棄物の
核変換をして核消滅処理をしかつ熱エネルギを取り出す
ことができる高エネルギ発生方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high energy generation method and device capable of transmuting radioactive waste for nuclear annihilation processing and extracting heat energy.

【0002】[0002]

【従来の技術】原子力発電所の原子炉で燃料として使用
され、使用済となったウランやプルトニウムなどの高レ
ベル放射性廃棄物は、高レベルの放射性が残存するため
廃棄処分が難しく、厳重に容器内に保管した状態で地中
深く埋設処理するなどが行われている。このような放射
性廃棄物を廃棄処分する方法として、上記のように単に
地中に埋設するのではなく、放射性廃棄物に対し核変換
処理をして放射性のない又は低い物質、あるいは短半減
期の物質に変換する方法について種々試みられた例が知
られている。その1例として、制動放射によりγ線を発
生させ、このγ線を放射性廃棄物に照射して核変換を
し、その核分裂による熱エネルギを取り出す方式の提案
が行われた。
2. Description of the Related Art High-level radioactive waste, such as uranium and plutonium, that has been used as fuel in nuclear power plant nuclear reactors is difficult to dispose because high-level radioactivity remains, and it must be packaged strictly. It is buried deep in the ground while being stored inside. As a method of disposing of such radioactive waste, instead of simply burying it in the ground as described above, a radioactive transmutation treatment is performed on the radioactive waste to obtain non-radioactive or low-radioactive substances, or a short half-life. Various tried examples are known for the method of converting into a substance. As an example thereof, a method has been proposed in which γ-rays are generated by bremsstrahlung, and the γ-rays are applied to radioactive wastes for nuclear transmutation to extract thermal energy from the nuclear fission.

【0003】この制動放射によるγ線の発生は、タング
ステンやタンタルなどのターゲット物質に電子ビームを
当てて発生されるが、この制動放射によるγ線は、原子
核とこれを取り巻く電子の系から成る原子に対して外部
から電子がこの系の中に入ることにより、原子核−電子
のなす系の電界により減速され、この減速によりエネル
ギが放射光に変わり発生する。制動放射による放射光の
発生では、電子のエネルギは原子の運動エネルギ、電離
エネルギ、励起エネルギなどに使われ、制動放射に使わ
れるエネルギはほんの一部分であり、極めて発生効率が
悪い。このため、このような方式によるγ線を放射性廃
棄物に照射して核変換しても、核変換に要するエネルギ
が核分裂で生じるエネルギ以上になり、経済的には意義
が失われ、従って実用化されていない。
The generation of γ-rays due to this bremsstrahlung is generated by irradiating a target material such as tungsten or tantalum with an electron beam. The γ-rays due to this bremsstrahlung are atoms composed of a nucleus and a system of electrons surrounding it. On the other hand, when an electron enters the system from the outside, it is decelerated by the electric field of the system composed of the nucleus and the electron, and this deceleration causes the energy to be changed to radiated light and generated. In the generation of synchrotron radiation by bremsstrahlung, the energy of electrons is used for the kinetic energy, ionization energy, excitation energy, etc. of atoms, and the energy used for bremsstrahlung is only a part, and the generation efficiency is extremely low. Therefore, even if the radioactive waste is irradiated with γ-rays by such a method and transmuted, the energy required for transmutation exceeds the energy generated by nuclear fission and loses its economic significance. It has not been.

【0004】制動放射に基づくγ線による核変換の方式
以外のものとして、陽子ビームによる核破砕装置の提案
が行われており、現在建設が行われている。これは、巨
大な設備であり、数キロメータに及ぶ巨大な加速器で陽
子ビームを加速し、この高速の陽子を核に衝突させて核
を破壊するか、若しくはこの過程を通じて中性子を叩き
出してこの中性子を中性子増倍法等で増倍し、増倍され
た中性子で核を変換するという方式のものである。
As a method other than the nuclear transmutation method using gamma rays based on bremsstrahlung, a nuclear fragmentation apparatus using a proton beam has been proposed and is currently under construction. This is a huge facility, in which a proton beam is accelerated by a huge accelerator of several kilometers and the high-speed proton collides with the nucleus to destroy the nucleus, or neutrons are ejected through this process to launch the neutron. Is multiplied by a neutron multiplication method or the like, and the nucleus is converted by the multiplied neutrons.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述したよう
に、制動放射によるγ線の照射では核変換効率が低いた
め、核変換に要するエネルギが大き過ぎて熱エネルギ発
生装置(原子炉)として意義が失われ、実用的な装置は
得られない。これは、核巨大共鳴を起こす際にγ線のエ
ネルギのスペクトル分布における核反応断面積が特定の
エネルギ状態の範囲で増加するのに対し、制動放射によ
り発生するγ線の光子数がγ線のエネルギのスペクトル
分布において低レベルでかつ殆どフラットな変化である
ため、核反応断面積が増加する範囲であっても入射され
る光子数が増加せず、核巨大共鳴作用が有効に利用され
ないからである。
However, as described above, the irradiation of γ-rays by bremsstrahlung has a low nuclear transmutation efficiency, so the energy required for nuclear transmutation is too large, which is significant as a thermal energy generator (nuclear reactor). Is lost, and a practical device cannot be obtained. This is because the nuclear reaction cross section in the spectral distribution of the energy of γ rays increases in the range of specific energy states when nuclear giant resonance occurs, whereas the number of photons of γ rays generated by bremsstrahlung is Since the energy distribution is low level and almost flat, the number of incident photons does not increase even in the range where the nuclear reaction cross section increases, and the nuclear giant resonance effect is not effectively used. is there.

【0006】一方、陽子ビームによる核分裂を生じさせ
る装置は、巨大な装置であるため、例えば加速器を建設
する費用でさえ数1000億円掛かると言われており、
膨大な費用が掛かることは明らかである。しかも、これ
による核変換が効率よくできるかどうかは、未だ確かで
はない。これは、中性子の増倍率がどれだけ実際に大き
くとれるかが不確定であるためである。又、これは、中
性子の断面積の小さな対象物に対して有効ではない。
On the other hand, since a device that causes nuclear fission by a proton beam is a huge device, it is said that even the cost of constructing an accelerator, for example, costs several hundred billion yen.
It is clear that huge costs will be incurred. Moreover, it is still uncertain whether transmutation by this will be efficient. This is because it is uncertain how large the neutron multiplication factor can actually be. It is also not effective for objects with a small neutron cross section.

【0007】この発明は、上記の問題に留意して、放射
性廃棄物を核変換し得るエネルギのレベルでかつ光子数
の放射光を廃棄物に照射して核消滅処理をし、かつ高い
熱エネルギを発生させることができる高エネルギ発生方
法を提供することを課題とするものである。
[0007] In consideration of the above problems, the present invention irradiates waste with radiant light having a photon number at a level of energy capable of transmuting radioactive waste to perform nuclear annihilation processing, and high thermal energy. It is an object of the present invention to provide a high energy generation method capable of generating the energy.

