JP2003057228A - Method of predictive calculation of pickup of organic matter, and method of predictive calculation of water quality - Google Patents

Method of predictive calculation of pickup of organic matter, and method of predictive calculation of water quality

Info

Publication number
JP2003057228A
JP2003057228A JP2001247330A JP2001247330A JP2003057228A JP 2003057228 A JP2003057228 A JP 2003057228A JP 2001247330 A JP2001247330 A JP 2001247330A JP 2001247330 A JP2001247330 A JP 2001247330A JP 2003057228 A JP2003057228 A JP 2003057228A
Authority
JP
Japan
Prior art keywords
suspended
organic matter
matter
amount
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001247330A
Other languages
Japanese (ja)
Other versions
JP4115109B2 (en
Inventor
Mitsuo Yamada
満男 山田
Minoru Wakatsuki
実 若月
Yoshimasa Yamada
義正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001247330A priority Critical patent/JP4115109B2/en
Publication of JP2003057228A publication Critical patent/JP2003057228A/en
Application granted granted Critical
Publication of JP4115109B2 publication Critical patent/JP4115109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Complex Calculations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method of predictive calculation of pickup of organic matter, by which the pickup of an organic matter from sludge can be calculated predictively, and to provide a new method of predictive calculation of water quality. SOLUTION: The method of predictive calculation of pickup of organic matter includes a step of predictively calculation the pickup of a suspended matter from the sludge, and a step of converting the predictively calculated pickup of the suspended matter into the pickup of the organic matter from the sludge, based on the relational expression expressing the concentration of the picked-up suspended matter and the concentration of the organic matter contained in the picked-up suspended matter, as a function of the concentration of the suspended matter picked-up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、巻上げ有
機物量予測計算方法および水質予測計算方法に関するも
のである。さらに詳しくは、この出願の発明は、沿岸海
域等における水質の変動機構の解明や水質・底質環境の
保全等に有用な、新しい巻上げ有機物量予測計算方法お
よび水質予測計算方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention of the present application relates to a method for predicting and calculating rolled-up organic matter amount and a method for predicting and calculating water quality. More specifically, the invention of this application relates to a new method for predicting the amount of wound organic matter and a new method for predicting water quality, which is useful for elucidating the mechanism of fluctuations in water quality in coastal waters and the like and for preserving the water quality / sediment environment.

【0002】[0002]

【従来の技術】従来、波と流れにより水中へ巻き上げら
れる底泥の量(以下、巻上げ底泥量と呼ぶ)の予測計算
は、海岸保存対策を目的とした漂砂による海浜の地形変
化の予測計算や、航路の埋没対策(シルテーション対策
とも呼ばれる)を目的とした粒径の小さな底泥の巻上げ
および輸送による航路埋没の予測計算などにおいて、盛
んに研究・開発され、その実用化が進んでいる。
2. Description of the Related Art Conventionally, the prediction calculation of the amount of bottom mud wound up in water by waves and currents (hereinafter referred to as the amount of bottom sediment) is a predictive calculation of beach topography changes due to drift sand for coastal conservation measures. Also, it has been actively researched and developed, and is being put to practical use in predicting calculation of channel burial due to hoisting and transportation of small-diameter mud for the purpose of channel burial countermeasures (also called siltation countermeasures). .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
巻上げ底泥量の予測計算は、予測対象物質が底泥中の懸
濁物質(浮遊砂とも呼ばれる)であり、懸濁物質中の有
機物のみを対象としてはいないといった問題があった。
However, in the conventional predictive calculation of the amount of rolled-up sludge, the target substance to be predicted is a suspended substance (also called suspended sand) in the sludge, and only organic matter in the suspended substance is calculated. There was a problem that it was not targeted.

【0004】すなわち、巻上げ底泥量の予測計算は具体
的には波と流れにより水中へ巻き上げられる底泥からの
懸濁物質の量(以下、巻上げ懸濁物質量と呼ぶ)を予測
計算しており、他方、懸濁物質中には当然無機物も有機
物も存在しているため、両者を含めた巻上げ懸濁物質量
を予測計算しても、たとえば有機物生成・分解過程をモ
デル化した水質予測計算モデルを用いた水質予測計算で
は精度が十分に高くならないのである。
That is, the prediction calculation of the amount of bottom sediments is carried out by predicting the amount of suspended matter (hereinafter referred to as the amount of suspended matter) from the bottom sediment which is rolled up into water by waves and flows. On the other hand, of course, both inorganic and organic substances are present in the suspended solids, so even if the amount of rolled-up suspended solids including both is predicted, for example, a water quality prediction calculation that models organic substance generation / decomposition processes The accuracy is not sufficiently high in the water quality prediction calculation using the model.

【0005】この出願の発明は、以上のとおりの事情に
鑑みてなされたものであり、従来技術の問題点を解消
し、底泥から巻き上げられる有機物の量(以下、巻上げ
有機物量と呼ぶ)を予測計算することのできる、新しい
巻上げ有機物量予測計算方法、ならびに、有機物生成・
分解過程をモデル化した水質予測計算モデルによる水質
予測計算をより精度良く行うことのできる、新しい水質
予測計算方法を提供することを課題としている。
The invention of this application has been made in view of the above-mentioned circumstances, solves the problems of the prior art, and reduces the amount of organic matter to be rolled up from the bottom mud (hereinafter referred to as the amount of rolled up organic matter). A new method for predicting and calculating the amount of rolled-up organic matter that enables predictive calculation, as well as organic matter generation and
It is an object of the present invention to provide a new water quality prediction calculation method that enables more accurate water quality prediction calculation using a water quality prediction calculation model that models a decomposition process.

【0006】[0006]

【課題を解決する手段】この出願の発明は、上記の課題
を解決するものとして、底泥からの巻上げ懸濁物質量を
予測計算するステップと、巻上げ懸濁物質濃度と巻上げ
懸濁物質中の有機物濃度とを巻上げ懸濁物質濃度の関数
として表した関係式により、前記巻上げ懸濁物質量の予
測計算値を底泥からの巻上げ有機物量へ換算するステッ
プとを有することを特徴とする巻上げ有機物量予測計算
方法(請求項1)を提供する。
Means for Solving the Problems In order to solve the above problems, the invention of this application comprises a step of predicting and calculating the amount of suspended suspended matter from bottom mud, the concentration of suspended suspended matter and the suspended suspended matter in the suspended matter. And a step of converting the predicted calculation value of the amount of the suspended suspended matter into the amount of the suspended organic matter from the bottom mud by the relational expression expressing the concentration of the organic matter as a function of the concentration of the suspended suspended matter. An amount prediction calculation method (claim 1) is provided.

