JP2003057161A - Hardness detector for surface of solid - Google Patents

Hardness detector for surface of solid

Info

Publication number
JP2003057161A
JP2003057161A JP2001248190A JP2001248190A JP2003057161A JP 2003057161 A JP2003057161 A JP 2003057161A JP 2001248190 A JP2001248190 A JP 2001248190A JP 2001248190 A JP2001248190 A JP 2001248190A JP 2003057161 A JP2003057161 A JP 2003057161A
Authority
JP
Japan
Prior art keywords
protrusion
driving
solid surface
displacement
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001248190A
Other languages
Japanese (ja)
Other versions
JP4636745B2 (en
Inventor
Kazuo Sato
佐藤  一雄
Mitsuhiro Shikida
光宏 式田
Koichi Itoigawa
貢一 糸魚川
Takeshi Shimizu
武士 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUBU KAGAKU GIJUTSU CENTER
Fuji Corp
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Denso Corp
Tokai Rika Co Ltd
Toyota Motor Corp
Sankyo Aluminium Industry Co Ltd
Melco Inc
Original Assignee
CHUBU KAGAKU GIJUTSU CENTER
Chubu Electric Power Co Inc
Fuji Machine Manufacturing Co Ltd
Mitsubishi Electric Corp
Denso Corp
Tokai Rika Co Ltd
Toyota Motor Corp
Sankyo Aluminium Industry Co Ltd
Melco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUBU KAGAKU GIJUTSU CENTER, Chubu Electric Power Co Inc, Fuji Machine Manufacturing Co Ltd, Mitsubishi Electric Corp, Denso Corp, Tokai Rika Co Ltd, Toyota Motor Corp, Sankyo Aluminium Industry Co Ltd, Melco Inc filed Critical CHUBU KAGAKU GIJUTSU CENTER
Priority to JP2001248190A priority Critical patent/JP4636745B2/en
Publication of JP2003057161A publication Critical patent/JP2003057161A/en
Application granted granted Critical
Publication of JP4636745B2 publication Critical patent/JP4636745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardness detector for the surface of a solid with which the hardness of the surface of the solid can be detected simply. SOLUTION: The hardness detector for the surface of the solid is provided with a protrusion part 11 coming into contact with the surface of the solid as an object, a flexible support part 13 which elastically supports the protrusion part 11 on a base part 12, a drive member 14 which drives the support part 13 to a direction pressing the protrusion part 11 to the surface of the solid while the support part 13 is being deformed and a strain gage 15 which detects the displacement amount of the protrusion part 11 when the protrusion part 11 is driven by the drive member 14. When the hardness of the surface of the solid is investigated by using the hardness tester for the surface of the solid, the protrusion part 11 is driven to the direction pressing the protrusion part 11 further to the surface X1 of the solid by the drive member 14 in a state that the protrusion part 11 is brought into contact with the surface X1 of the solid, and the hardness of the surface of the solid is detected on the basis of a detection by the strain gage 15 from the relative relationship between a driving force generated by the drive member 14 and an amount in which the protrusion part 11 is displaced by the driving force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体表面の硬さを
検出する固体表面の硬さ検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid surface hardness detector for detecting the hardness of a solid surface.

【0002】[0002]

【従来の技術】従来、固体表面の硬さを検出する方法と
しては、対象とする固体について振動子を接触させて加
振することにより共振周波数を調べて、この共振周波数
に基づいて振動子が固体表面に接触している接触圧と固
体表面の硬さを算出するという方法が知られている。
2. Description of the Related Art Conventionally, as a method for detecting the hardness of the surface of a solid, the resonance frequency is investigated by contacting the vibrator with a target solid and vibrating it, and the vibrator is detected based on this resonance frequency. A method is known in which the contact pressure in contact with the solid surface and the hardness of the solid surface are calculated.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の方
法においては、接触圧及び硬さを互いに分離して算出す
ることが現実的には困難であった。
However, in the above-mentioned conventional method, it is practically difficult to calculate the contact pressure and the hardness separately from each other.

【0004】[0004]

【発明の概要】本発明は、上記問題に対処するためにな
されたものであり、その目的は、固体表面の硬さを簡単
に検出できる固体表面の硬さ検出器を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide a solid surface hardness detector capable of easily detecting the hardness of a solid surface.

【0005】本発明の構成上の特徴は、対象とする固体
表面に接触する突起部と、該突起部を基部上にて弾性的
に支持する可撓性の支持部と、該支持部を変形させなが
ら突起部を固体表面に押し付ける方向に駆動する駆動手
段と、該駆動手段による突起部の駆動時に突起部の変位
量を検出する変位検出手段とを備え、駆動手段による突
起部の駆動時、変位検出手段による検出に基づいて、駆
動手段が発生している駆動力の大きさと該駆動力により
突起部が変位した量との相対関係から固体表面の硬さを
検出するようにしたことにある。
The structural features of the present invention are: a protrusion that comes into contact with a target solid surface, a flexible support that elastically supports the protrusion on a base, and a deformation of the support. The driving means for driving the protrusion in the direction of pressing the solid surface while being driven, and the displacement detecting means for detecting the amount of displacement of the protrusion when the driving means drives the protrusion, when the protrusion is driven by the driving means, Based on the detection by the displacement detection means, the hardness of the solid surface is detected from the relative relationship between the magnitude of the driving force generated by the driving means and the amount of displacement of the protrusion due to the driving force. .

【0006】本発明の他の構成上の特徴は、対象とする
固体表面に接触する突起部と、該突起部を基部上にて弾
性的に支持する可撓性の支持部と、該支持部を変形させ
ながら突起部を固体表面に押し付ける方向に駆動する駆
動手段と、該駆動手段による突起部の駆動時に突起部の
変位を検出する変位検出手段とを備え、駆動手段による
突起部の駆動時、変位検出手段による検出に基づいて、
駆動手段が駆動力を発生してから該駆動力により突起部
が変位し始めるまでの時間差から固体表面の硬さを検出
するようにしたことにある。
Another structural feature of the present invention is that a protrusion contacting a solid surface of interest, a flexible support for elastically supporting the protrusion on a base, and the support are provided. When the protrusion is driven by the driving unit, the driving unit drives the protrusion in the direction of pressing the solid surface while deforming the protrusion, and the displacement detecting unit detects the displacement of the protrusion when the driving unit drives the protrusion. , Based on the detection by the displacement detection means,
The hardness of the solid surface is detected from the time difference between the driving means generating the driving force and the displacement of the protrusion due to the driving force.

