JP2003051364A - Arrester device - Google Patents

Arrester device

Info

Publication number
JP2003051364A
JP2003051364A JP2001237875A JP2001237875A JP2003051364A JP 2003051364 A JP2003051364 A JP 2003051364A JP 2001237875 A JP2001237875 A JP 2001237875A JP 2001237875 A JP2001237875 A JP 2001237875A JP 2003051364 A JP2003051364 A JP 2003051364A
Authority
JP
Japan
Prior art keywords
voltage
lightning protection
power supply
discharge
discharge gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001237875A
Other languages
Japanese (ja)
Inventor
Takeshi Maruyama
武志 圓山
Kenshichiro Mishima
健七郎 三島
Toru Takayama
亨 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2001237875A priority Critical patent/JP2003051364A/en
Publication of JP2003051364A publication Critical patent/JP2003051364A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that it is difficult to reduce an operation starting voltage and a discharge voltage of a voltage dependent nonlinear arrester element inserted between a power supply line and an earth, and it is necessary to arrange the arrester element also between power supply lines to protect between the power supply liens from a lightning surge. SOLUTION: This arrester device, which connects a series circuit of the voltage dependent nonlinear arrester element 21 and an open discharging gap 31 between the power supply line L1 and the earth E, sets the operation starting voltage of the arrester element 21 to be lower than a peak value of a voltage between the power supply line and the earth, and to be higher than an arc voltage in discharge of the discharging gap 31, and sets a discharge starting voltage of the discharging gap 31 to be higher than the peak value of the voltage between the power supply line and the earth. Thereby the discharge voltage of the arrester element 21 to the lightning surge is set to be low. The open discharging gap 31 self-restores by a leakage current even in a case of dew condensation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電源電路に接続さ
れた電気機器を雷害から保護する耐雷保護装置で、詳し
くは、単相2線式や単相3線式、三相3線式交流電路等
の各電源ラインとアース間に電圧依存性非線形耐雷素子
と放電ギャップの直列回路を接続した耐雷保護装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightning protection device for protecting electric equipment connected to a power line from lightning damage, and more specifically, a single-phase two-wire system, a single-phase three-wire system, and a three-phase three-wire system. The present invention relates to a lightning protection device in which a voltage-dependent non-linear lightning protection element and a series circuit of a discharge gap are connected between each power supply line such as an AC circuit and ground.

【0002】[0002]

【従来の技術】交流電路や直流電路における電源ライン
とアース間、電源ライン間に単独に配設される電圧依存
性非線形耐雷素子(サージアブソーバ)には、平常時の
電源ラインとアース間電圧や電源ライン間電圧に対して
動作しないように高い動作開始電圧が設定される。例え
ば図9に示す単相2線式交流電路においては、雷サージ
から電源ライン(ライン相)L1,L2とアースE間及
び電源ラインL1,L2間を保護するために、電源ライ
ンL1,L2とアースE間に単独に電圧依存性非線形耐
雷素子1,2を設け、電源ラインL1,L2間に単独に
電圧依存性非線形耐雷素子3を設けている。これら各耐
雷素子1,2,3の動作開始電圧は、各耐雷素子が電源
ラインとアース間電圧に対して動作しないように電源ラ
インとアース間電圧のピーク値より2〜4倍程度高く設
定されている。
2. Description of the Related Art Voltage-dependent non-linear lightning protection devices (surge absorbers), which are individually arranged between a power supply line and a ground in an AC or DC power supply, or between power supply lines, usually have a voltage between the power supply line and the ground. A high operation start voltage is set so as not to operate with respect to the voltage between power supply lines. For example, in the single-phase two-wire type AC electric circuit shown in FIG. 9, in order to protect between the power supply lines (line phases) L1 and L2 and the ground E and between the power supply lines L1 and L2 from the lightning surge, the power supply lines L1 and L2 are connected to each other. The voltage-dependent non-linear lightning protection elements 1 and 2 are independently provided between the earth E, and the voltage-dependent non-linear lightning protection element 3 is independently provided between the power supply lines L1 and L2. The operation starting voltage of each of the lightning protection elements 1, 2 and 3 is set to be about 2 to 4 times higher than the peak value of the voltage between the power supply line and the ground so that each lightning protection element does not operate with respect to the voltage between the power supply line and the ground. ing.

【0003】また、図10に示す単相3線式交流電路に
おいては、雷サージから電源ラインとアース間及び電源
ライン間を保護するために、電源ラインL1,L2とア
ースE間に単独に電圧依存性非線形耐雷素子4,6を設
け、接地ライン(接地相)NとアースE間に単独に電圧
依存性非線形耐雷素子5を設け、各電源ラインL1,L
2と接地ラインN間に電圧依存性非線形耐雷素子7,8
を設けている。この場合、電源ラインと接地ライン間の
耐雷素子7,8の動作開始電圧は、各電源ラインの電圧
に対して動作しないように電源ラインの電源電圧のピー
ク値より高く設定され、他の電源ラインとアース間の耐
雷素子4,5,6の動作開始電圧は、高低圧混触時の低
圧側の最大電圧上昇値600√2Vより高く設定されて
いる。
In the single-phase three-wire type AC electric circuit shown in FIG. 10, a voltage is independently applied between the power source lines L1 and L2 and the earth E in order to protect between the power source line and the ground and between the power source lines from a lightning surge. Dependent non-linear lightning protection elements 4 and 6 are provided, and a voltage-dependent non-linear lightning protection element 5 is independently provided between the ground line (ground phase) N and the earth E, and each power supply line L1, L
2 and the ground line N between the voltage-dependent nonlinear lightning protection elements 7 and 8
Is provided. In this case, the operation starting voltage of the lightning protection elements 7 and 8 between the power supply line and the ground line is set higher than the peak value of the power supply voltage of the power supply line so as not to operate with respect to the voltage of each power supply line, The operation start voltage of the lightning protection elements 4, 5 and 6 between the ground and the ground is set to be higher than the maximum voltage increase value 600√2V on the low voltage side at the time of high voltage contact.

