JP2003057355A - Semiconductor radiation detector for alpha-ray dust monitor - Google Patents

Semiconductor radiation detector for alpha-ray dust monitor

Info

Publication number
JP2003057355A
JP2003057355A JP2001249785A JP2001249785A JP2003057355A JP 2003057355 A JP2003057355 A JP 2003057355A JP 2001249785 A JP2001249785 A JP 2001249785A JP 2001249785 A JP2001249785 A JP 2001249785A JP 2003057355 A JP2003057355 A JP 2003057355A
Authority
JP
Japan
Prior art keywords
radiation
ray
check
housing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001249785A
Other languages
Japanese (ja)
Other versions
JP4258145B2 (en
Inventor
Satoru Takahashi
哲 高橋
Takeshi Ishikura
剛 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001249785A priority Critical patent/JP4258145B2/en
Publication of JP2003057355A publication Critical patent/JP2003057355A/en
Application granted granted Critical
Publication of JP4258145B2 publication Critical patent/JP4258145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation detector capable of realizing an α-ray dust monitor having excellent accuracy in discrimination of a nuclide of the α-ray dust and in calculation of its concentration, and having excellent stability. SOLUTION: A radiation sensitive domain 111a of a semiconductor radiation detection element 111 has a radiation entering part 1111, an airtight sealing part 1112 and a check part 1113, and a casing 15a and the airtightly sealed part 1112 are sealed airtightly by an O-ring 17 mounted on a ring groove 153 of the casing 15a. An optical pulse for function check from an LED 13 is allowed to enter the check part 1113 vertically by an optical fiber 14 and an optical path changing member 18 comprising a transparent resin and having the thickness of about 2 mm. An α-ray entrance window 151 of the casing 15a is covered by a PET film 16a having the thickness less than 1 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、環境中に含まれ
る塵埃から放射されるα線を計測・監視するためのα線
ダストモニタに用いられる半導体式放射線検出器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor radiation detector used in an α-ray dust monitor for measuring and monitoring α-rays emitted from dust contained in the environment.

【0002】[0002]

【従来の技術】α線ダストモニタは、計測対象となる環
境の単位体積の空気中から放射されるα線を計測・監視
するための放射線計測装置であって、計測環境の空気を
濾紙に通して、その空気中に含まれる塵埃(ダスト)を
濾紙上に捕集し、その塵埃から放射される個々のα線の
エネルギーを放射線検出器によって計測し、所定時間内
に所定エネルギー幅内に入る検出数をヒストグラムとし
てエネルギースペクトラムを作成し、そのエネルギース
ペクトラムから、捕集した塵埃中に含まれるα線を放射
する塵埃(以下ではα線ダストと言う)の核種及びその
濃度を算出する放射線計測装置である。
2. Description of the Related Art An α-ray dust monitor is a radiation measuring device for measuring and monitoring α-rays emitted from a unit volume of air in the environment to be measured. Then, the dust contained in the air is collected on the filter paper, and the energy of each α ray radiated from the dust is measured by the radiation detector, and it falls within the predetermined energy width within the predetermined time. A radiation measurement device that creates an energy spectrum using the number of detections as a histogram and calculates the nuclides of dust that emits α rays (hereinafter referred to as α ray dust) contained in the collected dust and its concentration from the energy spectrum. Is.

【0003】α線ダストモニタに用いられる放射線検出
器には、装置を小型軽量にまとめることができ、且つ必
要な情報を所望の精度で得ることができる半導体式放射
線検出素子を搭載した半導体式放射線検出器が、一般的
に使用されている。図2は、半導体式放射線検出素子
(図2では単に放射線検出素子、以下では放射線検出素
子と略称する)11を用いた従来技術によるα線ダストモ
ニタ用放射線検出器(図2では単に放射線検出器、以下
では放射線検出器と略称する)の一例の構成を示し、
(a)は全体構成を示す概念図、(b)は放射線検出素
子11の平面図である。
A radiation detector used in an α-ray dust monitor is a semiconductor radiation detector equipped with a semiconductor radiation detection element which can be compact and lightweight and can obtain necessary information with desired accuracy. Detectors are commonly used. FIG. 2 is a radiation detector for an α-ray dust monitor according to the related art using a semiconductor type radiation detection element (simply referred to as a radiation detection element in FIG. 2, hereinafter referred to as a radiation detection element) 11 (simply a radiation detector in FIG. 2). In the following description, a configuration of Example 1 will be abbreviated as a radiation detector),
(A) is a conceptual diagram showing the overall configuration, and (b) is a plan view of the radiation detecting element 11.

【0004】放射線検出器は、放射線検出素子11とパ
ルスアンプ12とLED13と光ファイバ14とこれらを収納
する筐体15と筐体15のα線入射窓151 を覆うPET膜16
とで構成されている。放射線検出素子11は、高抵抗率の
単結晶シリコンウェハの片面にpn接合またはヘテロ接
合を形成され、この接合に逆方向バイアスが印加され
て、接合の両側に空乏層を形成されたものである。空乏
層を形成されている領域が放射線有感領域111 であっ
て、pn接合型の場合には、pn接合を形成されている
領域がこの領域となり、非晶質シリコンによるヘテロ接
合型の場合には、非晶質シリコン上に形成された電極の
領域がほぼこの領域となる。
The radiation detector 1 comprises a PET film 16 covering a radiation detecting element 11, a pulse amplifier 12, an LED 13, an optical fiber 14, a housing 15 for housing them, and an α-ray entrance window 151 of the housing 15.
It consists of and. The radiation detection element 11 is formed by forming a pn junction or a heterojunction on one surface of a high resistivity single crystal silicon wafer, and applying a reverse bias to this junction to form a depletion layer on both sides of the junction. . In the case where the region where the depletion layer is formed is the radiation sensitive region 111 and is a pn junction type, the region where the pn junction is formed is this region, and in the case of a hetero junction type of amorphous silicon. The region of the electrode formed on the amorphous silicon is almost this region.

【0005】α線が物質中(放射線検出素子11の場合は
シリコン中)を移動すると、その物質とα線との相互作
用によってその移動経路に高密度の電子−正孔対が生成
される。この電子−正孔対の生成領域が空乏層のような
高電界領域であると、電子−正孔対はその高電界によっ
て電子と正孔とに分離されて、負電極側に正孔が取り出
され、正電極側に電子が取り出される。取り出された正
孔または電子は荷電粒子であるから、電極から取り出さ
れた電荷量を計測すると取り出された正孔または電子の
数が算出でき、これによって物質中で失われたα線のエ
ネルギーが分かる。放射線検出素子11の空乏層の厚さ
は、計測対象となるα線の飛程よりも厚く設計されてい
るので、電極から取り出される電荷量は空乏層に入射し
たα線のエネルギーに対応する。
When α rays move through a substance (in the case of the radiation detecting element 11, silicon), a high-density electron-hole pair is generated in the movement path due to the interaction between the substance and α rays. When this electron-hole pair generation region is a high electric field region such as a depletion layer, the electron-hole pair is separated into electrons and holes by the high electric field, and holes are extracted to the negative electrode side. Then, the electrons are extracted to the positive electrode side. Since the extracted holes or electrons are charged particles, the number of extracted holes or electrons can be calculated by measuring the amount of charge extracted from the electrode, and the energy of α rays lost in the substance can be calculated. I understand. Since the thickness of the depletion layer of the radiation detecting element 11 is designed to be thicker than the range of the α ray to be measured, the amount of charge extracted from the electrode corresponds to the energy of the α ray incident on the depletion layer.

【0006】放射線検出素子11の電極から取り出された
電荷は、パルスアンプ12に入力されて、電荷量に比例し
た波高値をもつ電圧パルスに変換され、放射線検出器
からα線ダストモニタの本体部に出力されて、そのエネ
ルギーが計測され、その計測結果に基づいてエネルギー
スペクトラムが作成される。そのエネルギースペクトラ
ムからα線ダストに含まれる放射性核種及びその濃度が
算出される。
The charges extracted from the electrodes of the radiation detecting element 11 are input to the pulse amplifier 12 and converted into voltage pulses having a peak value proportional to the amount of charges, and the radiation detector 1
Is output to the main body of the α-ray dust monitor, its energy is measured, and an energy spectrum is created based on the measurement result. The radionuclide contained in the α-ray dust and its concentration are calculated from the energy spectrum.

【0007】LED13及び光ファイバ14は、放射線検出
が正常に動作しているか否かをチェックする部材で
ある。LED13は、外部から入力されるテストパルスに
よって発光し、この光パルスが、光ファイバ14に導かれ
て筐体15の先端外周部に設けられた反射面152 に照射さ
れて矢印で示した方向に反射され、放射線検出素子11の
放射線有感領域111 へ導かれ、α線が入射した場合と同
様に、光パルスの照射部に電子−正孔対を生成し、放射
線有感領域111 の空乏層内で生成された電子−正孔対に
相当する電荷を出力する。この光パルスの照射によって
所定の出力が得られれば、放射線検出器は正常に機能
していると判断される。
The LED 13 and the optical fiber 14 are members for checking whether or not the radiation detector 1 is operating normally. The LED 13 emits light in response to a test pulse input from the outside, and the light pulse is guided to the optical fiber 14 and applied to the reflecting surface 152 provided on the outer periphery of the tip of the housing 15 in the direction indicated by the arrow. The reflected light is guided to the radiation-sensitive region 111 of the radiation detection element 11, and electron-hole pairs are generated in the irradiation portion of the light pulse as in the case where α rays are incident, and the depletion layer of the radiation-sensitive region 111 is generated. The charge corresponding to the electron-hole pair generated inside is output. If a predetermined output is obtained by the irradiation of this light pulse, it is judged that the radiation detector 1 is functioning normally.

【0008】必要な光量の光パルスを確実に放射線有感
領域111 へ導くためには、放射線有感領域111 に入射す
る光が放射線検出素子11の表面にある程度傾いて入射す
ることが必要であって(平行に近いと必要な光量の光パ
ルスが放射線有感領域111 に到達しないから)、筐体15
の内面と放射線検出素子11の放射線有感領域111 側の表
面とを10mm程度離すことが必要である。
In order to reliably guide the light pulse of the required light quantity to the radiation sensitive area 111, it is necessary that the light incident on the radiation sensitive area 111 is incident on the surface of the radiation detecting element 11 with a certain inclination. (Because the required amount of light pulse does not reach the radiation sensitive area 111 if it is close to parallel), the housing 15
It is necessary to separate the inner surface of the radiation detector and the surface of the radiation detection element 11 on the radiation sensitive region 111 side by about 10 mm.

【0009】PET膜16は、筐体15内に収納されている
放射線検出素子11等の部材が計測対象の空気に直接に接
触してその表面が汚染され、放射線検出器の特性が不
安定になることを防止するために、計測対象の空気から
筐体15の内部を隔離する目的で、筐体15のα線入射窓15
1 を覆って取り付けられている。計測対象の空気は、筐
体15のα線入射窓151 に対向して配置される不図示の濾
紙にα線入射窓151 側から通されるので、所定の空気流
量を確保するためには、放射線検出器の前面(図2に
おける筐体15の左側面)と濾紙との間隔を5mm以上にす
ることが必要である。PET膜16の厚さは数μm であ
る。
In the PET film 16, the members such as the radiation detecting element 11 housed in the housing 15 directly contact the air to be measured and the surface is contaminated, and the characteristics of the radiation detector 1 are unstable. For the purpose of isolating the inside of the housing 15 from the air to be measured, the α-ray entrance window 15 of the housing 15
Installed over 1. Since the air to be measured is passed through the filter paper (not shown) arranged facing the α-ray incident window 151 of the housing 15 from the α-ray incident window 151 side, in order to secure a predetermined air flow rate, It is necessary that the distance between the front surface of the radiation detector 1 (the left side surface of the housing 15 in FIG. 2) and the filter paper is 5 mm or more. The thickness of the PET film 16 is several μm.

【0010】[0010]

【発明が解決しようとする課題】α線ダストモニタは、
「従来の技術」の項で説明したように、計測対象となる
環境中のα線ダストの核種及びその濃度を計測する放射
線計測装置であるから、核種を確実に弁別し、且つその
濃度を正確に計測することを求められる。ところが、α
線は、物質との相互作用が非常に強い放射線であって、
物質中を通過する際に多くのエネルギーを消耗する。例
えば、5MeVのα線が標準状態の空気中を通過する場合
には、 0.8MeV/cmの割合でエネルギーを消耗する。密
度の高い物質中を通過する場合には、ほぼその密度に比
例してエネルギーの消耗割合が増大する。したがって、
特定の核種から放射された特定エネルギー値をもつα線
であっても、放射線検出素子11の放射線有感領域111 に
到達するまでに通過する空気層及び他の物質層(例えば
PET膜16)の厚さが変われば、放射線有感領域111 に
到達した時にもつエネルギー値は異なることになる。
[Alpha] -ray dust monitor,
As explained in the section "Prior art", since it is a radiation measurement device that measures the nuclide and its concentration of α-ray dust in the environment to be measured, it can reliably discriminate the nuclide and determine its concentration accurately. It is required to measure. However, α
Rays are radiation that have a very strong interaction with matter,
It consumes a lot of energy when passing through a substance. For example, when a 5 MeV α ray passes through the air in the standard state, energy is consumed at a rate of 0.8 MeV / cm. When passing through a dense material, the energy consumption rate increases almost in proportion to the density. Therefore,
Even an α-ray having a specific energy value radiated from a specific nuclide, which is an air layer and another substance layer (for example, PET film 16) passing through before reaching the radiation-sensitive region 111 of the radiation detection element 11. If the thickness changes, the energy value possessed when reaching the radiation sensitive region 111 will be different.

【0011】濾紙上に捕集された塵埃から放射されるα
線が全て放射線検出素子11に垂直に入射するのであれ
ば、放射線検出素子11に入射するα線の通過する空気層
等の厚さは一定となるから、特定の核種から放射された
特定エネルギー値をもつα線は全て同じエネルギー値で
検出される。しかし、放射されるα線の放射方向は全く
ランダムであるから、放射線検出素子11に入射するα線
は、いろいろな傾きをもっており、傾きの角度が大きく
なるほど、通過する空気層等の厚さが厚くなり、その間
に失うエネルギー値が増大し、放射線検出素子11に入射
する際のエネルギー値が小さくなる。このような状況の
ために、横軸に検出されたα線のエネルギー値をとり、
縦軸にエネルギー値の一定幅毎のα線検出頻度をとっ
た、いわゆるエネルギースペクトラムは、核種毎に、垂
直入射に相当するエネルギー値で急激に立ち上がってピ
ークをもち、それより低いエネルギー側へ尾を引く状態
の、鋸歯状スペクトラムとなる。通過する空気層等の厚
さが厚くなるほど、同じ傾角であっても消耗エネルギー
が多くなるので、エネルギースペクトラムのピークが低
くなって尾が長くなる。
Α emitted from the dust collected on the filter paper
If all the rays are incident vertically on the radiation detecting element 11, the thickness of the air layer, etc. through which the α rays incident on the radiation detecting element 11 pass becomes constant, so the specific energy value emitted from the specific nuclide. Α-rays with are all detected with the same energy value. However, since the emitting direction of the emitted α-rays is completely random, the α-rays incident on the radiation detecting element 11 have various inclinations, and the larger the angle of inclination, the thinner the air layer or the like passing through. The thickness becomes thicker, the energy value lost during that time increases, and the energy value when entering the radiation detection element 11 decreases. For such a situation, take the energy value of the α ray detected on the horizontal axis,
The so-called energy spectrum, in which the vertical axis shows the frequency of α-ray detection for each fixed width of energy value, has a sharp peak for each nuclide at an energy value equivalent to vertical incidence, and has a peak toward the lower energy side. It becomes a sawtooth spectrum in the state of pulling. The thicker the air layer or the like passing through, the more energy is consumed even with the same inclination angle, so the peak of the energy spectrum becomes lower and the tail becomes longer.