【0007】本発明の他の構成上の特徴は、対象とする
固体表面に接触する突起部と、該突起部を基部上にて弾
性的に支持する可撓性の支持部と、該支持部を変形させ
ながら突起部を固体表面に押し付ける方向に周期的に駆
動して突起部を振動させる駆動手段と、該駆動手段によ
る突起部の駆動時に突起部の変位を検出する変位検出手
段とを備え、駆動手段による突起部の駆動時、変位検出
手段による検出に基づいて、駆動手段が発生している周
期的な駆動力と突起部の振動との間の位相差から固体表
面の硬さを検出するようにしたことにある。
Another structural feature of the present invention is that a protrusion contacting a target solid surface, a flexible support for elastically supporting the protrusion on a base, and the support are provided. A driving means for vibrating the projection by periodically driving the projection while pressing the projection on the solid surface while deforming the projection; and a displacement detection means for detecting displacement of the projection when the projection is driven by the driving means. When the protrusion is driven by the drive unit, the hardness of the solid surface is detected from the phase difference between the periodic drive force generated by the drive unit and the vibration of the protrusion, based on the detection by the displacement detection unit. I have tried to do it.

【0008】本発明の他の構成上の特徴は、対象とする
固体表面に接触する駆動用突起部、該駆動用突起部を基
部上にて弾性的に支持する可撓性の駆動用支持部、及び
該駆動用支持部を変形させながら駆動用突起部を固体表
面に押し付ける方向に周期的に駆動して駆動用突起部を
振動させる駆動手段を備えた駆動用素子と、駆動用突起
部と異なる位置にて固体表面に接触する検出用突起部、
該検出用突起部を基部上にて弾性的に支持する可撓性の
検出用支持部、及び駆動用素子の駆動手段による駆動用
突起部の駆動時に検出用突起部の変位を検出する変位検
出手段を備えた検出用素子とを設け、駆動用素子の駆動
手段による駆動用突起部の駆動時、検出用素子の変位検
出手段による検出に基づいて、駆動手段が発生している
周期的な駆動力と検出用突起部の振動との間の位相差か
ら駆動用素子及び検出用素子間における固体の表面に沿
った方向の弾性特性を検出するようにしたことにある。
Another structural feature of the present invention is that a driving projection contacting a solid surface of interest and a flexible driving support for elastically supporting the driving projection on a base portion. And a driving element having a driving means for vibrating the driving projection by periodically driving the driving projection while pressing the driving projection against the solid surface while deforming the driving support, and a driving projection. Detection protrusions that come into contact with the solid surface at different positions,
A flexible detection support portion that elastically supports the detection protrusion portion on the base portion, and a displacement detection that detects the displacement of the detection protrusion portion when the drive protrusion portion is driven by the drive means of the drive element. And a detection element provided with a means, and when the driving protrusion of the driving element is driven by the driving means, the driving means generates a periodical drive based on the detection by the displacement detection means of the detection element. The elastic characteristic in the direction along the surface of the solid between the driving element and the detecting element is detected from the phase difference between the force and the vibration of the detecting protrusion.

【0009】上記各特徴を有する固体表面の硬さ検出器
においては、単に、変位検出手段による検出に基づい
て、駆動手段が発生した駆動力と該駆動力により駆動さ
れた突起部の実際の変位の状況とを比較しているだけで
あるため、固体表面の硬さを簡単に検出することができ
る。
In the solid surface hardness detector having the above characteristics, the driving force generated by the driving means and the actual displacement of the protrusion driven by the driving force are simply based on the detection by the displacement detecting means. The hardness of the solid surface can be easily detected, since it is only compared with the situation described above.

【0010】[0010]

【発明の実施形態】以下、本発明の一実施形態について
図面を参照して説明する。同実施形態に係る固体表面の
硬さ検出器は、図1,2に示すように、格子状に並設さ
れた複数の基本素子10を備えている。この場合、各基
本素子10は、単結晶シリコン又はガラスなどにより形
成した基板上にホトマスクを用いた一括加工を行い成形
するとよい。各基本素子10は、図3,4に詳細に示す
ように、対象とする固体Xの表面X1(図1にのみ図
示)に接触する突起部11と、突起部11を基部12上
にて弾性的に支持する可撓性の支持部13と、支持部1
3を変形させながら突起部11を固体表面X1に押し付
ける方向に駆動する駆動手段としての駆動部材14と、
駆動部材14による突起部11の駆動時に突起部11の
変位量を検出する変位検出手段としての複数の歪みゲー
ジ15とを備えている。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. The solid surface hardness detector according to the embodiment includes a plurality of basic elements 10 arranged in a grid, as shown in FIGS. In this case, each of the basic elements 10 may be formed by performing collective processing using a photomask on a substrate formed of single crystal silicon or glass. As shown in detail in FIGS. 3 and 4, each basic element 10 has a protrusion 11 that contacts the surface X1 (shown only in FIG. 1) of the target solid X, and the protrusion 11 is elastic on the base 12. Supporting portion 13 that supports the same and supporting portion 1
A drive member 14 as a drive means for driving the protrusion 11 in a direction of pressing the protrusion 11 against the solid surface X1 while deforming 3.
A plurality of strain gauges 15 are provided as displacement detecting means for detecting the amount of displacement of the protrusion 11 when the protrusion 11 is driven by the drive member 14.

【0011】突起部11は、対象とする個体表面X1の
形状及び材質、並びに駆動部材14の設計に基づきその
形状を決定されて、支持部13の外枠13aより固体表
面X1側に突出するように形成されている。支持部13
は、箱状の基部12の開口上端を塞ぐようなダイヤフラ
ム状の部材であり、その中央に配置した突起部11と一
体的にシリコンにより形成されている。この場合、突起
部11は、支持部13の面上にて、アルカリ水溶液によ
る異方性エッチングを行うか、硝酸、フッ化水素酸、及
び酢酸若しくは水の混合液による等方正エッチングを行
うか、又は、反応性ガスによるドライエッチングを行い
成形するとよい。
The projection 11 has its shape determined based on the shape and material of the target solid surface X1 and the design of the driving member 14, so as to project from the outer frame 13a of the support 13 to the solid surface X1 side. Is formed in. Support part 13
Is a diaphragm-shaped member that closes the upper end of the opening of the box-shaped base 12, and is made of silicon integrally with the protrusion 11 arranged in the center thereof. In this case, the protrusion 11 is anisotropically etched on the surface of the support 13 with an alkaline aqueous solution or isotropic etching with a mixed solution of nitric acid, hydrofluoric acid, and acetic acid or water. Alternatively, it may be formed by performing dry etching with a reactive gas.