【0004】また、図11に示す三相3線式交流電路の
場合は、三相の各電源ラインU,V,WとアースE間に
単独に電圧依存性非線形耐雷素子9,10,11を設
け、各電源ラインU,V,W間に単独に電圧依存性非線
形耐雷素子12,13,14を設けている。そして、電
源ライン間の耐雷素子12,13,14の動作開始電圧
を各電源ラインの電源電圧のピーク値より高く設定し、
電源ラインとアース間の耐雷素子9,10,11の動作
開始電圧を高低圧混触時の低圧側の最大電圧上昇値60
0√2Vより高く設定している。
In the case of the three-phase three-wire type AC electric circuit shown in FIG. 11, voltage-dependent nonlinear lightning protection devices 9, 10, 11 are independently provided between the three-phase power supply lines U, V, W and the ground E. The voltage-dependent non-linear lightning protection devices 12, 13, 14 are independently provided between the power supply lines U, V, W. Then, the operation start voltage of the lightning protection devices 12, 13, 14 between the power supply lines is set higher than the peak value of the power supply voltage of each power supply line,
The operation start voltage of the lightning protection elements 9, 10, 11 between the power supply line and the ground is set to the maximum voltage rise value 60 on the low voltage side when the high and low voltages are touched.
It is set higher than 0√2V.

【0005】[0005]

【発明が解決しようとする課題】上記のように電源ライ
ンとアース間に配設される電圧依存性非線形耐雷素子は
動作開始電圧を高く設定する必要があり、そのため、サ
ージ電圧に対する制限電圧が高くなって、電源ライン間
もサージ電圧から保護するためには電源ライン間にも耐
雷素子を配設する必要があった。また、高い動作開始電
圧を必要とする耐雷素子は電流耐量の向上化が難しく、
かつ、動作開始電圧に比例した素子厚の構造となって薄
形化と小形化が難しい。
As described above, the voltage-dependent non-linear lightning protection device arranged between the power supply line and the ground needs to set a high operation start voltage, and therefore, the limit voltage for the surge voltage is high. Then, in order to protect the power supply lines from the surge voltage, it is necessary to dispose the lightning protection element also between the power supply lines. In addition, it is difficult to improve the current withstand capability for lightning protection devices that require a high operation start voltage,
In addition, it is difficult to make the device thinner and smaller because it has a device thickness proportional to the operation start voltage.

【0006】例えば図9の単相2線式交流電路において
は、電源ラインとアース間の耐雷素子の動作開始電圧が
電源ラインとアース間電圧のピーク値より2〜4倍程度
高くて、制限電圧を低くすることができず、そのため、
電源ライン間もサージ電圧から保護するためには電源ラ
イン間にも同程度の高い動作開始電圧の耐雷素子を設置
する必要がある。また、図10の単相3線式交流電路と
図11の三相3線式交流電路の場合は、電源ラインとア
ース間の耐雷素子の動作開始電圧が高低圧混触時の最大
電圧上昇値より高いため同耐雷素子の制限電圧も高くな
って、各ライン間をサージ電圧から保護するためには各
ライン間にも耐雷素子を設置する必要があった。
For example, in the single-phase two-wire type AC electric circuit of FIG. 9, the operation starting voltage of the lightning protection element between the power supply line and the earth is about 2 to 4 times higher than the peak value of the voltage between the power supply line and the earth, and the limiting voltage. Cannot be lowered, and therefore
In order to protect the power supply lines from the surge voltage, it is necessary to install lightning protection devices having a high operation starting voltage between the power supply lines. In the case of the single-phase three-wire AC circuit of FIG. 10 and the three-phase three-wire AC circuit of FIG. 11, the operation starting voltage of the lightning protection element between the power supply line and the ground is higher than the maximum voltage rise value during high- and low-voltage contact. Because of the high voltage, the lightning protection device also has a high limit voltage, and it is necessary to install lightning protection devices between lines in order to protect each line from surge voltage.

【0007】その結果、単相2線式や単相3線式、三相
3線式交流電路等に設置される耐雷保護装置は耐雷素子
数の低減と耐雷素子自体の小形化が難しくて、装置全体
の小形化、低コスト化を難しくしていた。
As a result, it is difficult to reduce the number of lightning protection elements and miniaturize the lightning protection elements in a lightning protection device installed in a single-phase two-wire system, a single-phase three-wire system, a three-phase three-wire system AC circuit, etc. It was difficult to reduce the size and cost of the entire device.

【0008】なお、以上のような耐雷素子の動作開始電
圧は、耐雷素子に放電ギャップを直列接続することで下
げることができるが、元々に高い動作開始電圧の耐雷素
子に放電ギャップを接続しても耐雷素子の動作開始電圧
の下げ幅が小さくなり、制限電圧を低くすることが難し
くて、上記問題点の良好な解決策にはならない。また、
かかる放電ギャップは、放電特性の安定性や信頼性が重
要視されることから不活性ガス入り放電管が適用される
のが通常であるが、このような不活性ガス入り放電管の
放電ギャップは高価であり、これを耐雷素子に直列接続
するのは経済的な理由でも難しいのが実状である。
The operation start voltage of the lightning protection element as described above can be lowered by connecting the discharge gap to the lightning protection element in series, but the discharge gap is originally connected to the lightning protection element having a high operation start voltage. However, the reduction range of the operation starting voltage of the lightning protection element becomes small, and it is difficult to reduce the limiting voltage, which is not a good solution to the above problems. Also,
For such a discharge gap, a discharge tube containing an inert gas is usually applied because stability and reliability of discharge characteristics are important, but the discharge gap of such a discharge tube containing an inert gas is In reality, it is expensive and it is difficult to connect it in series with a lightning protection device for economic reasons.

【0009】本発明の目的は、耐雷素子に放電ギャップ
を性能面、経済面で良好に直列接続することを可能にし
た小形で低コストな耐雷保護装置を提供することにあ
る。
An object of the present invention is to provide a small-sized and low-cost lightning protection device capable of connecting a discharge gap to a lightning protection element in series in terms of performance and economy.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、電源電路の電源ラインとアース間に電圧依存
性非線形耐雷素子と放電ギャップの直列回路を接続した
耐雷保護装置において、耐雷素子の動作開始電圧を電源
ラインとアース間電圧のピーク値より低く、かつ、放電
ギャップの放電時におけるアーク電圧より高く設定する
と共に、放電ギャップの放電開始電圧を電源ラインとア
ース間電圧のピーク値より高く設定したことを特徴とす
る。
In order to achieve the above object, the present invention provides a lightning protection device in which a series circuit of a voltage-dependent non-linear lightning protection device and a discharge gap is connected between a power line of a power line and a ground. The operating start voltage of is set lower than the peak value of the voltage between the power line and ground and higher than the arc voltage at the time of discharge of the discharge gap, and the discharge start voltage of the discharge gap is set below the peak value of the voltage between the power line and ground. It is characterized by being set high.