【0007】また、この出願の発明は、底泥からの巻上
げ懸濁物質量を予測計算するステップと、巻上げ懸濁物
質濃度と巻上げ懸濁物質中の有機物濃度とを巻上げ懸濁
物質濃度の関数として表した関係式により、前記巻上げ
懸濁物質量の予測計算値を底泥からの巻上げ有機物量へ
換算するステップと、前記巻上げ有機物量の計算値を用
いて水質を予測計算するステップとを有することを特徴
とする水質予測計算方法(請求項2)をも提供し、この
予測計算方法における水質を予測計算するステップにお
いて、有機物生成・分解過程をモデル化した水質予測計
算モデルを用いること(請求項3)を提供する。
In the invention of this application, the step of predicting and calculating the amount of the suspended suspended matter from the bottom mud, the concentration of the suspended suspended matter and the concentration of the organic matter in the suspended suspended matter are calculated as a function of the concentration of the suspended suspended matter. The step of converting the predicted calculation value of the amount of suspended suspended matter into the amount of organic matter rolled up from the bottom mud, and the step of predicting and calculating the water quality using the calculated value of the amount of organic matter rolled up A water quality prediction calculation method (claim 2) is also provided, and in the step of predicting and calculating the water quality in this prediction calculation method, a water quality prediction calculation model that models organic matter generation and decomposition processes is used (claim Item 3) is provided.

【0008】[0008]

【発明の実施の形態】この出願の発明は、巻上げ懸濁物
質濃度と巻上げ懸濁物質中の有機物濃度との関係式が巻
上げ懸濁物質濃度の関数として表すことができるとい
う、この出願の発明の発明者等による全く新しい知見に
基づいてなされたものであり、その関係式を用いること
で巻上げ有機物量の予測計算を実現している。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application is that the relational expression between the concentration of the suspended suspended matter and the concentration of the organic matter in the suspended suspended matter can be expressed as a function of the concentration of the suspended suspended matter. The present invention has been made on the basis of a completely new finding by the inventors, and the relational expression is used to realize the prediction calculation of the amount of rolled organic matter.

【0009】上記関係式は、巻上げ量や水質予測の対象
となる実際の海域毎にフィールド調査を行い、海域内に
おける波や流れによる巻上げの大きな場所(たとえば水
深の浅い場所)および小さな場所の水質データ(たとえ
ば懸濁物質、懸濁物質の強熱減量、懸濁態有機炭素、ク
ロロフィル濃度など)を解析することにより得ることが
でき、そしてそれを用いて、巻上げ有機物の巻上げ過程
のモデル化を行い、予測対象海域毎の巻上げ有機物量を
予測計算する。
In the above relational expression, a field survey is carried out for each actual sea area subject to the amount of winding and water quality prediction, and the water quality at a large winding location (for example, a shallow water location) and a small water location in the ocean area due to waves and currents. It can be obtained by analyzing data (eg suspended matter, loss on ignition of suspended matter, suspended organic carbon, chlorophyll concentration, etc.) and can be used to model the winding process of rolled organic matter. Perform forecast calculation of the amount of organic matter rolled up for each forecasted sea area.

【0010】より具体的には、まず、波と流れによる底
泥からの懸濁物質の巻上げ・沈降過程を説明すると、た
とえば図1に例示したように、巻上げ過程(図中Up)
では、底泥によりなる泥層から底面直上に懸濁物質が高
濃度で含まれる底面直上層が形成され、その底面直上層
から水中へ懸濁物質が巻き上げられる。
More specifically, first, the winding and settling process of suspended matter from the bottom mud due to waves and flows will be described. For example, as shown in FIG. 1, the winding process (Up in the figure).
In the above, a layer directly above the bottom surface containing a high concentration of suspended substances is formed immediately above the bottom surface of the mud layer composed of bottom mud, and the suspended substances are wound up from the layer directly above the bottom surface into water.

【0011】沈降過程(図中W1,W2)では、水中の
巻上げ懸濁物質(SSbm)に含まれる有機物は、土粒子
等の無機物(SSin-bm)と結合した有機物(SSorg-b
m1)と、無機物から遊離した有機物(SSorg-bm2)に
分かれて沈降し、流れにより輸送される。無機物と結合
した有機物(SSorg-bm1)の沈降速度は、無機物の沈
降速度に左右され、無機物から遊離した有機物(SSor
g-bm2)の沈降速度よりも大きくなる。これらの有機物
を含んだ巻上げ懸濁物質(SSbm)では、輸送過程にお
いて時間の経過とともに、その有機物組成が変化し、無
機物と有機物の混合粒径よりなる懸濁物質の平均的な沈
降速度も変化していくと考えられる。
In the sedimentation process (W1 and W2 in the figure), the organic matter contained in the suspended material suspended in water (SSbm) is the organic matter (SSorg-b) combined with the inorganic matter (SSin-bm) such as soil particles.
m1) and organic matter (SSorg-bm2) separated from inorganic matter are separated and settled, and transported by flow. The sedimentation rate of the organic matter (SSorg-bm1) combined with the inorganic matter depends on the sedimentation rate of the inorganic matter, and the organic matter released from the inorganic matter (SSor-bm1)
It becomes larger than the sedimentation velocity of g-bm2). In the suspended suspended matter (SSbm) containing these organic matters, the composition of the organic matter changes with the passage of time in the transportation process, and the average sedimentation rate of the suspended matter composed of the mixed particle size of inorganic matter and organic matter also changes. It is thought to do.