【0012】いろいろな核種を弁別し、それぞれの濃度
をより精度良く算出できるα線ダストモニタを得るため
には、個々の核種に対応するそれぞれのエネルギースペ
クトラムの重なりを少なくすることが必要であり、この
ためには、得られるエネルギースペクトラムの低エネル
ギー側に引く尾の部分を少なくすることが必要条件とな
る。
In order to discriminate various nuclides and obtain an α-ray dust monitor capable of more accurately calculating the respective concentrations, it is necessary to reduce the overlap of the respective energy spectra corresponding to the respective nuclides. For this purpose, it is necessary to reduce the number of tails drawn on the low energy side of the obtained energy spectrum.

【0013】また、筐体15のα線入射窓151 を覆って外
部の雰囲気と筐体内部とを隔離する隔離膜としてのPE
T膜16は、数μm の厚さをもつので、通常の安定な使用
状態においては破損することはないが、急激な圧力変化
等の外力を受けると破損することもある。PET膜16が
破損すると、放射線検出素子11の放射線有感部111 側の
面やリード線等が計測対象の空気に直接に曝され、放射
線検出器の特性が不安定になったり、場合によっては
計測不能になったりする。
Further, PE as a separating film which covers the α-ray entrance window 151 of the housing 15 and separates the outside atmosphere from the inside of the housing
Since the T film 16 has a thickness of several .mu.m, it does not break under normal stable use conditions, but it may break under external force such as a sudden pressure change. If the PET film 16 is damaged, the surface of the radiation detecting element 11 on the side of the radiation sensitive portion 111, the lead wire, etc. are directly exposed to the air to be measured, and the characteristics of the radiation detector 1 become unstable. May become unmeasurable.

【0014】この発明の課題は、得られる個々の核種の
エネルギースペクトラムが低エネルギー側に引く尾の部
分をできるかぎり少なくすることができて、α線ダスト
の核種の弁別及びその濃度の算出の精度に優れたα線ダ
ストモニタを実現でき、且つ安定性に優れた放射線検出
器を提供することである。
The object of the present invention is to reduce the tail portion of the obtained energy spectrum of each nuclide to the low energy side as much as possible, and to discriminate the nuclide of α-ray dust and calculate the concentration thereof. An object of the present invention is to provide a radiation detector which can realize an excellent α-ray dust monitor and is excellent in stability.

【0015】[0015]

【課題を解決するための手段】上記の課題を達成するた
めには、「発明が解決しようとする課題」の項での説明
から明らかなように、次の3点が重要なポイントとな
る。 (1) 放射線検出器としての機能が安定しており、且つ、
放射線検出機能のチェックが確実に実施できること。
In order to achieve the above object, the following three points are important points, as is clear from the explanation in the section "Problems to be solved by the invention". (1) The function as a radiation detector is stable, and
The radiation detection function can be checked reliably.

【0016】(2) 塵埃を捕集する濾紙面と放射線検出素
子の放射線有感領域との間に存在する空気層を含めた物
質層の厚さを小さくして、そこに存在する物質の単位面
積当たりの質量を小さくすること。 (3) 傾いて入射する成分を少なくすること。 この内で、(3) の条件を満たすためには、既に、コリメ
ータが採用されており、コリメータの厚さと開口寸法と
の比率で決まる傾角を越えて入射するα線の成分が除去
されている。
(2) The thickness of the material layer including the air layer existing between the filter paper surface for collecting dust and the radiation sensitive area of the radiation detecting element is reduced to a unit of the material existing there. Reduce the mass per area. (3) To reduce the component that is incident at an angle. Among these, in order to satisfy the condition of (3), a collimator has already been adopted, and the component of α rays incident beyond the tilt angle determined by the ratio of the thickness of the collimator to the aperture size is removed. .

【0017】この発明は、上記(1) 及び(2) の条件を追
求した結果として考案されたものであり、その要点は次
の3つである。その1は、半導体式放射線検出素子で最
も環境の影響を受け易い放射線有感領域の外周部やリー
ド線、パルスアンプを完全な気密雰囲気内に収納する構
造とし、α線入射窓を覆うPET膜の厚さをより薄くす
る。
The present invention was devised as a result of pursuing the above conditions (1) and (2), and the three main points are as follows. The first is a structure in which the outer peripheral portion of the radiation sensitive area which is most susceptible to the environment in the semiconductor type radiation detection element, the lead wire, and the pulse amplifier are housed in a completely hermetic atmosphere, and the PET film covering the α-ray incident window is used. Make the thickness thinner.

【0018】その2は、空気層の厚さを薄くするため
に、狭い空間でも確実にチェック用光パルスを放射線有
感領域へ導くことができる導光手段を導入する。その3
は、光パルスによる機能チェック部は前記気密雰囲気内
に収納する。個々の発明について説明する。請求項1の
発明は、半導体の片方の面に放射線有感領域を形成され
た放射線検出素子と、放射線検出素子がα線によって発
生した電荷信号を電圧パルス信号に変換して出力するパ
ルスアンプと、α線検出機能をチェックするために放射
線有感領域にチェック用光パルスを照射するための発光
手段及び導光手段と、これらの部材を収納しα線入射側
にα線入射窓を有する筐体と、筐体のα線入射窓を覆っ
て外部の雰囲気と筐体内部とを隔離する隔離膜と、を備
えた放射線検出器であって、前記放射線有感領域として
放射線入射部と放射線入射部を囲む気密シール部と気密
シール部の外側に配置され前記発光手段及び導光手段に
よって発光・伝搬されてきたチェック用光パルスを受光
するチェック部とを有する放射線検出素子と、前記放射
線入射部を除いた放射線検出素子の他の部分と前記パル
スアンプと前記発光手段及び導光手段とを前記筐体内に
気密に収納するシール部材と、このシール部材で気密シ
ールされた空間内にある放射線検出素子のチェック部へ
発光手段からのチェック用光パルスを導くための導光手
段としての光ファイバ及び2つ以上の反射面を有する光
路変更部材と、を備えている。
Second, in order to reduce the thickness of the air layer, a light guide means that can surely guide the check light pulse to the radiation sensitive area even in a narrow space is introduced. Part 3
The function check unit based on the light pulse is housed in the airtight atmosphere. Each invention will be described. According to the invention of claim 1, a radiation detecting element having a radiation sensitive region formed on one surface of a semiconductor, and a pulse amplifier for converting a charge signal generated by the radiation detecting element by α rays into a voltage pulse signal and outputting the voltage pulse signal. A light emitting means and a light guiding means for irradiating a radiation sensitive area with a check light pulse for checking the α-ray detection function, and a housing containing these members and having an α-ray incident window on the α-ray incident side. What is claimed is: 1. A radiation detector comprising: a body; and an isolation film that covers an α-ray entrance window of the housing and isolates an external atmosphere from the inside of the housing, the radiation detector including the radiation incident portion and the radiation incident area as the radiation sensitive region. A radiation detecting element having an airtight seal portion surrounding the portion and a check portion arranged outside the airtight seal portion and receiving the check light pulse emitted and propagated by the light emitting means and the light guide means; and the radiation incident portion. To A seal member for hermetically housing the other part of the radiation detecting element except the pulse amplifier, the light emitting means and the light guiding means in the housing, and the radiation detecting element in a space hermetically sealed by the seal member. And an optical path changing member having two or more reflecting surfaces as a light guide means for guiding the check light pulse from the light emitting means to the check part.