【0011】ここで、電源電路は単相2線式交流電路や
単相3線式、三相3線式交流電路の交流電路が好適であ
るが、他の交流電路、直流電路であってもよい。電圧依
存性非線形耐雷素子は、例えば酸化亜鉛などの素材から
なる平板状電圧依存性非線形電圧素子の両面にアルミニ
ウム等の電極を対向させて形成した構造で、この平板状
電圧素子の板厚は耐雷素子の動作開始電圧、制限電圧と
比例関係にある。従って、耐雷素子の動作開始電圧を電
源ラインとアース間電圧のピーク値より低く設定するこ
とで、耐雷素子が薄い小形なものとなる。また、耐雷素
子の動作開始電圧を放電ギャップの放電時のアーク電圧
より高く設定することで、耐雷素子で放電ギャップのア
ークを遮断して続流を遮断し、サージ電圧の制限電圧を
低くすることができる。この制限電圧の低減で、電源ラ
イン間に耐雷素子を設けなくても電源ライン間をサージ
電圧から保護することができるようになる。電源ライン
間に耐雷素子を設けないことで、耐雷保護装置の耐雷素
子数が低減できて、耐雷保護装置を小形で低コストなも
のにすることが容易になる。
Here, the power supply circuit is preferably a single-phase two-wire AC circuit, a single-phase three-wire system, or a three-phase three-wire system AC circuit, but other AC circuits or DC circuits may be used. Good. The voltage-dependent non-linear lightning protection device has a structure in which electrodes such as aluminum are made to face each other on both sides of a plate-shaped voltage-dependent non-linear voltage device made of a material such as zinc oxide. It has a proportional relationship with the operation start voltage and the limit voltage of the element. Therefore, by setting the operation starting voltage of the lightning protection element lower than the peak value of the voltage between the power supply line and the ground, the lightning protection element becomes thin and small. Also, by setting the operation start voltage of the lightning protection element higher than the arc voltage during discharge of the discharge gap, the lightning protection element cuts off the arc of the discharge gap to cut off the follow current and lower the surge voltage limit voltage. You can By reducing the limiting voltage, it becomes possible to protect the surge voltage between the power supply lines without providing a lightning protection element between the power supply lines. By not providing the lightning protection device between the power supply lines, the number of lightning protection devices of the lightning protection device can be reduced, and it becomes easy to make the lightning protection device small in size and low in cost.

【0012】また、本発明においては、耐雷素子に直列
接続する放電ギャップが、絶縁シートに形成した放電孔
の両端開口を一対の金属部品で塞いで形成した開放形放
電ギャップで、この開放形放電ギャップの放電孔内での
結露時に電源ラインとアース間の電圧と耐雷素子の動作
開始電圧との電位差で漏れ電流を発生させるようにした
ことを特徴とする。
Further, in the present invention, the discharge gap connected in series to the lightning protection element is an open discharge gap formed by closing both ends of the discharge hole formed in the insulating sheet with a pair of metal parts. It is characterized in that a leak current is generated due to a potential difference between a voltage between a power supply line and a ground and an operation starting voltage of a lightning protection element when dew condensation occurs in a discharge hole of a gap.

【0013】ここでの開放形放電ギャップは、一対の金
属部品で挟持された絶縁シートの厚さに相当する放電ギ
ャップ長に比例する放電開始電圧を有する。金属部品は
端子板等で、一対の金属部品で絶縁シートの放電孔を塞
いで形成された放電ギャップは、絶縁シートの放電孔内
で結露する可能性を有する。絶縁シートの放電孔内が結
露したときに電源ラインとアース間電圧と、この電圧の
ピーク値より小さく設定した耐雷素子の動作開始電圧と
の電位差で漏れ電流を発生させる。漏れ電流は、放電ギ
ャップの結露部分を通電による発熱で乾燥させる程度の
電流であり、放電ギャップに直列接続された耐雷素子を
劣化させない程度の電流である。放電ギャップの結露を
漏れ電流で乾燥させて自己復旧させることで、放電ギャ
ップの放電特性の劣化の心配が無く、放電ギャップ構造
を防水構造や密閉構造等の結露防止構造にする必要が無
くなる。従って、放電ギャップは、絶縁シートを金属部
品で単に挟持したような簡単な構造の開放形とすること
ができ、このような開放形放電ギャップは小形で薄形と
なり、耐雷素子に一体に組み込むことが容易となって、
耐雷保護装置の尚一層の小形化と低コスト化を容易にす
る。
The open discharge gap here has a discharge starting voltage proportional to the length of the discharge gap corresponding to the thickness of the insulating sheet sandwiched between the pair of metal parts. The metal component is a terminal plate or the like, and a discharge gap formed by closing the discharge hole of the insulating sheet with a pair of metal components may cause dew condensation in the discharge hole of the insulating sheet. When the inside of the discharge hole of the insulating sheet is condensed, a leakage current is generated by the potential difference between the voltage between the power supply line and the ground and the operation starting voltage of the lightning protection element set to be smaller than the peak value of this voltage. The leakage current is a current that causes the dew condensation portion of the discharge gap to be dried by heat generated by energization, and is a current that does not deteriorate the lightning protection element connected in series to the discharge gap. Since the dew condensation in the discharge gap is dried by the leakage current and self-recovered, there is no fear of deterioration of the discharge characteristics of the discharge gap, and it is not necessary to make the discharge gap structure a dew condensation prevention structure such as a waterproof structure or a sealed structure. Therefore, the discharge gap can be an open type with a simple structure such as simply sandwiching an insulating sheet between metal parts. Such an open type discharge gap is small and thin, and can be integrated into a lightning protection device. Becomes easier,
This makes it easier to reduce the size and cost of the lightning protection device.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図1
乃至図8を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.
It will be described with reference to FIGS.