【0012】巻上げ有機物の巻上げ過程のモデル化は、
この懸濁物質の巻上げ・沈降過程に基づき、上記関係
式、および既存の巻上げ懸濁物質量予測計算モデル(た
とえば底泥浮上量予測計算モデルや浮遊砂量予測計算モ
デルなど)と水質予測計算モデルとの整合性を踏まえ
て、たとえば次のように行う。
Modeling of the winding process of the organic material is as follows:
Based on the winding and sedimentation process of this suspended matter, the above relational expression, and the existing model for predicting the amount of suspended suspended matter (for example, the model for calculating the amount of floating mud floating and the model for predicting suspended sediment) and the water quality prediction model Based on the consistency with, for example, the following is performed.

【0013】最初に、上記底面直上層は極薄い層であ
り、実際の海域では測定が難しく不確定な要素を多く含
むため、仮想の層とする。次いで、フィールド調査水質
データの解析により求められる巻上げ懸濁物質濃度と有
機物濃度との関係式により、巻上げ懸濁物質を巻上げ有
機物へ変換する。この変換には、変換のタイミングに従
って、水中への巻き上がり後に行う手法、底面直上
層で変換して水中への巻上げを計算する手法がある。こ
れにより、図2に例示したような巻上げ過程モデルが得
られる。
First, the layer just above the bottom surface is an extremely thin layer and is a virtual layer because it is difficult to measure in an actual sea area and contains many uncertain elements. Next, the suspended suspended matter is converted into the suspended organic matter by the relational expression between the suspended suspended matter concentration and the organic matter concentration obtained by the analysis of the field survey water quality data. For this conversion, there are a method to be performed after winding up in water and a method to calculate the winding up in water by performing conversion in the layer immediately above the bottom surface according to the conversion timing. Thereby, the winding process model as illustrated in FIG. 2 is obtained.

【0014】すなわち、この巻上げ有機物の巻上げ過程
モデルが巻上げ有機物量の予測計算モデルであり、これ
に基づいて、上記既存の巻上げ懸濁物質量予測計算モデ
ルにより巻上げ懸濁物質の濃度を予測計算し、それを上
記関係式により巻上げ有機物量へ換算することで、底泥
から巻き上げられる有機物量を正確に予測計算できるの
である。
That is, the winding process model of the rolled-up organic matter is a predictive calculation model of the amount of rolled-up organic matter, and based on this, the existing suspended-cracked substance amount prediction calculation model is used to predictively calculate the concentration of the rolled-up suspended matter. By converting it into the amount of organic matter rolled up by the above relational expression, the amount of organic matter rolled up from the bottom mud can be accurately predicted and calculated.

【0015】そしてさらに、この出願の発明によれば、
上述のように予測計算された巻上げ有機物量を用いるこ
とで、有機物の生物化学的な生成・分解過程をモデル化
した水質予測計算モデルによる水質予測計算を、より精
度良く行うことができる。
Further, according to the invention of this application,
By using the amount of rolled-up organic matter predicted and calculated as described above, it is possible to more accurately perform the water quality prediction calculation by the water quality prediction calculation model that models the biochemical generation / decomposition process of the organic matter.

【0016】なおこの場合、巻上げ有機物量の予測計算
を、巻上げ有機物が水中起源の有機物と同様に分解・消
費(被食)されるものとして、水質の予測計算と同時に
行えるようにすべく、巻上げ有機物量の予測計算モデル
は水質予測計算モデルに組み込んでもよい。
In this case, in order to make it possible to perform the prediction calculation of the amount of wound organic matter at the same time as the water quality prediction calculation, assuming that the wound organic matter is decomposed and consumed (corroded) like organic matter of water origin. The predictive calculation model of the amount of organic matter may be incorporated into the water quality predictive calculation model.

【0017】この出願の発明は、以上のとおりの特徴を
有するものであるが、以下に、実施例を示し、さらに詳
しくその実施の形態について説明する。
The invention of this application has the characteristics as described above, and the embodiments will be described in more detail below.

【0018】[0018]

【実施例】[実施例1]ここでは、一実施例として、実
際の予測対象海域におけるフィールド調査水質データに
基づいた巻上げ懸濁物質濃度と有機物濃度との関係式の
作成について説明する。
[Examples] [Example 1] As an example, the preparation of a relational expression between the concentration of suspended suspended matter and the concentration of organic matter based on field survey water quality data in the actual target sea area will be described.

【0019】<1.フィールド調査水質データ>関係式
作成に用いたフィールド調査水質データは、下記のとお
りである。 ・調査場所:稲毛の浜および検見川の浜の砕波帯(測定
点:S1〜S6,N1〜N5)および沖合水域(測定
点:沖合1〜5)(図3参照) ・調査時期:平成11年7月28日、9月26日、10
月29日の計3回 ・調査層:海底面上+0.3m或いは+0.5mから海
面までの2層或いは3層 ・調査項目:水中の懸濁物質(SS)、強熱減量(I
L)、懸濁態有機炭素(POC)、クロロフィル濃度
<1. Field survey water quality data> The field survey water quality data used to create the relational expressions are as follows.・ Survey place: Inage beach and Kemigawa beach breaking wave zone (measurement points: S1 to S6, N1 to N5) and offshore water area (measurement points: offshore 1 to 5) (see Fig. 3) ・ Survey time: 1999 July 28, September 26, 10
Total of 3 times on 29th month ・ Survey layer: 2 layers or 3 layers from the sea floor + 0.3m or + 0.5m to the sea surface ・ Survey items: Suspended substances in water (SS), loss on ignition (I
L), suspended organic carbon (POC), chlorophyll concentration

【0020】<2.懸濁物質中の有機物と無機物の算出
>この水質データを基に、まず、懸濁物質(SS)に含
まれる有機物(SSorg)と無機物(SSin)を算出す
る。これは、水中の懸濁物質(SS)を有機物(SSor
g)と無機物(SSin)に区分し、各々次式により行
う。 SSorg=SS×IL SSin=SS−SSorg
<2. Calculation of Organic Substance and Inorganic Substance in Suspended Substance> Based on this water quality data, first, the organic substance (SSorg) and inorganic substance (SSin) contained in the suspended substance (SS) are calculated. It converts suspended solids (SS) in water into organic matter (SS or
g) and inorganic substances (SSin). SSorg = SS × IL SSin = SS-SSorg

【0021】<3.巻上げ懸濁物質の算出>続いて、巻
上げ懸濁物質(SSbm:波浪や流れにより底泥から巻き
上がったSS成分)を、巻上げの大きい場所と小さい場
所の水質データを用いて、以下のように算出する。
<3. Calculation of Suspended Suspended Substances> Next, the suspended suspended substances (SSbm: SS component rolled up from the bottom mud due to waves and currents) are used as follows, using the water quality data for large and small winding locations. calculate.