【0012】なお、突起部11と支持部13は別体とし
て形成してもよく、その場合、突起部11を樹脂などに
より形成し、支持部13を金属などにより形成するよう
にしてもよい。また、支持部13は、図5に示すよう
に、梁状に形成して弾性を調整するようにしてもよい。
The projection 11 and the support 13 may be formed as separate members, in which case the projection 11 may be formed of resin or the like and the support 13 may be formed of metal or the like. Further, as shown in FIG. 5, the support portion 13 may be formed in a beam shape to adjust elasticity.

【0013】駆動部材14は、支持部13を形成するシ
リコンと比較して熱膨張係数が大きい金属材(例えばニ
ッケル、アルミニウムなど)により平板状に形成して支
持部13の裏面側に組み付けた部材であり、図示しない
通電機構により通電加熱されて同通電加熱時に熱膨張に
より支持部13を図示上方向に湾曲させて突起部11を
固体表面X1に押しつける方向に駆動する。歪みゲージ
15は、半導体により形成されて支持部13の四方縁部
にそれぞれ組み付けられており、支持部13の変形に伴
う歪みの大きさを抵抗率の変化によって感知することに
より突起部11の変位量を検出する。
The driving member 14 is a plate member made of a metal material (for example, nickel, aluminum, etc.) having a coefficient of thermal expansion larger than that of silicon forming the support portion 13 and assembled to the back surface side of the support portion 13. That is, the support portion 13 is electrically heated by an electricity supply mechanism (not shown), and the support portion 13 is curved upward in the drawing due to thermal expansion during the same electricity heating so that the protrusion 11 is pressed against the solid surface X1. The strain gauges 15 are formed of a semiconductor and are respectively attached to the four edge portions of the support portion 13. The strain gauge 15 senses the magnitude of strain due to the deformation of the support portion 13 by the change in the resistivity, so that the displacement of the protrusion portion 11 is increased. Detect the amount.

【0014】次に、上記のように構成した検出器を用い
て固体の表面情報を調べる場合について説明する。
Next, the case of examining the surface information of a solid by using the detector configured as described above will be described.

【0015】最初、固体Xの表面X1をこの検出器に接
触させると、図1(a)に示したように、各基本素子1
0においてそれぞれ突起部11が固体表面X1に接触し
て支持部13を撓ませながら変位する。このとき、各基
本素子10における突起部11の変位量は同突起部11
の固体表面X1に対する接触圧に応じて定まるため、各
基本素子10にて歪みゲージ15により突起部11の変
位量を検出することにより、各基本素子10位置にて突
起部11が固体表面X1に接触する接触圧をそれぞれ検
出することができる。
First, when the surface X1 of the solid X is brought into contact with this detector, as shown in FIG.
At 0, the protrusions 11 come into contact with the solid surface X1 to displace the support 13 while bending. At this time, the displacement amount of the protrusion 11 in each basic element 10 is
Is determined according to the contact pressure of the solid surface X1 with respect to the solid surface X1, so that by detecting the amount of displacement of the projection 11 by the strain gauge 15 in each basic element 10, the projection 11 is formed on the solid surface X1 at each basic element 10 position. The contact pressure of contact can be detected.

【0016】また、上記各基本素子10における突起部
11の変位量すなわち固体表面X1に対する接触圧は、
各突起部11位置における固体表面X1の凹凸形状に応
じて相対的に定まる。例えば、固体表面X1が突出して
いる部分に接触した突起部11の変位量及び接触圧は相
対的に大きくなり、固体表面X1が窪んでいる部分に接
触した突起部11の変位量及び接触圧は相対的に小さく
なる。また、図1に示したように、固体表面X1に穴X
2が形成されていれば、同穴X2の位置においては突起
部11は固体表面X1に接触せず変位しない。したがっ
て、各基本素子10における突起部11の変位量をそれ
ぞれ検出することにより、固体表面X1全体の形状も検
出することができる。
Further, the displacement amount of the protrusion 11 in each of the basic elements 10, that is, the contact pressure with respect to the solid surface X1, is
It is relatively determined according to the uneven shape of the solid surface X1 at each projection 11 position. For example, the displacement amount and the contact pressure of the protrusion 11 contacting the portion where the solid surface X1 protrudes becomes relatively large, and the displacement amount and the contact pressure of the protrusion 11 contacting the portion where the solid surface X1 is recessed are It becomes relatively small. Further, as shown in FIG. 1, holes X are formed on the solid surface X1.
If 2 is formed, the protrusion 11 does not contact the solid surface X1 and is not displaced at the position of the hole X2. Therefore, the shape of the entire solid surface X1 can also be detected by detecting the amount of displacement of the protrusion 11 in each basic element 10.

【0017】次に、固体表面X1の硬さを調べる場合に
ついて説明する。この場合、まず、図1(b)に示した
ように、各基本素子10の突起部11を固体表面X1に
接触させた状態にて、駆動部材14に所定電流を流して
突起部12をさらに固体表面X1に押し付ける方向に駆
動する。次に、十分な時間だけこの駆動部材14への通
電を継続して突起部11に対し一定の駆動力を付与し続
けて、突起部11の変位が完了したら、同変位完了状態
における突起部11の変位量を歪みゲージ15により検
出する。そして、駆動部材14が発生した駆動力の大き
さすなわち駆動部材14に対する通電量と、この駆動力
により突起部11が変位した量すなわち歪みゲージ15
により検出した突起部11の駆動前後の変位量の差との
相対関係から、例えば図6に示したようなマップを参照
して、固体表面X1の硬さを検出する。なお、図6にお
いては、固体A,B,Cの順に硬い固体である。このよ
うにして、当該実施形態においては、固体表面X1の硬
さ及び形状、並びに固体Xに対する接触圧を簡単に検出
することができる。
Next, the case of examining the hardness of the solid surface X1 will be described. In this case, first, as shown in FIG. 1B, a predetermined current is applied to the driving member 14 in a state where the protrusion 11 of each basic element 10 is in contact with the solid surface X1, and the protrusion 12 is further moved. It drives in the direction of pressing on the solid surface X1. Next, the drive member 14 is continuously energized for a sufficient period of time and a constant driving force is continuously applied to the protrusion 11, and when the displacement of the protrusion 11 is completed, the protrusion 11 in the displacement completed state is completed. The amount of displacement is detected by the strain gauge 15. Then, the magnitude of the driving force generated by the driving member 14, that is, the amount of current applied to the driving member 14, and the amount of displacement of the protrusion 11 due to this driving force, that is, the strain gauge 15
The hardness of the solid surface X1 is detected by referring to a map as shown in FIG. 6, for example, based on the relative relationship with the difference in the displacement amount of the protrusion 11 before and after driving detected by. In FIG. 6, solids A, B, and C are hard solids in this order. In this way, in this embodiment, the hardness and shape of the solid surface X1 and the contact pressure on the solid X can be easily detected.