【0015】図1は単相2線式交流電路に適用した第一
の実施形態の耐雷保護装置で、一方の電源ラインL1と
アースE間に電圧依存性非線形耐雷素子21と放電ギャ
ップ31の直列回路を接続し、他方の電源ラインL1と
アースE間に電圧依存性非線形耐雷素子22と放電ギャ
ップ32の直列回路を接続して構成される。この耐雷保
護装置の特徴とするところは、各耐雷素子21,22の
動作開始電圧を電源ラインL1,L2とアース間電圧の
ピーク値より低く、かつ、放電ギャップ31,32の放
電時におけるアーク電圧より高く設定すると共に、放電
ギャップ31,32の放電開始電圧を電源ラインとアー
ス間電圧のピーク値より高く設定したことである。
FIG. 1 shows a lightning protection device of the first embodiment applied to a single-phase two-wire type AC electric circuit, in which a voltage-dependent nonlinear lightning protection element 21 and a discharge gap 31 are connected in series between one power supply line L1 and an earth E. The circuit is connected, and a series circuit of the voltage-dependent nonlinear lightning protection device 22 and the discharge gap 32 is connected between the other power supply line L1 and the ground E. This lightning protection device is characterized in that the operation starting voltage of each of the lightning protection elements 21 and 22 is lower than the peak value of the voltage between the power supply lines L1 and L2 and the ground, and the arc voltage during discharge of the discharge gaps 31 and 32. This is because the discharge start voltage of the discharge gaps 31 and 32 was set higher than the peak value of the voltage between the power supply line and the ground.

【0016】例えば図1は定格電圧100Vの単相2線
式交流電路で、これの電圧波形例である図2において、
交流100V電路のピーク値である波高値約141Vに
対して各耐雷素子21,22の動作開始電圧Vaを波高
値約141Vより小さく、かつ、放電ギャップ31,3
2の放電時のアーク電圧Vd(約40V〜50V)より
大きい100V〜120V程度に設定する。そして、放
電ギャップ31,32の放電開始電圧Vbを波高値約1
41Vより十分に大きな1000V〜1500V程度に
設定する。なお、図2の破線で示す電圧Vcは、図9の
従来の耐雷素子の動作開始電圧である。
For example, FIG. 1 shows a single-phase two-wire type AC electric circuit having a rated voltage of 100 V. In FIG.
The operation start voltage Va of each lightning protection element 21, 22 is smaller than the peak value of about 141 V, which is the peak value of the peak value of the AC 100 V electric circuit, and the discharge gap 31, 3 is smaller than the peak value of about 141 V.
2 is set to about 100 to 120 V, which is higher than the arc voltage Vd during discharge (about 40 to 50 V). Then, the discharge start voltage Vb of the discharge gaps 31 and 32 is set to a peak value of about 1
It is set to about 1000V to 1500V, which is sufficiently larger than 41V. The voltage Vc shown by the broken line in FIG. 2 is the operation start voltage of the conventional lightning protection device of FIG.

【0017】電源ラインL1,L2の一方に雷サージ電
流が流れて放電ギャップ31,32の一方が放電開始す
ると、放電開始した放電ギャップ側の耐雷素子21,2
2が動作開始してサージ電流が抑制され、放電ギャップ
のアーク遮断で続流遮断が行われる。このときの制限電
圧は、図3の電圧−電流特性図の破線で示す制限電圧V
−1となる。つまり、サージ電流iはサージ電圧vが放
電ギャップの放電開始電圧Vbに達するまでに急激に流
れてから、サージ電圧vが耐雷素子の動作開始でもって
急激に低下して制限電圧V−1に制限されて交流電路の
電気機器が雷サージから保護され、かつ、Va>Vdの
関係から耐雷素子が放電ギャップのアークを遮断して続
流遮断が行われる。図3の実線グラフで示す制限電圧V
−2は図9の従来の耐雷素子の制限電圧で、この図3か
ら本発明による耐雷保護装置の制限電圧V−1が従来の
制限電圧V−2より大幅に小さくできることが分かる。
このように電源ラインとアース間の制限電圧V−1が大
幅に小さくなることで、電源ラインL1,L2間に単独
に電圧依存性非線形耐雷素子を配設しなくても電源ライ
ン間の雷サージに対する保護が可能となる。そのため、
図1においては電源ライン間の耐雷素子が省略してあ
る。また、電源ラインとアース間の制限電圧の低減化
で、電源ラインとアース間の耐雷素子21,22の素子
電流耐量を向上させることが可能となる。
When a lightning surge current flows through one of the power supply lines L1, L2 and one of the discharge gaps 31, 32 starts to discharge, the lightning protection elements 21, 2 on the side of the discharge gap where the discharge has started.
2 starts operating, the surge current is suppressed, and the follow current is interrupted by the arc interruption in the discharge gap. The limiting voltage at this time is the limiting voltage V shown by the broken line in the voltage-current characteristic diagram of FIG.
It becomes -1. That is, the surge current i suddenly flows until the surge voltage v reaches the discharge start voltage Vb of the discharge gap, and then the surge voltage v drops sharply at the start of the operation of the lightning protection device and is limited to the limit voltage V-1. As a result, the electrical equipment of the AC circuit is protected from lightning surges, and the lightning protection element blocks the arc in the discharge gap due to the relationship of Va> Vd, thereby performing continuous current interruption. Limit voltage V shown by the solid line graph in FIG.
2 is the limiting voltage of the conventional lightning protection element of FIG. 9, and it can be seen from FIG. 3 that the limiting voltage V-1 of the lightning protection device according to the present invention can be made significantly smaller than the conventional limiting voltage V-2.
Since the limiting voltage V-1 between the power supply line and the ground is greatly reduced in this way, a lightning surge between the power supply lines can be achieved without disposing a voltage-dependent nonlinear lightning protection element independently between the power supply lines L1 and L2. Protection against. for that reason,
In FIG. 1, the lightning protection element between the power supply lines is omitted. Further, by reducing the limiting voltage between the power supply line and the ground, it becomes possible to improve the element current resistance of the lightning protection elements 21, 22 between the power supply line and the ground.

【0018】図1の交流電路の一方の電源ラインL1と
アースE間に挿入される耐雷素子21と放電ギャップ3
1の直列回路、或いは、他方の電源ラインL2とアース
E間に挿入される耐雷素子22と放電ギャップ33の直
列回路は、図示しない基板上に組み付けたり、絶縁性の
筐体内に組み込んで構成される。また、放電ギャップ3
1,32は結露の心配のない密閉構造や防水構造のもの
を適用することも可能であるが、動作開始電圧を低く設
定した耐雷素子21,22と組み合わせることから開放
形の構造にすることが後述する理由で望ましい。例えば
電源ラインL1とアースE間に挿入される耐雷素子21
と放電ギャップ31の直列回路を筐体内に組み込み、放
電ギャップ31を開放形構造とした耐雷保護装置の構造
例を図4(A)(B)に示す。
A lightning protection element 21 and a discharge gap 3 inserted between one power supply line L1 and the ground E of the AC electric circuit of FIG.
The series circuit of 1 or the series circuit of the lightning protection element 22 and the discharge gap 33 inserted between the other power supply line L2 and the ground E is assembled on a substrate (not shown) or in an insulating casing. It Also, the discharge gap 3
Although it is possible to apply a sealed structure or a waterproof structure that does not cause dew condensation as 1, 32, it is possible to make an open structure by combining with a lightning protection element 21, 22 whose operation start voltage is set low. It is desirable for the reason described below. For example, the lightning protection device 21 inserted between the power line L1 and the ground E
4 (A) and 4 (B) show a structural example of a lightning protection device in which a series circuit of a discharge gap 31 and a discharge gap 31 is incorporated in a housing and the discharge gap 31 has an open structure.

【0019】図4に示される耐雷素子21は矩形の平板
形状で、その表裏両面に薄板状の電極41が形成され、
各電極41の外面に一対の端子板42の片端部が圧接さ
れる。端子板42は板厚方向に弾性を有する平板状の金
属部品である。この端子板42の他の片端部の各々の片
面に絶縁シート43を介して引出端子板45が圧接され
る。引出端子板45も平板状の金属部品である。絶縁シ
ート43は一部に放電孔44を有し、この放電孔44の
両端開口を一対の端子板42,45が塞いで、放電孔4
4で開放形放電ギャップ31が形成される。この放電ギ
ャップ31の放電ギャップ長は絶縁シート43の厚さで
決まる。
The lightning protection device 21 shown in FIG. 4 has a rectangular flat plate shape, and thin plate electrodes 41 are formed on both front and back surfaces thereof.
One end of a pair of terminal plates 42 is pressed against the outer surface of each electrode 41. The terminal plate 42 is a flat plate-shaped metal component having elasticity in the plate thickness direction. A lead-out terminal plate 45 is pressed against one surface of each of the other end portions of the terminal plate 42 via an insulating sheet 43. The lead-out terminal plate 45 is also a flat metal part. The insulating sheet 43 has a discharge hole 44 in a part thereof, and both ends of the discharge hole 44 are covered with a pair of terminal plates 42 and 45, so that the discharge hole 4
At 4, an open discharge gap 31 is formed. The discharge gap length of the discharge gap 31 is determined by the thickness of the insulating sheet 43.

【0020】以上の耐雷素子21と放電ギャップ31の
一体物が絶縁性の筐体46に収納され、筐体46の内面
に弾性の端子板42が圧接されて端子板42と電極41
との電気的機械的接続、及び、端子板42と絶縁シート
43と引出端子板45との電気的機械的接続が良好に確
保される。各端子板42,45と絶縁シート43は弾性
接触するだけの簡易な構造、つまり、非密閉構造であり
非防水構造であるので、放電ギャップ31が薄形・小形
となり、これを耐雷素子21に直列接続して一体化する
ことが容易になり、耐雷保護装置の小形化、低コスト化
が容易になる。
The lightning protection element 21 and the discharge gap 31 described above are integrally housed in an insulative housing 46, and an elastic terminal plate 42 is pressed against the inner surface of the housing 46 so that the terminal plate 42 and the electrode 41 are connected.
The electrical and mechanical connection with the terminal board 42, the insulating sheet 43, and the lead-out terminal board 45 are well ensured. Since the terminal plates 42 and 45 and the insulating sheet 43 are simply in elastic contact with each other, that is, they have a non-sealed structure and a non-waterproof structure, the discharge gap 31 is thin and small, which is used as the lightning protection device 21. It becomes easy to connect in series and integrate, and it becomes easy to miniaturize and reduce the cost of the lightning protection device.

【0021】開放形放電ギャップ31の場合、絶縁シー
ト43の放電孔44内で結露することがある。そこで、
放電ギャップ31の結露時に電源ラインとアース間電圧
と耐雷素子21の動作開始電圧Vaとの電位差で漏れ電
流を発生させるようにする。この漏れ電流は、放電ギャ
ップ31の放電孔44内を放電によって流れて放電孔4
4内の結露部分を乾燥させる程度の電流であり、このよ
うな漏れ電流は放電ギャップ31に直列接続された耐雷
素子21を劣化させない微少電流である。従って、開放
形放電ギャップ31に仮に結露が発生しても、漏れ電流
で即座に結露が解消されて自己復旧することになり、開
放形放電ギャップ31の放電特性の劣化の心配が無くな
る。
In the case of the open type discharge gap 31, dew condensation may occur in the discharge hole 44 of the insulating sheet 43. Therefore,
When the discharge gap 31 is condensed, a leakage current is generated due to the potential difference between the voltage between the power supply line and the ground and the operation starting voltage Va of the lightning protection device 21. This leakage current flows in the discharge hole 44 of the discharge gap 31 due to the discharge, and
The leakage current is a minute current that does not deteriorate the lightning protection element 21 connected in series to the discharge gap 31. Therefore, even if dew condensation occurs in the open discharge gap 31, the dew condensation is immediately eliminated by the leakage current and self-recovery is performed, and there is no fear of deterioration of the discharge characteristics of the open discharge gap 31.

【0022】以上の第一の実施形態における性能上、及
び、構造上の特徴は、次の図5の第二の実施形態や図6
の第三の実施形態においても同様であることから、その
詳細説明は省略して、第二の実施形態と第三の実施形態
を順に説明する。
The performance and structural characteristics of the first embodiment described above are as follows in the second embodiment of FIG. 5 and FIG.
Since the same applies to the third embodiment, the detailed description thereof will be omitted, and the second embodiment and the third embodiment will be sequentially described.

【0023】図5は単相3線式交流電路に適用した耐雷
保護装置で、各電源ラインL1,L2とアースE間に電
圧依存性非線形耐雷素子23,24と開放形放電ギャッ
プ33,34の直列回路が接続され、接地ラインNとア
ースE間に開放形放電ギャップ35が接続されて耐雷保
護装置が構成される。定格電圧100Vの単相3線式交
流電路の場合、図2の第一の実施形態と同様に交流10
0V電路のピーク値である波高値約141Vに対して各
耐雷素子23,24の動作開始電圧を波高値より小さく
放電ギャップの放電時のアーク電圧より大きな100V
〜120V程度に設定し、放電ギャップ33,34の放
電開始電圧を波高値より十分に大きな1000V〜15
00V程度に設定すれば、図3と同様な続流の遮断と制
限電圧の大幅な低減が可能となり、図1の第一の実施形
態と同様な性能が発揮される。また、耐雷素子23と放
電ギャップ33の直列回路、及び、耐雷素子24と放電
ギャップ34の直列回路は、図4と同様の構造にするこ
とが可能で望ましい。
FIG. 5 shows a lightning protection device applied to a single-phase three-wire AC circuit, in which voltage-dependent non-linear lightning protection devices 23 and 24 and open-type discharge gaps 33 and 34 are provided between the power supply lines L1 and L2 and the ground E. A series circuit is connected, and an open-type discharge gap 35 is connected between the ground line N and the earth E to form a lightning protection device. In the case of a single-phase, three-wire type AC electric circuit having a rated voltage of 100V, an AC voltage of 10 V is used as in the first embodiment of FIG.
For the peak value of about 141V which is the peak value of the 0V electric path, the operation starting voltage of each lightning protection device 23, 24 is 100V which is smaller than the peak value and larger than the arc voltage at the time of discharge in the discharge gap
Set to about 120V, and the discharge start voltage of the discharge gaps 33 and 34 is set to 1000V to 15V, which is sufficiently larger than the peak value.
If set to about 00V, it becomes possible to interrupt the follow current and greatly reduce the limiting voltage as in the case of FIG. 3, and the same performance as that of the first embodiment of FIG. 1 is exhibited. Further, the series circuit of the lightning protection element 23 and the discharge gap 33, and the series circuit of the lightning protection element 24 and the discharge gap 34 can desirably have the same structure as in FIG.

【0024】図6に示す第三の実施形態の耐雷保護装置
は三相3線式交流電路に適用したもので、各電源ライン
U,V,WとアースE間に電圧依存性非線形耐雷素子2
5,26,27と開放形放電ギャップ36,37,38
の直列回路が接続される。この場合、例えば交流200
V電路の波高値約283Vに対して各耐雷素子25,2
6,27の動作開始電圧を200V〜230V程度に設
定し、各放電ギャップ36,37,38の放電開始電圧
を1000V〜1500V程度に設定すれば、制限電圧
が図3の制限電圧V−1と同様になる。また、耐雷素子
25と放電ギャップ36の直列回路、及び、耐雷素子2
6と放電ギャップ37の直列回路、及び、耐雷素子27
と放電ギャップ38の直列回路の各々を図4と同様の構
造にしてもよいが、図7又は図8に示すような構造にし
て、3つの直列回路からなる耐雷保護装置の構成部品点
数の低減を図ることが望ましい。なお、図7と図8に示
される構成部品で図4の構成部品と同一又は相当部分に
は、同一の符号を付して説明の重複を避ける。
The lightning protection device of the third embodiment shown in FIG. 6 is applied to a three-phase three-wire type AC electric circuit, and the voltage-dependent nonlinear lightning protection element 2 is provided between each power supply line U, V, W and ground E.
5, 26, 27 and open discharge gaps 36, 37, 38
Connected in series. In this case, for example, AC 200
Each lightning protection device 25,2 against the peak value of V line of about 283V
If the operation start voltage of Nos. 6, 27 is set to about 200V to 230V and the discharge start voltage of each of the discharge gaps 36, 37, 38 is set to about 1000V to 1500V, the limiting voltage becomes the limiting voltage V-1 in FIG. It will be similar. In addition, a series circuit of the lightning protection element 25 and the discharge gap 36, and the lightning protection element 2
6 and discharge gap 37 in series circuit, and lightning protection device 27
Each of the series circuits of the discharge gap 38 and the discharge gap 38 may have the same structure as that of FIG. 4, but the structure shown in FIG. 7 or 8 may be adopted to reduce the number of constituent parts of the lightning protection device including three series circuits. Is desirable. In the components shown in FIGS. 7 and 8, the same or corresponding parts as those of FIG. 4 are designated by the same reference numerals to avoid duplication of description.

【0025】図7は図4の直列回路(耐雷保護装置)の
3つを共通の絶縁シート43’と共通の引出端子板4
5’で一体化したものである。共通の絶縁シート43’
は3箇所に放電孔44を有し、共通の引出端子板45’
は3箇所の放電孔44を同時に塞いで3つの開放形放電
ギャップを形成する。共通の絶縁シート43’と引出端
子板45’で図6に示す3つの耐雷素子25,26,2
7と3つの開放形放電ギャップ36,37,38が一体
化されて、共通の筐体46’に収納される。図8は図4
の直列回路(耐雷保護装置)の3つを共通の絶縁シート
43’だけで一体化したもので、引出端子板45は単独
の3枚が使用される。
FIG. 7 shows three of the series circuits (lightning protection device) of FIG. 4 having a common insulating sheet 43 'and a common lead-out terminal board 4.
It is integrated in 5 '. Common insulation sheet 43 '
Has discharge holes 44 at three locations and has a common lead-out terminal plate 45 '.
Simultaneously closes the three discharge holes 44 to form three open discharge gaps. The three lightning protection elements 25, 26 and 2 shown in FIG.
7 and the three open discharge gaps 36, 37, 38 are integrated and housed in a common housing 46 '. FIG. 8 is FIG.
3 of the above series circuit (lightning protection device) are integrated only by a common insulating sheet 43 ', and three independent lead terminal plates 45 are used.