【0022】<3−.巻上げ懸濁物質中の無機成分の
算出>巻上げ懸濁物質(SSbm)に含まれる無機成分
(SSin-bm)を抽出する。これは、巻上げの影響の小
さい沖合表層の無機物(SSin)の平均値をバックグラ
ウンド(SSin-off)とし、次式により行う。 SSin-bm=SSin−SSin-off
<3-. Calculation of Inorganic Component in Rolled Suspended Substance> The inorganic component (SSin-bm) contained in the rolled suspended substance (SSbm) is extracted. This is performed by the following equation, using the average value of the inorganic matter (SSin) in the offshore surface layer, which is less affected by winding, as the background (SSin-off). SSin-bm = SSin-SSin-off

【0023】<3−.巻上げ懸濁物質中の有機成分の
算出>巻上げ懸濁物質(SSbm)に含まれる有機成分
(SSorg-bm)を抽出する。有機物(SSorg)には植
物プランクトン由来の内部生産成分が含まれるが、クロ
ロフィル量(Chla)が植物プランクトン量の指標に
なるため、巻上げの影響の小さい沖合でのクロロフィル
量(Chla)と有機物(SSorg)との関係を調べた
ところ、下記の一次式[SSorg=a・Chla+b]
で表せることがわかった(図4参照)。
<3-. Calculation of Organic Component in Rolled-up Suspended Substance> The organic component (SSorg-bm) contained in the rolled-up suspended substance (SSbm) is extracted. Organic matter (SSorg) contains phytoplankton-derived internally-produced components, but the amount of chlorophyll (Chla) serves as an indicator of the amount of phytoplankton. ) And the following linear expression [SSorg = a · Chla + b]
It was found that it can be expressed by (see FIG. 4).

【0024】7月 Y=0.0382X+2.164
(R=0.777) 9月 Y=0.0308X+0.7121 (R=
0.914) 10月 Y=0.1179X+1.5971 (R=
0.876) ここで、 X:Chla濃度[μg/l] Y:SSorg濃度[mg/l] R:相関係数
July Y = 0.0382X + 2.164
(R = 0.777) September Y = 0.0308X + 0.7121 (R =
0.914) October Y = 0.1179X + 1.5971 (R =
0.876) where: X: Chla concentration [μg / l] Y: SSorg concentration [mg / l] R: Correlation coefficient

【0025】この一次式を用いて計算した有機物(SS
org)をバックグラウンド(SSorg-off)として、巻上
げ懸濁物質(SSbm)に含まれる有機成分(SSorg-b
m)を次式により算出する。 SSorg-bm=SSorg−SSorg-off
Organic matter calculated by using this linear equation (SS
org) as the background (SSorg-off), and organic components (SSorg-b) contained in the suspended material (SSbm)
m) is calculated by the following formula. SSorg-bm = SSorg-SSorg-off

【0026】<4.巻上げ懸濁物質濃度の算出>以上か
ら、底泥からの巻上げ懸濁物質濃度(SSbm)は、 SSbm=SSin-bm+SSorg-bm として算出する。
<4. Calculation of Concentration of Suspended Material> From the above, the concentration of suspended material (SSbm) from bottom mud is calculated as SSbm = SSin-bm + SSorg-bm.

【0027】<5.巻上げ懸濁物質の濃度分布>このよ
うにして得られた巻上げ懸濁物質濃度(SSbm)の分布
について解析すると、波による巻上げ現象が明瞭であっ
た7月期における濃度分布の特徴は、以下のとおりであ
った。
<5. Concentration distribution of rolled-up suspended matter> When analyzing the distribution of rolled-up suspended matter concentration (SSbm) thus obtained, the characteristic of the concentration distribution in July when the rolling phenomenon due to waves was clear was as follows. It was as it was.

【0028】すなわち、巻上げがないと仮定した沖合表
層のSSbmは0〜1.6(mg/l)程度の範囲であ
り、SSbmの算出に際して、この程度の誤差は含まれる
ものと考えられる。突堤等の養浜構造の違いから波によ
る巻上げが大きいと予想された稲毛の浜においてSSbm
は高い値を示し、岸寄りの海域(汀線〜沖合200m付
近)の下層が20〜200(mg/l)程度の範囲にあ
った。一方、巻上げが小さいと予想された検見川の浜の
SSbmは、稲毛の浜の1/10程度であった。
That is, the SSbm of the offshore surface layer assuming no winding is in the range of about 0 to 1.6 (mg / l), and it is considered that this degree of error is included in the calculation of SSbm. SSbm at Inage beach, which was expected to be rolled up by waves due to the difference in beach nourishment structure such as jetty
Indicates a high value, and the lower layer of the sea area near the shore (shoreline to about 200 m offshore) was in the range of about 20 to 200 (mg / l). On the other hand, SSbm on the beach of Kemigawa, which was expected to be rolled up, was about 1/10 of the beach of Inage.

【0029】<6.巻上げ懸濁物質と有機成分の関係>
次いで、巻上げ懸濁物質(SSbm)に含まれる有機成分
(SSorg-bm)の割合を調べたところ、SSbmの濃度が
大きいほどSSorg-bmの割合が小さくなる傾向がみら
れ、このSSbmとSSorg-bmとの関係は、次式[SSor
g-bm=a・log(SSbm)+bまたはLog(SSorg-
bm)=a・log(SSbm)+b]で表せることがわかっ
た(図5(a)(b)(c)参照)。
<6. Relationship between rolled-up suspended matter and organic components>
Next, when the ratio of the organic component (SSorg-bm) contained in the suspended material (SSbm) was examined, it was observed that the higher the concentration of SSbm, the smaller the ratio of SSorg-bm. The relation with bm is the following expression [SSor
g-bm = a * log (SSbm) + b or Log (SSorg-
bm) = a · log (SSbm) + b] (see FIGS. 5A, 5B, and 5C).

【0030】7月 Yorg-bm=0.5163exp
(1.4819Log10(Xbm)) (R2=0.6294) 9月 Yorg-bm=1.5272Log10(Xbm)+
0.1478 (R2=0.4263) 10月 Yorg-bm=2.0514Log10(Xbm)+
0.0557 (R2=0.7296) ここで、 Xbm:巻上げ懸濁物質濃度[mg/l] Yorg-bm:巻上げ懸濁物質中の有機物濃度[mg/l] R2:決定係数
July Yorg-bm = 0.5163exp
(1.4819Log 10 (Xbm)) (R 2 = 0.6294) September Yorg-bm = 1.5272Log 10 (Xbm) +
0.1478 (R 2 = 0.4263) Oct Yorg-bm = 2.0514 Log 10 (Xbm) +
0.0557 (R 2 = 0.7296) where: Xbm: Concentration of suspended material in suspension [mg / l] Yorg-bm: Concentration of organic substance in suspended material in suspension [mg / l] R 2 : Coefficient of determination

【0031】<7.巻上げ懸濁物質の有機成分と有機炭
素量の関係>ここでは水質予測モデルとして有機物を炭
素量で表現するモデルを用いているため、上記方法で算
出した巻上げ懸濁物質(SSbm)の有機成分(SSorg-
bm)を有機炭素量(POCbm)に変換する必要がある。
<7. Relationship between Organic Components of Rolled Suspended Substances and Organic Carbon Content> Here, since a model that expresses organic matter in terms of carbon amount is used as a water quality prediction model, the organic components of rolled suspended solids (SSbm) calculated by the above method ( SSorg-
bm) needs to be converted to organic carbon content (POCbm).

【0032】予測対象海域の水質予測モデルの構築は巻
上げ現象が明瞭であった7月を対象に行ったので、巻上
げ懸濁物質(SSbm)の有機成分(SSorg-bm)の有機
炭素量(POCbm)への変換は、7月の水質データの整
理・解析により得られた下記の関係式を用いた。
The construction of the water quality prediction model for the target sea area was carried out in July when the winding phenomenon was clear, so the organic carbon content (POCbm) of the organic component (SSorg-bm) of the suspended suspended matter (SSbm) The following relational expression obtained from the analysis and analysis of the water quality data for July was used for the conversion to ().

【0033】POCbm/SSorg-bm=0.1576(S
Sorg-bm)-0.2976 (R2=0.4423) POCbm=POC×(SSorg-bm/SSorg) ここで、 SSorg-bm:巻上げ懸濁物質の有機成分 POCbm:巻上げ懸濁物質の有機成分中の有機炭素量
POCbm / SSorg-bm = 0.1576 (S
Sorg-bm) -0.2976 (R 2 = 0.4423) POCbm = POC × (SSorg-bm / SSorg) where SSorg-bm: Organic component of hoisting suspension substance POCbm: Organic component of hoisting suspension substance Organic carbon amount

【0034】<8.関係式>以上の<6>および<7>
における関係式が、フィールド調査水質データに基づい
て作成された巻上げ懸濁物質濃度(SSbm)と巻上げ懸
濁物質中の有機物濃度(SSorg-bm)との関係式であ
り、巻上げ懸濁物質濃度(SSbm)の関数として表され
ていることがわかる。したがって、以上と同様にして、
予測対象海域毎に関係式を求めることで、巻上げ有機物
量の正確な予測計算を実現することができる。
<8. Relational expression> The above <6> and <7>
The relational expression in is a relational expression between the concentration of suspended suspended matter (SSbm) and the concentration of organic matter in the suspended suspended matter (SSorg-bm) created based on the field survey water quality data, and the concentration of suspended suspended matter ( It can be seen that it is expressed as a function of SSbm). Therefore, in the same way as above,
By obtaining the relational expression for each prediction target sea area, it is possible to realize an accurate prediction calculation of the amount of rolled organic matter.

【0035】[実施例2]ここでは、実施例1の関係式
により得られた巻上げ有機物量に基づき、有機物生成・
分解過程をモデル化した水質予測計算モデルを用いて水
質予測を計算する場合において行う、巻上げ有機物量の
予測計算モデルと水質予測計算モデルの組込みの一例に
ついて説明する。
[Embodiment 2] Here, based on the amount of wound organic matter obtained by the relational expression of Example 1, formation of organic matter
An example of incorporating a rolled-up organic matter amount prediction calculation model and a water quality prediction calculation model, which is performed when calculating the water quality prediction using the water quality prediction calculation model that models the decomposition process, will be described.

【0036】<1.水質予測モデルにおける有機物の生
成・分解過程への組込み> <1−.懸濁態有機物の区分>まず、次式のように、
水中の懸濁態有機物(POM)を水中起源の懸濁態有機
物(POMwa)と巻上起源の懸濁態有機物(POMbm)
に区分する。 POM=POMwa+POMbm
<1. Incorporation into organic matter generation / decomposition process in water quality prediction model><1-. Classification of suspended organic matter> First, as in the following equation,
Suspended organic matter (POM) in water, suspended organic matter (POMwa) and suspended organic matter (POMbm)
Divide into. POM = POMwa + POMbm

【0037】これら各懸濁態有機物(POMwa,POM
bm)の生物化学的な生成・分解過程は次のとおりにモデ
ル化することができる。
Each of these suspended organic substances (POMwa, POM
The biochemical production and decomposition process of bm) can be modeled as follows.

【0038】<1−.水中起源懸濁態有機物のモデル
化> dPOMwa/dt=[死亡(PHY,ZOO)]+[排
糞(ZOO)]−[分解(POMwa)]−[摂食(ZO
O,F−Bent)]−[沈降(POMwa)] ここで、 dPOMwa/dt:水中起源の懸濁態有機物(POMw
a)の時間変化量 [死亡(PHY,ZOO)]:植物プランクトン(PH
Y)の枯死、動物プランクトン(ZOO)の死亡量 [排糞(ZOO)]:動物プランクトン(ZOO)の排
糞量 [分解(POMwa)]:POMwaの分解量 [摂食(ZOO,F−Bent)]:動物プランクトン
(ZOO)及び泥層の底生動物(F−Bent)のPO
Mwa摂食量 [沈降(POMwa)]:POMwaの沈降量
<1-. Modeling of suspended organic matter originating in water> dPOMwa / dt = [death (PHY, ZOO)] + [feces (ZOO)]-[decomposition (POMwa)]-[feeding (ZO
O, F-Bent)]-[settling (POMwa)] where dPOMwa / dt: Suspended organic matter of water origin (POMw)
a) Time variation [Death (PHY, ZOO)]: Phytoplankton (PH
Y) death, zooplankton (ZOO) mortality [feces (ZOO)]: Zooplankton (ZOO) feces [decomposition (POMwa)]: POMwa decomposition [feeding (ZOO, F-Bent) )]: PO of zooplankton (ZOO) and mud-layer benthic animals (F-Bent)
Mwa intake [POMwa]: POMwa sediment

【0039】<1−.巻上起源懸濁態有機物のモデル
化)> dPOMbm/dt=−[分解(POMbm)]−[摂食
(ZOO,F−Bent)]−[沈降(POMbm)]+
[巻上(POMbm)] ここで、 dPOMbm/dt:巻上起源の懸濁態有機物(POMb
m)の時間変化量 [分解(POMbm)]:POMbmの分解量 [摂食(ZOO,F−Bent)]:動物プランクトン
(ZOO)及び泥層の底生動物(F−Bent)のPO
Mbm摂食量 [沈降(POMbm)]:POMbmの沈降量 [巻上(POMbm)]:POMbmの巻上量
<1-. Modeling of suspended organic matter)> dPOMbm / dt =-[decomposition (POMbm)]-[feeding (ZOO, F-Bent)]-[sedimentation (POMbm)] +
[Winding (POMbm)] where: dPOMbm / dt: Suspended organic matter (POMb) originating from hoisting
m) temporal change [decomposition (POMbm)]: Decomposition amount of POMbm [feeding (ZOO, F-Bent)]: PO of zooplankton (ZOO) and mud layer benthos (F-Bent)
Mbm food intake [precipitation (POMbm)]: POMbm precipitation [winding (POMbm)]: POMbm winding

【0040】<2.有機物の巻上げ過程の組込み>予測
対象海域のフィールド調査水質データより得た巻上げ懸
濁物質の巻上げ有機物量への換算式(実施例1参照)が
水中の巻上げ懸濁物質を対象としたものであることか
ら、予測対象海域の水質予測モデルの構築においては、
巻上げ懸濁物質の巻上げ有機物への変換は水中の巻き上
がり後に行う方法を用いる。
<2. Incorporation of hoisting process of organic matter> Field survey of forecasted sea area The conversion formula of hoisted suspended matter obtained from water quality data into the amount of hoisted organic matter (see Example 1) is intended for hoisted suspended matter in water. Therefore, when constructing a water quality prediction model for the target sea area,
The method of converting the suspended matter into the organic matter to be rolled up is a method which is carried out after being rolled up in water.

【0041】巻上げ有機物量の計算は、波浪と流れの場
の条件を基にした、底面直上層の巻上げ懸濁物質量の計
算結果を用いて次のとおりに行う。
The amount of organic matter to be rolled up is calculated as follows by using the calculation result of the amount of suspended matter in the layer immediately above the bottom surface based on the conditions of wave and flow fields.

【0042】<2−.水中の巻上げ懸濁物質量の計算
>まず、底面直上層から水中への輸送は鉛直拡散による
ものとし、次式により底面直上層から水中への懸濁物質
の鉛直拡散量D、つまり巻上げ量Dの算出を行う。
<2-. Calculation of the amount of suspended solids in water> First, it is assumed that the transport from the layer directly above the bottom surface to water is by vertical diffusion, and the vertical diffusion amount D of the suspended substance from the layer directly above the bottom surface to the water, that is, the amount D Is calculated.

【0043】D=Kzb(dSSbm/dz) ここで、 Kzb:鉛直拡散係数 dSSbm/dz:底面直上層と上層の水中間の鉛直方向
の巻上げ懸濁物質(SSbm)の濃度勾配
D = Kzb (dSSbm / dz) where: Kzb: vertical diffusion coefficient dSSbm / dz: concentration gradient of the vertically suspended substance (SSbm) between the water immediately above the bottom surface and the water above.

【0044】<2−.巻上げ有機物量の計算>そし
て、水中への巻上げ懸濁態有機物量(POMbm)は、予
測対象海域のフィールド調査水質データの解析により得
られた関係式(実施例1参照)を用いて、上記懸濁物質
の巻上げ量Dの換算により算出する。
<2-. Calculation of Volume of Rolled Organic Matter> The volume of suspended organic matter in water (POMbm) is calculated by using the relational expression (see Example 1) obtained by the analysis of the field survey water quality data of the target sea area. It is calculated by converting the winding amount D of turbid substances.

【0045】以上のようにして、巻上げ有機物量の予測
計算モデルを水質予測計算モデルに組み込むことで、巻
上げ有機物量の計算を、巻上げ有機物が水中起源の有機
物と同様に分解・消費(被食)されるものとして、水質
の予測計算と同時に行うことができる。
As described above, by incorporating the predictive calculation model of the amount of rolled-up organic matter into the water quality prediction calculation model, the calculated amount of rolled-up organic matter is decomposed / consumed (corroded) in the same manner as the organic matter derived from water. It can be done at the same time as the water quality prediction calculation.

【0046】[実施例3]図6は、一実施例としてのこ
の出願の発明による巻上げ有機物量の予測計算から水質
の予測計算までの全体の流れを例示したものである。本
実施例では、突堤等の建造物があり、且つ干潟部分があ
る沿岸海域を予測対象海域としている。
[Embodiment 3] FIG. 6 exemplifies the whole flow from the prediction calculation of the amount of organic matter to be wound up to the prediction calculation of water quality according to the invention of this application as an embodiment. In this embodiment, the coastal sea area having a structure such as a jetty and the tidal flat portion is the prediction target sea area.

【0047】<1.巻上げ有機物量の予測計算> <1−>まず、懸濁物質の巻上げを発生させる外力は
波と流れであるので、本実施例では、その波と流れを、
下記の既存の波浪の予測計算モデルと流れの場の予測計
算モデルを用いて計算する。
<1. Prediction calculation of amount of rolled-up organic matter><1-> First, since the external force that causes the suspended substance to be rolled up is a wave and a flow, in the present embodiment, the wave and the flow are
The calculation is performed using the following existing wave prediction model and flow field prediction calculation model.

【0048】A.波浪の予測計算モデル 予測対象海域には突堤等の構造物があり、波の変形計算
には構造物の反射、回折現象等を精度良く再現できる必
要がある。そこで、本実施例では、非定常緩勾配方程式
を基本として不規則波扱いに拡張した既存の予測計算モ
デルを用いる。
A. Wave Prediction Calculation Model There are structures such as jetty in the prediction target sea area, and it is necessary to accurately reproduce the reflection and diffraction phenomena of the structure for wave deformation calculation. Therefore, in the present embodiment, an existing predictive calculation model, which is extended to treat irregular waves based on the unsteady gentle gradient equation, is used.

【0049】B.流れの場の予測計算モデル 潮流計算には干潟に対応した既存の2次元単層モデルを
用いる。また、波浪の計算結果から既存の計算式を用い
て海浜流を計算し、潮流との合成流を求める。
B. Predictive calculation model of flow field The existing two-dimensional single layer model corresponding to tidal flat is used for tidal flow calculation. In addition, the beach current is calculated from the wave calculation results using the existing formula, and the combined current with the tidal current is obtained.

【0050】<1−>次いで、波浪の計算結果と流れ
の場の計算結果を入力条件として、既存の底泥浮上量予
測計算モデル(W.Bijker, Sedimentation is Channels
andTreaanches., conf.coastal Eng. pp1708-1718, 198
0を参照)により巻上げ懸濁物質量を予測計算する。
<1-> Next, using the calculation result of the wave and the calculation result of the flow field as input conditions, an existing calculation model for predicting the amount of floating mud (W.Bijker, Sedimentation is Channels)
andTreaanches., conf.coastal Eng. pp1708-1718, 198
Predict the amount of suspended solids according to (see 0).

【0051】<1−>そして、この巻上げ懸濁物質量
の予測計算値を、予測対象海域におけるフィールド調査
水質データを基に作成した巻上げ懸濁物質濃度と有機物
濃度との関係式により、巻上げ有機物量に換算する。
<1-> Then, the predicted calculation value of the amount of suspended organic matter is calculated from the relational expression between the concentration of suspended suspended matter and the concentration of organic matter prepared based on the field survey water quality data in the target sea area. Convert to quantity.

【0052】以上から、巻上げ有機物量の正確な予測計
算が実現される。
From the above, an accurate prediction calculation of the amount of wound organic matter is realized.

【0053】<2.水質の予測計算>水質予測計算モデ
ルとしては、有機物の生成・分解過程をモデル化した既
存の生態系(低次)モデルタイプを用いる。干潟部等砂
浜域において重要な泥系についても既存の生態系(低
次)モデルタイプを採用する。なおここでの水質予測計
算には底質の予測計算も含まれるものとする。
<2. Water Quality Prediction Calculation> As the water quality prediction calculation model, an existing ecosystem (low-order) model type that models the generation and decomposition processes of organic matter is used. Existing ecosystem (low-order) model types will be adopted for important mud systems in sandy areas such as tidal flats. It should be noted that the water quality prediction calculation here also includes the bottom quality prediction calculation.

【0054】そして、この水質予測計算モデルに、底泥
からの有機物の巻上げ過程モデル、つまり巻上げ有機物
量の予測計算モデルを組み込み、この結合モデルに基づ
いて水質を予測計算する。
Then, a model of a winding process of organic matter from bottom mud, that is, a predictive calculation model of the amount of rolled organic matter is incorporated into this water quality prediction calculation model, and the water quality is predicted and calculated based on this combined model.

【0055】以上から、有機物の巻上げ量のみを考慮し
た高精度な水質予測計算が実現される。
From the above, highly accurate water quality prediction calculation considering only the amount of organic matter rolled up can be realized.

【0056】もちろん、この発明は以上の例に限定され
るものではなく、細部については様々な態様が可能であ
る。
Of course, the present invention is not limited to the above examples, and various aspects are possible in details.

【0057】[0057]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、底泥から巻き上げられる有機物の量を予
測計算することのできる、新しい巻上げ有機物量予測計
算方法、および、有機物生成・分解過程の予測計算モデ
ルによる水質予測計算をより精度良く行うことのでき
る、新しい水質予測計算方法が提供される。
As described in detail above, according to the invention of this application, a new method for predicting the amount of organic matter to be wound up from the bottom mud, and a method for predicting the organic matter generation / decomposition process are provided. Provided is a new water quality prediction calculation method capable of more accurately performing a water quality prediction calculation using a calculation model.

【図面の簡単な説明】[Brief description of drawings]

【図1】底泥からの懸濁物質の巻上げ・沈降過程を例示
した概念図である。
FIG. 1 is a conceptual diagram exemplifying a winding and sedimentation process of suspended matter from bottom mud.

【図2】巻上げ有機物量の予測計算モデルを例示した概
念図である。
FIG. 2 is a conceptual diagram exemplifying a predictive calculation model of the amount of wound organic matter.

【図3】一実施例としての予測対象海域におけるフィー
ルド調査地点を示した模式図である。
FIG. 3 is a schematic diagram showing field survey points in a prediction target sea area as one example.

【図4】一実施例としてのクロロフィル量と懸濁物質中
の有機物との関係を示した図である。
FIG. 4 is a diagram showing a relationship between an amount of chlorophyll and an organic substance in a suspended substance as one example.

【図5】一実施例としての巻上げ懸濁物質と有機成分と
の関係を示した図であり、(a)は7月調査データ、
(b)は9月調査データ、(c)は10月調査データの
ものである。
FIG. 5 is a diagram showing a relationship between a rolled-up suspended substance and an organic component as one example, (a) is July survey data,
(B) is the September survey data, and (c) is the October survey data.

【図6】一実施例としてのこの出願の発明による巻上げ
有機物量および水質の予測計算を説明するためのフロー
である。
FIG. 6 is a flow chart for explaining the prediction calculation of the amount of wound organic matter and water quality according to the invention of this application as an example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 底泥からの巻上げ懸濁物質量を予測計算
するステップと、 巻上げ懸濁物質濃度と巻上げ懸濁物質中の有機物濃度と
を巻上げ懸濁物質濃度の関数として表した関係式によ
り、前記巻上げ懸濁物質量の予測計算値を底泥からの巻
上げ有機物量へ換算するステップと、を有することを特
徴とする巻上げ有機物量予測計算方法。
1. A step of predicting and calculating the amount of suspended suspended matter from bottom mud, and a relational expression expressing the suspended suspended matter concentration and the organic matter concentration in the suspended suspended matter as a function of the suspended suspended matter concentration. And a step of converting the predicted calculation value of the amount of suspended solids into the amount of organic matter rolled up from the bottom mud.
【請求項2】 底泥からの巻上げ懸濁物質量を予測計算
するステップと、 巻上げ懸濁物質濃度と巻上げ懸濁物質中の有機物濃度と
を巻上げ懸濁物質濃度の関数として表した関係式によ
り、前記巻上げ懸濁物質量の予測計算値を底泥からの巻
上げ有機物量へ換算するステップと、 前記巻上げ有機物量の計算値を用いて水質を予測計算す
るステップと、を有することを特徴とする水質予測計算
方法。
2. The step of predicting and calculating the amount of suspended suspended matter from the bottom mud, and the relational expression expressing the suspended suspended matter concentration and the organic matter concentration in the suspended suspended matter as a function of the suspended suspended matter concentration. , A step of converting the predicted calculation value of the amount of suspended suspended matter into the amount of organic matter rolled up from the bottom mud, and a step of predicting and calculating water quality using the calculated value of the amount of rolled organic matter. Water quality prediction calculation method.
【請求項3】 水質を予測計算するステップにおいて、
有機物生成・分解過程をモデル化した水質予測計算モデ
ルを用いる請求項2の水質予測計算方法。
3. In the step of predicting and calculating water quality,
The water quality prediction calculation method according to claim 2, wherein a water quality prediction calculation model modeling the organic matter generation / decomposition process is used.
JP2001247330A 2001-08-16 2001-08-16 Winding organic matter prediction calculation method and water quality prediction calculation method Expired - Fee Related JP4115109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247330A JP4115109B2 (en) 2001-08-16 2001-08-16 Winding organic matter prediction calculation method and water quality prediction calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247330A JP4115109B2 (en) 2001-08-16 2001-08-16 Winding organic matter prediction calculation method and water quality prediction calculation method

Publications (2)

Publication Number Publication Date
JP2003057228A true JP2003057228A (en) 2003-02-26
JP4115109B2 JP4115109B2 (en) 2008-07-09

Family

ID=19076695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247330A Expired - Fee Related JP4115109B2 (en) 2001-08-16 2001-08-16 Winding organic matter prediction calculation method and water quality prediction calculation method

Country Status (1)

Country Link
JP (1) JP4115109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027212A (en) * 2017-08-02 2019-02-21 株式会社日立製作所 Maintenance management support device for water service and maintenance management support system for water service
CN110835128A (en) * 2019-11-26 2020-02-25 倪世章 Water purifier and method for purifying water quality in real time based on water quality

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112685688B (en) * 2021-01-12 2021-10-01 长江水资源保护科学研究所 Long-distance water delivery open channel water quality simulation and prediction method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027212A (en) * 2017-08-02 2019-02-21 株式会社日立製作所 Maintenance management support device for water service and maintenance management support system for water service
CN110835128A (en) * 2019-11-26 2020-02-25 倪世章 Water purifier and method for purifying water quality in real time based on water quality
CN110835128B (en) * 2019-11-26 2021-12-07 陈文印 Water purifier and method for purifying water quality in real time based on water quality

Also Published As

Publication number Publication date
JP4115109B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
Cromey et al. DEPOMOD—modelling the deposition and biological effects of waste solids from marine cage farms
Epping et al. On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazaré Canyon (NE Atlantic)
Oreska et al. Seagrass blue carbon spatial patterns at the meadow-scale
Cerco et al. The 2002 Chesapeake Bay Eutrophication Model
Mackay et al. Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes
EP2743738A1 (en) Method of operating a sedimentary basin using a stratigraphic simulation coupled with a production and degradation model of organic material
Fredriksson et al. Development of large fish farm numerical modeling techniques with in situ mooring tension comparisons
Persson et al. Historical development of laminated sediments–an approach to detect soft sediment ecosystem changes in the Baltic Sea
Ferré et al. Sediment transport on the Palos Verdes shelf, California
Jourdin et al. Dual-frequency ADCPs measuring turbidity
Bravo et al. Fate of phosphorus from a point source in the Lake Michigan nearshore zone
Mehler et al. Sonar technology and underwater imagery analysis can enhance invasive Dreissena distribution assessment in large rivers
Berry et al. Puget Sound submerged vegetation monitoring project: 2000-2002 monitoring report
Aretxabaleta et al. Near-bottom circulation and dispersion of sediment containing Alexandrium fundyense cysts in the Gulf of Maine during 2010–2011
Cerco Phytoplankton kinetics in the Chesapeake Bay eutrophication model
Bolaños et al. Measuring hydrodynamics and sediment transport processes in the Dee Estuary
Pierdomenico et al. Transport and accumulation of litter in submarine canyons: a geoscience perspective
Kaitaranta et al. Quantifying sediment resuspension and internal phosphorus loading in shallow near-shore areas in the Gulf of Finland
Oliveira et al. Wave-driven sediment mobility on the Eastern Brazilian shelf under different weather systems
Kocsis et al. Soluble phosphorus content of Lake Balaton sediments
JP2003057228A (en) Method of predictive calculation of pickup of organic matter, and method of predictive calculation of water quality
Hohenegger et al. Depth–transport functions and erosion–deposition diagrams as indicators of slope inclination and time‐averaged traction forces: applications in tropical reef environments
Villaret et al. Consolidation effects on morphodynamics modelling: application to the Gironde estuary
Borrelli et al. The use of multimodal data to augment shallow-water benthic habitat maps for Pleasant Bay, Cape Cod, Massachusetts: Stratigraphic data and seafloor maps
Stokes et al. Temperature variability and algal isotopic heterogeneity on a Floridian coral reef

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees