JP2003057196A - Activation analysis method using terawatt table top laser - Google Patents

Activation analysis method using terawatt table top laser

Info

Publication number
JP2003057196A
JP2003057196A JP2001247071A JP2001247071A JP2003057196A JP 2003057196 A JP2003057196 A JP 2003057196A JP 2001247071 A JP2001247071 A JP 2001247071A JP 2001247071 A JP2001247071 A JP 2001247071A JP 2003057196 A JP2003057196 A JP 2003057196A
Authority
JP
Japan
Prior art keywords
sample
terawatt
irradiation
analysis method
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001247071A
Other languages
Japanese (ja)
Inventor
Takehito Hayakawa
岳人 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2001247071A priority Critical patent/JP2003057196A/en
Publication of JP2003057196A publication Critical patent/JP2003057196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an activation analysis method executed by activating a sample with a terawatt table top laser. SOLUTION: The activation analysis method is executed by the steps of activating a sample by irradiating the sample with γ-ray generated by the terawatt table top laser, and measuring the γ-ray (X-ray) radiating when the activated sample is decayed.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、テラワットテーブ
ルトップレーザーによって試料を放射化して行う放射化
元素分析法に関するものである。 【0002】 【従来の技術】放射化元素分析は、試料中に含まれる元
素の分析法の一つとして広く行われている。従来の放射
化元素分析法では、原子炉において試料に中性子照射に
よる放射化を行い、β崩壊時のγ線を測定することで元
素の含有量を測定する。この原子炉を用いた放射化分析
では、原子炉で発生する中性子を試料に照射してから測
定個所に運搬して測定するという手順を踏む必要があ
る。又、中性子照射が可能な実験用の原子炉は非常に大
規模で元素分析のために購入することは極めて困難であ
る。 【0003】β崩壊とは、不安定な同位体が電子捕獲な
いしβ線照射によって核変換が起きることである。安定
な同位体近傍の不安定な同位体はほぼβ崩壊する。β崩
壊は2種類あり、β-崩壊は中性子が1個陽子に変換され
ることで異なる元素に変換される。β+/EC崩壊は陽子が
中性子に変換されることで異なる元素に変換される。か
かるβ崩壊を具体的に示すと図2に示されるとおりであ
る。 【0004】又、同位体とは、元素は陽子数によって定
義され化学的性質が決定されるが、元素には中性子数が
異なる元素があり、これを同位体と呼ぶ。天然に存在し
ており安定な同位体を安定同位体と呼ぶ。 【0005】 【発明が解決しようとする課題】放射化分析は、化学系
によらず試料の元素分析を行う方法として広く行われて
いる。しかし、放射化には原子炉による中性子照射が必
要であるために、照射個所が限定されること、特定の元
素の測定が困難であること、照射直後の測定が困難であ
ることなどの欠点を有する。本発明はこうした欠点の解
消を目的としている。 【0006】 【課題を解決するための手段】放射化元素分析は、試料
中に含まれる元素の分析法の一つとして広く行われてい
る。従来の放射化元素分析法では、原子炉において試料
に中性子照射による放射化を行い、β崩壊時のγ線を測
定することで元素の含有量を測定する。 【0007】これに対し、本発明は、高出力かつ小型の
テラワットテープルトップレーザー(以下T3レーザーと
称する)を用いた高エネルギーγ線を照射することによ
って放射化を行う点が基本的に異なる点である。そのた
め、原子炉を必要とせず、原子炉と比較して非常にコン
パクトな空間で照射と測定を行うことができる。また、
本発明によれば、中性子照射を用いた場合では測定が極
めて困難な元素の測定も行えるために効果的である。 【0008】即ち、T3レーザーは、1つ目の特徴とし
て、非常にコンパクトであり、コストも極めて安い。2
つ目の特徴として、原子炉による放射化分析では中性子
を吸収させてγ線を放射させる(n、γ)反応であり、
本発明に用いる(γ、n)反応とは異なる反応である。
そのため、生成されるβ崩壊に対して不安定な同位体は
質量数が異なるため崩壊様式が異なる。そこで、原子炉
による(n,γ)反応では測定が極めて困難な、Bi、Pb、P
などの元素の測定が本発明の(γ,n)反応によれば可
能になる。3つ目の特徴として、半減期の短い元素も測
定可能であるという点である。これまで、従来の原子炉
を使用する放射化分析では、原子炉で照射した後に別の
建物やしばしば別の敷地に設置された測定個所に運搬す
る。そのための時間がかかるために、運搬する時間に比
べて半減期が短い元素の測定が非常に困難であった。 【0009】Bi、Pb、Pが従来の方法で極めて測定困難
な理由としては、 Biは安定な元素が 209Biしかなく、原
子炉における中性子照射で生成される210Biがγ線を放
射しないためである。Pbは204Pbと208Pbの放射化によっ
205Pbと209Pbの2つの同位体がβ崩壊するが、前者は
半減期が1.53x107年と長すぎるために事実上計測できな
い。209Pbはγ線を放射しないためである。PはA=31しか
ないが、中性子照射で生成される32Pがγ線を放射しな
いためである。 【0010】又、半減期とは、β崩壊などによって元の
量の半分になるまでの時間であり、半減期の逆数は単位