【0026】[0026]

【発明の効果】本発明によれば、電圧依存性非線形耐雷
素子の動作開始電圧を電源ラインとアース間電圧のピー
ク値より低く、放電ギャップの放電時のアーク電圧より
高く設定することで、耐雷素子が薄い小形なものとな
り、かつ、雷サージ電流が流れるときの制限電圧を低く
することができて、電源ライン間に耐雷素子が無くても
電源ライン間をサージ電圧から保護することができるた
め、耐雷保護装置の耐雷素子数を低減させて耐雷保護装
置を小形で低コストなものにすることが容易になる効果
がある。また、制限電圧の低減化で耐雷素子の電流耐量
を向上させることが容易にできる効果もある。
According to the present invention, by setting the operation starting voltage of the voltage-dependent non-linear lightning protection device lower than the peak value of the voltage between the power supply line and the ground and higher than the arc voltage during discharge of the discharge gap, The element is thin and small, and the limiting voltage when a lightning surge current flows can be lowered, and it is possible to protect between power supply lines from surge voltage even if there is no lightning protection element between power supply lines. There is an effect that it becomes easy to reduce the number of lightning protection devices of the lightning protection device and to make the lightning protection device small in size and low in cost. Further, there is also an effect that it is possible to easily improve the current resistance of the lightning protection element by reducing the limiting voltage.

【0027】また、耐雷素子に直列接続する放電ギャッ
プを結露の可能性のある開放形にすることで、放電ギャ
ップの構造が簡略化されて安価な放電ギャップ部品が使
用でき、また、構造が簡単故に耐雷素子と一体化するこ
とが容易となって、耐雷保護装置の尚一層の小形化、低
コスト化を容易にする。さらに、開放形放電ギャップに
結露が発生しても、この結露が漏れ電流で解消されて自
己復旧が行われるので放電特性の劣化の心配が無く、信
頼性の高い耐雷保護装置が提供できる。
Further, by making the discharge gap connected in series with the lightning protection element an open type which may cause condensation, the structure of the discharge gap can be simplified and inexpensive discharge gap parts can be used, and the structure is simple. Therefore, the lightning protection device can be easily integrated with the lightning protection device, and the lightning protection device can be further reduced in size and cost. Further, even if dew condensation occurs in the open-type discharge gap, the dew condensation is eliminated by the leakage current and self-recovery is performed, so there is no fear of deterioration of discharge characteristics, and a highly reliable lightning protection device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施形態を示す耐雷保護装置の
回路図である。
FIG. 1 is a circuit diagram of a lightning protection device showing a first embodiment of the present invention.

【図2】図1の電源電路における電圧波形図である。FIG. 2 is a voltage waveform diagram in the power supply circuit of FIG.

【図3】図1の耐雷保護装置における雷サージ発生時の
電圧−電流特性図である。
FIG. 3 is a voltage-current characteristic diagram when a lightning surge occurs in the lightning protection device of FIG.

【図4】(A)は図1の耐雷保護装置における耐雷素子
と放電ギャップの構造例を示す要部の正面図、(B)は
側面図である。
4 (A) is a front view of a main part showing a structural example of a lightning protection element and a discharge gap in the lightning protection device of FIG. 1, and FIG. 4 (B) is a side view.

【図5】本発明の第二の実施形態を示す耐雷保護装置の
回路図である。
FIG. 5 is a circuit diagram of a lightning protection device showing a second embodiment of the present invention.

【図6】本発明の第三の実施形態を示す耐雷保護装置の
回路図である。
FIG. 6 is a circuit diagram of a lightning protection device showing a third embodiment of the present invention.

【図7】図6の耐雷保護装置における耐雷素子と放電ギ
ャップの構造例を示す要部の正面図である。
7 is a front view of a main part showing a structural example of a lightning protection element and a discharge gap in the lightning protection device of FIG.

【図8】図6の耐雷保護装置における耐雷素子と放電ギ
ャップの図7と異なる構造例を示す要部の正面図であ
る。
8 is a front view of a main part showing a structural example different from FIG. 7 of a lightning protection element and a discharge gap in the lightning protection device of FIG.

【図9】単相2線式交流電路における従来の耐雷保護装
置の回路図である。
FIG. 9 is a circuit diagram of a conventional lightning protection device in a single-phase two-wire AC circuit.

【図10】単相3線式交流電路における従来の耐雷保護
装置の回路図である。
FIG. 10 is a circuit diagram of a conventional lightning protection device for a single-phase three-wire AC circuit.

【図11】三相3線式交流電路における従来の耐雷保護
装置の回路図である。
FIG. 11 is a circuit diagram of a conventional lightning protection device for a three-phase three-wire AC circuit.

【符号の説明】[Explanation of symbols]

21〜27 電圧依存性非線形耐雷素子 31〜38 放電ギャップ、開放形放電ギャップ L1,L2 電源ライン E アース Va 耐雷素子の動作開始電圧 Vb 放電開始電圧 Vd アーク電圧 V−1 制限電圧 41 電極 42 端子板 43,43’ 絶縁シート 44 放電孔 45,45’ 引出端子板 46,46’ 筐体 21-27 Voltage-dependent nonlinear lightning protection device 31-38 discharge gap, open discharge gap L1, L2 power line E earth Va Operation start voltage of lightning protection element Vb discharge start voltage Vd arc voltage V-1 limit voltage 41 electrodes 42 terminal board 43,43 'insulating sheet 44 discharge hole 45,45 'Lead-out terminal board 46,46 'housing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高山 亨 兵庫県尼崎市名神町3丁目7番18号 音羽 電機工業株式会社本社事業所内 Fターム(参考) 5E034 CA09 EA07 EA08 5G013 AA01 AA04 BA02 CB16 DA03 DA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toru Takayama             Otowa, 3-7-18 Meishin Town, Amagasaki City, Hyogo Prefecture             Denki Kogyo Co., Ltd. Head Office F-term (reference) 5E034 CA09 EA07 EA08                 5G013 AA01 AA04 BA02 CB16 DA03                       DA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電源電路の電源ラインとアース間に電圧
依存性非線形耐雷素子と放電ギャップの直列回路を接続
した耐雷保護装置であって、耐雷素子の動作開始電圧を
電源ラインとアース間電圧のピーク値より低く、かつ、
放電ギャップの放電時におけるアーク電圧より高く設定
すると共に、放電ギャップの放電開始電圧を電源ライン
とアース間電圧のピーク値より高く設定したことを特徴
とする耐雷保護装置。
1. A lightning protection device in which a series circuit of a voltage-dependent non-linear lightning protection device and a discharge gap is connected between a power supply line of a power supply line and a ground, and an operation starting voltage of the lightning protection device is set to a voltage between the power supply line and the ground. Lower than peak value, and
A lightning protection device, wherein the discharge gap is set to have a voltage higher than the arc voltage during discharge and the discharge gap has a discharge starting voltage set to be higher than the peak value of the voltage between the power supply line and the ground.
【請求項2】 単相2線式、単相3線式または三相3線
式のうちから選択されるいずれかの交流電路の各電源ラ
インとアース間に設置されたことを特徴とする請求項1
に記載の耐雷保護装置。
2. A single-phase two-wire system, a single-phase three-wire system, or a three-phase three-wire system, which is installed between each power supply line of the alternating current circuit and ground. Item 1
Lightning protection device described in.
【請求項3】 放電ギャップが、絶縁シートに形成した
放電孔の両端開口を一対の金属部品で塞いで形成した開
放形放電ギャップで、この開放形放電ギャップの前記放
電孔内での結露時に電源ラインとアース間電圧と耐雷素
子の動作開始電圧との電位差で漏れ電流を発生させるよ
うにしたことを特徴とする請求項1又は2記載の耐雷保
護装置。
3. The discharge gap is an open-type discharge gap formed by closing both ends of the discharge hole formed in the insulating sheet with a pair of metal parts, and a power source is provided when dew condensation occurs in the open-type discharge gap. The lightning protection device according to claim 1 or 2, wherein a leakage current is generated by a potential difference between a voltage between the line and the ground and an operation starting voltage of the lightning protection element.
JP2001237875A 2001-08-06 2001-08-06 Arrester device Withdrawn JP2003051364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237875A JP2003051364A (en) 2001-08-06 2001-08-06 Arrester device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237875A JP2003051364A (en) 2001-08-06 2001-08-06 Arrester device

Publications (1)

Publication Number Publication Date
JP2003051364A true JP2003051364A (en) 2003-02-21

Family

ID=19068884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237875A Withdrawn JP2003051364A (en) 2001-08-06 2001-08-06 Arrester device

Country Status (1)

Country Link
JP (1) JP2003051364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189776A (en) * 2006-01-11 2007-07-26 Sharp Corp Power supply device for air conditioners and outdoor unit of air conditioner equipped therewith
JP2010115074A (en) * 2008-11-10 2010-05-20 Ntt Facilities Inc Device for protecting surge
WO2011024669A1 (en) * 2009-08-27 2011-03-03 ヤンマー株式会社 Surge protection circuit in three-phase four-wire system circuit
CN114336562A (en) * 2021-12-03 2022-04-12 广东电网有限责任公司 Transformer lightning overvoltage protection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189776A (en) * 2006-01-11 2007-07-26 Sharp Corp Power supply device for air conditioners and outdoor unit of air conditioner equipped therewith
JP2010115074A (en) * 2008-11-10 2010-05-20 Ntt Facilities Inc Device for protecting surge
WO2011024669A1 (en) * 2009-08-27 2011-03-03 ヤンマー株式会社 Surge protection circuit in three-phase four-wire system circuit
JP2011050181A (en) * 2009-08-27 2011-03-10 Yanmar Co Ltd Surge protection circuit in three-phase four-wire circuit
CN102577004A (en) * 2009-08-27 2012-07-11 洋马株式会社 Surge protection circuit in three-phase four-wire system circuit
EA019731B1 (en) * 2009-08-27 2014-05-30 Янмар Ко., Лтд. Surge protection circuit in three-phase four-wire system circuit
US9025297B2 (en) 2009-08-27 2015-05-05 Yanmar Co., Ltd. Surge protection circuit in three-phase four-wire circuit
CN114336562A (en) * 2021-12-03 2022-04-12 广东电网有限责任公司 Transformer lightning overvoltage protection device

Similar Documents

Publication Publication Date Title
US7817395B2 (en) Overvoltage protection element and ignition element for an overvoltage protection element
JP2006191797A (en) Common mode surge protective filter
KR840000878B1 (en) Line protector for a communications circuit
GB2345390A (en) Compact varistor and spark gap surge arrester
US20190207386A1 (en) Surge protection device structure
JP2003051364A (en) Arrester device
JP4204855B2 (en) Surge absorption device and surge absorption circuit
CN1319230C (en) Sheet-shape surging absorber and its mfg. method
JPS5823185A (en) Arrester
JP2562045B2 (en) Surge absorber
Niebuhr MOV surge arresters: Improved substation equipment protection
JPH0696835A (en) Surge arrester equipped with spring clip assembly
JP2783150B2 (en) Positive characteristic thermistor element and terminal device for telegraph telephone using the same
JPH06349386A (en) Surge suppressor for circuit breaker
CN112534522B (en) Varistor device for protecting a plurality of conductors from power surges
JP2009054400A (en) Capacitor unit and sealed switching device
JP5215702B2 (en) Lightning protection device, distribution board with lightning protection function
JP2708584B2 (en) Earth leakage breaker
JPS5895933A (en) Surge absorbing element
JPS6037832Y2 (en) Compact lightning arrester to prevent follow-on current for communication equipment
JPH02168815A (en) Solid state station protector
JP2741661B2 (en) Surge absorber
JP2023104254A (en) Lightning arrester, protection system and power system
JP2003009387A (en) Anti-element and anti-resistant protector
JP2000134795A (en) Lighting infall protecting device for low-voltage distribution system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007