JP2003057116A - Temperature detection method - Google Patents

Temperature detection method

Info

Publication number
JP2003057116A
JP2003057116A JP2001246120A JP2001246120A JP2003057116A JP 2003057116 A JP2003057116 A JP 2003057116A JP 2001246120 A JP2001246120 A JP 2001246120A JP 2001246120 A JP2001246120 A JP 2001246120A JP 2003057116 A JP2003057116 A JP 2003057116A
Authority
JP
Japan
Prior art keywords
temperature
detecting
output voltage
infrared
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001246120A
Other languages
Japanese (ja)
Inventor
Tomohiro Tamaoki
智広 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001246120A priority Critical patent/JP2003057116A/en
Publication of JP2003057116A publication Critical patent/JP2003057116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve safety by detecting break of wire by a simple means by using the same signal when detecting temperature by using a non-contact temperature sensor. SOLUTION: This temperature detection method utilizes a non-contact temperature detector means consisting of a film absorbing infrared from a heat element heated by a heat source, a thermal element for infrared detection for detecting the temperature of the film and a temperature compensation thermal element detecting the temperature of a support supporting the film. Among the first output voltage of a series circuit with the thermal element for infrared detection and a resistor element, the second output voltage of a series circuit with the temperature compensation thermal element and the resistor element, and the third output voltage of the difference between the first output voltage and the second output voltage, the first and the third output voltages are converted to digital values. Based on these digital values, the temperature of the heat element is detected, and based on the value of the first output voltage converted to a digital value, a break of wire of the thermal element for infrared detection is detected.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は非接触温度検出手段
を用いた温度検出方法に関し、詳しくは電子写真装置、
静電記録装置等に用いられる定着装置で加熱要素に温度
検知素子を非接触で配置した定着装置に関する。 【0002】 【従来の技術】ヒータにより加熱される定着ローラを用
いた定着装置は、複写機やレーザプリンタ等の画像形成
装置において多用されている。 【0003】このような定着装置では、定着ローラの表
面温度を所定温度に維持するためのサーミスタや、定着
ローラの異常昇温時にヒータへの通電経路を遮断するた
めの温度ヒューズ、サーモスイッチ等の温度検知素子を
定着ローラ表面に当接させている。 【0004】このため、接触キズが定着ローラに発生
し、白スジ,黒スジ,定着不良などの問題が発生するこ
とがある。 【0005】そこで、温度検知手段を、記録材の通過領
域である画像域外において定着ローラに当接させる方法
が考えられるが、画像域内の温度検知が不可能であるこ
とや、定着装置が大型化する為、最近では温度検知手段
を画像域内において定着ローラに非接触に近接させる方
法が考えられている。 【0006】この非接触温度検知手段は、開口部を有す
るケーシングと、このケーシングに内装されると共に、
開口部を通過した赤外線を吸収する高分子材料から成る
赤外線吸収フィルムと、この赤外線吸収フィルムに密着
するように配設した赤外線検知用のサーミスタ素子と、
ケーシングの温度を検出する温度補償用のサーミスタ素
子を備えたものである。 【0007】この非接触温度検知手段は、ケーシングの
開口部を通過した赤外線がその開口部の直下に配設した
赤外線吸収フィルムに吸収されることによって赤外線吸
収フィルムの温度が上昇し、赤外線吸収フィルムに密着
して配設したサーミスタ素子がその温度変化を検出す
る。赤外線検知用サーミスタ素子30と温度補償用サー
ミスタ素子31はともに同等の温度−抵抗特性のものを
使用しており、図4のように同一の抵抗値の固定抵抗R
1およびR2がそれぞれ直列に接続されている。 【0008】対象物からの赤外線を赤外線吸収フィルム
が吸収するとフィルムの温度が上昇し、赤外線検知用サ
ーミスタの抵抗値が温度補償用サーミスタに比して小さ
くなるため、a>bとなっており、温度補償用サーミス
タ素子との温度差を図4で示されるようにブリッジ回路
でA−B間の電位差に相当する出力電圧をcとして検出
する。そして出力電圧cと温度補償用サーミスタ素子の
出力電圧aをA/Dコンバータによりデジタル値に変換
してマイクロコンピュータに取り込み、マイクロコンピ
ュータはこれらの出力電圧a,cのデジタル値をデータ
テーブルもしくは関数により変換して定着ローラの温度
を検出している。 【0009】 【発明が解決しようとする課題】しかしながら、上記従
来例で説明した非接触温度検知手段を用いた温度検出方
法では、定着ローラの温度制御中に赤外線検知用サーミ
スタ素子の故障や電送線が断線してオープン状態になっ
た場合、出力電圧bが基準電圧Vと同じになってしまう
ため、aとbの関係が逆転してa<bとなり、出力電圧
cが0になってしまう。するとマイクロコンピュータが
出力電圧a,cのデジタル値を基に温度に変換した際
に、定着ローラの温度を実際より低い温度として検出し
てしまい、定着ローラを加熱し続ける結果、サーモスイ
ッチ等の安全装置が働くまで定着ローラが過昇温してし
まうと言う問題があった。 【0010】本発明では、以上述べたような非接触温度
検知手段を用いた際の、赤外線検知用感熱素子の断線に
よる故障を、回路やコストの増加無く検出する方法を提
供する。 【0011】 【課題を解決するための手段】加熱源により加熱される
加熱要素からの赤外線を吸収するフィルムと、フィルム
の温度を検知する赤外線検知用感熱素子と、フィルムを
保持する保持体の温度を検知する温度補償用感熱素子か
らなる非接触温度検知手段を用いた温度検出方法で、前
記赤外線検知用感熱素子と抵抗素子の直列回路の第1の
出力電圧と、前記温度補償用感熱素子と抵抗素子の直列
回路の第2の出力電圧と、第1の出力電圧と第2の出力
電圧の差分を出力した第3の出力電圧のうち、第1と第
3の出力電圧をデジタル値に変換して、これらの2つの
デジタル値をもとに前記加熱要素の温度を検出するとと
もに、第1の出力電圧をデジタル値に変換した値を基に
前記赤外線検知用感熱素子の断線を検知することを特徴
とする温度検出方法。 【0012】 【発明の実施の形態】以下本発明の実施の形態を図面に
基づき説明する。 【0013】記録紙上の未定着画像を定着させる画像記
録装置は、画像記録装置内部に、図示を省略したが、表
面に静電潜像を形成する像担持体、像担持体の表面の電
荷を除電する前露光手段、像担持体の表面を所望の電位
に帯電させる1次帯電手段、帯電した像担持体上を露光
して静電潜像を形成させる露光手段、像担持体上の静電
潜像を現像剤で現像して可視像化する現像器、現像器で
現像された像担持体上のトナー画像を記録材に転写する
転写装置等が設けられている。 【0014】また、記録材に転写されたトナー画像を加
熱および加圧された定着ローラにより溶融定着させるロ
ーラ定着装置である定着ユニット1が画像記録装置の所
定位置に配置され、各部材により画像形成の各プロセス
が適宜実行されることにより所望の画像を得ることがで
きるようになっている。なお、記録材には記録紙やOH
P用紙などが用いられる。 【0015】次に定着ユニット1の構成を説明する。図
2において2は加熱ローラであり、アルミニウム、鉄等
のパイプ材にシリコーンゴム、フッ素ゴム等の耐熱弾性
体の層を形成し表面にPFA、PTFEといった離型層
を被覆したローラである。上記加熱ローラ2に圧接して
配設された加圧ローラ3も加熱ローラと同様に芯金の上
にシリコーンゴム、フッ素ゴム等の耐熱弾性体の層を形
成したローラである。 【0016】上記加熱ローラ(加熱部材)2と加圧ロー
ラ(バックアップ部材)3には記録材Sが通紙され、記
録材S上のトナーTは加熱ローラと加圧ローラとの間で
加熱および加圧されて定着される。上記加熱ローラ2の
内部にはヒータ4が配設されており、加熱ローラ2を内
部より加熱する。また上記加熱ローラ2の表面温度を検
知するために温度検知手段たる温度検知素子5が加熱ロ
ーラに面して非接触に配置されており、加熱ローラ2の
温度を検出する。温度検知素子5からのデータに基づい
て加熱ローラ2の表面温度を所定の設定温度(プリント
温度)または非定着時の待機温度(スタンバイ温度)に
保つようになっている。加熱ローラにはまた、過昇温を
検知するため、サーモスイッチ6が非接触に配設されて
おり、過昇温が検知された場合、ヒータへの通電を遮断
するようになっている。 【0017】次に、温度検知素子5の構成について詳細
を図3を用いて説明する。7はアルミ等熱伝導性の高い
材料でできたケースであり、ケースの一面に設けた開口
部8に加熱ローラから放射される赤外光を吸収する耐熱
フィルム9が閉塞するように設けられる。耐熱フィルム
9のケース内面側には、赤外線検知用サーミスタ素子1
0を接着剤等で密着させて固定する。赤外線検知用サー
ミスタ素子10の近傍には、ケース内の雰囲気温度を測
定するための温度補償用サーミスタ素子11を配設す
る。赤外線検知用サーミスタ素子10と温度補償用サー
ミスタ素子11のリード線12は、ケース7に設けたソ
ケット(図示なし)にそれぞれ接続して外部に取り出す
ようにする。 【0018】次に、温度検知素子5の動作について簡単
に説明する。まず、ケース7の開口部8に取り付けた樹
脂フィルム9に加熱ローラからの赤外線が入射すると、
フィルム9に赤外線が吸収されてフィルム9の温度が赤
外線量に応じて上昇する。そして、樹脂フィルム9の温
度は、フィルム裏面に密着固定した赤外線検知用サーミ
スタ素子10に伝導してサーミスタ素子の抵抗変化とし
て検出する。赤外線検知用サーミスタ素子10の抵抗
は、ケースの温度による影響を受けており、温度補償用
サーミスタ素子11を用いて、ケース温度に相当する温
度を検出してその影響を排除している。ここでケーシン
グをアルミ等熱伝導性の高い材料でできたケースにする
のは、雰囲気温度の変化に対する温度補償用サーミスタ
素子11の追従性を向上させる為である。 【0019】次にこの温度検知素子5を用いた温度検出
回路を図1を用いて説明する。赤外線検知用サーミスタ
素子10と温度補償用サーミスタ素子11はそれぞれ3
3kΩの抵抗素子R1,R2と直列に接続されて、基準
電源Vとグランドの間に接続されている。温度補償用サ
ーミスタ素子11と赤外線検知用サーミスタ素子10の
出力はそれぞれ電圧a,bである。差動増幅回路12は
電圧a,bを入力としており、15倍に増幅された出力
が電圧cである。電圧b,cは8bitA/Dコンバー
タ13,14に入力され、電圧bに対応するデジタル出
力jと電圧cに対応するデジタル出力kがマイクロコン
ピュータ15で読まれる。マイコン15はそれらのデジ
タル出力をデータテーブルに当てはめ、加熱ローラ2の
温度を検出する。温度検出には従来の温度補償用サーミ
スタ素子の出力電圧aではなく、赤外線検知用サーミス
タ素子の出力電圧bを用いるが、検出精度等に影響は無
い。 【0020】なぜなら、もともと温度検出のためには温
度補償用サーミスタの出力電圧aと赤外線検知用サーミ
スタの出力電圧bの微少な電圧差を差動増幅して使用し
ており、定着ローラの温度変化に伴い、出力電圧bは変
化するものの、その変化は微小なため、実際に使用する
際の1秒以下の温調周期においては、その電圧変化は8
bit程度の分解能のA/Dコンバータで1digit
以下となるからである。 【0021】マイコン15は同時に赤外線検知サーミス
タの断線検知のため、デジタル値jの値がFFHかどう
かを判定する。赤外線検知用サーミスタ素子は例えば0
℃であっても1000kΩの抵抗値を持っており、それ
に対して抵抗素子R1は33kΩに設定されているた
め、0℃という低温下であっても、デジタル出力はF7
Hとなり、断線以外でFFHとなることはない。デジタ
ル値jの値がFFHであった場合、赤外線検知用サーミ
スタ10もしくはその電送線が断線していると判断し、
ヒータ4への通電をやめるとともに装置の動作を停止し
て、表示装置に温度検知素子5が故障したことを表示す
る。 【0022】ところで、赤外線検知用サーミスタ素子1
0と温度補償用サーミスタ素子11とその電送線にはそ
れぞれ断線/短絡の故障が想定されるが、その中でも赤
外線検知用サーミスタ素子10の断線を検知することが
もっとも重要である。温度検出回路は電圧a,bから差
動出力cを得ているが、電圧bが電圧aより大きくなる
と差動出力cは0となってしまい、温度換算した場合に
その温度が実際の温度より非常に低いものとなるため、
マイコンはヒータを点灯させて加熱ローラの温度を上げ
ようとする結果、過昇温となり、定着装置に損傷を与え
てしまう。 【0023】電圧bが電圧aより大きくなるのは電圧b
が最大となる赤外線検知用サーミスタ10が断線した場
合と電圧aが最小となる温度補償用サーミスタ11が短
絡した場合であるが、温度制御中に温度補償用サーミス
タ11が突然短絡する可能性は極めて小さい。なぜな
ら、サーミスタ素子自体が短絡故障する可能性は無く、
また、伝送線は通常可動部に無いため、温度制御中に被
覆等が損傷を受けて短絡する可能性は無い。 【0024】よって、温度補償用サーミスタ11の短絡
故障は装置の保守等で定着ユニットもしくは電子写真装
置本体を分解/組み立てした際に伝送線が筐体に挟まっ
て短絡した場合のみ考えれば良く、その場合、定着ロー
ラの温度がある程度下がっているため、例えば、再起動
時にヒータに通電したにも関わらず、温度検知素子5で
検出した定着ローラの温度が上昇しないことをもって、
温度検知素子5の故障を推定できる。一方、赤外線検知
用サーミスタ素子10の断線は、フィルムにサーミスタ
を接着している材料の劣化や伝送経路上の半田の劣化等
を考えると、温度補償用サーミスタ11の短絡故障より
可能性が高く、温度制御中の断線もゼロとは言えない。 【0025】以上説明したように、温度検出のためマイ
コンに入力された2つの電圧値b,cを使用して定着ロ
ーラの温度を検出するとともに、そのうちの電圧値bを
使用して赤外線検知サーミスタ10の断線を検知するこ
とができ、回路の追加無しに安全性を高めることができ
る。 【0026】 【発明の効果】本発明によれば、上述のように非接触温
度検知手段を用いた際にマイコンに取り込む二つの電圧
値のうち一つを使用し感熱素子の断線による故障を検知
できるため、回路やコストの増加無しに装置の安全性を
向上できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting method using non-contact temperature detecting means, and more particularly, to an electrophotographic apparatus,
The present invention relates to a fixing device used for an electrostatic recording device or the like, in which a temperature detecting element is arranged in a heating element in a non-contact manner. 2. Description of the Related Art A fixing device using a fixing roller heated by a heater is widely used in an image forming apparatus such as a copying machine and a laser printer. In such a fixing device, a thermistor for maintaining the surface temperature of the fixing roller at a predetermined temperature, a temperature fuse for shutting off a current supply path to a heater when the temperature of the fixing roller rises abnormally, and a thermoswitch are provided. The temperature detecting element is in contact with the surface of the fixing roller. [0004] For this reason, contact flaws may occur in the fixing roller, causing problems such as white streaks, black streaks, and poor fixing. Therefore, a method of contacting the temperature detecting means with the fixing roller outside the image area, which is the area where the recording material passes, can be considered. However, it is impossible to detect the temperature in the image area, and the fixing device is increased in size. For this purpose, a method has recently been considered in which the temperature detecting means is brought into non-contact with the fixing roller in the image area. [0006] The non-contact temperature detecting means includes a casing having an opening, and a casing provided inside the casing.
An infrared absorbing film made of a polymer material that absorbs infrared light that has passed through the opening, and a thermistor element for infrared detection arranged so as to be in close contact with the infrared absorbing film;
It has a thermistor element for temperature compensation for detecting the temperature of the casing. The non-contact temperature detecting means increases the temperature of the infrared absorbing film by absorbing the infrared light passing through the opening of the casing by the infrared absorbing film disposed immediately below the opening. The thermistor element disposed in close contact with the sensor detects the temperature change. Both the infrared detecting thermistor element 30 and the temperature compensating thermistor element 31 have the same temperature-resistance characteristics, and a fixed resistance R having the same resistance value as shown in FIG.
1 and R2 are each connected in series. When the infrared absorbing film absorbs infrared rays from the object, the temperature of the film rises, and the resistance value of the infrared detecting thermistor becomes smaller than that of the temperature compensating thermistor, so that a> b. As shown in FIG. 4, a bridge circuit detects a temperature difference from the temperature compensating thermistor element and an output voltage corresponding to a potential difference between A and B is detected as c. The output voltage c and the output voltage a of the temperature compensating thermistor element are converted into digital values by an A / D converter and taken into a microcomputer, and the microcomputer converts the digital values of these output voltages a and c into a data table or a function. The conversion is performed to detect the temperature of the fixing roller. However, in the temperature detecting method using the non-contact temperature detecting means described in the above-mentioned conventional example, a failure of the infrared detecting thermistor element or a transmission line during the temperature control of the fixing roller. Is disconnected and becomes an open state, the output voltage b becomes the same as the reference voltage V. Therefore, the relationship between a and b is reversed, a <b, and the output voltage c becomes zero. Then, when the microcomputer converts the digital values of the output voltages a and c into temperatures based on the digital values, the temperature of the fixing roller is detected as being lower than the actual temperature, and the fixing roller continues to be heated. There is a problem that the temperature of the fixing roller is excessively increased until the apparatus operates. The present invention provides a method for detecting a failure due to a disconnection of a thermal element for infrared detection when using the non-contact temperature detecting means as described above without increasing a circuit or cost. [0011] A film for absorbing infrared rays from a heating element heated by a heating source, a thermosensitive element for detecting the temperature of the film, and a temperature of a holder for holding the film. In a temperature detection method using a non-contact temperature detection means comprising a temperature compensation thermosensitive element for detecting a temperature, a first output voltage of a series circuit of the infrared sensing thermosensitive element and a resistance element, and the temperature compensation thermosensitive element The first and third output voltages of the second output voltage of the series circuit of the resistance elements and the third output voltage that outputs the difference between the first output voltage and the second output voltage are converted into digital values. Detecting the temperature of the heating element based on these two digital values, and detecting the disconnection of the infrared detecting thermosensitive element based on a value obtained by converting the first output voltage into a digital value. Characterized by Temperature detection method. Embodiments of the present invention will be described below with reference to the drawings. An image recording apparatus for fixing an unfixed image on a recording paper, which is not shown in the figure, has an image carrier for forming an electrostatic latent image on its surface and a charge on the surface of the image carrier. Pre-exposure means for removing static electricity, primary charging means for charging the surface of the image carrier to a desired potential, exposure means for exposing the charged image carrier to form an electrostatic latent image, electrostatic on the image carrier There are provided a developing device for developing the latent image with a developer to make it a visible image, a transfer device for transferring a toner image on the image carrier developed by the developing device to a recording material, and the like. A fixing unit 1 which is a roller fixing device for fusing and fixing the toner image transferred onto the recording material by a fixing roller heated and pressurized is arranged at a predetermined position of the image recording apparatus. A desired image can be obtained by appropriately executing the above processes. The recording material may be recording paper or OH
P paper or the like is used. Next, the configuration of the fixing unit 1 will be described. In FIG. 2, reference numeral 2 denotes a heating roller, which is a roller in which a layer of a heat-resistant elastic material such as silicone rubber or fluorine rubber is formed on a pipe material such as aluminum or iron and a release layer such as PFA or PTFE is coated on the surface. The pressure roller 3 disposed in pressure contact with the heating roller 2 is also a roller in which a layer of a heat-resistant elastic material such as silicone rubber or fluorine rubber is formed on a cored bar, similarly to the heating roller. A recording material S is passed through the heating roller (heating member) 2 and the pressure roller (backup member) 3, and the toner T on the recording material S is heated and heated between the heating roller and the pressure roller. It is pressed and fixed. A heater 4 is provided inside the heating roller 2 and heats the heating roller 2 from the inside. Further, a temperature detecting element 5 serving as a temperature detecting means for detecting the surface temperature of the heating roller 2 is arranged in a non-contact manner facing the heating roller, and detects the temperature of the heating roller 2. Based on data from the temperature detecting element 5, the surface temperature of the heating roller 2 is maintained at a predetermined set temperature (print temperature) or a non-fixing standby temperature (standby temperature). The heating roller is also provided with a thermoswitch 6 in a non-contact manner to detect an excessive temperature rise. When the excessive temperature rise is detected, the power supply to the heater is shut off. Next, the configuration of the temperature detecting element 5 will be described in detail with reference to FIG. Reference numeral 7 denotes a case made of a material having high thermal conductivity, such as aluminum, which is provided so that a heat-resistant film 9 that absorbs infrared light radiated from a heating roller is closed in an opening 8 provided on one surface of the case. On the inner surface side of the case of the heat-resistant film 9, a thermistor element 1 for infrared detection is provided.
0 is adhered and fixed with an adhesive or the like. In the vicinity of the infrared detecting thermistor element 10, a temperature compensating thermistor element 11 for measuring the ambient temperature in the case is provided. The lead wires 12 of the infrared detecting thermistor element 10 and the temperature compensating thermistor element 11 are respectively connected to sockets (not shown) provided in the case 7 to be taken out. Next, the operation of the temperature detecting element 5 will be briefly described. First, when infrared rays from the heating roller enter the resin film 9 attached to the opening 8 of the case 7,
The infrared rays are absorbed by the film 9, and the temperature of the film 9 increases according to the amount of the infrared rays. Then, the temperature of the resin film 9 is transmitted to the infrared detecting thermistor element 10 tightly fixed to the back surface of the film and detected as a resistance change of the thermistor element. The resistance of the infrared detecting thermistor element 10 is affected by the temperature of the case, and the temperature corresponding to the case temperature is detected using the temperature compensating thermistor element 11 to eliminate the influence. The reason why the casing is made of a material having high thermal conductivity such as aluminum is to improve the followability of the temperature compensating thermistor element 11 to a change in ambient temperature. Next, a temperature detecting circuit using the temperature detecting element 5 will be described with reference to FIG. Each of the infrared detecting thermistor element 10 and the temperature compensating thermistor element 11 is 3
It is connected in series with the 3 kΩ resistance elements R1 and R2, and is connected between the reference power supply V and the ground. The outputs of the temperature compensating thermistor element 11 and the infrared detecting thermistor element 10 are voltages a and b, respectively. The differential amplifier circuit 12 receives the voltages a and b as inputs, and the output amplified by a factor of 15 is the voltage c. The voltages b and c are input to the 8-bit A / D converters 13 and 14, and the microcomputer 15 reads a digital output j corresponding to the voltage b and a digital output k corresponding to the voltage c. The microcomputer 15 applies these digital outputs to the data table and detects the temperature of the heating roller 2. For the temperature detection, the output voltage b of the infrared detecting thermistor element is used instead of the output voltage a of the conventional temperature compensating thermistor element, but there is no influence on the detection accuracy and the like. The reason for this is that a small voltage difference between the output voltage a of the temperature compensating thermistor and the output voltage b of the infrared detecting thermistor is originally differentially amplified and used for temperature detection. However, the output voltage b changes, but the change is very small. Therefore, in a temperature control cycle of 1 second or less when actually used, the voltage change is 8
1 digit with A / D converter of about bit resolution
This is because: At the same time, the microcomputer 15 determines whether or not the value of the digital value j is FFH for detecting disconnection of the infrared detecting thermistor. The thermistor element for infrared detection is, for example, 0
Even at a temperature of 0 ° C., the resistance value of the resistor R1 is set to 33 kΩ. Therefore, even at a low temperature of 0 ° C., the digital output is F7.
H and does not become FFH except for disconnection. When the value of the digital value j is FFH, it is determined that the infrared detecting thermistor 10 or its transmission line is disconnected,
The power supply to the heater 4 is stopped and the operation of the apparatus is stopped, and the display device indicates that the temperature detecting element 5 has failed. The infrared detecting thermistor element 1
It is assumed that the 0 and the temperature compensating thermistor element 11 and the transmission line thereof are disconnected / short-circuited, respectively. Among them, it is most important to detect the disconnection of the infrared detecting thermistor element 10. Although the temperature detection circuit obtains the differential output c from the voltages a and b, when the voltage b becomes larger than the voltage a, the differential output c becomes 0, and when the temperature is converted, the temperature is lower than the actual temperature. Very low,
As a result of the microcomputer turning on the heater to increase the temperature of the heating roller, the temperature becomes excessively high, and the fixing device is damaged. The voltage b becomes higher than the voltage a because the voltage b
The maximum is the case where the infrared detecting thermistor 10 is disconnected and the case where the voltage a is minimum and the temperature compensating thermistor 11 is short-circuited. It is extremely possible that the temperature compensating thermistor 11 suddenly short-circuits during the temperature control. small. Because there is no possibility that the thermistor element itself will short-circuit,
Further, since the transmission line is not usually provided in the movable portion, there is no possibility that the coating or the like is damaged during the temperature control and short-circuited. Therefore, the short-circuit failure of the temperature compensating thermistor 11 can be considered only when the transmission line is pinched by the housing and short-circuited when disassembling / assembling the fixing unit or the electrophotographic apparatus main body for maintenance of the apparatus. In this case, since the temperature of the fixing roller has decreased to some extent, for example, the temperature of the fixing roller detected by the temperature detecting element 5 does not increase even though the heater is energized at the time of restart.
The failure of the temperature detection element 5 can be estimated. On the other hand, the disconnection of the infrared detecting thermistor element 10 is more likely than the short-circuit failure of the temperature compensating thermistor 11 in consideration of the deterioration of the material bonding the thermistor to the film and the deterioration of the solder on the transmission path. The disconnection during temperature control is not zero. As described above, the temperature of the fixing roller is detected using the two voltage values b and c input to the microcomputer for temperature detection, and the infrared detection thermistor is used using the voltage value b of the two. Ten disconnections can be detected, and safety can be improved without adding a circuit. According to the present invention, as described above, when the non-contact temperature detecting means is used, one of two voltage values taken into the microcomputer is used to detect a failure due to disconnection of the thermal element. Therefore, the safety of the apparatus can be improved without increasing the circuit and cost.

【図面の簡単な説明】 【図1】 本発明の実施の形態に係る温度検出回路を説
明する図である。 【図2】 定着ユニット1を説明する図である。 【図3】 温度検知素子5を説明する図である。 【図4】 従来の温度検出回路を説明する図である。 【符号の説明】 1 定着ユニット 2 加熱ローラ 3 加圧ローラ 4 ヒータ 5 温度検知素子 6 サーモスイッチ 7 ケース 8 開口部 9 赤外線吸収フィルム 10 赤外線検出用サーミスタ素子 11 温度補償用サーミスタ素子 12 リード線 13 A/Dコンバータ 14 A/Dコンバータ 15 マイクロコンピュータ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a temperature detection circuit according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a fixing unit 1. FIG. 3 is a diagram illustrating a temperature detecting element 5. FIG. 4 is a diagram illustrating a conventional temperature detection circuit. [Description of Signs] 1 Fixing unit 2 Heating roller 3 Pressure roller 4 Heater 5 Temperature detecting element 6 Thermoswitch 7 Case 8 Opening 9 Infrared absorbing film 10 Infrared detecting thermistor element 11 Temperature compensating thermistor element 12 Lead wire 13A / D converter 14 A / D converter 15 Microcomputer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G066 AC11 AC16 BA09 BA51 BB11 BC07 BC11 BC15 CA15 CB05 2H027 DA12 DA32 DE04 DE07 DE09 EA11 EC06 EC07 EC10 EC18 ED25 EE01 EE07 EF04 EF06 HA04 HA13 HA17 ZA07 2H033 AA35 BA31 BA38 BB01 CA03 CA06 CA07 CA23 CA24 CA28 CA57    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 2G066 AC11 AC16 BA09 BA51 BB11                       BC07 BC11 BC15 CA15 CB05                 2H027 DA12 DA32 DE04 DE07 DE09                       EA11 EC06 EC07 EC10 EC18                       ED25 EE01 EE07 EF04 EF06                       HA04 HA13 HA17 ZA07                 2H033 AA35 BA31 BA38 BB01 CA03                       CA06 CA07 CA23 CA24 CA28                       CA57

Claims (1)

【特許請求の範囲】 【請求項1】 加熱源により加熱される加熱要素からの
赤外線を吸収するフィルムと、 フィルムの温度を検知する赤外線検知用感熱素子と、 フィルムを保持する保持体の温度を検知する温度補償用
感熱素子からなる非接触温度検知手段を用いた温度検出
方法で、 前記赤外線検知用感熱素子と抵抗素子の直列回路の第1
の出力電圧と、 前記温度補償用感熱素子と抵抗素子の直列回路の第2の
出力電圧と、 第1の出力電圧と第2の出力電圧の差分を出力した第3
の出力電圧のうち、第1と第3の出力電圧をデジタル値
に変換して、これらの2つのデジタル値をもとに前記加
熱要素の温度を検出するとともに、第1の出力電圧をデ
ジタル値に変換した値を基に前記赤外線検知用感熱素子
の断線を検知することを特徴とする温度検出方法。
Claims 1. A film for absorbing infrared rays from a heating element heated by a heating source, a thermosensitive element for detecting infrared rays for detecting a temperature of the film, and a temperature of a holder for holding the film. A temperature detecting method using non-contact temperature detecting means comprising a temperature-compensating thermosensitive element for detecting, wherein a first circuit of a series circuit of the infrared detecting thermosensitive element and a resistance element is provided.
And a second output voltage of a series circuit of the temperature-compensating thermosensitive element and the resistance element, and a third output of a difference between the first output voltage and the second output voltage.
Out of the output voltages, the first and third output voltages are converted into digital values, the temperature of the heating element is detected based on these two digital values, and the first output voltage is converted into digital values. Detecting a disconnection of the infrared detecting thermosensitive element based on the value converted into the temperature.
JP2001246120A 2001-08-14 2001-08-14 Temperature detection method Pending JP2003057116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246120A JP2003057116A (en) 2001-08-14 2001-08-14 Temperature detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246120A JP2003057116A (en) 2001-08-14 2001-08-14 Temperature detection method

Publications (1)

Publication Number Publication Date
JP2003057116A true JP2003057116A (en) 2003-02-26

Family

ID=19075745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246120A Pending JP2003057116A (en) 2001-08-14 2001-08-14 Temperature detection method

Country Status (1)

Country Link
JP (1) JP2003057116A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156966A (en) * 2007-12-25 2009-07-16 Oki Data Corp Fixing device, image forming apparatus, device and method for judging abnormality of temperature detecting means
JP2011186018A (en) * 2010-03-05 2011-09-22 Casio Electronics Co Ltd Abnormal state detector for fixing device
JP2013214110A (en) * 2013-07-19 2013-10-17 Casio Electronics Co Ltd Printer and fixing device thereof
US8676068B2 (en) 2010-11-15 2014-03-18 Samsung Electronics Co., Ltd. Image forming apparatus and fixing unit control method thereof
JP2014190930A (en) * 2013-03-28 2014-10-06 Tdk Corp Sensor circuit
JP2014190895A (en) * 2013-03-28 2014-10-06 Tdk Corp Sensor circuit
CN104204743A (en) * 2011-11-16 2014-12-10 泰科消防及安全有限公司Tycofire&Securitygmbh Motion detection system and method
JP2015132519A (en) * 2014-01-10 2015-07-23 太陽誘電株式会社 Temperature detection device
JP2015158666A (en) * 2014-01-21 2015-09-03 キヤノン株式会社 image forming apparatus
WO2016018052A1 (en) * 2014-07-29 2016-02-04 주식회사 엘지화학 Conductive laminate and manufacturing method therefor
JP2018004422A (en) * 2016-06-30 2018-01-11 京セラドキュメントソリューションズ株式会社 Abnormality determining device for non-contact temperature sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100591A (en) * 1991-10-11 1993-04-23 Minolta Camera Co Ltd Temperature measuring instrument and thermal fixing device
JPH07181082A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Infrared detector
JPH0915055A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Infrared detection circuit
JPH11223555A (en) * 1997-09-29 1999-08-17 Ishizuka Electronics Corp Non-contacting temperature sensor and detection circuit therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100591A (en) * 1991-10-11 1993-04-23 Minolta Camera Co Ltd Temperature measuring instrument and thermal fixing device
JPH07181082A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Infrared detector
JPH0915055A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Infrared detection circuit
JPH11223555A (en) * 1997-09-29 1999-08-17 Ishizuka Electronics Corp Non-contacting temperature sensor and detection circuit therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156966A (en) * 2007-12-25 2009-07-16 Oki Data Corp Fixing device, image forming apparatus, device and method for judging abnormality of temperature detecting means
JP2011186018A (en) * 2010-03-05 2011-09-22 Casio Electronics Co Ltd Abnormal state detector for fixing device
US8676068B2 (en) 2010-11-15 2014-03-18 Samsung Electronics Co., Ltd. Image forming apparatus and fixing unit control method thereof
CN104204743A (en) * 2011-11-16 2014-12-10 泰科消防及安全有限公司Tycofire&Securitygmbh Motion detection system and method
JP2014190930A (en) * 2013-03-28 2014-10-06 Tdk Corp Sensor circuit
JP2014190895A (en) * 2013-03-28 2014-10-06 Tdk Corp Sensor circuit
JP2013214110A (en) * 2013-07-19 2013-10-17 Casio Electronics Co Ltd Printer and fixing device thereof
JP2015132519A (en) * 2014-01-10 2015-07-23 太陽誘電株式会社 Temperature detection device
JP2015158666A (en) * 2014-01-21 2015-09-03 キヤノン株式会社 image forming apparatus
US9285729B2 (en) 2014-01-21 2016-03-15 Canon Kabushiki Kaisha Image forming apparatus including temperature detection processing of a fixing member
WO2016018052A1 (en) * 2014-07-29 2016-02-04 주식회사 엘지화학 Conductive laminate and manufacturing method therefor
JP2018004422A (en) * 2016-06-30 2018-01-11 京セラドキュメントソリューションズ株式会社 Abnormality determining device for non-contact temperature sensors

Similar Documents

Publication Publication Date Title
JP2006251479A (en) Fixing device and image forming device
JPH10104975A (en) Image heating device
JP2003057116A (en) Temperature detection method
US6684037B2 (en) Fixing apparatus and image forming apparatus provided with fixing apparatus
JPS6396683A (en) Controller for instantaneous heating type fixing apparatus
US9989903B2 (en) Fixing apparatus for fixing a toner image on a recording material at a nip portion
JPWO2005013014A1 (en) Image forming apparatus
JP3890245B2 (en) Temperature detection device
JP5340671B2 (en) Fixing apparatus and image forming apparatus
US8095023B2 (en) Image forming apparatus
JP3962639B2 (en) Heater control device
JP3554291B2 (en) Fixing device
JP2004334103A (en) Temperature abnormality detecting device for fixing means and image forming apparatus
US20200150565A1 (en) Fuser device
JP2003005572A (en) Image heating device
JP2004151232A (en) Fixing device
CN114063409A (en) Heating device and heating control method
JP2002372893A (en) Heating device and image forming device
JP2012078563A (en) Fixing device and image forming apparatus
JP2002318160A (en) Temperature measuring device and fixing device
JP2001228735A (en) Fixing device and image forming device equipped the same
JP6991727B2 (en) Image forming device
JP2003057987A (en) Fixing device and image forming device provided with the fixing device
JP2004126190A (en) Heating device and image forming apparatus
JP2002372459A (en) Temperature detector and fixing apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003