時間あたりの崩壊確率に比例する。寿命が長ければ長い
ほど、単位時間あたりの崩壊数が少なく測定が困難にな
る。寿命が短い場合には、単位時間あたりの崩壊数が多
いが急速に崩壊数が減るので、一定時間以降には測定が
困難になる。 【0011】 【発明の実施の形態】本発明の放射化分析法を図1に基
づいて説明する。T3レーザー2の光を集光させTaやWな
どの融点が非常に高い金属板1(厚さは数mm程度)に照
射する。1018W/cm2以上のエネルギーを集光させること
で、金属板の照射したポイントにプラズマ3が発生す
る。プラズマ内で荷電粒子、電子等が数十MeVから数百M
eVまで加速され制動輻射によって高エネルギーγ線4を
発生させる。放射方向に対して非常に高い密度とフラッ
クスを持つγ線を対象となる試料に照射する。試料中の
原子核はγ線と光核反応を起こして核変換される。一部
はγ線を吸収して中性子を放出する(γ、n)反応でβ
崩壊に対して不安定な同位体に変換される。β崩壊時に
放出されるγ線8(及びX線)を高分解能のGe半導体検
出器9で測定することで核種を同定して、γ線の強度か
ら含有量を導出する。なお、図1において、7は照射に
より放射化した試料である。 【0012】中性子の分離エネルギーは約8MeV以上であ
り、数mmの厚さの試料による吸収は無視できる。そのた
め、数百μmから数mm程度の厚さの試料を複数枚重ねて
同時に照射する。また、照射したγ線のフラックスを測
定するために、Cu、Au、Inなどの良く測定されている試
料6を同時に照射する。試料による内部吸収がないこと
を確認するために、フラックス測定用の同じ試料6を重
ねた試料5の一番上と下に配置する。これらのフラック
ス測定用試料から照射したγ線エネルギー分布を求めて
対象となる試料5の生成量の計算に用いる。なお、図2
に(γ、n)反応とβ崩壊を具体的に示す。 【0013】さらに、フラックス量の測定による不確定
性を減らすために、比較法を用いる。比較法とは、よく
調べられている標準試料を同時に照射して、元素毎の相
対比を求める方法である。この方法ならば、照射された
γ線のエネルギー分布によらず精度よく測定することが
可能である。 【0014】 【発明の効果】原子炉が不必要になるので、照射を行う
ために原子炉と測定個所の間を運搬する必要がなくな
る。そのため、照射の手間が軽減され研究効率が大幅に
向上する。照射・測定系を非常にコンパクトにすること
ができる。また、照射直後の測定が可能になるために、
半減期が短い軽い元素の測定も容易になる。さらには反
応様式が中性子照射とγ線照射で異なるために、Pbなど
中性子照射では困難な元素の測定も容易になる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a terawatt table.
Activation by activating the sample with a Letop laser
It relates to elemental analysis. [0002] 2. Description of the Related Art Activation elemental analysis involves the analysis of elements contained in a sample.
It is widely used as one of the elemental analysis methods. Conventional radiation
Element analysis method uses neutron irradiation on a sample in a nuclear reactor.
Activation by measuring the γ-rays at the time of β decay
The elemental content is measured. Activation analysis using this reactor
After irradiating the sample with neutrons generated in the reactor,
It is necessary to take the procedure of transporting to a fixed place and measuring.
You. Experimental reactors capable of neutron irradiation are very large.
Very difficult to purchase for elemental analysis on a large scale
You. [0003] Beta decay means that an unstable isotope is
Nuclear transmutation is caused by irradiation with beta rays. Stable
An unstable isotope near a stable isotope is almost β-decayed. β collapse
There are two types of destruction, β-The decay converts one neutron into a proton
Are converted into different elements. β+/ EC decay is proton
When converted to neutrons, they are converted to different elements. Or
Specific examples of such β decay are shown in FIG.
You. [0004] An isotope is an element defined by the number of protons.
And the chemical properties are determined.
There are different elements, which are called isotopes. Naturally occurring
And stable isotopes are called stable isotopes. [0005] SUMMARY OF THE INVENTION Activation analysis is based on chemical systems.
Widely used as a method to perform elemental analysis of samples regardless of
I have. However, activation requires neutron irradiation by a nuclear reactor.
The irradiation location is limited due to the
Element measurement is difficult, and measurement immediately after irradiation is difficult.
Have disadvantages such as The present invention addresses these disadvantages.
The purpose is to extinguish. [0006] SUMMARY OF THE INVENTION Activation elemental analysis is performed on a sample.
Widely used as one of the analysis methods for elements contained in
You. In the conventional activation element analysis method, sample
Is activated by neutron irradiation to measure gamma rays at the time of β decay.
The content of the element is measured. On the other hand, the present invention has a high output and a small size.
Terawatt staple top laser (hereinafter T3 laser)
Irradiating high energy γ-rays using
Activation is basically different. That
Therefore, it does not require a nuclear reactor and is very
Irradiation and measurement can be performed in a compact space. Also,
According to the present invention, when neutron irradiation is used, measurement is extremely
This is effective because it is possible to measure the most difficult elements. That is, the T3 laser is the first feature.
Very compact and very cheap. 2
The first characteristic is that neutrons are
Is a (n, γ) reaction that emits gamma rays by absorbing
This is a different reaction from the (γ, n) reaction used in the present invention.
Therefore, the isotope that is unstable to the generated β decay is
The decay modes are different due to the different mass numbers. So the reactor
Bi, Pb, P, which is extremely difficult to measure with the (n, γ) reaction
According to the (γ, n) reaction of the present invention, measurement of elements such as
Will be able to. The third characteristic is that elements with a short half-life are measured.
It is possible to determine. Conventional nuclear reactors
In activation analysis using
Transport to a measuring point, often located on a building or another site
You. Because it takes time to do so,
It was very difficult to measure elements with short half-lives. Bi, Pb, P are extremely difficult to measure with conventional methods
The reason is that Bi is a stable element 209Only Bi, Hara
Produced by neutron irradiation in nuclear reactor210Bi emits gamma rays
Because it does not shoot. Pb204Pb and208Activation of Pb
hand205Pb and209The two isotopes of Pb undergo beta decay, the former being
1.53x10 half-life7Can not be measured effectively because it is too long
No.209This is because Pb does not emit gamma rays. P is only A = 31
Not generated by neutron irradiation32P does not emit gamma rays
This is because The half-life is the original half-life due to β decay or the like.
Time to half the amount, reciprocal half-life is in units
It is proportional to the probability of collapse per hour. Longer lifespan
The fewer the number of decay per unit time, the more difficult the measurement
You. If the life is short, the number of collapses per unit time is large.
However, since the number of decay decreases rapidly, measurement cannot be performed after a certain time.
It becomes difficult. [0011] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The activation analysis method of the present invention is based on FIG.
A description will be given below. Concentrate the light of T3 laser 2 to Ta or W
Which metal plate 1 has a very high melting point (thickness is several mm)
Shoot. Ten18W / cmTwoFocusing the above energy
Then, plasma 3 is generated at the irradiated point of the metal plate.
You. Charged particles, electrons, etc. are several tens MeV to several hundred M in the plasma
accelerated to eV to generate high-energy gamma rays 4 by braking radiation
generate. Very high density and flash
Irradiates the target sample with γ-rays having an index. In the sample
The nucleus undergoes a photonuclear reaction with gamma rays and is transmuted. part
Absorbs γ-rays and emits neutrons (γ, n)
Converted to isotopes that are unstable to decay. at the time of β collapse
The emitted γ-rays 8 (and X-rays) are converted to high-resolution Ge semiconductor
The nuclide is identified by measuring with the output device 9 and the intensity of γ-ray
The content is derived from this. In FIG. 1, 7 denotes irradiation.
It is a more activated sample. [0012] The neutron separation energy is about 8 MeV or more.
Therefore, absorption by a sample having a thickness of several mm is negligible. That
To stack several samples with a thickness of several hundred μm to several mm.
Irradiate at the same time. In addition, the flux of the irradiated gamma rays was measured.
Well-measured samples such as Cu, Au, In, etc.
The material 6 is irradiated simultaneously. No internal absorption by the sample
The same sample 6 for flux measurement to confirm
It is placed at the top and bottom of the spattered sample 5. These flack
Of γ-ray energy distribution irradiated from a sample for measurement
It is used to calculate the production amount of the target sample 5. Note that FIG.
Fig. 2 specifically shows the (γ, n) reaction and β decay. Further, uncertainty due to measurement of the amount of flux
A comparison method is used to reduce gender. The comparison method is often
Simultaneously irradiate the standard sample under investigation to determine the phase of each element.
This is a method of obtaining a contrast. With this method, the irradiated
Accurate measurement regardless of γ-ray energy distribution
It is possible. [0014] According to the present invention, irradiation is performed because a nuclear reactor becomes unnecessary.
Transport between the reactor and the measuring point
You. Therefore, the labor of irradiation is reduced, and the research efficiency is greatly improved.
improves. Make the irradiation and measurement system very compact
Can be. In addition, in order to be able to measure immediately after irradiation,
Measurement of light elements with a short half-life is also facilitated. And even anti
Pb etc. because the reaction mode is different between neutron irradiation and γ-ray irradiation
Measurement of elements that are difficult with neutron irradiation is also facilitated.