【0018】また、逆に、各基本素子10にてそれぞれ
独立に駆動部材14により突起部11を駆動することに
より、各基本素子10における突起部11の固体表面X
1に対する接触圧をそれぞれ独立に制御することも可能
である。これにより、例えば、凸凹形状を有する表面X
1に対して各基本素子10の突起部11が一様な接触圧
にて接触するようにするなど、表面X1全体に対する接
触圧の制御も可能となっている。
On the contrary, by driving the protrusions 11 by the driving members 14 independently in each of the basic elements 10, the solid surface X of the protrusions 11 in each of the basic elements 10 is increased.
It is also possible to control the contact pressure for 1 independently. Thereby, for example, the surface X having an uneven shape
It is also possible to control the contact pressure with respect to the entire surface X1 by making the protrusions 11 of the respective basic elements 10 contact each other with a uniform contact pressure.

【0019】なお、上記実施形態においては、各基本素
子10において突起部11を支持部13の外枠13aよ
り固体表面X1側に突出するように形成したが、これは
当該検出器を用いて固体表面X1の硬さ以外に固体表面
X1の形状及び固体表面X1に対する接触圧も検出でき
るようにしたためであり、当該検出器を固体表面X1の
硬さを検出するためにのみ用いる場合には、突起部11
を支持部13の外枠13aより固体表面X1側に突出し
ないように形成するとよい。これによれば、突起部11
の非駆動時に固体表面X1が突起部11に接触すること
なく支持部13の外枠13aに接触することになるた
め、突起部11の駆動時に比較的小さな駆動力により突
起部11を固体表面X1側に変位させて硬さを検出でき
るようになる。
In the above embodiment, the protrusion 11 is formed so as to protrude from the outer frame 13a of the support 13 toward the solid surface X1 side in each basic element 10, but this is achieved by using the detector. This is because the shape of the solid surface X1 and the contact pressure on the solid surface X1 can be detected in addition to the hardness of the surface X1. When the detector is used only for detecting the hardness of the solid surface X1, Part 11
Is preferably formed so as not to project to the solid surface X1 side from the outer frame 13a of the support portion 13. According to this, the protrusion 11
Since the solid surface X1 comes into contact with the outer frame 13a of the support portion 13 without contacting the projection 11 when the projection 11 is not driven, the projection 11 is moved to the solid surface X1 with a relatively small driving force when the projection 11 is driven. The hardness can be detected by displacing it to the side.

【0020】また、上記実施形態においては、駆動部材
14による突起部11の駆動時、固体表面X1の硬さ
を、駆動部材14が発生した駆動力とこの駆動力により
突起部11が変位した量との相対関係から検出するよう
にしたが、これに代えて、固体表面X1の硬さは、駆動
部材14が駆動力を発生してからこの駆動力により突起
部11が変位し始めるまでの時間差から検出するように
してもよい。
In the above embodiment, when the protrusion 11 is driven by the driving member 14, the hardness of the solid surface X1 is determined by the driving force generated by the driving member 14 and the displacement of the protrusion 11 by this driving force. However, instead of this, the hardness of the solid surface X1 is determined by the time difference between the time when the driving member 14 generates the driving force and the time when the protrusion 11 starts to be displaced by this driving force. You may make it detect from.

【0021】また、上記実施形態においては、駆動部1
5による突起部11の駆動時、突起部11を固体表面X
1に押し付ける方向に単に一度だけ駆動するようにした
が、これに代えて、突起部11を固体表面X1に押し付
ける方向に周期的に駆動して突起部11を振動させるよ
うにしてもよい。この場合、駆動部材14に対しては通
電及び非通電を周期的に繰り返すようにすればよく、固
体表面X1の硬さは、駆動部材14が発生している周期
的な駆動力と歪みゲージ15により検出される突起部1
1の振動との間の位相差から検出するようにするとよ
い。
Further, in the above embodiment, the drive unit 1
When the protrusion 11 is driven by 5, the protrusion 11 is moved to the solid surface X
Although it is configured to be driven only once in the direction to be pressed against 1, the protrusion 11 may be periodically driven to vibrate the protrusion 11 in the direction to press against the solid surface X1. In this case, energization and de-energization of the driving member 14 may be periodically repeated, and the hardness of the solid surface X1 is determined by the periodic driving force generated by the driving member 14 and the strain gauge 15. Protrusion 1 detected by
It is preferable to detect from the phase difference between the first vibration and the first vibration.

【0022】また、上記実施形態においては、各基本素
子10毎にそれぞれ独立して各基本素子10位置におけ
る固体表面Xの特性を検出するようにしていたが、各基
本素子10を駆動用素子又は検出用素子として使い分け
て、固体Xの表面X1に沿った方向の特性を検出するよ
うにしてもよい。この場合、各基本素子10の突起部1
1が固体表面X1に接触した状態にて、駆動用素子にお
いては駆動部材14により突起部11を固体表面X1に
押し付ける方向に周期的に駆動して突起部11を振動さ
せ、検出用素子においては突起部11を駆動することな
く歪みゲージ15により突起部11の変位量を検出する
ようにする。そして、駆動用素子の駆動部材14による
突起部11の駆動時、検出用素子の歪みゲージ15によ
る検出に基づいて、駆動用素子の駆動部材14が発生し
ている周期的な駆動力と検出用素子の突起部11の振動
との間の位相差から駆動用素子及び検出用素子間におけ
る固体Xの表面X1に沿った方向の弾性特性を検出する
ようにする。
Further, in the above-described embodiment, the characteristic of the solid surface X at each basic element 10 position is detected independently for each basic element 10, but each basic element 10 is driven by a driving element or The characteristics of the solid X in the direction along the surface X1 may be detected by selectively using it as a detection element. In this case, the protrusion 1 of each basic element 10
In the state of 1 in contact with the solid surface X1, in the driving element, the driving member 14 periodically drives the projecting portion 11 in the direction of pressing the projecting portion 11 against the solid surface X1 to vibrate the projecting portion 11, and in the detecting element, The displacement amount of the protrusion 11 is detected by the strain gauge 15 without driving the protrusion 11. Then, when the protrusion 11 is driven by the driving member 14 of the driving element, the periodic driving force generated by the driving member 14 of the driving element and the detection force are detected based on the detection by the strain gauge 15 of the detecting element. The elastic characteristic in the direction along the surface X1 of the solid X between the driving element and the detecting element is detected from the phase difference between the vibration of the protrusion 11 of the element and the vibration.

【0023】また、上記各基本素子10は、図7にて示
したように、可撓性の連結部16により互いに変位可能
に連結するようにしてもよい。この場合、連結部16
は、例えばポリイミドなどの樹脂材により形成するとよ
い。これによれば、当該固体の表面情報検出器を任意の
曲面上に接触させて用いることが可能となる。
Further, the respective basic elements 10 may be displaceably connected to each other by a flexible connecting portion 16 as shown in FIG. In this case, the connecting portion 16
Is preferably formed of a resin material such as polyimide. According to this, it becomes possible to use the solid surface information detector in contact with an arbitrary curved surface.

【0024】次に、上記実施形態の変形例について図面
を参照して説明する。
Next, a modification of the above embodiment will be described with reference to the drawings.

【0025】図8,9に示した固体表面の硬さ検出器の
基本素子20,30は、突起部21,31の駆動手段と
して電磁力を採用したものである。
The basic elements 20 and 30 of the solid surface hardness detector shown in FIGS. 8 and 9 employ electromagnetic force as driving means for the protrusions 21 and 31.

【0026】基本素子20は、基部22の底部22aを
永久磁石により構成し、同底部22aに対向して支持部
13の裏面上にコイルパターン24を配設したものであ
る。コイルパターン24は、図示しない通電機構により
通電されて磁場を発生し、同磁場の発生時に底部22a
により形成された磁場と干渉して突起部21を駆動す
る。コイルパターン24と底部22aの間に働く力の向
きはコイルパターン24を流れる電流の向きに応じて決
まり、突起部21は、コイルパターン24と底部22a
の間に斥力が発生した場合には固体表面X1に押し付け
られる方向(図示上方向)に駆動され、コイルパターン
24と底部22aの間に引力が発生した場合にはその反
対方向(図示下方向)に駆動される。したがって、同変
形例においては、コイルパターン24に対して交流電圧
を印加することにより、簡単に突起部21を振動させる
ことが可能である。この場合、印加電圧の周波数を支持
部23の固有振動数と等しくなるように設定すれば、共
振現象により、小さな電圧で突起部21を効率的に振動
させることができる。
In the basic element 20, the bottom portion 22a of the base portion 22 is made of a permanent magnet, and the coil pattern 24 is disposed on the back surface of the support portion 13 so as to face the bottom portion 22a. The coil pattern 24 is energized by an energization mechanism (not shown) to generate a magnetic field, and when the magnetic field is generated, the bottom portion 22a is formed.
The protrusion 21 is driven by interfering with the magnetic field formed by. The direction of the force acting between the coil pattern 24 and the bottom portion 22a is determined according to the direction of the current flowing through the coil pattern 24, and the protrusion 21 includes the coil pattern 24 and the bottom portion 22a.
When a repulsive force is generated between the coil surface 24 and the solid surface X1, it is driven in the direction (upward direction in the drawing), and when an attractive force is generated between the coil pattern 24 and the bottom portion 22a, the opposite direction (downward direction in the drawing). Driven to. Therefore, in the modification, it is possible to easily vibrate the protrusion 21 by applying an AC voltage to the coil pattern 24. In this case, if the frequency of the applied voltage is set to be equal to the natural frequency of the supporting portion 23, the protrusion 21 can be efficiently vibrated with a small voltage due to the resonance phenomenon.

【0027】基本素子30は、突起部31を永久磁石に
より構成し、基部32の底部32aの上面上にコイルパ
ターン34を配設したものである。コイルパターン34
は、図示しない通電機構により通電されて磁場を発生す
るようになっており、同磁場の発生時に突起部31によ
り形成された磁場と干渉して突起部31を駆動する。突
起部31とコイルパターン34の間に働く力の向きはコ
イルパターン34を流れる電流の向きに応じて決まり、
突起部31は、コイルパターン34との間に斥力が発生
した場合には固体表面X1に押し付けられる方向(図示
上方向)に駆動され、コイルパターン34との間に引力
が発生した場合にはその反対方向(図示下方向)に駆動
される。したがって、この場合も、簡単かつ効率的に突
起部31を振動させることができる。
In the basic element 30, the protrusion 31 is made of a permanent magnet, and the coil pattern 34 is arranged on the upper surface of the bottom 32a of the base 32. Coil pattern 34
Is energized by an energization mechanism (not shown) to generate a magnetic field, and drives the protrusion 31 by interfering with the magnetic field formed by the protrusion 31 when the magnetic field is generated. The direction of the force acting between the protrusion 31 and the coil pattern 34 is determined according to the direction of the current flowing through the coil pattern 34,
When a repulsive force is generated between the protrusion 31 and the coil pattern 34, the protrusion 31 is driven in a direction (upward direction in the drawing) pressed against the solid surface X1 and when an attractive force is generated between the protrusion 31 and the coil pattern 34. It is driven in the opposite direction (downward in the figure). Therefore, also in this case, the protrusion 31 can be vibrated easily and efficiently.

【0028】上記各基本素子20,30にて突起部2
1,31に対して加えられる駆動力は、コイルパターン
24,34の巻き数、コイルパターンに流す電流の大き
さ、底部22a又は突起部31を構成する永久磁石によ
り形成される磁場の大きさ、及び底部22a又は突起部
31を構成する永久磁石とコイルパターン24,34と
の相対位置関係により定まる。コイルパターン24,3
4は、基板上にホトリソグラフィーにて形成した型内に
金属材を満たすことにより形成されている。この場合、
コイルパターン24,34の厚さが薄ければ(例えば、
数ミクロン以下)、真空蒸着、スパッタリングなど薄膜
形成プロセスを利用して金属材を充填するようにすると
よい。コイルパターン24,34の厚さが比較的厚い場
合には、厚膜形成が可能な金属めっきプロセスを利用し
てコイルパターン24,34を形成するようにするとよ
い。
The protrusion 2 is formed in each of the basic elements 20 and 30.
The driving force applied to the coils 1, 31 is the number of turns of the coil patterns 24, 34, the magnitude of the current flowing in the coil patterns, the magnitude of the magnetic field formed by the permanent magnets forming the bottom portion 22a or the protrusion 31, And the relative positional relationship between the permanent magnets forming the bottom portion 22a or the protrusion 31 and the coil patterns 24 and 34. Coil pattern 24,3
4 is formed by filling a metal material in a mold formed by photolithography on the substrate. in this case,
If the coil patterns 24 and 34 are thin (for example,
It is advisable to use a thin film forming process such as vacuum deposition or sputtering to fill the metal material. When the coil patterns 24 and 34 are relatively thick, it is preferable to form the coil patterns 24 and 34 using a metal plating process capable of forming a thick film.

【0029】図10,11に示した固体表面の硬さ検出
器の基本素子40,50は、突起部41,51の駆動手
段として圧電素子を採用したものである。
The basic elements 40 and 50 of the solid surface hardness detector shown in FIGS. 10 and 11 employ piezoelectric elements as driving means for the protrusions 41 and 51.

【0030】基本素子40は、基部42の底部42aと
支持部43の間に積層型の圧電素子44を配設したもの
である。圧電素子44は、図示しない通電機構による通
電時、電流の向きに応じて図示上下方向に伸縮し、突起
部41を固体表面X1に押し付ける方向(上方向)及び
その反対方向(下方向)に駆動する。同変形例において
も、圧電素子44に対して交流電圧を印加することによ
り簡単に突起部41を振動させることが可能であり、印
加電圧の周波数を支持部43の固有振動数と等しく設定
することにより突起部11を効率的に振動させることが
できる。
The basic element 40 has a laminated piezoelectric element 44 disposed between the bottom portion 42a of the base portion 42 and the support portion 43. When energized by an energization mechanism (not shown), the piezoelectric element 44 expands and contracts in the vertical direction in the drawing according to the direction of the current, and is driven in the direction (upward) for pressing the protrusion 41 against the solid surface X1 and in the opposite direction (downward). To do. Also in this modification, it is possible to easily vibrate the protrusion 41 by applying an AC voltage to the piezoelectric element 44, and set the frequency of the applied voltage to be equal to the natural frequency of the support portion 43. Thus, the protrusion 11 can be efficiently vibrated.

【0031】基本素子50は、平板状の基部52と支持
部53の間に平板型の圧電素子54を配設したものであ
る。圧電素子44は、図示しない通電機構による通電
時、電流の向きに応じて図示上下方向に湾曲し、突起部
51を固体表面X1に押し付ける方向(上方向)及びそ
の反対方向(下方向)に駆動する。したがって、この場
合も、簡単かつ効率的に突起部51を振動させることが
できる。また、同変形例においては、突起部51の変位
の幅が比較的小さくなるが、基本素子50の幅が薄くな
るため、当該検出器を小型に構成することが可能であ
る。
The basic element 50 has a flat plate type piezoelectric element 54 disposed between a flat plate-shaped base portion 52 and a support portion 53. When energized by an energization mechanism (not shown), the piezoelectric element 44 bends in the up-down direction in the figure according to the direction of the current, and is driven in the direction (upward) for pressing the protrusion 51 against the solid surface X1 and in the opposite direction (downward). To do. Therefore, also in this case, the protrusion 51 can be easily and efficiently vibrated. Further, in the modification, the width of displacement of the protrusion 51 is relatively small, but the width of the basic element 50 is thin, so that the detector can be made compact.

【0032】図12,13に示した固体表面の硬さ検出
器の基本素子60,70は、突起部61,71の駆動手
段として液体の熱膨張を採用したものである。
The basic elements 60 and 70 of the solid surface hardness detector shown in FIGS. 12 and 13 employ thermal expansion of liquid as the driving means of the protrusions 61 and 71.

【0033】基本素子60,70は、それぞれ、基部6
2,72と支持部63,73により画定した液室66,
76内に例えば塩化メチルなどの液体を封入したもので
ある。基本素子60の液室66内の液体は、光ファイバ
64により光を照射されたとき、同光の熱エネルギーに
より膨張して突起部61を固体表面X1に押し付ける方
向に駆動する。同実施形態においては、光ファイバ64
による光の照射を間欠的かつ周期的に繰り返すことによ
り、突起部61を振動させることができる。
The basic elements 60 and 70 are respectively provided with a base 6
2, 72 and the supporting chambers 63, 73 define a liquid chamber 66,
A liquid such as methyl chloride is enclosed in 76. When the liquid in the liquid chamber 66 of the basic element 60 is irradiated with light by the optical fiber 64, the liquid expands due to the thermal energy of the light and drives the protrusion 61 in a direction to press it against the solid surface X1. In the same embodiment, the optical fiber 64
The projection 61 can be vibrated by intermittently and periodically repeating the irradiation of light by.

【0034】基本素子70の液室76内の液体は、液室
76内に配設されたヒータ74が図示しない通電機構に
より通電加熱されたとき、同ヒータ74の熱エネルギー
により膨張して突起部71を固体表面X1に押し付ける
方向に駆動する。同実施形態においては、ヒータ74に
対して通電及び非通電を周期的に繰り返すことにより、
突起部71を振動させることができる。
The liquid in the liquid chamber 76 of the basic element 70 expands due to the thermal energy of the heater 74 when the heater 74 arranged in the liquid chamber 76 is electrically heated by a not-shown energizing mechanism, and the projections are formed. It drives in the direction which presses 71 on the solid surface X1. In the embodiment, by energizing and de-energizing the heater 74 periodically,
The protrusion 71 can be vibrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)はそれぞれ本発明の一実施形態
に係る固体表面の硬さ検出器の一状態を示す縦断面図で
ある。
1A and 1B are vertical cross-sectional views showing a state of a solid surface hardness detector according to an embodiment of the present invention.

【図2】前記固体表面の硬さ検出器の平面図である。FIG. 2 is a plan view of the solid surface hardness detector.

【図3】図1,2の基本素子の詳細を示す拡大縦断面図
である。
FIG. 3 is an enlarged vertical sectional view showing details of the basic element shown in FIGS.

【図4】前記基本素子の詳細を示す拡大平面図である。FIG. 4 is an enlarged plan view showing details of the basic element.

【図5】図1〜4の支持部の変形例を示す拡大平面図で
ある。
FIG. 5 is an enlarged plan view showing a modified example of the supporting portion of FIGS.

【図6】図1〜4の駆動部による駆動力と突起部の変位
量と固体表面の硬さとの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the driving force by the driving unit of FIGS. 1 to 4, the amount of displacement of the protrusion, and the hardness of the solid surface.

【図7】前記固体表面の硬さ検出器の変形例を示す縦断
面図である。
FIG. 7 is a vertical cross-sectional view showing a modified example of the solid surface hardness detector.

【図8】前記基本素子の変形例を示す拡大縦断面図であ
る。
FIG. 8 is an enlarged vertical sectional view showing a modified example of the basic element.

【図9】前記基本素子の変形例を示す拡大縦断面図であ
る。
FIG. 9 is an enlarged vertical sectional view showing a modified example of the basic element.

【図10】前記基本素子の変形例を示す拡大縦断面図で
ある。
FIG. 10 is an enlarged vertical sectional view showing a modified example of the basic element.

【図11】前記基本素子の変形例を示す拡大縦断面図で
ある。
FIG. 11 is an enlarged vertical sectional view showing a modified example of the basic element.

【図12】前記基本素子の変形例を示す拡大縦断面図で
ある。
FIG. 12 is an enlarged vertical sectional view showing a modified example of the basic element.

【図13】前記基本素子の変形例を示す拡大縦断面図で
ある。
FIG. 13 is an enlarged vertical sectional view showing a modified example of the basic element.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000004260 株式会社デンソー 愛知県刈谷市昭和町1丁目1番地 (71)出願人 000003551 株式会社東海理化電機製作所 愛知県丹羽郡大口町豊田三丁目260番地 (71)出願人 000003207 トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地 (71)出願人 000237271 富士機械製造株式会社 愛知県知立市山町茶碓山19番地 (71)出願人 000006013 三菱電機株式会社 東京都千代田区丸の内二丁目2番3号 (71)出願人 390040187 株式会社メルコ 愛知県名古屋市中区大須4丁目11番50号 (72)発明者 佐藤 一雄 愛知県名古屋市千種区不老町 名古屋大学 大学院工学研究科内 (72)発明者 式田 光宏 愛知県名古屋市千種区不老町 名古屋大学 難処理人工物研究センター内 (72)発明者 糸魚川 貢一 愛知県丹羽郡大口町豊田三丁目260番地 株式会社東海理化電機製作所内 (72)発明者 清水 武士 愛知県名古屋市千種区不老町 名古屋大学 大学院工学研究科内   ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000004260             DENSO CORPORATION             1-1, Showa-cho, Kariya city, Aichi prefecture (71) Applicant 000003551             Tokai Rika Electric Co., Ltd.             260-chome, Toyota, Oguchi-cho, Niwa-gun, Aichi (71) Applicant 000003207             Toyota Motor Corporation             1 Toyota Town, Toyota City, Aichi Prefecture (71) Applicant 000237271             Fuji Machine Manufacturing Co., Ltd.             19 Chasuyama, Yamamachi Town, Chiryu City, Aichi Prefecture (71) Applicant 000006013             Mitsubishi Electric Corporation             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo (71) Applicant 390040187             Melco Co., Ltd.             4-11-50 Osu, Naka-ku, Nagoya City, Aichi Prefecture (72) Inventor Kazuo Sato             Aichi Prefecture Nagoya City Chikusa Ward Furocho Nagoya University             Graduate School of Engineering (72) Inventor Mitsuhiro Shikita             Aichi Prefecture Nagoya City Chikusa Ward Furocho Nagoya University             Difficult-to-process artifact research center (72) Inventor Koichi Itoigawa             260-chome, Toyota, Oguchi-cho, Niwa-gun, Aichi             Tokai Rika Electric Co., Ltd. (72) Inventor Takeshi Shimizu             Aichi Prefecture Nagoya City Chikusa Ward Furocho Nagoya University             Graduate School of Engineering

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】対象とする固体表面に接触する突起部と、 該突起部を基部上にて弾性的に支持する可撓性の支持部
と、 該支持部を変形させながら前記突起部を前記固体表面に
押し付ける方向に駆動する駆動手段と、 該駆動手段による突起部の駆動時に前記突起部の変位量
を検出する変位検出手段とを備え、 前記駆動手段による突起部の駆動時、前記変位検出手段
による検出に基づいて、前記駆動手段が発生している駆
動力の大きさと該駆動力により前記突起部が変位した量
との相対関係から前記固体表面の硬さを検出することを
特徴とする固体表面の硬さ検出器。
1. A protrusion contacting a solid surface of interest, a flexible support that elastically supports the protrusion on a base, and the protrusion being deformed while supporting the protrusion. A driving means for driving in a direction of pressing the solid surface; and a displacement detecting means for detecting a displacement amount of the protrusion when the protrusion is driven by the driving means, and the displacement detection when driving the protrusion by the driving means. The hardness of the solid surface is detected from the relative relationship between the magnitude of the driving force generated by the driving unit and the amount of displacement of the protrusion due to the driving force based on the detection by the unit. Hardness detector for solid surfaces.
【請求項2】対象とする固体表面に接触する突起部と、 該突起部を基部上にて弾性的に支持する可撓性の支持部
と、 該支持部を変形させながら前記突起部を前記固体表面に
押し付ける方向に駆動する駆動手段と、 該駆動手段による突起部の駆動時に前記突起部の変位を
検出する変位検出手段とを備え、 前記駆動手段による突起部の駆動時、前記変位検出手段
による検出に基づいて、前記駆動手段が駆動力を発生し
てから該駆動力により前記突起部が変位し始めるまでの
時間差から前記固体表面の硬さを検出することを特徴と
する固体表面の硬さ検出器。
2. A protrusion that contacts a target solid surface, a flexible support that elastically supports the protrusion on a base, and the protrusion that deforms the support while retaining the protrusion. A driving means for driving in a direction of pressing the solid surface; and a displacement detecting means for detecting a displacement of the protrusion when the driving means drives the protrusion, and the displacement detecting means when driving the protrusion by the driving means. The hardness of the solid surface is detected from the time difference from the generation of the driving force by the driving means to the start of displacement of the protrusion due to the driving force, based on the detection by Detector.
【請求項3】対象とする固体表面に接触する突起部と、 該突起部を基部上にて弾性的に支持する可撓性の支持部
と、 該支持部を変形させながら前記突起部を前記固体表面に
押し付ける方向に周期的に駆動して前記突起部を振動さ
せる駆動手段と、 該駆動手段による突起部の駆動時に前記突起部の変位を
検出する変位検出手段とを備え、 前記駆動手段による突起部の駆動時、前記変位検出手段
による検出に基づいて、前記駆動手段が発生している周
期的な駆動力と前記突起部の振動との間の位相差から前
記固体表面の硬さを検出するようにしたことを特徴とす
る固体表面の硬さ検出器。
3. A protrusion that contacts a target solid surface, a flexible support that elastically supports the protrusion on a base, and the protrusion that deforms the support while retaining the protrusion. The driving means includes a driving means for periodically driving in a direction of pressing the solid surface to vibrate the protrusion, and a displacement detecting means for detecting displacement of the protrusion when the driving means drives the protrusion. When the protrusion is driven, the hardness of the solid surface is detected from the phase difference between the periodic driving force generated by the driving unit and the vibration of the protrusion based on the detection by the displacement detecting unit. A hardness detector for a solid surface, characterized in that
【請求項4】対象とする固体表面に接触する駆動用突起
部、該駆動用突起部を基部上にて弾性的に支持する可撓
性の駆動用支持部、及び該駆動用支持部を変形させなが
ら前記駆動用突起部を前記固体表面に押し付ける方向に
周期的に駆動して前記駆動用突起部を振動させる駆動手
段を備えた駆動用素子と、 前記駆動用突起部と異なる位置にて前記固体表面に接触
する検出用突起部、該検出用突起部を基部上にて弾性的
に支持する可撓性の検出用支持部、及び前記駆動用素子
の駆動手段による駆動用突起部の駆動時に前記検出用突
起部の変位を検出する変位検出手段を備えた検出用素子
とを設け、 前記駆動用素子の駆動手段による駆動用突起部の駆動
時、前記検出用素子の変位検出手段による検出に基づい
て、前記駆動手段が発生している周期的な駆動力と前記
検出用突起部の振動との間の位相差から前記駆動用素子
及び検出用素子間における前記固体の表面に沿った方向
の弾性特性を検出するようにしたことを特徴とする固体
表面の硬さ検出器。
4. A drive projection that contacts a target solid surface, a flexible drive support that elastically supports the drive projection on a base, and a modification of the drive support. While driving the driving projection, the driving element is provided with a driving unit that periodically drives the driving projection on the solid surface to vibrate the driving projection; and a driving element at a position different from the driving projection. A detection protrusion that contacts a solid surface, a flexible detection support that elastically supports the detection protrusion on a base, and a driving protrusion of the driving element when driving the driving protrusion. A detection element having a displacement detection means for detecting the displacement of the detection protrusion is provided, and when the drive protrusion of the drive element is driven by the displacement detection means of the detection element. Based on the circumference generated by the driving means, The elastic characteristic in the direction along the surface of the solid between the driving element and the detecting element is detected from the phase difference between the dynamic driving force and the vibration of the detecting protrusion. A solid surface hardness detector.
JP2001248190A 2001-08-17 2001-08-17 Solid surface hardness detector Expired - Fee Related JP4636745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248190A JP4636745B2 (en) 2001-08-17 2001-08-17 Solid surface hardness detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248190A JP4636745B2 (en) 2001-08-17 2001-08-17 Solid surface hardness detector

Publications (2)

Publication Number Publication Date
JP2003057161A true JP2003057161A (en) 2003-02-26
JP4636745B2 JP4636745B2 (en) 2011-02-23

Family

ID=19077395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248190A Expired - Fee Related JP4636745B2 (en) 2001-08-17 2001-08-17 Solid surface hardness detector

Country Status (1)

Country Link
JP (1) JP4636745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083546A1 (en) * 2006-01-19 2007-07-26 National University Corporation Toyohashi University Of Technology Tactile sensor device
JP2012220346A (en) * 2011-04-08 2012-11-12 Institute Of National Colleges Of Technology Japan Hardness tester and imprint device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293643A (en) * 1989-05-08 1990-12-04 Fuji Electric Co Ltd Method for discriminating hardness of object
JPH06317510A (en) * 1993-05-06 1994-11-15 Oyo Corp Dynamic penetration testing method and measuring instrument used for it
JPH10179524A (en) * 1996-11-08 1998-07-07 Imoto Seisakusho:Kk Muscle hardness meter
JPH11118689A (en) * 1997-10-17 1999-04-30 Olympus Optical Co Ltd Tactile sensor
JP2002131294A (en) * 2000-10-27 2002-05-09 Mitsui Constr Co Ltd Nondestructive compression test method and device for concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293643A (en) * 1989-05-08 1990-12-04 Fuji Electric Co Ltd Method for discriminating hardness of object
JPH06317510A (en) * 1993-05-06 1994-11-15 Oyo Corp Dynamic penetration testing method and measuring instrument used for it
JPH10179524A (en) * 1996-11-08 1998-07-07 Imoto Seisakusho:Kk Muscle hardness meter
JPH11118689A (en) * 1997-10-17 1999-04-30 Olympus Optical Co Ltd Tactile sensor
JP2002131294A (en) * 2000-10-27 2002-05-09 Mitsui Constr Co Ltd Nondestructive compression test method and device for concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083546A1 (en) * 2006-01-19 2007-07-26 National University Corporation Toyohashi University Of Technology Tactile sensor device
JP2012220346A (en) * 2011-04-08 2012-11-12 Institute Of National Colleges Of Technology Japan Hardness tester and imprint device

Also Published As

Publication number Publication date
JP4636745B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP5765993B2 (en) Vibration type driving device
JP5229704B2 (en) Optical scanning device
JP5064864B2 (en) Optical deflection apparatus, image forming apparatus, and driving method of optical deflection apparatus
JP2020114619A (en) System and method for micro-cantilever actuation by base excitation
JP4072518B2 (en) Vibration wave drive
JP4766353B2 (en) Optical beam scanning device
JP2003057161A (en) Hardness detector for surface of solid
JP2011128185A (en) Light scanning apparatus
JP3190634B2 (en) Piezoelectric actuator, method of driving piezoelectric actuator, and computer-readable storage medium storing program for causing computer to execute method of driving piezoelectric actuator
WO2016152224A1 (en) Piezoelectric actuator and electronic timepiece
JP2017200374A5 (en)
CN113655300B (en) Resonant electric field sensor and preparation method thereof
JP2013074594A (en) Micro-mechanical vibrator and micro-mechanical vibrator control method
JP2004263689A (en) Vibrating pumping stage for molecular vacuum pump, and molecular vacuum pump having vibrating pumping stage
WO2018123749A1 (en) Vibration power generation device
JP4973064B2 (en) Actuator, projector, optical device, optical scanner, and image forming apparatus
JP2008284532A (en) Bimorph vibrator for piezo-electric sheet power generation
JPH11202226A (en) Light deflector
JP6305026B2 (en) Vibration type driving device and operation device using the same
JP2013187893A (en) Vibration element and vibration element manufacturing method
JPH08251953A (en) Oscillation driver
JPH1052072A (en) Vibration actuator
JPH10227644A (en) Angular velocity sensor using vibrator
KR20160136770A (en) Energy harvesting apparatus and method using micro bubble
JP2001258277A (en) Vibration wave driver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees