JP2003056841A - Sensible heat recovering method of combustion exhaust gas - Google Patents

Sensible heat recovering method of combustion exhaust gas

Info

Publication number
JP2003056841A
JP2003056841A JP2001243934A JP2001243934A JP2003056841A JP 2003056841 A JP2003056841 A JP 2003056841A JP 2001243934 A JP2001243934 A JP 2001243934A JP 2001243934 A JP2001243934 A JP 2001243934A JP 2003056841 A JP2003056841 A JP 2003056841A
Authority
JP
Japan
Prior art keywords
gas
heat
heat storage
combustion exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001243934A
Other languages
Japanese (ja)
Inventor
Morihiko Imada
守彦 今田
Toshio Shimada
利生 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2001243934A priority Critical patent/JP2003056841A/en
Publication of JP2003056841A publication Critical patent/JP2003056841A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensible heat recovering method of combustion exhaust gas by which high-temperature purified gas is obtained efficiently from the high-temperature combustion exhaust gas containing a metal corrosion component. SOLUTION: The combustion exhaust gas containing the metal corrosion component is supplied to thermal storage chambers 2A, 2B filled with thermal storage medium S made of ball-shaped ceramics, and the thermal storage medium made of ball-shaped ceramics in such thermal storage chambers is heated there. Thereafter, first gas is supplied to these thermal storage chambers and such gas is heated there. This heated first gas and second gas are heat- exchanged in a tubular indirect heat exchanger 6. Thus, the sensible heat of the combustion exhaust gas is recovered.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、燃焼排ガス、特
に、金属腐食性成分を含有する燃焼排ガスの顕熱回収方
法に関するものである。 【0002】 【従来の技術】従来、燃焼排ガスの顕熱回収方法とし
て、ボール状のセラミック製蓄熱媒体を充填した蓄熱室
を介して熱交換する方法がある。その一形態に、熱交換
部を一対の蓄熱室で構成し、一方の蓄熱室に前記燃焼排
ガスを供給して前記蓄熱媒体を加熱したのち、この蓄熱
室に空気等の常温気体を供給して加熱するとともに、他
方の蓄熱室に燃焼排ガスを供給することにより、一対の
蓄熱室で交互に空気等を加熱するものがある。 【0003】この方法は、1000℃以上の燃焼排ガス
から直接顕熱を回収することができるから、燃焼排ガス
の顕熱回収効率がよいという利点がある。 【0004】 【発明が解決しようとする課題】しかしながら、燃焼排
ガス中にナトリウムあるいはカリウム等の金属に対して
腐食性成分を含有していると、前記燃焼排ガスが蓄熱室
内を通過する間、すなわち、前記燃焼排ガスが蓄熱媒体
に接触して当該蓄熱媒体を加熱する間、これらの金属腐
食性成分が前記セラミック製蓄熱媒体に付着し、熱交換
した後の被加熱気体(空気等)に前記付着物の一部が剥
離して加熱気体に微量の不純物(金属腐食性成分)が混
入することになり、清浄な加熱気体を得ることができ
ず、たとえば、この加熱気体(空気)をガスタービン用
高温ガスに使用するとすれば、タービンブレードを腐食
することになるという課題を有していた。 【0005】また、金属製チューブ内を予熱空気が流れ
る管式間接熱交換器では、前述の問題はないが、燃焼排
ガスが金属腐食性成分を有し、かつ、1000℃以上で
あれば、金属の耐熱性および耐腐食性の観点から燃焼排
ガスを希釈空気で約850℃以下まで降温して使用する
必要があり、熱効率が悪いという課題を有する。 【0006】したがって、本発明は、金属腐食性成分を
含有する高温の燃焼排ガスから顕熱を、熱効率をあまり
低下させずに回収することができる燃焼排ガスの顕熱回
収方法を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明は、前記目的を達
成させるためになされたもので、ボール状セラミックス
製蓄熱媒体を充填した蓄熱室に、金属腐食性成分を含有
する燃焼排ガスを供給して当該蓄熱室のボール状セラミ
ックス製蓄熱媒体を加熱したのち、この蓄熱室に第1気
体を供給して当該気体を加熱し、この加熱された第1気
体と第2気体とを管式間接熱交換器で熱交換する燃焼排
ガスの顕熱回収方法である。 【0008】 【発明の実施の形態】つぎに、本発明の実施の形態につ
いて図にしたがって説明する。図において、1は蓄熱式
熱交換器で、この蓄熱式熱交換器1は、ボール状のセラ
ミック製蓄熱体Sを収納した一対の第1蓄熱室2Aと第
2蓄熱室2Bとからなり、各蓄熱室2A,2Bの下部
(一方部)はそれぞれ第1下部連通管Pと第2下部連
通管Pで連通するとともに、各蓄熱室2A,2Bの上
部(他方部)もそれぞれ第1上部連通管Pと第2上部
連通管Pで連通する。 【0009】また、前記第1、第2下部連通管P,P
と第1、第2上部連通管P,P にはそれぞれ第1
〜第4切換弁V〜Vが配設されている。 【0010】6は、下記第1気体である高温気体と下記
する清浄気体である第2気体とを熱交換する金属製管式
間接熱交換器で、蛇管7内を第2気体が流れる。 【0011】そして、前記第1下部連通管Pは第1切
換弁Vにより前記金属製管式間接熱交換器6に連通
し、第2下部連通管Pは第2切換弁Vにより約12
50℃の金属腐食性成分を含有する燃焼排ガス供給管3
に接続され、第1上部連通管P は第3切換弁Vによ
り第1気体供給管4に接続され、第2上部連通管P
第4切換弁Vにより大気放出管5に接続されている。 【0012】つぎに、前記構成からなる燃焼排ガスの顕
熱回収装置により顕熱回収方法を説明する。 【0013】まず、第1切換弁Vを切り換えて第2蓄
熱室2Bの下部と金属製管式間接熱交換器6に接続し、
第2切換弁Vを切り換えて燃焼排ガス供給管3と第1
蓄熱室2Aの下部とを連通し、第3切換弁Vは第2蓄
熱室2B上部と第1気体供給管4とを連通し、第4切換
弁Vは第1蓄熱室2A上部を大気放出管5に接続し、
第1蓄熱室2Aに1250℃の金属腐食性成分を含有す
る燃焼排ガスを供給し、第1蓄熱室2A内の蓄熱媒体S
を約1250℃に加熱し、その間に金属腐食性成分の大
半は蓄熱媒体Sの表面に付着除去されて大気放出管5か
ら放出する(図1の状態)。 【0014】そして、所定時間(約1〜2分)経過する
と、第1切換弁Vを切り換えて第1蓄熱室2Aの下部
を金属製管式間接熱交換器6に接続し、第2切換弁V
を切り換えて燃焼排ガス供給管3を第2蓄熱室2Bの下
部に接続し、第3切換弁Vを切り換えて第1蓄熱室2
Aの上部に第1気体供給管4を接続するとともに、第4
切換弁Vを切り換えて第2蓄熱体2Bの上部を大気放
出管5に接続する。 【0015】すなわち、蓄熱媒体Sが1250℃に加熱
された第1蓄熱室2Aに供給された第1気体は、約11
00℃に加熱され、第2気体は管式間接熱交換器6で前
記第1気体と間接的に熱交換されて約850℃に加熱さ
れる。 【0016】そして、所定時間後、第1〜第4切換弁V
〜Vが切り換わり、以降、前記同様、高温の燃焼排
ガスは交互に第1、第2蓄熱室2A,2Bに供給され、
第2気体(清浄気体)は連続して所定温度に加熱されて
ガスタービンへ供給されることになる。 【0017】なお、前述のように、燃焼排ガス中の金属
腐食性成分は蓄熱媒体Sの表面に付着して除去されるも
のの、所定時間後に供給される第1気体中に一部が剥離
して混入するが、微量のため、管式間接熱交換器6中の
蛇管7の腐食にあまり影響を及ぼさないため、前記管式
間接熱交換器6へ1100℃の高温の第1気体を供給す
ることができる。 【0018】前記説明では,第2気体をガスタービンに
供給する場合について述べたが、ガスタービンでなくて
も、金属腐食性成分により腐食される危険がある場所で
あればよいことは勿論である。 【0019】また、前記説明では、第2気体を管式間接
熱交換器6の蛇管7を流す場合について述べたが、第1
気体が蛇管内を流れてもよい。さらに、前記説明では、
一対の蓄熱室で構成する場合について述べたが、複数対
で構成してもよく、また、回転方式で構成してもよい。 【0020】 【発明の効果】以上の説明で明らかなように、本発明に
よれば、ボール状セラミックス製蓄熱媒体を収納した蓄
熱室に、金属腐食性成分を含有する燃焼排ガスを供給し
て当該蓄熱室のボール状セラミックス製蓄熱媒体を加熱
したのち、この蓄熱室に第1気体を供給して当該気体を
加熱し、この加熱された第1気体により管式間接熱交換
器で第2気体を熱交換するもので、前記金属腐食性成分
の大部分を蓄熱媒体表面に付着除去させ、含有金属腐食
性成分が少なくなった高温の第1気体で清浄な第2気体
を管式間接熱交換器により熱交換させて加熱するため、
管式間接熱交換器へは約1100℃の第1気体を供給で
き、効率よく清浄な高温第2気体を得ることができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a combustion exhaust gas,
Sensible heat recovery of combustion exhaust gas containing metal corrosive components
It is about the law. [0002] 2. Description of the Related Art Conventionally, a method for recovering sensible heat of flue gas has been proposed.
Heat storage chamber filled with a ball-shaped ceramic heat storage medium
There is a method of exchanging heat through. One form is heat exchange
Section is composed of a pair of heat storage chambers, and the combustion exhaust
After supplying the gas to heat the heat storage medium, the heat storage medium
While supplying room temperature gas such as air to the room to heat it,
By supplying combustion exhaust gas to one of the heat storage chambers,
There is one that heats air or the like alternately in a heat storage chamber. [0003] This method uses a combustion exhaust gas of 1000 ° C or higher.
Sensible heat can be recovered directly from
Has the advantage that the sensible heat recovery efficiency is good. [0004] However, the combustion exhaust
For metals such as sodium or potassium in gas
When a corrosive component is contained, the combustion exhaust gas
While the combustion exhaust gas passes through the heat storage medium
While heating the heat storage medium in contact with
The edible components adhere to the ceramic heat storage medium,
Some of the deposits are peeled off by the heated gas (air, etc.)
A small amount of impurities (metal corrosive components) mixed with the heated gas
To get a clean heated gas
For example, this heated gas (air) is
Corrosion of turbine blades if used for hot gases
Had the problem that Further, preheated air flows through the metal tube.
The tubular indirect heat exchanger does not have the above problems,
The gas has a metal corrosive component, and at 1000 ° C. or higher
If there is, combustion emission from the viewpoint of heat resistance and corrosion resistance of metal
Use the gas after lowering the temperature to about 850 ° C or less with diluted air
And has the problem of poor thermal efficiency. [0006] Accordingly, the present invention provides a method for removing metal corrosive components.
Sensible heat from high-temperature flue gas contained
Sensible heat recovery of combustion exhaust gas that can be recovered without lowering
The purpose is to provide a collection method. [0007] The present invention achieves the above object.
Ball-shaped ceramics
Contains metal corrosive components in the heat storage chamber filled with heat storage medium
To supply the burning exhaust gas,
After heating the heat storage medium made of
The body is supplied to heat the gas, and the heated first air
Exhaust that exchanges heat between the body and the second gas in a tubular indirect heat exchanger
This is a method for recovering sensible heat of gas. [0008] DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described.
And will be described with reference to the drawings. In the figure, 1 is a heat storage type
This regenerative heat exchanger 1 is a ball-shaped ceramic heat exchanger.
A pair of first heat storage chambers 2A containing
2 heat storage chambers 2B, the lower part of each heat storage chamber 2A, 2B
(One part) is the first lower communication pipe P1And the second lower ream
Tubing P2At the same time, and above each heat storage chamber 2A, 2B.
Part (the other part) is also the first upper communicating pipe P3And the second upper part
Communication pipe P4Communicate with. The first and second lower communication pipes P1, P
2And the first and second upper communication pipes P3, P 4Has the first
~ 4th switching valve V1~ V4Are arranged. Reference numeral 6 denotes a high-temperature gas which is the following first gas and
Metal tube type that exchanges heat with the second gas that is a clean gas
In the indirect heat exchanger, the second gas flows inside the flexible tube 7. The first lower communication pipe P1Is the first cut
Exchange valve V1Communicates with the metal tubular indirect heat exchanger 6
And the second lower communication pipe P2Is the second switching valve V2About 12
A flue gas supply pipe 3 containing a metal corrosive component at 50 ° C.
And the first upper communication pipe P 3Is the third switching valve V3By
Connected to the first gas supply pipe 4 and the second upper communication pipe P4Is
Fourth switching valve V4Is connected to the atmosphere discharge pipe 5. Next, the emission of the combustion exhaust gas having the above-described structure will be described.
A sensible heat recovery method using a heat recovery device will be described. First, the first switching valve V1Switch to the second storage
Connected to the lower part of the heat chamber 2B and the metal tubular indirect heat exchanger 6,
Second switching valve V2By switching the flue gas supply pipe 3 and the first
The third switching valve V communicates with the lower part of the heat storage chamber 2A.3Is the second stock
The upper part of the heat chamber 2B communicates with the first gas supply pipe 4, and the fourth switching is performed.
Valve V4Connects the upper part of the first heat storage chamber 2A to the atmosphere discharge pipe 5,
The first heat storage chamber 2A contains a metal corrosive component at 1250 ° C.
Storage exhaust medium S in the first heat storage chamber 2A.
Is heated to about 1250 ° C., during which time large amounts of metal corrosive components
Half is attached and removed on the surface of the heat storage medium S and
(Fig. 1). Then, a predetermined time (about 1 to 2 minutes) elapses
And the first switching valve V1To the lower part of the first heat storage chamber 2A.
Is connected to the metallic tubular indirect heat exchanger 6 and the second switching valve V2
To move the flue gas supply pipe 3 under the second heat storage chamber 2B.
Section, and the third switching valve V3To switch to the first heat storage chamber 2
A first gas supply pipe 4 is connected to the upper part of
Switching valve V4To release the upper part of the second heat storage body 2B to the atmosphere.
Connect to outlet 5. That is, the heat storage medium S is heated to 1250 ° C.
The first gas supplied to the first heat storage chamber 2A is approximately 11
Heated to 00 ° C., the second gas is passed through a tubular indirect heat exchanger 6
Indirect heat exchange with the first gas and heating to about 850 ° C
It is. After a predetermined time, the first to fourth switching valves V
1~ V4Is switched, and thereafter, the high-temperature combustion
The gas is alternately supplied to the first and second heat storage chambers 2A and 2B,
The second gas (clean gas) is continuously heated to a predetermined temperature.
It will be supplied to the gas turbine. As described above, the metal in the combustion exhaust gas
The corrosive component adheres to the surface of the heat storage medium S and is removed.
However, a part of the first gas supplied after a predetermined time is peeled off
However, due to the trace amount, the amount of water in the tubular indirect heat exchanger 6
Since it does not significantly affect the corrosion of the flexible pipe 7, the pipe type
Supply 1100 ° C. high temperature first gas to indirect heat exchanger 6
Can be In the above description, the second gas is supplied to the gas turbine.
I mentioned the case of supply, but not a gas turbine
In places where there is a danger of being corroded by corrosive metals.
Needless to say, it is only necessary. Further, in the above description, the second gas is supplied in a tubular indirect manner.
The case where the flexible tube 7 of the heat exchanger 6 flows is described.
Gas may flow through the coil. Further, in the above description,
Although the case where it is composed of a pair of heat storage chambers has been described,
And may be constituted by a rotation method. [0020] As is apparent from the above description, the present invention
According to this, the heat storage medium containing the ball-shaped ceramics heat storage medium was stored.
Supply combustion exhaust gas containing metal corrosive components to the heat chamber
To heat the ball-shaped ceramic heat storage medium in the heat storage chamber
After that, the first gas is supplied to this heat storage chamber to
Is heated, and the heated first gas is used for indirect tubular heat exchange.
Heat exchange of the second gas in the vessel, wherein the metal corrosive component
Most of the metal adheres to the surface of the thermal storage medium and is removed,
High temperature first gas and clean second gas with reduced content of volatile components
Is heated by exchanging heat with a tubular indirect heat exchanger,
The first gas at about 1100 ° C can be supplied to the tubular indirect heat exchanger.
As a result, a clean high-temperature second gas can be obtained efficiently.

【図面の簡単な説明】 【図1】 本発明方法を実施する燃焼排ガスからの顕熱
回収装置を示す図である。 【符号の説明】 1・・・蓄熱式熱交換器、2A,2B・・・蓄熱室、3・・・燃
焼排ガス供給管、4・・・第1気体供給管、5・・・大気放出
管、6・・・管式間接熱交換器、7・・・蛇管、P〜P・・
・連通管、V〜V・・・切換弁、S〜蓄熱媒体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an apparatus for recovering sensible heat from flue gas for carrying out the method of the present invention. [Description of Signs] 1 ... heat storage type heat exchanger, 2A, 2B ... heat storage chamber, 3 ... combustion exhaust gas supply pipe, 4 ... first gas supply pipe, 5 ... atmosphere discharge pipe , 6 ... tube type indirect heat exchanger, 7 ... flexible tube, P 1 to P 4 · ·
- communicating pipe, V 1 ~V 4 ··· switching valve, s to the heat storage medium.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28D 20/00 F28D 20/00 A Fターム(参考) 3K023 QA12 QB02 QB03 QC05 QC12 QC13 RA01 3K065 AA24 AB01 AC19 BA01 JA05 JA15 JA19 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F28D 20/00 F28D 20/00 A F term (reference) 3K023 QA12 QB02 QB03 QC05 QC12 QC13 RA01 3K065 AA24 AB01 AC19 BA01 JA05 JA15 JA19

Claims (1)

【特許請求の範囲】 【請求項1】 ボール状セラミックス製蓄熱媒体を充填
した蓄熱室に、金属腐食性成分を含有する燃焼排ガスを
供給して当該蓄熱室のボール状セラミックス製蓄熱媒体
を加熱したのち、この蓄熱室に第1気体を供給して当該
気体を加熱し、この加熱された第1気体と第2気体とを
管式間接熱交換器で熱交換することを特徴とする燃焼排
ガスの顕熱回収方法。
Claims: 1. A combustion exhaust gas containing a metal corrosive component is supplied to a heat storage chamber filled with a heat storage medium made of a ceramic ball to heat the heat storage medium made of a ceramic ball in the heat storage chamber. Thereafter, the first gas is supplied to the heat storage chamber to heat the gas, and the heated first gas and the second gas are heat-exchanged by a tubular indirect heat exchanger. Sensible heat recovery method.
JP2001243934A 2001-08-10 2001-08-10 Sensible heat recovering method of combustion exhaust gas Pending JP2003056841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243934A JP2003056841A (en) 2001-08-10 2001-08-10 Sensible heat recovering method of combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243934A JP2003056841A (en) 2001-08-10 2001-08-10 Sensible heat recovering method of combustion exhaust gas

Publications (1)

Publication Number Publication Date
JP2003056841A true JP2003056841A (en) 2003-02-26

Family

ID=19073947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243934A Pending JP2003056841A (en) 2001-08-10 2001-08-10 Sensible heat recovering method of combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP2003056841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064584A (en) * 2011-09-16 2013-04-11 Yu Po Lee Heat recovery system of high-temperature exhaust
JP2014520243A (en) * 2011-06-09 2014-08-21 ネスト アーエス Thermal energy storage device and plant, method and use thereof
JP2017537269A (en) * 2014-10-17 2017-12-14 カーボン−クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of compensating for load peaks during energy generation and / or generating electrical energy and / or generating hydrogen and storage power plant
WO2022134226A1 (en) * 2020-12-23 2022-06-30 山东科技大学 High-temperature flue gas molten salt heat exchanger and heat exchange method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520243A (en) * 2011-06-09 2014-08-21 ネスト アーエス Thermal energy storage device and plant, method and use thereof
US10107563B2 (en) 2011-06-09 2018-10-23 Nest As Thermal energy storage and plant, method and use thereof
JP2013064584A (en) * 2011-09-16 2013-04-11 Yu Po Lee Heat recovery system of high-temperature exhaust
JP2017537269A (en) * 2014-10-17 2017-12-14 カーボン−クリーン テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of compensating for load peaks during energy generation and / or generating electrical energy and / or generating hydrogen and storage power plant
WO2022134226A1 (en) * 2020-12-23 2022-06-30 山东科技大学 High-temperature flue gas molten salt heat exchanger and heat exchange method

Similar Documents

Publication Publication Date Title
JP2001239129A (en) Exhaust gas treatment apparatus and operation method therefor
JP2003056841A (en) Sensible heat recovering method of combustion exhaust gas
CN106440480A (en) High-temperature generator for lithium bromide cold and warm water unit and pipe expanding method
CN109737440B (en) Boiler flue gas deep waste heat recovery system and method
CN106051800A (en) Energy-saving and environment-friendly two-circuit parallel type smoke waste heat recycling device and method
CN206563446U (en) A kind of lithium bromide cold and hot water machine group high-temperature generator
CN206247373U (en) A kind of pipe heat exchanger residual neat recovering system
KR19990070599A (en) Dual structure heat exchanger for condensing gas boiler
JP2000297311A (en) Equipment for recovering exhaust heat in hot blast stove for blast furnace
CN106766343A (en) A kind of lithium bromide cold and hot water machine group and expansion tube method
JPS60137835A (en) Recovery of waste heat from regenerative furnace
KR100525649B1 (en) waste heat retrieval device of having means of protect erosion in the low temperature
JP2001041554A (en) Kitchen exhaust heat recovering system
TW201802421A (en) Heat exchanger using waste heat
CN206637886U (en) A kind of lithium bromide cold and hot water machine group
JP2008531980A (en) Hot water supply system with auxiliary heat exchanger
JPS59125350A (en) Hot water heating device
CN106016306B (en) Organic solvent prepainted waste gas incinerator system and its application method
CN204478862U (en) Direct contact type pottery heat-exchanger rig
CN108692578A (en) A kind of waste heat recovery apparatus of smelting furnace
JP2024039981A (en) Repair method of hot water supply system
CN104654827A (en) Direct contact type ceramic heat exchange device
JP2001099418A (en) Gas/gas heat exchanger
JP2003144847A (en) Exhaust treatment apparatus
JPS6176891A (en) Ceramic heat exchanger element