【0008】さらに、上記方法を実施する装置を提供
し、かつこの装置では核消滅処理で発生する中性子を原
子燃料に照射して高エネルギを発生させることができる
ようにすることをもう1つの課題とするものである。
Another object of the present invention is to provide an apparatus for carrying out the above method, and to irradiate the nuclear fuel with neutrons generated in the nuclear annihilation process to generate high energy. It is what

【0009】[0009]

【課題を解決するための手段】この発明は、上記の課題
を解決する手段として、放射性廃棄物に放射光を照射し
て放射光の光子を吸収させ核巨大共鳴を生じさせる際
に、核巨大共鳴断面積が増大するピーク値を含む一定範
囲内の放射光エネルギのスペクトル分布値に対応して光
子数がピークに増大するようにコンプトン散乱により生
じた放射光を照射して核巨大共鳴により光子を吸収させ
て核変換を生じさせ、これにより廃棄物の核処理をしか
つ熱エネルギを発生させ、核変換の生起により放出され
る中性子を原子燃料に入射させて核分裂を生じさせ、熱
エネルギを発生させる高エネルギ発生方法としたのであ
る。
As a means for solving the above problems, the present invention provides a nuclear giant resonance when a radioactive waste is irradiated with radiant light to absorb photons of the radiated light to cause nuclear giant resonance. The photon is generated by nuclear giant resonance by irradiating the synchrotron radiation generated by Compton scattering so that the number of photons increases to the peak corresponding to the spectral distribution value of the radiated light energy within a certain range including the peak value where the resonance cross section increases. Is absorbed to cause nuclear transmutation, thereby nuclear treatment of waste and generation of thermal energy, and neutrons emitted by the occurrence of nuclear transmutation are injected into nuclear fuel to cause nuclear fission and generate thermal energy. The high energy generation method is used.

【0010】上記方法を実施する装置として、放射性廃
棄物を収納する副炉心部を炉容器の中心に、容器内周に
設けた反射板及び減速材と副炉心部との間に原子燃料管
及び冷却管から成る主炉心部を設けて原子炉を形成し、
副炉心部内の放射性廃棄物に放射光を炉容器外から照射
する放射光照射手段と、炉心部を冷却する冷却材を炉内
から炉外へ循環させ炉心部で発生する熱エネルギを外部
へ伝達する冷却材循環手段とを備え、放射光照射手段か
ら放射光の照射、吸収で生じる核巨大共鳴で断面積が増
大するピーク値を含む一定範囲内の放射光エネルギのス
ペクトル分布値に対応して、光子数がピーク値を含む一
定範囲内の値に増大するようにコンプトン散乱により生
じた放射光を放射光照射手段により照射して核巨大共鳴
により核変換を生じさせ、この核変換による廃棄物の消
滅処理で放出される中性子を主炉心部の原子燃料に照射
して核分裂を生じさせ、消滅処理及び核分裂で主、副炉
心部からそれぞれ熱エネルギを発生させ、その熱エネル
ギを冷却材循環手段により外部へ取り出すように構成し
た高エネルギ発生装置とすることができる。
As an apparatus for carrying out the above-mentioned method, a sub-core portion for accommodating radioactive waste is located at the center of the reactor vessel, a reflector provided on the inner circumference of the vessel, and a nuclear fuel pipe between the moderator and the sub-core portion. A reactor is formed by providing a main core part consisting of a cooling pipe,
Radiant light irradiating means for radiating radiant light from the outside of the reactor vessel to radioactive waste in the sub-core, and circulating coolant for cooling the core from the inside to the outside of the reactor to transfer the thermal energy generated in the core to the outside. Corresponding to the spectral distribution value of the radiant light energy within a certain range including the peak value that the cross-sectional area increases due to the nuclear giant resonance caused by the irradiation and radiation of the radiant light from the radiant light irradiating means. , The synchrotron radiation generated by Compton scattering is irradiated by the synchrotron radiation irradiation means so that the number of photons increases to a value within a certain range including the peak value, and nuclear transmutation is caused by nuclear giant resonance. Neutrons emitted by the annihilation process to irradiate the nuclear fuel in the main core to cause nuclear fission, and in the annihilation process and nuclear fission, heat energy is generated from the main and auxiliary cores respectively, and the heat energy is circulated by the coolant circulation process. It can be a high energy generating device configured to extract to the outside by.

【0011】上記の構成としたこの発明の高エネルギ発
生方法及び装置によれば、放射性廃棄物の核消滅処理を
し、かつ熱エネルギを発生させることができる。放射性
廃棄物に放射光を照射する場合、核変換を生じさせ得る
レベルの放射光でなければならない。かかる放射光は、
制動放射では得ることが困難であり、コンプトン散乱を
利用して比較的容易に得られる。
According to the method and apparatus for generating high energy of the present invention having the above-mentioned structure, it is possible to perform nuclear annihilation treatment of radioactive waste and generate heat energy. When irradiating radioactive waste with synchrotron radiation, it must be at a level that can cause transmutation. Such emitted light is
Difficult to obtain with bremsstrahlung and relatively easy to obtain using Compton scattering.

【0012】放射性廃棄物に核変換を生じさせるため
に、核巨大共鳴の現象を利用する。核巨大共鳴では光子
を共鳴吸収する際の断面積が放射線の特定のエネルギス
ペクトルの領域で増大する。従って、これに対応するエ
ネルギスペクトル領域で核変換を生じ得るレベルのエネ
ルギを有し、かつ光子数がピークに増加するようなコン
プトン散乱による放射光を利用する。このようなコンプ
トン散乱による放射光は、レーザ光と相対論的速度に加
速された電子ビームを衝突させる際にそれぞれの粒子の
スピンの回転方向を逆向きにし、両者のヘリシティ積が
−1となる回転を付与して衝突させると、所定のエネル
ギレベルで光子数(の確率分布)がピークとなる放射光
が得られる。こうして得られる放射光はγ線として得ら
れる。
The phenomenon of nuclear giant resonance is utilized to cause nuclear transmutation in radioactive waste. In nuclear giant resonance, the cross-section of resonant absorption of photons increases in the region of a specific energy spectrum of radiation. Therefore, radiated light by Compton scattering that has a level of energy capable of causing nuclear transmutation in the corresponding energy spectrum region and has a peak number of photons is used. The synchrotron radiation by such Compton scattering reverses the rotation direction of the spin of each particle when the laser beam collides with the electron beam accelerated to the relativistic velocity, and the helicity product of both becomes -1. When the particles are rotated and collided with each other, radiated light having a peak (probability distribution) of photons at a predetermined energy level is obtained. The emitted light thus obtained is obtained as γ rays.