【図面の簡単な説明】 【図1】 本発明の照射と測定の実施例を示す図であ
る。 【符号の説明】 1・・・・・・金属版 2・・・・・・テラワットレーザーから照射されたレー
ザー 3・・・・・・レーザーによって発生したプラズマ 4・・・・・・プラズマから発生したγ線 5・・・・・・試料 6・・・・・・フラックス測定用試料 7・・・・・・照射により放射化した試料 8・・・・・・試料より放射されるγ線 9・・・・・・Ge半導体検出器 【図2】 本発明の照射によって起きる同位体の変換と
崩壊様式図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of irradiation and measurement of the present invention. [Explanation of Signs] 1 ... Metal plate 2 ... Laser emitted from terawatt laser 3 ... Plasma generated by laser 4 ... Generated from plasma Γ-rays 5 ・ ・ ・ ・ ・ ・ Sample 6 ・ ・ ・ ・ ・ ・ Sample for flux measurement 7 ・ ・ ・ ・ ・ ・ Sample 8 activated by irradiation ・ ・ ・ ・ ・ ・ γ-rays 9 emitted from the sample ... Ge semiconductor detector FIG. 2 is a diagram of isotope conversion and decay modes caused by irradiation according to the present invention.

Claims (1)

【特許請求の範囲】 【請求項1】 テラワットテーブルトップレーザーによ
って発生するγ線を試料に照射することで放射化を行
い、放射化した試料が崩壊する時に放射するγ線(X線)
を測定することによって元素分析を行う方法。
Claims 1. A gamma ray (X-ray) emitted when a sample is activated by irradiating the sample with gamma rays generated by a tera-watt tabletop laser and the activated sample decays.
A method for performing elemental analysis by measuring
JP2001247071A 2001-08-16 2001-08-16 Activation analysis method using terawatt table top laser Pending JP2003057196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247071A JP2003057196A (en) 2001-08-16 2001-08-16 Activation analysis method using terawatt table top laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247071A JP2003057196A (en) 2001-08-16 2001-08-16 Activation analysis method using terawatt table top laser

Publications (1)

Publication Number Publication Date
JP2003057196A true JP2003057196A (en) 2003-02-26

Family

ID=19076484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247071A Pending JP2003057196A (en) 2001-08-16 2001-08-16 Activation analysis method using terawatt table top laser

Country Status (1)

Country Link
JP (1) JP2003057196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219187A (en) * 2003-01-14 2004-08-05 Japan Atom Energy Res Inst Isotope analysis method in high precision, high s/n, and high efficiency by nuclear isomer generation using laser inverse compton gamma ray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219187A (en) * 2003-01-14 2004-08-05 Japan Atom Energy Res Inst Isotope analysis method in high precision, high s/n, and high efficiency by nuclear isomer generation using laser inverse compton gamma ray

Similar Documents

Publication Publication Date Title
Halmshaw Industrial radiology: theory and practice
Ledingham et al. Laser-driven photo-transmutation of 129I—a long-lived nuclear waste product
Magill et al. Laser transmutation of iodine-129
Yang et al. Neutron production by fast protons from ultraintense laser-plasma interactions
Xu et al. Accelerator-based biological irradiation facility simulating neutron exposure from an improvised nuclear device
Colonna et al. Neutron physics with accelerators
Crittin et al. The new prompt gamma-ray activation facility at the Paul Scherrer Institute, Switzerland
Rahman et al. Study on effective average (γ, n) cross section for 89Y, 90Zr, 93Nb, and 133Cs and (γ, 3n) cross section for 99Tc
JP6358751B2 (en) Method and apparatus for generating radioactive technetium 99m-containing material
Metwally et al. Flux measurements for a DD neutron generator using neutron activation analysis
Milanese et al. Small plasma focus as neutron pulsed source for nuclides identification
JP2003057196A (en) Activation analysis method using terawatt table top laser
JP5414033B2 (en) Nuclear analysis method and nuclear analyzer
Brusa et al. Long term activation in a 15 MeV radiotherapy accelerator
Bayram et al. Transition energy and half-life determinations of photonuclear reaction products of erbium nuclei
Ibragimov et al. Experimental determination of the induced activity in activation detectors of a complex geometric shape
Quintieri et al. Quantification of the validity of simulations based on Geant4 and FLUKA for photo-nuclear interactions in the high energy range
CN112567478A (en) Method and system for generating radioisotopes for medical applications
JPH0213736B2 (en)
Khushvaktov et al. Study of the Rate of Photonuclear Reactions in 165 Ho Nucleus
Vlastou et al. Cross Section Measurements and Theoretical Study of the 174,176 Hf (n, 2n) 173,175 Hf Reactions
Szelecsényi et al. Production possibility of 161 Tb utilizing secondary neutrons generated by protons from a low-energy cyclotron onto an isotope production target
Bayram et al. Determinations of 171 Er half-life and some 171 Tm transition energies
Yasumi et al. Absolute Cross Section of the Reaction Cu63 (γ, n) Cu62 for Lithium Gamma Rays
ZAVED STUDY ON EXPERIMENTAL CROSS SECTIONS FOR REACTIONS 174Yb (n, γ) 175Yb AND 55Mn (n, γ) 56Mn AT NEW ENERGIES OF 0.0334 AND 0.0536 eV USING NEUTRONS FROM TRIGA NUCLEAR REACTOR