【0019】この発明においては、放射線検出素子の放
射線有感領域が放射線入射部と気密シール部とチェック
部とを有し、シール部材が放射線検出素子の気密シール
部と筐体とを確実に気密シールするので、放射線入射部
を除いた放射線検出素子の他の部分とパルスアンプと前
記発光手段及び導光手段とが計測対象の雰囲気から確実
に隔離され、放射線検出素子で最も安定性確保上重要な
放射線有感領域の外周部やリードが、湿度を含んだ外気
の雰囲気に曝されることがなく、安定な放射線検出特性
を得ることができる。また、2つ以上の反射面を有する
光路変更部材によれば、放射線検出素子の放射線有感領
域ではない面側から導かれるチェック用光パルスを2回
あるいはそれ以上反射させることによって、放射線有感
領域のチェック部にほぼ垂直に入射させることができる
ので、光路変更部材の厚さは、光ファイバから導入され
た光ビーム(例えばφ1mm)をチェック部まで導くのに
必要な厚さであればよく、従来技術では10mm程度を必要
とした筐体の内面と放射線検出素子の表面との距離を大
幅に薄くすることができ、濾紙面と放射線検出素子の放
射線有感領域との間に存在する空気層の厚さを大幅に薄
くすることができる。
According to the present invention, the radiation sensitive region of the radiation detecting element has the radiation incident portion, the airtight sealing portion and the check portion, and the sealing member surely hermetically seals the airtight sealing portion of the radiation detecting element and the housing. Since it is sealed, the other parts of the radiation detecting element except the radiation incident part, the pulse amplifier, the light emitting means and the light guiding means are surely isolated from the atmosphere to be measured, which is the most important for ensuring the stability of the radiation detecting element. A stable radiation detection characteristic can be obtained without exposing the outer peripheral portion of the radiation sensitive region and the leads to the atmosphere of outside air containing humidity. Further, according to the optical path changing member having two or more reflecting surfaces, the check light pulse guided from the surface side of the radiation detecting element, which is not the radiation sensitive area, is reflected twice or more, whereby the radiation sensitive element is exposed. Since the light can be made to enter the check portion of the region almost vertically, the thickness of the optical path changing member may be any thickness required to guide the light beam (for example, φ1 mm) introduced from the optical fiber to the check portion. , The distance between the inner surface of the housing and the surface of the radiation detection element, which required about 10 mm in the prior art, can be greatly reduced, and the air existing between the filter paper surface and the radiation sensitive area of the radiation detection element can be reduced. The layer thickness can be significantly reduced.

【0020】請求項2の発明は、請求項1の発明におい
て、前記光路変更部材が、その一端をチェック部と筐体
との間に底辺をチェック部側にして挟み込まれ、その底
辺側の他端に光ファイバの先端が配置され、両側の斜辺
が底辺に対して45度の傾きをもつ台形状の透明なプラス
チックからなる光路変更部材であり、前記隔離膜の材質
がPETであって、その厚さが0.4 μm 〜1μm であ
る。
According to a second aspect of the present invention, in the first aspect of the present invention, the optical path changing member is sandwiched between one end of the optical path changing member and the casing with the bottom side being the check portion side, and the other side of the bottom side. An optical path changing member made of a transparent plastic having a trapezoidal shape in which a tip of an optical fiber is arranged at an end, and oblique sides on both sides have an inclination of 45 degrees with respect to a base, and the isolation film is made of PET. The thickness is 0.4 μm to 1 μm.

【0021】底辺の一端がチェック部と筐体との間に挟
み込まれる台形状の透明なプラスチックからなる光路変
更部材は、底辺に垂直に入射したチェック用光パルスを
45度の斜辺で2回反射することによってチェック部に垂
直に入射させる。また、筐体のα線入射窓を覆う隔離膜
は、シール部材によって気密状態を確保されている部
分、すなわち放射線入射部を除いた放射線検出素子の部
分とパルスアンプと発光手段及び導光手段、を計測対象
の雰囲気から隔離する必要はなく、放射線入射部だけを
隔離すればよいので、常に確実な隔離状態が確保されな
くてもよく、破損したときに交換し、放射線入射部の表
面に付着した塵埃を除去すれば済む。そのため、隔離膜
としては、従来技術に比べてはるかに薄い膜を使用する
ことが可能となり、0.4 μm 〜1μm のPET膜が採用
できる。なお、材質がPETである理由は、PETが薄
くて機械的に強い膜を得やすい実用的な材料であるから
である。
An optical path changing member made of a trapezoidal transparent plastic, one end of which is sandwiched between the check portion and the housing, receives a check light pulse incident vertically on the bottom.
The light is reflected twice at the hypotenuse of 45 degrees so that it enters the check part vertically. Further, the isolation film covering the α-ray incident window of the housing is a portion where an airtight state is secured by the seal member, that is, a portion of the radiation detecting element excluding the radiation incident portion, a pulse amplifier, a light emitting means and a light guiding means, Does not need to be isolated from the atmosphere to be measured, only the radiation incident part needs to be isolated, so it is not always necessary to ensure a reliable isolated state, and when it is damaged, it must be replaced and attached to the surface of the radiation incident part. All you have to do is remove the dust. Therefore, it is possible to use a much thinner film as the isolation film than in the prior art, and a PET film of 0.4 μm to 1 μm can be used. The reason why the material is PET is that PET is a practical material that is thin and is easy to obtain a mechanically strong film.

【0022】[0022]

【発明の実施の形態】この発明によるα線ダストモニタ
用半導体式放射線検出器(以下では放射線検出器と略称
する)の実施の形態について実施例を用いて説明する。
なお、従来技術と同じ機能をもつ部分には同じ符号を用
いる。図1は、この発明による放射線検出器の実施例1a
の構成を示し、(a)は全体構成を示す概念図、(b)
はこの実施例に用いられている半導体式放射線検出素子
(図1では単に放射線検出素子、以下では放射線検出素
子と略称する)11a の平面図、(c)はチェック用光パ
ルスの光路を示す部分拡大図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a semiconductor type radiation detector for an .alpha.-ray dust monitor (hereinafter abbreviated as a radiation detector) according to the present invention will be described with reference to examples.
The same reference numerals are used for parts having the same functions as those of the conventional technology. FIG. 1 shows an embodiment 1a of a radiation detector according to the present invention.
And (a) is a conceptual diagram showing the overall configuration.
Is a plan view of the semiconductor type radiation detecting element (simply referred to as a radiation detecting element in FIG. 1, hereinafter abbreviated as a radiation detecting element) 11a used in this embodiment, and (c) is a portion showing an optical path of a check light pulse. FIG.

【0023】放射線検出器1aは、放射線検出素子11a
と、パルスアンプ12と、発光手段であるLED13と、導
光手段である光ファイバ14及び光路変更部材18と、これ
らを収納する筐体15a と、筐体15a のα線入射窓151 を
覆うPET膜16a と、放射線検出素子11a の放射線有感
領域111 の一部と筐体15a の内面との間で筐体内部を気
密にシールするOリング17と、で構成されている。
The radiation detector 1a is a radiation detection element 11a.
A pulse amplifier 12, an LED 13 as a light emitting means, an optical fiber 14 and an optical path changing member 18 as a light guiding means, a housing 15a for housing them, and a PET for covering the α-ray incident window 151 of the housing 15a. It comprises a film 16a and an O-ring 17 that hermetically seals the inside of the housing between a part of the radiation sensitive area 111 of the radiation detection element 11a and the inner surface of the housing 15a.

【0024】放射線検出素子11a は、従来技術の放射線
検出素子と同様の構成であって、高抵抗率の単結晶シリ
コンウェハの片面にpn接合またはヘテロ接合を形成さ
れ、この接合に逆方向バイアスが印加されて接合の両側
に空乏層を形成されたものである。空乏層を形成されて
いる領域が放射線有感領域111aであって、pn接合型の
場合には、pn接合を形成されている領域が放射線有感
領域111aとなり、非晶質シリコンによるヘテロ接合型の
場合には、非晶質シリコン上に形成された電極の領域が
放射線有感領域111aとなる。この放射線有感領域111a
は、図1(b)に示すように、筐体15a のα線入射窓15
1 から入射するα線を検出するために中央部にある放射
線入射部1111と、Oリング17によって気密にシールされ
るために放射線入射部1111の外周部にある気密シール部
1112と、LED13から光ファイバ14及び光路変更部材18
を経由して導かれた機能チェック用光パルスを受けて機
能チェック用信号を発するためのチェック部1113と、か
らなっている。チェック部1113は放射線有感領域111aの
最外部に配置され、その形状は例えば半円形や反楕円形
である。
The radiation detecting element 11a has the same structure as that of the conventional radiation detecting element, and a pn junction or a hetero junction is formed on one surface of a high resistivity single crystal silicon wafer, and a reverse bias is applied to this junction. It is applied to form a depletion layer on both sides of the junction. In the case where the region where the depletion layer is formed is the radiation sensitive region 111a and the region is a pn junction type, the region where the pn junction is formed becomes the radiation sensitive region 111a, which is a heterojunction type made of amorphous silicon. In this case, the region of the electrode formed on the amorphous silicon becomes the radiation sensitive region 111a. This radiation sensitive area 111a
As shown in FIG. 1 (b), is the α-ray entrance window 15 of the housing 15a.
The radiation incident part 1111 in the central part for detecting the α ray incident from 1 and the airtight seal part in the outer peripheral part of the radiation incident part 1111 for being hermetically sealed by the O-ring 17.
1112, LED 13 to optical fiber 14 and optical path changing member 18
And a check unit 1113 for receiving a function check light pulse guided via the function check signal and emitting a function check signal. The check unit 1113 is arranged at the outermost part of the radiation sensitive area 111a, and its shape is, for example, a semicircle or an anti-elliptical shape.

【0025】放射線検出素子11a によるα線の検出原理
の説明は、「従来の技術」の項と全く同じであるので省
略する。LED13、光ファイバ14及び光路変更部材18
は、放射線検出器1aが正常に動作しているか否かをチェ
ックする部材であり、従来技術と異なる点は、従来技術
における筐体の反射面152 が光路変更部材18に置き換え
られていることである。光路変更部材18は、アクリル樹
脂等の透明なプラスチックで作製され、両斜辺が底辺に
対して45度傾いた台形状の部材である。LED13は外部
から入力されるテストパルスによって発光する。その光
パルスが、光ファイバ14に導かれて光路変更部材18の底
辺の一端に入射されて、底辺に45度の傾きをもつ反射面
181 で直角に上方に曲げられ、更に底辺に45度の傾きを
もつ反射面182 で直角に右方に曲げられて、光路変更部
材18の底辺の上部から放射線検出素子11a の放射線有感
領域111aのチェック部1113へ導かれ、α線が入射した場
合と同様に、チェック部1113に電子−正孔対を生成す
る。図1(c)の矢印は光路変更部材18内での光パルス
の経路を示している。この光パルスによって、所定の出
力が得られれば、放射線検出器1aは正常に機能している
と判断される。
The explanation of the principle of detecting the α rays by the radiation detecting element 11a is omitted since it is completely the same as the section of "Prior Art". LED 13, optical fiber 14 and optical path changing member 18
Is a member for checking whether or not the radiation detector 1a is operating normally.The difference from the prior art is that the reflecting surface 152 of the housing in the prior art is replaced by the optical path changing member 18. is there. The optical path changing member 18 is made of transparent plastic such as acrylic resin, and is a trapezoidal member having both oblique sides inclined by 45 degrees with respect to the bottom side. The LED 13 emits light in response to a test pulse input from the outside. The optical pulse is guided to the optical fiber 14 and is incident on one end of the bottom side of the optical path changing member 18, and the reflection surface having an inclination of 45 degrees on the bottom side.
It is bent upward at a right angle at 181 and further bent right at a right angle at a reflecting surface 182 having a 45 degree inclination at the bottom, and the radiation sensitive area 111a of the radiation detecting element 11a is detected from above the bottom of the optical path changing member 18. The electron-hole pair is generated in the check unit 1113, similarly to the case where the α-ray is incident on the check unit 1113. The arrow in FIG. 1C indicates the path of the optical pulse in the optical path changing member 18. If a predetermined output is obtained by this optical pulse, it is determined that the radiation detector 1a is functioning normally.

【0026】この実施例のように、光パルスの経路を光
路変更部材18で曲げる場合には、「従来の技術」の項で
説明したように光パルスを放射線有感領域に斜めに入射
させるのとは異なり、光ファイバ14に導かれて底辺下部
に入射された光パルスのビームが、反射面181 で直角に
上方に曲げられて底辺に平行な光ビームとなり、反射面
182 で直角に右方に曲げられてチェック部1113へ垂直に
入射する。したがって、光路変更部材18の厚さは、光ビ
ームを底辺に平行に伝搬できる厚さであればよく、2〜
3mmの厚さがあれば必要な機能を十分に果たすことがで
きる。その結果、筐体15a のα線入射窓側の外面と放射
線検出素子11a の放射線有感領域111aの表面との距離を
従来技術に比べて大幅に短くすることが可能となる。光
路変更部材18は、筐体15a に彫られた凹部154 に嵌め込
まれ、放射線検出素子11a の気密シール部1112と筐体15
a とがOリング17で気密にシールされるときに放射線検
出素子11a と筐体15a との間に挟み込まれて固定され
る。
When the path of the optical pulse is bent by the optical path changing member 18 as in this embodiment, the optical pulse is obliquely incident on the radiation sensitive area as described in the section "Prior Art". In contrast to, the beam of the optical pulse guided to the optical fiber 14 and incident on the bottom of the bottom is bent upward at a right angle by the reflecting surface 181, and becomes a light beam parallel to the bottom.
The light is bent rightward at 182 and vertically incident on the check unit 1113. Therefore, the thickness of the optical path changing member 18 may be any thickness as long as it can propagate the light beam parallel to the bottom side, and
A thickness of 3 mm is sufficient to fulfill the required function. As a result, the distance between the outer surface of the housing 15a on the α-ray entrance window side and the surface of the radiation sensitive area 111a of the radiation detection element 11a can be significantly shortened as compared with the conventional technique. The optical path changing member 18 is fitted into the concave portion 154 engraved in the housing 15a, and the airtight seal portion 1112 of the radiation detecting element 11a and the housing 15a.
When a and a are hermetically sealed by the O-ring 17, they are fixed by being sandwiched between the radiation detection element 11a and the housing 15a.

【0027】光路変更部材18は、チェック用光パルスを
透過させる透明な材料で作製されればよく、この実施例
では、加工性し易く安価なアクリル樹脂で作製されてい
る。寸法の一例を示すと、長さに相当する底辺が14mm、
上辺が10mm、台形の高さに相当する厚さが2mm、幅が12
mmである。長さや幅は、放射線検出素子11a の大きさや
放射線検出素子11a 上でのチェック部1113の位置、光フ
ァイバの太さ、加工精度や位置決め精度等に合わせて決
めればよい。
The optical path changing member 18 may be made of a transparent material that transmits the check light pulse. In this embodiment, it is made of an acrylic resin which is easy to process and is inexpensive. As an example of dimensions, the bottom corresponding to the length is 14 mm,
The upper side is 10 mm, the thickness corresponding to the height of the trapezoid is 2 mm, and the width is 12
mm. The length and width may be determined according to the size of the radiation detection element 11a, the position of the check section 1113 on the radiation detection element 11a, the thickness of the optical fiber, the processing accuracy, the positioning accuracy, and the like.

【0028】なお、この実施例では、斜辺が底辺に対し
て45度傾いている光路変更部材18を示したが、斜辺の傾
きを45度より大きくして、両斜辺に加えて上辺でも反
射させる方式の光路変更部材もある。いずれの光路変更
部材の場合でも、チェック用光パルスをチェック部1113
に垂直に入射させることが最も望ましい。Oリング17
は、1mmφ程度の太さであって、筐体15a のα線入射窓
151 の外周部に彫られたリング溝153 に嵌め込まれて位
置決めされ、筐体15a と放射線検出素子11a の気密シー
ル部1112とを気密にシールし、放射線入射部1111を除い
た放射線検出素子11a の他の部分とパルスアンプ12とL
ED13と光ファイバ14と光路変更手段18とを計測対象の
雰囲気から完全に隔離する。したがって、放射線検出素
子11a で最も安定性確保上重要な放射線有感領域111aの
外周部や不図示のリード等が、湿度や塵埃を含んだ計測
対象の雰囲気に曝されることがなく、安定な放射線検出
特性を得ることができる。更に、LED13等の機能チェ
ック用部材の表面汚染も避けられ、確実な機能チェック
が実施できる。Oリング17の大きさは、α線入射窓151
が通常φ50mmに形成されるので、φ55mm程度である。
In this embodiment, the optical path changing member 18 is shown in which the hypotenuse is inclined by 45 degrees with respect to the base. However, the inclination of the hypotenuse is larger than 45 degrees so that both the hypotenuse and the upper side are reflected. There is also a system optical path changing member. In the case of any optical path changing member, the check light pulse is sent to the check unit 1113.
It is most desirable to make the light incident perpendicularly to. O-ring 17
Has a thickness of about 1 mmφ, and the α-ray entrance window of the housing 15a
It is fitted into a ring groove 153 engraved on the outer periphery of 151 to be positioned, and hermetically seals the housing 15a and the airtight seal part 1112 of the radiation detection element 11a, and the radiation detection element 11a excluding the radiation incidence part 1111 is removed. Other parts and pulse amplifier 12 and L
The ED 13, the optical fiber 14, and the optical path changing means 18 are completely isolated from the atmosphere to be measured. Therefore, in the radiation detection element 11a, the outermost part of the radiation sensitive area 111a, which is the most important for ensuring stability, and the leads (not shown) are not exposed to the atmosphere of the measurement target including humidity and dust, and thus stable. Radiation detection characteristics can be obtained. Further, surface contamination of the function checking member such as the LED 13 can be avoided, and a reliable function check can be carried out. The size of the O-ring 17 is the α-ray incident window 151
Since it is usually formed with a diameter of 50 mm, it is about 55 mm.

【0029】筐体15a は、真鍮またはアルミで作製さ
れ、放射線検出素子11a やパルスアンプ12等の収納容器
であると同時に、外部からのノイズの侵入を防止するシ
ールドボックスを兼ねる。PET膜16a は、放射線検出
素子11a の放射線入射部1111が計測対象の雰囲気中に含
まれる塵埃等で汚染されることを防止するために、筐
15a のα線入射窓151 を覆って取り付けられる。この実
施例の場合には、Oリング17による気密シールによっ
て、検出特性の安定性に強く影響する放射線有感領域11
1aの外周部やリード線等を計測対象の雰囲気から完全に
隔離しているので、このPET膜16aが筐体15a のα線
入射窓151 内を計測対象の雰囲気から確実に隔離するこ
とは、必ずしも必要ではない。したがって、PET膜16
a の厚さを従来のPET膜に比べてはるかに薄くするこ
とが可能となり、この実施例では0.6 μm のPET膜16
a が採用されている。これだけ薄い膜となると、湿度の
透過量も多くなるし破損の可能性も高くなるが、通常の
使用条件では殆ど破損することがなく、実用上の問題は
ない。大きな圧力差がかかる等によってPET膜16a が
破損した場合には、PET膜16a を交換して放射線検出
素子11a の放射線入射部1111に付着した塵埃を除去すれ
ばよい。
The casing 15a is made of brass or aluminum and serves as a container for the radiation detecting element 11a, the pulse amplifier 12 and the like, and also serves as a shield box for preventing noise from entering from the outside. PET film 16a, in order to prevent the radiation incident portion 1111 of the radiation detection element 11a are contaminated with dust and the like contained in the atmosphere to be measured, the housing
It is attached so as to cover the α-ray incident window 151 of 15a. In the case of this embodiment, the radiation-sensitive region 11 that strongly affects the stability of the detection characteristic is provided by the airtight seal by the O-ring 17.
Since the outer peripheral portion of 1a, the lead wire, and the like are completely isolated from the atmosphere to be measured, this PET film 16a ensures that the inside of the α-ray incident window 151 of the housing 15a is isolated from the atmosphere to be measured. Not necessarily required. Therefore, the PET film 16
It is possible to make the thickness of a much thinner than that of the conventional PET film. In this embodiment, the PET film 16 having a thickness of 0.6 μm is used.
a has been adopted. With such a thin film, the amount of moisture permeation increases and the possibility of breakage increases, but under normal use conditions there is almost no breakage and there is no practical problem. When the PET film 16a is damaged due to a large pressure difference or the like, the PET film 16a may be replaced to remove the dust adhering to the radiation incident portion 1111 of the radiation detecting element 11a.

【0030】以上の説明から明らかなように、光路変更
部材18の厚さが2〜3mmあれば光路変更部材18はその機
能を果たすことができるので、この実施例によれば、光
路変更部材18を嵌め込まれた部分の筐体の厚さを2mmと
しても、筐体15a のα線入射窓側の外面と放射線検出素
子11a の放射線有感領域111aの表面との距離を5mm以下
とすることができる。一方、塵埃を捕集する濾紙面と筐
体1aとの距離は、「従来の技術」の項で説明したよう
に、必要な空気量を濾紙に供給するために、5mmより狭
くすることは困難である。したがって、従来技術におい
ては、15mmより狭くすることが困難であった、濾紙面と
放射線検出素子の放射線有感領域との距離を、この実施
例の場合には、上述の説明から明らかなように、10mm以
下にまで短縮することができる。言い換えれば、α線が
通過する空気層の厚さが従来技術に比べて2/3以下と
なる。これに加えて、上述のように、隔離膜としてのP
ET膜の厚さを従来技術の数分の1以下に薄くすること
ができるので、この実施例によれば、核種の弁別及びそ
の濃度の算出の精度に優れたα線ダストモニタを実現で
き、且つ優れた安定性を有する放射線検出器を提供する
ことができる。
As is apparent from the above description, if the thickness of the optical path changing member 18 is 2 to 3 mm, the optical path changing member 18 can fulfill its function. Therefore, according to this embodiment, the optical path changing member 18 is used. Even if the thickness of the portion of the housing in which is fitted is 2 mm, the distance between the outer surface of the housing 15a on the α-ray entrance window side and the surface of the radiation sensitive area 111a of the radiation detection element 11a can be 5 mm or less. . On the other hand, it is difficult to make the distance between the filter paper surface for collecting dust and the housing 1a smaller than 5 mm in order to supply the required amount of air to the filter paper, as described in the section "Prior Art". Is. Therefore, in the prior art, it was difficult to narrower than 15 mm, the distance between the filter paper surface and the radiation sensitive area of the radiation detection element, in the case of this embodiment, as is clear from the above description. It can be shortened to 10 mm or less. In other words, the thickness of the air layer through which the α rays pass is ⅔ or less as compared with the prior art. In addition to this, as described above, P as the isolation film is used.
Since the thickness of the ET film can be reduced to a fraction of that of the conventional technique or less, according to this embodiment, it is possible to realize the α-ray dust monitor excellent in the accuracy of discriminating nuclides and calculating the concentration thereof. Moreover, a radiation detector having excellent stability can be provided.

【0031】なお、α線入射窓151 内にコリメータを装
着すれば、コリメータの厚さと開口部の幅で決まる傾角
以上の傾きで入射するα線が除去されるので、核種の弁
別及びその濃度の算出の精度がより優れたものになる。
装着できるコリメータの厚さを、筐体15a のα線入射側
の表面から放射線検出素子11a の放射線入射部1111の表
面までの距離以下とすれば、空気層の厚さを厚くするこ
となくコリメータを装着することができる。
If a collimator is installed in the α-ray entrance window 151, α-rays incident at an inclination greater than the inclination determined by the thickness of the collimator and the width of the opening are removed, so that the discrimination of nuclides and their concentrations can be eliminated. The accuracy of the calculation becomes better.
If the thickness of the collimator that can be mounted is less than or equal to the distance from the surface of the housing 15a on the α-ray incident side to the surface of the radiation incident portion 1111 of the radiation detection element 11a, the collimator can be installed without increasing the thickness of the air layer. Can be installed.

【0032】[0032]

【発明の効果】請求項1の発明によれば、放射線検出素
子の放射線有感領域が放射線入射部と気密シール部とチ
ェック部とを有し、シール部材が放射線検出素子の気密
シール部と筐体とを確実に気密シールするので、放射線
入射部を除いた放射線検出素子の他の部分とパルスアン
プと前記発光手段及び導光手段とが計測対象の雰囲気か
ら確実に隔離され、放射線検出素子で最も安定性確保上
重要な放射線有感領域の外周部やリードが、湿度を含ん
だ外気の雰囲気に曝されることがなく、安定な放射線検
出特性を得ることができる。また、2つ以上の反射面を
有する光路変更部材によれば、放射線検出素子の放射線
有感領域ではない面側から導かれるチェック用光パルス
を2回あるいはそれ以上反射させることによって、放射
線有感領域のチェック部にほぼ垂直に入射させることが
できるので、光路変更部材の厚さは、光ファイバから導
入された光ビーム(例えばφ1mm)をチェック部まで導
くのに必要な厚さであればよく、従来技術では10mm程度
を必要とした筐体の内面と放射線検出素子の表面との距
離を大幅に薄くすることができ、濾紙面と放射線検出素
子の放射線有感領域との間に存在する空気層の厚さを大
幅に薄くすることができる。
According to the invention of claim 1, the radiation sensitive region of the radiation detecting element has a radiation incident portion, an airtight seal portion and a check portion, and the sealing member is a hermetic seal portion of the radiation detecting element and a casing. Since the body is reliably hermetically sealed, the other parts of the radiation detecting element except the radiation incident part, the pulse amplifier, the light emitting means and the light guiding means are reliably separated from the atmosphere to be measured, and the radiation detecting element is used. It is possible to obtain stable radiation detection characteristics without exposing the outer peripheral portion of the radiation sensitive region and the leads, which are most important for ensuring stability, to the atmosphere of outside air containing humidity. Further, according to the optical path changing member having two or more reflecting surfaces, the check light pulse guided from the surface side of the radiation detecting element, which is not the radiation sensitive area, is reflected twice or more, whereby the radiation sensitive element is exposed. Since the light can be made to enter the check portion of the region almost vertically, the thickness of the optical path changing member may be any thickness required to guide the light beam (for example, φ1 mm) introduced from the optical fiber to the check portion. , The distance between the inner surface of the housing and the surface of the radiation detection element, which required about 10 mm in the prior art, can be greatly reduced, and the air existing between the filter paper surface and the radiation sensitive area of the radiation detection element can be reduced. The layer thickness can be significantly reduced.

【0033】したがって、この発明によれば、シール部
材による完全な気密シール構造によって、α線検出機能
の優れた安定性が確保され、且つ空気層の厚さの大幅な
低減によって、核種の弁別及びその濃度の算出の精度を
高めることができる。請求項2の発明によれば、底辺の
一端がチェック部と筐体との間に挟み込まれる台形状の
透明なプラスチックからなる光路変更部材は、底辺に垂
直に入射したチェック用光パルスを45度の斜辺で2回反
射することによってチェック部に垂直に入射させる。こ
の光路変更部材の斜辺から斜辺までを伝搬する光ビーム
の中心の方向は底辺に平行となるので、光ビームの大部
分を通過させるために必要な厚さを薄くすることができ
る。更に、この光路変更部材は、樹脂製であり且つ単純
な形状であるので、製作が容易であり且つ安価である。
このような光路変更部材が使用できることによって、放
射線検出器の筐体の放射線入射側の表面と放射線検出素
子の放射線有感領域との距離を5mm以下に縮めることが
可能となる。
Therefore, according to the present invention, the complete airtight sealing structure by the sealing member ensures the excellent stability of the α-ray detecting function, and the drastic reduction of the thickness of the air layer enables the discrimination of nuclides and The accuracy of calculating the concentration can be improved. According to the invention of claim 2, the optical path changing member made of a trapezoidal transparent plastic, one end of which is sandwiched between the check portion and the housing, has a check light pulse vertically incident on the bottom side of 45 degrees. The light is reflected twice on the hypotenuse so that it is vertically incident on the check portion. Since the direction of the center of the light beam propagating from the hypotenuse to the hypotenuse of the optical path changing member is parallel to the bottom, the thickness required to pass most of the light beam can be reduced. Further, since this optical path changing member is made of resin and has a simple shape, it is easy and inexpensive to manufacture.
The use of such an optical path changing member makes it possible to reduce the distance between the radiation incident side surface of the housing of the radiation detector and the radiation sensitive area of the radiation detecting element to 5 mm or less.

【0034】また、請求項1の発明による筐体内の気密
シール構造によって、隔離膜としては、従来技術に比べ
てはるかに薄い膜を使用することが可能となり、0.4 μ
m 〜1μm のPET膜が採用できるので、隔離膜による
α線エネルギーの消耗が従来技術の数分の1から10分の
1以下と大幅に低減される。したがって、この発明によ
れば、核種の弁別及びその濃度の算出の精度をより高め
ることができる。
The airtight seal structure in the housing according to the first aspect of the present invention makes it possible to use a much thinner film as the isolation film than in the prior art.
Since a PET film of m to 1 μm can be adopted, the consumption of α-ray energy by the isolation film is greatly reduced to a fraction of that of the prior art to 1/10 or less. Therefore, according to the present invention, it is possible to further improve the accuracy of discrimination of nuclides and calculation of their concentrations.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による放射線検出器の実施例の構成を
示し、(a)は全体構成を示す概念図、(b)は放射線
検出素子の平面図、(c)はチェック用光パルスの光路
を示す部分拡大図
1A and 1B show a configuration of an embodiment of a radiation detector according to the present invention, FIG. 1A is a conceptual diagram showing the overall configuration, FIG. 1B is a plan view of a radiation detection element, and FIG. 1C is an optical path of a check light pulse. Enlarged view showing

【図2】従来技術による放射線検出器の一例の構成を示
し、(a)は全体構成を示す概念図、(b)は放射線検
出素子の平面図
2A and 2B show a configuration of an example of a radiation detector according to a conventional technique, FIG. 2A is a conceptual diagram showing an overall configuration, and FIG. 2B is a plan view of a radiation detection element.

【符号の説明】[Explanation of symbols]

1,1a 放射線検出器 11, 11a 放射線検出素子 111, 111a 放射線有感領域 1111 放射線入射部 1112 気密シール部 1113 チェック部 12 パルスアンプ 13 LED 14 光ファイバ 15, 15a 筐体 151 α線入射窓 152 反射面 153 リング溝 154 凹部 16, 16a PET膜 17 Oリング 18 光路変更部材 181, 182 反射面 1,1a radiation detector 11, 11a Radiation detector 111, 111a Radiation sensitive area 1111 Radiation incident part 1112 Airtight seal part 1113 Check department 12 pulse amplifier 13 LED 14 optical fiber 15, 15a enclosure 151 α-ray incident window 152 Reflective surface 153 Ring groove 154 Recess 16, 16a PET film 17 O-ring 18 Optical path changing member 181, 182 Reflective surface

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G088 EE12 EE17 EE25 FF06 FF15 GG21 HH03 JJ08 JJ09 JJ10 JJ27 JJ36 KK24 LL28    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G088 EE12 EE17 EE25 FF06 FF15                       GG21 HH03 JJ08 JJ09 JJ10                       JJ27 JJ36 KK24 LL28

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体の片方の面に放射線有感領域を形成
された半導体式放射線検出素子と、半導体式放射線検出
素子がα線によって発生した電荷信号を電圧パルス信号
に変換して出力するパルスアンプと、α線検出機能をチ
ェックするために放射線有感領域にチェック用光パルス
を照射するための発光手段及び導光手段と、これらの部
材を収納しα線入射側にα線入射窓を有する筐体と、筐
体のα線入射窓を覆って外部の雰囲気と筐体内部とを隔
離する隔離膜と、を備えたα線ダストモニタ用半導体式
放射線検出器であって、 前記放射線有感領域として放射線入射部と放射線入射部
を囲む気密シール部と気密シール部の外側に配置され前
記発光手段及び導光手段によって発光・伝搬されてきた
チェック用光パルスを受光するチェック部とを有する半
導体式放射線検出素子と、 前記放射線入射部を除いた放射線検出素子の他の部分と
前記パルスアンプと前記発光手段及び導光手段とを前記
筐体内に気密に収納するシール部材と、 このシール部材で気密シールされた空間内にある半導体
式放射線検出素子のチェック部へ発光手段からのチェッ
ク用光パルスを導くための導光手段としての光ファイバ
及び2つ以上の反射面を有する光路変更部材と、を備え
ている、 ことを特徴とするα線ダストモニタ用半導体式放射線検
出器。
1. A semiconductor type radiation detecting element having a radiation sensitive region formed on one surface of a semiconductor, and a pulse for converting a charge signal generated by an α ray into a voltage pulse signal and outputting the voltage pulse signal. An amplifier, a light emitting means and a light guiding means for irradiating a radiation sensitive area with a check light pulse for checking the α-ray detection function, and these members are housed and an α-ray incident window is provided on the α-ray incident side. A semiconductor radiation detector for an α-ray dust monitor, comprising: a housing having the housing, and an isolation film that covers an α-ray entrance window of the housing to separate an external atmosphere from the inside of the housing. As a sensitive area, it has a radiation entrance portion, an airtight seal portion surrounding the radiation entrance portion, and a check portion arranged outside the airtight seal portion and receiving the check light pulse emitted and propagated by the light emitting means and the light guiding means. A semiconductor radiation detecting element, a seal member for hermetically housing the other portion of the radiation detecting element excluding the radiation incident part, the pulse amplifier, the light emitting means and the light guiding means in the housing, and this sealing member. An optical fiber as a light guide means for guiding a check light pulse from the light emitting means to the check portion of the semiconductor type radiation detection element in the space hermetically sealed with, and an optical path changing member having two or more reflecting surfaces. The semiconductor radiation detector for an α-ray dust monitor, characterized by comprising:
【請求項2】前記光路変更部材が、その一端をチェック
部と筐体との間に底辺をチェック部側にして挟み込ま
れ、その底辺側の他端に光ファイバの先端が配置され、
両側の斜辺が底辺に対して45度の傾きをもつ台形状の透
明なプラスチックからなる光路変更部材であり、 前記隔離膜の材質がPETであって、その厚さが0.4 μ
m 〜1μm である、 ことを特徴とする請求項1に記載のα線ダストモニタ用
半導体式放射線検出器。
2. The optical path changing member is sandwiched between one end of the optical path changing member with the check portion and the casing with the bottom side being the check portion side, and the other end of the bottom side is provided with the tip of the optical fiber.
An optical path changing member made of a transparent plastic having a trapezoidal shape in which the hypotenuses on both sides are inclined by 45 degrees with respect to the base, and the isolation film is made of PET and has a thickness of 0.4 μm.
The semiconductor type radiation detector for an α-ray dust monitor according to claim 1, wherein m to 1 μm.
JP2001249785A 2001-08-21 2001-08-21 Semiconductor radiation detector for α-ray dust monitor Expired - Lifetime JP4258145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249785A JP4258145B2 (en) 2001-08-21 2001-08-21 Semiconductor radiation detector for α-ray dust monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249785A JP4258145B2 (en) 2001-08-21 2001-08-21 Semiconductor radiation detector for α-ray dust monitor

Publications (2)

Publication Number Publication Date
JP2003057355A true JP2003057355A (en) 2003-02-26
JP4258145B2 JP4258145B2 (en) 2009-04-30

Family

ID=19078732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249785A Expired - Lifetime JP4258145B2 (en) 2001-08-21 2001-08-21 Semiconductor radiation detector for α-ray dust monitor

Country Status (1)

Country Link
JP (1) JP4258145B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248266A (en) * 2006-03-16 2007-09-27 Aloka Co Ltd Radioactive dust monitor
CN102319082A (en) * 2011-07-05 2012-01-18 刘继国 High voltage circuit fixing and protecting device for positron emission tomography (PET) system
CN102846325A (en) * 2011-06-27 2013-01-02 北京中科美伦科技有限公司 X-ray detection device
CN108448173A (en) * 2018-04-30 2018-08-24 中航锂电(江苏)有限公司 Lithium battery enters shell systems
JP2021004789A (en) * 2019-06-26 2021-01-14 富士電機株式会社 Radiation detector
JP2021067698A (en) * 2021-01-13 2021-04-30 三菱重工業株式会社 Radioactive dust automatic continuous analysis device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248266A (en) * 2006-03-16 2007-09-27 Aloka Co Ltd Radioactive dust monitor
JP4537335B2 (en) * 2006-03-16 2010-09-01 アロカ株式会社 Manufacturing method of radioactive dust monitor
CN102846325A (en) * 2011-06-27 2013-01-02 北京中科美伦科技有限公司 X-ray detection device
CN102319082A (en) * 2011-07-05 2012-01-18 刘继国 High voltage circuit fixing and protecting device for positron emission tomography (PET) system
CN108448173A (en) * 2018-04-30 2018-08-24 中航锂电(江苏)有限公司 Lithium battery enters shell systems
CN108448173B (en) * 2018-04-30 2024-02-06 中创新航科技股份有限公司 Lithium battery shell-entering system
JP2021004789A (en) * 2019-06-26 2021-01-14 富士電機株式会社 Radiation detector
JP7243481B2 (en) 2019-06-26 2023-03-22 富士電機株式会社 Radiation detector
JP7416298B2 (en) 2019-06-26 2024-01-17 富士電機株式会社 Radiation detection device
JP2021067698A (en) * 2021-01-13 2021-04-30 三菱重工業株式会社 Radioactive dust automatic continuous analysis device

Also Published As

Publication number Publication date
JP4258145B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JPS61262675A (en) Detector for high-energy radiation and detection method
US8907268B2 (en) Electron focusing systems and techniques integrated with a scintillation detector covered with a reflective coating
JP4258145B2 (en) Semiconductor radiation detector for α-ray dust monitor
JP2000193749A (en) alphabeta DETECTOR AND alphabeta DETECTING DEVICE USING IT
JP3027886B2 (en) Scintillation detector for radioactive gas monitor
US11275183B2 (en) Radon detection with a three-part diffusion chamber and scintillation coating over an extended surface
JPH04106788U (en) radiation detector
RU2377598C2 (en) Scintillation detector
US7199369B1 (en) Low threshold level radiation detector
JP7243481B2 (en) Radiation detector
JP7110852B2 (en) Particle sensors and electronics
WO2020198931A1 (en) Radiation detectors with scintillators
US20230375723A1 (en) Gas sensor
US20230375724A1 (en) Sensor
WO2021136562A1 (en) Device for measuring the mixed radiation field of photons and neutrons
RU209992U1 (en) Device for measuring background radiation
JPH11213263A (en) Light scattering type particle detecting sensor
US4166218A (en) P-i-n diode detector of ionizing radiation with electric field straightening
JP3158041B2 (en) Radiation detector
US20220412934A1 (en) Alpha radiation detector having an optical sensor for measuring the radon concentration in the ambient air
RU83624U1 (en) PRISMATIC SPECTROMETER
JP4197727B2 (en) αβ detector
RU79683U1 (en) SCINTILLATION DETECTOR
RU2080624C1 (en) Device measuring fluxes of uncharged particles and quanta
JP2984733B2 (en) X-ray total scattering measurement system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term