【0013】このような放射光は、光子数が核巨大共鳴
で吸収する断面積のピーク領域に対応して増大し、かつ
核変換を生起するに十分なレベルで得られるから、これ
を照射することにより放射性廃棄物に対し核変換を生じ
させ、これにより核消滅処理が行われることとなる。こ
の核消滅処理が核変換により生起されると、同時に中性
子が放出される。放出された中性子は、放射性廃棄物に
隣接して原子燃料を配置しておくと、その原子燃料に入
射され核分裂を生起する。従って、これにより熱エネル
ギが生じることとなる。
Such synchrotron radiation is emitted because the number of photons increases corresponding to the peak region of the cross section absorbed by the nuclear giant resonance and is obtained at a level sufficient to cause nuclear conversion. As a result, nuclear transmutation is caused in the radioactive waste, and the nuclear annihilation process is performed. When this nuclear annihilation process is caused by transmutation, neutrons are simultaneously emitted. The neutrons emitted will be injected into the nuclear fuel if it is placed adjacent to the radioactive waste and cause nuclear fission. Therefore, this will generate thermal energy.

【0014】上記熱エネルギ発生方法を実施する装置に
おいては、放射性廃棄物は副炉心部に収納されており、
上記所定エネルギで光子が核変換作用を生起し得るレベ
ルの放射光を放射光照射手段より照射して核変換を生起
させ、核消滅処理が行われると共に熱エネルギが生じ
る。そして、発生する中性子は主炉心部内の原子燃料に
照射され、原子燃料が核分裂を生じて反応する。これに
より、巨大な熱エネルギが生じる。これら熱エネルギ
は、冷却材循環手段により外部へ伝達され、この熱エネ
ルギはさらに蒸気タービン等を駆動して発電機を回し、
発電が行われる。
In the apparatus for carrying out the above heat energy generation method, the radioactive waste is stored in the sub-core.
Radiation light of a level at which photons can cause a nuclear transmutation action with the above-mentioned predetermined energy is irradiated from the radiant light irradiating means to cause nuclear transmutation, and nuclear annihilation processing is performed and thermal energy is generated. Then, the generated neutrons are applied to the nuclear fuel in the main core, and the nuclear fuel reacts by causing nuclear fission. This produces a huge amount of heat energy. These heat energies are transmitted to the outside by the coolant circulating means, and the heat energies further drive the steam turbine and the like to rotate the generator,
Power is generated.

【0015】[0015]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面を参照して説明する。図1は実施形態の高エネ
ルギ発生装置の全体概略構成図である。図示のように、
高エネルギ発生装置は、放射性廃棄物Gを収納した副炉
心部12S を炉容器11の中心に、炉容器11の内周に
反射材13、減速材14を設け、かつ副炉心部12S
減速材14との間に原子燃料管15、冷却管16を交互
に配置した主炉心部12M を設けた原子炉10と、副炉
心部12S 内の放射性廃棄物Gに放射光を炉容器外から
照射する放射光照射手段20と、主、副炉心部12M
12S を冷却する冷却材を炉内から炉外へ送り出し、両
炉心部で発生する熱エネルギを外部へ伝達する冷却材循
環手段30とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall schematic configuration diagram of a high energy generation device of an embodiment. As shown,
In the high energy generator, the auxiliary core portion 12 S containing the radioactive waste G is provided at the center of the reactor vessel 11, the reflector 13 and the moderator 14 are provided on the inner circumference of the reactor vessel 11, and the auxiliary core portion 12 S is provided. Radiation light is emitted to the nuclear reactor 10 provided with the main core part 12 M in which the nuclear fuel pipes 15 and the cooling pipes 16 are alternately arranged between the moderator 14 and the radioactive waste G in the auxiliary core part 12 S. The radiant light irradiating means 20 for irradiating from outside, the main and auxiliary core portions 12 M ,
A coolant circulating means 30 is provided for sending a coolant for cooling 12 S from the inside of the furnace to the outside of the furnace and for transmitting the heat energy generated in both core parts to the outside.

【0016】原子炉10は、図2に示すように、炉容器
11の中心部に副炉心部12S が長手方向に適宜間隔に
設けられた支持部材11aにより取り付けられている。
副炉心部12S は、従来の原子炉に用いられる燃料棒の
ように中空筒内に放射性廃棄物を収納し、一端は黒鉛を
用いた窓12wで、他端は端壁で閉じられている。図示
の例の副炉心部12S は、直径が数cm程度、長さはm
級である。この副炉心部12S へは、外部に設置された
第2貯留容器18R に収納されている放射性廃棄物Gの
ペレットが配管18bを経由して送り込まれる。
As shown in FIG. 2, the nuclear reactor 10 has a sub-core portion 12 S attached to the center of a reactor vessel 11 by a supporting member 11 a provided at appropriate intervals in the longitudinal direction.
The sub-reactor part 12 S stores radioactive waste in a hollow cylinder like a fuel rod used in a conventional nuclear reactor, one end is a window 12w made of graphite, and the other end is closed by an end wall. . The auxiliary core portion 12 S in the illustrated example has a diameter of about several cm and a length of m.
It is a class. Pellets of the radioactive waste G stored in the second storage container 18 R installed outside are sent to the sub-core portion 12 S via the pipe 18 b.

【0017】この配管18bは副炉心部12S のγ線入
射端寄りに接続されているため、γ線による核変換作用
を受けたペレットが副炉心部12S の出口側へ送られ、
出口側に接続された配管19aにより第2回収容器19
R へ送り出される。なお、図示していないが、第2貯留
容器18R から副炉心部12S を経由して第2回収容器
19R へペレットを移動させる圧力ポンプ又は吸引ポン
プが適宜位置に設けられている。
Since this pipe 18b is connected to the auxiliary core portion 12 S near the γ-ray incident end, the pellets that have undergone the nuclear transmutation action by γ-rays are sent to the outlet side of the auxiliary core portion 12 S ,
The second recovery container 19 is connected by the pipe 19a connected to the outlet side.
It is sent to R. Although not shown, a pressure pump or suction pump for moving the pellets from the second storage container 18 R to the second recovery container 19 R via the auxiliary core portion 12 S is provided at an appropriate position.

【0018】炉容器11はステンレス鋼板を用いた耐圧
容器として形成され、その内周には中性子の反射材13
が取り付けられ、さらにその内側に減速材14が設けら
れている。減速材14は反射材も兼ねて水などが使用さ
れる。主炉心部12M の原子燃料管15には、外部に設
置された第1貯留容器18P が配管18aを経由して接
続され、第1貯留容器18P に貯留された原子燃料ペレ
ットが送られて来る。原子燃料管15に接して設けられ
る冷却管16は、1次冷却水が流通する。
The furnace vessel 11 is formed as a pressure vessel using a stainless steel plate, and a neutron reflecting material 13 is provided on the inner circumference thereof.
Is attached, and the moderator 14 is provided further inside. For the moderator 14, water or the like is used also as a reflector. An externally installed first storage container 18 P is connected to the nuclear fuel pipe 15 of the main core portion 12 M via a pipe 18 a, and the nuclear fuel pellets stored in the first storage container 18 P are sent to it. Come on. Primary cooling water flows through the cooling pipe 16 provided in contact with the nuclear fuel pipe 15.

【0019】原子燃料管15、冷却管16の内側には管
路17pが設けられ、この管路17pのスペースには中
性子増倍金属球、又は99TC、Pd、 127Cs等の核変
換対象核ペレットが挿入され、これらが中性子増倍手段
17を形成する。上記ペレットにはBe、Al等の中性
子増倍材又は黒鉛を含ませてもよい。なお、炉容器1
1、副炉心部12sの端にそれぞれ設けられたγ線透過
用の窓11w、12wは黒鉛やAl等の軽合金材が用い
られる。
A pipe line 17p is provided inside the nuclear fuel pipe 15 and the cooling pipe 16, and in the space of the pipe line 17p, a neutron multiplying metal sphere or a nucleus for transmutation such as 99 TC, Pd, 127 Cs, etc. The pellets are inserted and these form the neutron multiplication means 17. The pellets may contain a neutron multiplier such as Be or Al, or graphite. In addition, furnace container 1
1. The windows 11w and 12w for γ-ray transmission provided at the ends of the sub-core portion 12s are made of a light alloy material such as graphite or Al.

【0020】上記第2貯留容器18R に貯留される核変
換対象物の放射性廃棄物ペレットは、図示の例では、例
えばヨウ素 129I、テクネチウム99TC、ネプチウム
237Np、アメリシウムAm、セシウム 137Csなどの
長寿命核分裂元素であり、その径は〜cm級である。
又、第1貯留容器18P に貯留される原子燃料ペレット
は、例えばウラン 235U、 238U、プルトニウムPu
239 、Th232 などと黒鉛等の混合した球体である。
The radioactive waste pellets of the nuclear transmutation object stored in the second storage container 18 R are, for example, iodine 129 I, technetium 99 TC, and neptium in the illustrated example.
It is a long-lived fission element such as 237 Np, Americium Am, and Cesium 137 Cs, and its diameter is in the order of cm.
The nuclear fuel pellets stored in the first storage container 18 P are, for example, uranium 235 U, 238 U and plutonium Pu.
It is a sphere in which 239 , Th 232 and the like are mixed with graphite and the like.

【0021】上記原子炉10へ照射されるγ線放射光
は、放射光照射手段20により伝達されるが、この照射
手段20は、図1に示すようにγ線発生装置21で発生
されたγ線を真空ダクト22等の光伝送部材により伝送
するように構成されている。γ線発生装置21は、詳細
は図示省略しているが、パルスレーザ光と電子ビームの
バンチ(集群)を衝突させてγ線の放射光を発生させる
特殊コンプトン散乱方式に基づく装置である。この装置
により発生するγ線放射光は、次のような特性を有す
る。
The γ-ray radiated light with which the nuclear reactor 10 is irradiated is transmitted by the radiant light irradiating means 20, which irradiates with γ-rays generated by a γ-ray generator 21 as shown in FIG. The wire is configured to be transmitted by an optical transmission member such as the vacuum duct 22. Although not shown in detail, the γ-ray generation device 21 is a device based on a special Compton scattering method in which a pulsed laser beam and a bunch (bundle) of an electron beam collide with each other to generate γ-ray emission light. The γ-ray emitted light generated by this device has the following characteristics.

【0022】γ線発生装置21で発生したγ線を放射性
廃棄物に照射して核変換を引き起こす場合、図5の
(b)図に示すように、核変換の作用と同時にγ線によ
って電子−陽電子の対創生が生じる。この対創生に寄与
する原子の有効断面積は大きく、数b〜10bである
が、核変換を引き起こす際の核巨大共鳴に寄与する断面
積は数百mbと極めて小さい。そして、この核巨大共鳴
のエネルギは中心値で14〜16MeVであり、共鳴幅
は3〜4MeVである。従って、核巨大共鳴を有効に作
用させるためには、核巨大共鳴の断面積が最大となる上
記γ線の中心値エネルギに対応して核巨大共鳴で吸収さ
れる光子数が核変換を引き起こすのに十分なレベル以上
のγ線でなければならない。
When radioactive waste is irradiated with γ-rays generated by the γ-ray generator 21 to cause nuclear transmutation, as shown in FIG. Positron pair creation occurs. The effective cross-sectional area of atoms that contribute to this counter-creation is large and is several b to 10 b, but the cross-sectional area that contributes to nuclear giant resonance when causing nuclear transmutation is extremely small, several hundred mb. The energy of this nuclear giant resonance is 14 to 16 MeV at the center value, and the resonance width is 3 to 4 MeV. Therefore, in order to effectively operate the nuclear giant resonance, the number of photons absorbed in the nuclear giant resonance corresponding to the central energy of the above-mentioned γ-ray that maximizes the cross section of the nuclear giant resonance causes nuclear conversion. Γ-rays must be at or above a sufficient level.

【0023】一方、γ線の発生方式による光子数のエネ
ルギスペクトル分布における変化について見ると、図5
の(a)図において、(ハ)は制動放射による光子数の
変化、(ロ)は一般的なコンプトン散乱による光子数の
変化を示す。そして、(イ)はこの発明で用いられる特
殊コンプトン散乱方式での光子数の変化であるが、レー
ザ光と電子ビームの衝突において両者の粒子スピンを特
定方向に向け、両者の回転方向を逆向きに与えてそのヘ
リシティの積が−1となるようにして発生させた場合で
ある。この場合、図示のように、γ線の核巨大共鳴によ
る吸収断面積が最大となるエネルギ値を含む所定領域の
エネルギ中心値に対応する領域で光子数の確率分布がピ
ークとなるように発生する。
On the other hand, looking at changes in the energy spectrum distribution of the number of photons due to the method of generating γ rays, FIG.
In (a) of Figure 3, (c) shows the change in the number of photons due to bremsstrahlung, and (b) shows the change in the number of photons due to general Compton scattering. And (a) is the change in the number of photons in the special Compton scattering method used in the present invention. In the collision of the laser beam and the electron beam, the particle spins of both are directed in a specific direction, and the rotation directions of both are reversed. Is generated so that the product of its helicity becomes −1. In this case, as shown in the drawing, the probability distribution of the number of photons occurs so as to reach a peak in the region corresponding to the energy center value of the predetermined region including the energy value where the absorption cross section due to the nuclear giant resonance of γ-rays is maximum. .

【0024】但し、図示のグラフは制動放射、コンプト
ン散乱に用いられる電子ビームのエネルギを同一レベル
とし、発生したγ線エネルギのスペクトル分布として見
た光子数の確率分布を示す。(イ)のグラフではγ線エ
ネルギ16MeV付近で光子数がピークとなり、従って
この方式による光子数は制動放射方式より桁違いに大き
く、一般のコンプトン散乱方式による場合の数倍以上と
なる。実際の光子数は、1017〜1021個程度であり、
放射性廃棄物の核変換を発生させるに十分なレベルであ
る。又、この特殊コンプトン散乱方式によるγ線は極め
て細く、かつ殆ど広がらない。
However, the graph shown in the figure shows the probability distribution of the number of photons viewed as the spectral distribution of the generated γ-ray energy with the energy of the electron beam used for bremsstrahlung and Compton scattering at the same level. In the graph of (a), the number of photons peaks near the gamma ray energy of 16 MeV, and therefore the number of photons by this method is orders of magnitude higher than that by the bremsstrahlung method, which is several times or more that of the general Compton scattering method. The actual number of photons is about 10 17 to 10 21 ,
It is at a level sufficient to cause transmutation of radioactive waste. Further, the γ-rays by this special Compton scattering method are extremely thin and hardly spread.

【0025】以上のような特定の条件で発生するγ線を
γ線照射手段20から原子炉10へ伝送し、副炉心部1
2sの透過窓12wから放射性廃棄物のペレットへ照射
し、核変換を持続させて熱エネルギが取り出される。図
示した実施形態の原子炉設備は、副炉心部12sで放射
性廃棄物を核変換による消滅処理をすると同時に、消滅
処理で発生する熱エネルギを外部へ取り出し、又上記核
変換で発生する中性子を主炉心部12M へ入射させて原
子燃料を核分裂させ、これにより発生する熱エネルギも
外部へ取り出すようにしたものである。こうして取り出
されたエネルギにより蒸気タービンを駆動して発電機を
回し、発電が行われる点は従来の原子力発電設備と同様
である。
The γ-rays generated under the specific conditions as described above are transmitted from the γ-ray irradiating means 20 to the reactor 10, and the sub-core 1
The radioactive waste pellets are irradiated through the 2 s transmission window 12w to continue the transmutation and extract the thermal energy. In the nuclear reactor equipment of the illustrated embodiment, the radioactive waste is extinguished by transmutation in the sub-core portion 12s, and at the same time, the heat energy generated by the extinction process is taken out to the outside and the neutrons generated by the transmutation are mainly used. The nuclear fuel is injected into the core 12 M to fission the nuclear fuel, and the thermal energy generated by this is taken out to the outside. The point that power is generated by driving the steam turbine by driving the steam turbine with the energy thus taken out is the same as the conventional nuclear power generation facility.

【0026】又、図示の原子炉設備は、消滅処理の対象
の放射性廃棄物として、例えばヨウ素 129I、Pd、Z
n、セシウム 135Csなどの長寿命核分裂元素を消滅処
理することを主眼としている。これは、次の理由によ
る。原子炉から排出される高レベル放射性廃棄物は色々
な放射性物質を含んでおり、これらのうち長寿命核分裂
元素は長時間(100万年)放射線を出し続け、強い毒
性があり、地下深くに埋設するにしても封じ込めが困難
であり、これを核変換処理して、短時間(約1000
年)の寿命の物質に変換すれば封じ込めが容易となるか
らである。但し、長寿命以外の核分裂元素であっても消
滅処理をすることは勿論可能である。
Further, the illustrated nuclear reactor equipment is, for example, iodine 129 I, Pd, Z as radioactive waste to be extinguished.
The main purpose is to eliminate long-lived fission elements such as n and cesium 135 Cs. This is for the following reason. High-level radioactive waste discharged from nuclear reactors contains various radioactive materials, and among these, long-lived fission elements continue to emit radiation for a long time (1 million years), are highly toxic, and are buried deep underground. Even if it does, it is difficult to contain it.
It is easy to contain if it is converted into a substance with a life of (years). However, it is of course possible to perform the annihilation treatment even for fission elements other than those having a long life.

【0027】以上のような放射性廃棄物の消滅処理を前
提とした実施形態の原子炉設備でγ線を副炉心部12s
に照射すると、図4に示すように、放射性廃棄物のペレ
ット中の物質に作用し、(γ、n)反応により中性子が
叩き出されると同時に電子−陽電子の対創生が起こり、
核変換が行われる。この場合、第2貯留容器18R から
送り込まれた反応ターゲットのペレット球は副炉心部1
2sの左側入口から入り、数日又は数カ月照射され右側
出口から出て行く。ペレット球はゆっくりと循環する。
出口から排出されたペレット球は第2回収容器19R
回収される。
In the nuclear reactor equipment of the embodiment on the premise of the radioactive waste extinguishing process as described above, γ rays are emitted to the sub-core 12s.
As shown in FIG. 4, when irradiated with, the substance acts on the substance in the pellet of the radioactive waste, neutrons are knocked out by the (γ, n) reaction, and at the same time, electron-positron pair creation occurs,
Transmutation takes place. In this case, the pellet spheres of the reaction target sent from the second storage container 18 R are
Enter from the left entrance of 2s, irradiated for several days or months, and exit from the right exit. The pellet spheres circulate slowly.
The pellet balls discharged from the outlet are collected in the second collecting container 19 R.

【0028】図6に上記核変換の例を示す。(a)図は
137Csの核変換、(b)図は 237Npの核変換、
(c)図は 129Iの核変換である。(a)図の 137Cs
にγ線を当てると、中性子が叩き出されて 136Csに変
わり、この 136Csはベータ(β)崩壊し、 136Baに
変化して安定核となる。(b)図の 237Npは核が非対
称性を持ち、そのため断面的に2重のピークを持つ。
FIG. 6 shows an example of the nuclear transmutation. (A) The figure is
137 Cs transmutation, (b) Figure 237 Np transmutation,
(C) The figure shows 129 I transmutation. (A) 137 Cs in the figure
When γ-rays are applied to, neutrons are knocked out and change to 136 Cs, and this 136 Cs decays into beta (β) and changes to 136 Ba to become a stable nucleus. In 237 Np in the figure (b), the nucleus has asymmetry, and therefore has a double peak in cross section.

【0029】γ線を当てると(γ、n)反応によってγ
線を吸収した後中性子を放出して 2 36Npとなる。その
後崩壊し種々の過程を経て 208Pbになる。しかし、こ
の過程は複雑で、かつ安定核に辿り着くには80年近く
必要であるが、 237Npの半減期100万年に比較する
とはるかに短い。(c)図の 129Iはγ線の照射により
128Iから直ぐにβ崩壊して 128Xeに変わり安定核と
なる。なお、(b)図、(c)図中の( )内の数値は
それぞれ核巨大共鳴の断面積である。
When γ rays are applied, γ is generated by the (γ, n) reaction.
After absorbing the rays, it emits neutrons to reach 2 36 Np. After that, it collapses and becomes 208 Pb through various processes. However, this process is complex and requires nearly 80 years to reach a stable nucleus, which is much shorter than the half-life of 237 Np, which is one million years. 129 I in the figure (c) is due to γ-ray irradiation
It immediately becomes β stable from 128 I and changes to 128 Xe, becoming a stable nucleus. The numerical values in parentheses in FIGS. (B) and (c) are cross sections of nuclear giant resonances.

【0030】副炉心部12sで核変換作用が行われる
と、叩き出された中性子はその直ぐ外側の中性子増倍手
段である中性子増倍球に当たって中性子の増倍(n、2
n)、(n、3n)の作用により中性子数は増倍され
る。この増倍された中性子が主炉心部12M の原子燃料
ペレットに作用すると原子燃料の核物質が核分裂を始め
て熱エネルギが発生する。この原子燃料の核分裂による
熱エネルギの発生については公知の原理に従うものであ
り、詳細な説明は省略する。
When the nuclear transmutation action is performed in the sub-core portion 12s, the knocked out neutrons strike the neutron multiplying sphere, which is the neutron multiplying means immediately outside thereof, to multiply the neutrons (n, 2).
The number of neutrons is multiplied by the action of (n) and (n, 3n). When this multiplied neutron acts on the nuclear fuel pellets of the main core 12 M , the nuclear material of the nuclear fuel begins to undergo nuclear fission and heat energy is generated. The generation of thermal energy by nuclear fission of nuclear fuel is based on a known principle, and detailed description thereof will be omitted.

【0031】副炉心部12sと主炉心部12M で発生し
た熱エネルギは、主炉心部12M の原子燃料管15に接
して設けられた冷却管16内を流通する1次冷却水に付
与され、この1次冷却水が循環することにより外部へ送
られて熱交換器31で熱エネルギが付与された水蒸気を
タービン41へ送り、これにより発電機43を回転させ
て発電が行われる。
The thermal energy generated by the sub core section 12s and a main core section 12 M is applied to the primary coolant flowing through the provided in contact with the main core section 12 M of nuclear fuel pipe 15 within the cooling tube 16 The steam, which is sent to the outside by the circulation of the primary cooling water and is given the heat energy by the heat exchanger 31, is sent to the turbine 41, whereby the generator 43 is rotated and power is generated.

【0032】以上の副炉心部12sと主炉心部12M
発生する熱エネルギは、原子炉10へ入射されるγ線を
発生させるに要したエネルギを1とすると、副炉心部1
2sでは0.5倍、主炉心部12M では10〜1000
倍のエネルギが発生する。そして、副炉心部12sで放
射性廃棄物の消滅処理が行われると共に同時に発生する
中性子を用いて主炉心部12M での原子燃料の核分裂を
生じさせ、又γ線の照射を停止させると直ちに中性子の
供給も停止され、主炉心部12M での核分裂が停止す
る。
Assuming that the heat energy generated in the sub-core portion 12s and the main core portion 12 M is 1 which is the energy required to generate the γ-rays incident on the reactor 10, the sub-core portion 1
In 2s 0.5 times, the main core section 12 M 10 to 1000
Double energy is generated. Then, as soon as the sub in the core portion 12s with neutrons generated simultaneously with disappearance processing of radioactive waste takes place causing nuclear fission nuclear fuel in the main reactor core 12 M, also stops the irradiation of γ-rays neutron Supply is also stopped, and nuclear fission in the main core 12 M is stopped.

【0033】従って、主炉心部12M が暴走することが
なく、極めて安全な原子炉設備が得られる。なお、この
場合、主炉心部12M の原子燃料管15へは原子燃料が
未臨界状態に配置され、未臨界状態で核分裂作用が生起
されることが前提である。
Therefore, the main reactor core 12 M does not run out of control, and extremely safe nuclear reactor equipment can be obtained. In this case, it is premised that the nuclear fuel is placed in a subcritical state in the nuclear fuel pipe 15 of the main core portion 12 M , and fission action is generated in the subcritical state.

【0034】上記副炉心部12S は、ヨウ素 129I、ネ
プチウム 237Npなどの放射性廃棄物を混合して送り込
み、核処理をするとしたが、この副炉心部12S を第1
副炉心部12S1と第2副炉心部12S2とに分離すること
もできる。この場合、上記実施形態の副炉心部12S
第1副炉心部12S1とし、これにヨウ素 129Iの放射性
廃棄物を送る。そして、図示省略しているが、中性子増
倍手段17の管路17pと、原子燃料管15又は冷却管
16との間に原子燃料管15と同様なもう1種の複数の
管路を円心状に設け、これを第2副炉心部12S2とす
る。
The sub-reactor core 12 S is supposed to be mixed with radioactive waste such as iodine 129 I and neptium 237 Np and fed into the sub-reactor core 12 S for nuclear treatment.
It is also possible to separate the sub-core portion 12 S1 and the second sub-core portion 12 S2 . In this case, the sub-core portion 12 S of the above embodiment is the first sub-core portion 12 S1, and radioactive waste of iodine 129 I is sent to this. Although not shown in the figure, a plurality of other conduits similar to the nuclear fuel pipe 15 are circularly arranged between the conduit 17p of the neutron multiplication means 17 and the nuclear fuel pipe 15 or the cooling pipe 16. The second sub-core portion 12 S2 is provided in the shape of a circle.

【0035】第2副炉心部12S2には、ネプチウム 237
Np、テクネチウムTc等の放射性廃棄物を送り込むよ
うにする。従って、図示省略しているが、この第2副炉
心部12S2にも貯留容器18R ’や回収容器19R ’が
第1副炉心部12S1と同様に接続される。第1副炉心部
12S1へγ線の放射光を照射してヨウ素 129Iを核変換
すると、前述したように、ヨウ素 129Iが安定核に変換
されて熱エネルギを発生すると同時に、中性子を放出し
てこれら中性子は中性子増倍手段17に作用し、(n、
2n)、(n、3n)作用で中性子がさらに増倍され
る。
Neptium 237 is contained in the second sub-core portion 12 S2.
Send in radioactive waste such as Np and technetium Tc. Therefore, although not shown, the storage container 18 R ′ and the recovery container 19 R ′ are also connected to the second auxiliary core portion 12 S2 in the same manner as the first auxiliary core portion 12 S1 . When γ-ray radiation is applied to the first sub-core 12 S1 to transmutate iodine 129 I, as described above, iodine 129 I is converted into stable nuclei to generate thermal energy and simultaneously emit neutrons. These neutrons then act on the neutron multiplication means 17, (n,
Neutrons are further multiplied by the actions of 2n) and (n, 3n).

【0036】このようにして増倍された中性子は、その
外側の第2副炉心部12S2内の237Np、Tcなどの放
射性廃棄物に当り、この(n、n)作用によっても核変
換が行なわれ、核消滅処理が行なわれる。この場合、増
倍された中性子は核変換による核消滅処理だけでなく、
核変換によって生じる中性子と共に主炉心部12M の原
子燃料に作用して核分裂を生起させ、高エネルギを発生
させる点は前述の第1実施形態と同様である。この変形
例の方法は、ヨウ素 129Iのような水に溶け易く、かつ
長寿命核であるため消滅処理が困難な放射性廃棄物を集
中的に処理できるという点で有利である。
The neutrons thus multiplied hit the radioactive wastes such as 237 Np and Tc in the second sub-core 12 S2 on the outside thereof, and the nuclear transmutation is also caused by this (n, n) action. Then, the nuclear annihilation process is performed. In this case, the multiplied neutrons are not only the nuclear annihilation process by transmutation,
It is the same as the first embodiment described above in that it acts on the nuclear fuel of the main core 12 M together with the neutrons generated by transmutation to cause nuclear fission and generate high energy. The method of this modified example is advantageous in that it is easily soluble in water, such as iodine 129 I, and that radioactive waste that is difficult to eliminate because it is a long-lived nucleus can be intensively treated.

【0037】[0037]

【発明の効果】以上、詳細に説明したように、この発明
の高エネルギ発生方法及び装置は放射性廃棄物に対し核
変換を生じ得るエネルギ及び光子数のレベルの放射光を
照射して核変換を生起して核消滅処理をすると共に発生
した中性子を原子燃料に当てて核分裂を生起し、熱エネ
ルギを発生させるようにしたから、放射性廃棄物の核消
滅処理を経済的規模の設備で実施でき、かつこれにより
放出される中性子を利用して原子燃料を核分裂させて熱
エネルギを取り出すことができるという顕著な効果を奏
する。
As described above in detail, the high energy generation method and apparatus of the present invention conducts nuclear transmutation by irradiating radioactive waste with radiant light at a level of energy and photon number capable of causing nuclear transmutation. The nuclear annihilation process of radioactive waste is performed by applying the neutrons generated to the nuclear fuel to cause nuclear fission and generate thermal energy. Moreover, there is a remarkable effect that the nuclear fuel can be fissioned by utilizing the neutrons emitted thereby to take out the thermal energy.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態の原子炉設備の全体概略構成図FIG. 1 is an overall schematic configuration diagram of a reactor facility according to an embodiment.

【図2】同上の原子炉の縦断面図FIG. 2 is a vertical cross-sectional view of the same nuclear reactor.

【図3】図2の矢視III からの部分断面図FIG. 3 is a partial cross-sectional view taken along the arrow III in FIG.

【図4】副炉心部の断面図FIG. 4 is a cross-sectional view of the auxiliary core part.

【図5】(a)γ線の光子数のエネルギスペクトル分布
図 (b)γ線の核巨大共鳴断面積のエネルギスペクトル分
布図
5A is an energy spectrum distribution diagram of the number of photons of γ rays, and FIG. 5B is an energy spectrum distribution diagram of the nuclear giant resonance cross section of γ rays.

【図6】核変換の具体例の説明図FIG. 6 is an explanatory diagram of a specific example of transmutation.

【符号の説明】[Explanation of symbols]

10 原子炉 11 炉容器 12s 副炉心部 12M 主炉心部 13 反射材 14 減速材 15 原子燃料管 16 冷却管 17 中性子増倍材 18P 第1貯留容器 18R 第2貯留容器 19P 第1回収容器 19R 第2回収容器 20 放射線照射手段 21 γ線発生装置 22 光学伝送手段 30 冷却材循環手段 40 発電設備 41 蒸気タービン 42 復水器 43 発電機10 Reactor 11 Reactor Vessel 12s Sub-core 12 M Main Core 13 Reflector 14 Moderator 15 Nuclear Fuel Pipe 16 Cooling Pipe 17 Neutron Multiplier 18 P First Storage Vessel 18 R Second Storage Vessel 19 P First Recovery Container 19 R Second recovery container 20 Radiation irradiation means 21 γ-ray generator 22 Optical transmission means 30 Coolant circulation means 40 Power generation equipment 41 Steam turbine 42 Condenser 43 Generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 放射性廃棄物に放射光を照射して放射光
の光子を吸収させ核巨大共鳴を生じさせる際に、核巨大
共鳴断面積が増大するピーク値を含む一定範囲内の放射
光エネルギのスペクトル分布値に対応して光子数がピー
クに増大するようにコンプトン散乱により生じた放射光
を照射して核巨大共鳴により光子を吸収させて核変換を
生じさせ、これにより廃棄物の核処理をしかつ熱エネル
ギを発生させ、核変換の生起により放出される中性子を
原子燃料に入射させて核分裂を生じさせ、熱エネルギを
発生させる高エネルギ発生方法。
1. A radiant light energy within a certain range including a peak value at which a nuclear giant resonance cross-section increases when irradiating a radioactive waste with radiant light to absorb photons of the radiant light to generate a nuclear giant resonance. The synchrotron radiation generated by Compton scattering is applied so that the number of photons increases to the peak corresponding to the spectral distribution value of the A high-energy generation method in which thermal energy is generated by causing neutrons emitted by the occurrence of transmutation to enter into nuclear fuel and causing nuclear fission.
【請求項2】 放射性廃棄物を収納する副炉心部を炉容
器の中心に、容器内周に設けた反射板及び減速材と副炉
心部との間に原子燃料管及び冷却管から成る主炉心部を
設けて原子炉を形成し、副炉心部内の放射性廃棄物に放
射光を炉容器外から照射する放射光照射手段と、炉心部
を冷却する冷却材を炉内から炉外へ循環させ炉心部で発
生する熱エネルギを外部へ伝達する冷却材循環手段とを
備え、放射光照射手段から放射光の照射、吸収で生じる
核巨大共鳴で断面積が増大するピーク値を含む一定範囲
内の放射光エネルギのスペクトル分布値に対応して、光
子数がピーク値を含む一定範囲内の値に増大するように
コンプトン散乱により生じた放射光を放射光照射手段に
より照射して核巨大共鳴により核変換を生じさせ、この
核変換による廃棄物の消滅処理で放出される中性子を主
炉心部の原子燃料に照射して核分裂を生じさせ、消滅処
理及び核分裂で主、副炉心部からそれぞれ熱エネルギを
発生させ、その熱エネルギを冷却材循環手段により外部
へ取り出すように構成した高エネルギ発生装置。
2. A main core comprising a nuclear fuel pipe and a cooling pipe between the auxiliary core part, which is provided with an auxiliary core part for storing radioactive waste in the center of the reactor container, and a reflector and a moderator, which are provided on the inner circumference of the container. Section to form a nuclear reactor, and radiate light irradiating means for irradiating radioactive waste in the sub-core with radiant light from outside the reactor vessel and a coolant for cooling the core from the inside to the outside of the reactor Radiation within a certain range including a peak value that increases the cross-sectional area due to nuclear giant resonance caused by irradiation and absorption of radiant light from the radiant light irradiating means, provided with a coolant circulating means for transmitting heat energy generated in Corresponding to the spectral distribution value of light energy, synchrotron radiation is generated by Compton scattering so that the number of photons increases to a value within a certain range including the peak value, and radiated by the synchrotron radiation irradiation means to perform nuclear conversion by nuclear giant resonance. Waste produced by this transmutation Neutrons emitted in the annihilation process to irradiate the nuclear fuel in the main core to cause nuclear fission, and in the annihilation process and the nuclear fission, thermal energy is generated from the main and auxiliary cores, respectively, and the thermal energy is used as a coolant circulation means. High-energy generator configured to be taken out by the.
【請求項3】 前記原子炉内の副炉心部と主炉心部との
間に中性子増倍手段を設け、この中性子増倍手段が管内
に中性子増倍体を収納したものから成ることを特徴とす
る請求項2に記載の高エネルギ発生装置。
3. A neutron multiplying means is provided between the auxiliary core part and the main core part in the nuclear reactor, and the neutron multiplying means comprises a neutron multiplier contained in a tube. The high energy generator according to claim 2.
【請求項4】 前記中性子増倍手段と主炉心部との間に
放射性廃棄物を収納する第2副炉心部を設け、第1副炉
心部と異なる種類の放射性廃棄物を中性子の照射により
核消滅処理するようにしたことを特徴とする請求項3に
記載の高エネルギ発生装置。
4. A second sub-core part for accommodating radioactive waste is provided between the neutron multiplication means and the main core part, and a radioactive waste of a different type from the first sub-core part is irradiated by neutrons to generate nuclear waste. The high energy generation device according to claim 3, wherein the high energy generation device is configured to be extinguished.
JP2001248101A 2001-08-17 2001-08-17 High energy generator Expired - Fee Related JP4585718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248101A JP4585718B2 (en) 2001-08-17 2001-08-17 High energy generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248101A JP4585718B2 (en) 2001-08-17 2001-08-17 High energy generator

Publications (2)

Publication Number Publication Date
JP2003057392A true JP2003057392A (en) 2003-02-26
JP4585718B2 JP4585718B2 (en) 2010-11-24

Family

ID=19077321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248101A Expired - Fee Related JP4585718B2 (en) 2001-08-17 2001-08-17 High energy generator

Country Status (1)

Country Link
JP (1) JP4585718B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190833A (en) * 2009-02-20 2010-09-02 Japan Atomic Energy Agency Method for converting long-life fission product into short-lived nuclide
JP2010223940A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223944A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223943A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223941A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223942A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223935A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and apparatus for producing radioisotope
WO2015077554A1 (en) * 2013-11-21 2015-05-28 Stuart Martin A Dielectric wall accelerator and applications and methods of use
KR101522980B1 (en) * 2013-11-28 2015-05-28 서울대학교산학협력단 Yttrium Tri-iodide Target for Nuclear Transmutation of Nuclide Iodine-129 and the Manufacturing Method thereof, and Treatment System for Nuclide Iodine-129 using It
US20160293279A1 (en) * 2013-05-17 2016-10-06 Martin A. Stuart Dielectric wall accelerator and applications and methods of use
JP2018151361A (en) * 2017-03-15 2018-09-27 株式会社東芝 Thermal neutron reactor core and method of designing thermal neutron reactor core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228598A (en) * 1989-03-02 1990-09-11 Power Reactor & Nuclear Fuel Dev Corp Method and apparatus for annihilation disposal of radioactive waste
JPH08292269A (en) * 1995-04-21 1996-11-05 Power Reactor & Nuclear Fuel Dev Corp Determining method of cross section of photonuclear reaction, method for nuclear transmutation and germanium detector
JPH1184043A (en) * 1997-09-11 1999-03-26 Hitachi Ltd Hydride fuel of reactor, hydride fuel assembly using fuel, and fast reactor using fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228598A (en) * 1989-03-02 1990-09-11 Power Reactor & Nuclear Fuel Dev Corp Method and apparatus for annihilation disposal of radioactive waste
JPH08292269A (en) * 1995-04-21 1996-11-05 Power Reactor & Nuclear Fuel Dev Corp Determining method of cross section of photonuclear reaction, method for nuclear transmutation and germanium detector
JPH1184043A (en) * 1997-09-11 1999-03-26 Hitachi Ltd Hydride fuel of reactor, hydride fuel assembly using fuel, and fast reactor using fuel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190833A (en) * 2009-02-20 2010-09-02 Japan Atomic Energy Agency Method for converting long-life fission product into short-lived nuclide
JP2010223940A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223944A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223943A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223941A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223942A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and device for producing radioisotope
JP2010223935A (en) * 2009-02-24 2010-10-07 Japan Atomic Energy Agency Method and apparatus for producing radioisotope
US9728280B2 (en) 2013-05-17 2017-08-08 Martin A. Stuart Dielectric wall accelerator utilizing diamond or diamond like carbon
US10529455B2 (en) * 2013-05-17 2020-01-07 Martin A. Stuart Dielectric wall accelerator and applications and methods of use
US10490310B2 (en) 2013-05-17 2019-11-26 Martin A. Stuart Dielectric wall accelerator utilizing diamond or diamond like carbon
US20160293279A1 (en) * 2013-05-17 2016-10-06 Martin A. Stuart Dielectric wall accelerator and applications and methods of use
EP3072369A4 (en) * 2013-11-21 2017-08-16 Martin A. Stuart Dielectric wall accelerator and applications and methods of use
JP2017501390A (en) * 2013-11-21 2017-01-12 スチュアート,マーティン,エー. Dielectric wall accelerator and application and method of use
WO2015077554A1 (en) * 2013-11-21 2015-05-28 Stuart Martin A Dielectric wall accelerator and applications and methods of use
KR101522980B1 (en) * 2013-11-28 2015-05-28 서울대학교산학협력단 Yttrium Tri-iodide Target for Nuclear Transmutation of Nuclide Iodine-129 and the Manufacturing Method thereof, and Treatment System for Nuclide Iodine-129 using It
JP2018151361A (en) * 2017-03-15 2018-09-27 株式会社東芝 Thermal neutron reactor core and method of designing thermal neutron reactor core

Also Published As

Publication number Publication date
JP4585718B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4585718B2 (en) High energy generator
US6472677B1 (en) Devices and methods for transmuting materials
KR20150023005A (en) Apparatus and methods for transmutation of elements
US20020169351A1 (en) Remediation of radioactive waste by stimulated radioactive decay
KR20170041215A (en) High efficiency neutron capture products production
JP6504683B2 (en) Nuclear reactor system for extinction
RU2004111795A (en) METHOD AND DEVICE FOR NUCLEAR TRANSFER OF RADIOACTIVE WASTE
CZ20014161A3 (en) Energy obtained from fission of used nuclear waste
JP2004191190A (en) High-temperature generating method and system by nuclear transformation processing
JP2012242164A (en) Radioactive waste treating target and radioactive waste treatment system
JPH073474B2 (en) Radioactive waste extinction treatment method
US20030058980A1 (en) Method and apparatus for the transmutation of nuclear waste with tandem production of tritium
EP3459083A1 (en) A method for providing a neutron source
KR101994340B1 (en) Apparatus for Multiple Extraction of Laser Compton Scattering Photons
JP2000321390A (en) Subcritical reactor
Smith et al. An investigation into the possibility of performing radiography with gamma rays emitted from water made radioactive by irradiation with 14 MeV DT fusion neutrons
JP2010025781A (en) gamma-RAY DECAY ACCELERATOR OF NEUTRON-IRRADIATED HAFNIUM CONTROL ROD
Demtröder Applications of Nuclear-and High Energy Physics
Yim Basic Nuclear Science and Engineering
Moiseenko et al. AMERICIUM AND CURIUM BURNUP IN A FUSION REACTOR
Basov et al. Possibility of developing an intense neutrino source
RU2542740C1 (en) Nuclear reactor for combustion of transuranic chemical elements
Khater et al. Assessment of personnel accessibility in the X-1 facility
Takai et al. Nuclear Transmutation of Long-Lived Nuclides with Laser Compton Scattering: Quantitative Analysis by Theoretical Approach
Miyamoto et al. Laser Compton back-scattering gamma-ray source on NewSUBARU

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees