JP2003050188A - Biaxial compression apparatus - Google Patents

Biaxial compression apparatus

Info

Publication number
JP2003050188A
JP2003050188A JP2001237265A JP2001237265A JP2003050188A JP 2003050188 A JP2003050188 A JP 2003050188A JP 2001237265 A JP2001237265 A JP 2001237265A JP 2001237265 A JP2001237265 A JP 2001237265A JP 2003050188 A JP2003050188 A JP 2003050188A
Authority
JP
Japan
Prior art keywords
axial direction
compression
compressed
movable
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001237265A
Other languages
Japanese (ja)
Inventor
Ichiro Shimizu
一郎 清水
Takeji Abe
武治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001237265A priority Critical patent/JP2003050188A/en
Publication of JP2003050188A publication Critical patent/JP2003050188A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biaxial compression apparatus that can independently control the amount of compression in the directions of the first and second axes, and can give a free biaxial deformation path and an arbitrary square sectional surface to a material to be compressed. SOLUTION: The biaxial compression apparatus for simultaneously compressing the material to be compressed in the direction of a first axis and in the direction of a second axis, that differs from the direction of the first axis comprises a loading means for generating compression force in the directions of first and second axes, a member, having a mechanism that can travel in the direction of the first axis due to the compression in the direction of the first axis, a member that faces the member, a member having a mechanism that can travel in the direction of the second axis due to the compression of the direction in the second axis, and a member that faces the member, thus compressing the material to be compressed in a square hole that is composed of the four members.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は,被圧縮材を第一軸
方向及び第一軸方向と異なる第二軸方向に同時に圧縮す
ることにより,前記被圧縮材の力学的性質を調べる二軸
圧縮試験装置,並びに前記被圧縮材を任意寸法に圧縮変
形させる二軸圧縮加工装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to biaxial compression for examining the mechanical properties of a material to be compressed by simultaneously compressing the material to be compressed in a first axial direction and a second axial direction different from the first axial direction. The present invention relates to a test device and a biaxial compression processing device for compressing and deforming the material to be compressed into arbitrary dimensions.

【0002】[0002]

【従来の技術】現存する二軸圧縮装置の機構としては,
(1)土木工学の分野で岩石や土類のせん断試験などに
用いられる,図10に示すように第一軸方向及び第二軸
方向の圧縮力を互いに離れて配置されている圧縮用部材
9を介して被圧縮材1に伝えるもの,(2)複合材料の
座屈試験などに用いられる,図11に示すように被圧縮
材1が第二軸方向に変形しないよう剛体の枠材8で変形
を拘束しながら,それに直交する第一軸方向に圧縮用部
材9で圧縮するもの,(3)図12に示すように被圧縮
材1と剛体の枠材8の間に油などの流体を介して静水圧
を負荷し,被圧縮材1を等方的に圧縮するもの,(4)
例えば特許公報「特開平05−010862号」に記載
されている,図13に示すように圧縮用部材9による第
一軸方向の圧縮に伴って,第二軸方向に配置された2つ
のくさび形部材11の間隔が枠材8に対して狭まること
を利用して圧縮するものがある。
2. Description of the Related Art As a mechanism of an existing biaxial compressor,
(1) A compression member 9 used for shearing tests on rocks and earths in the field of civil engineering and arranged so as to separate compressive forces in the first axial direction and the second axial direction from each other as shown in FIG. (2) Used for buckling test of composite materials, etc. by a rigid frame material 8 so that the compressed material 1 is not deformed in the second axial direction. While constraining the deformation, the compression member 9 compresses in the first axial direction orthogonal to the deformation (3) as shown in FIG. 12, a fluid such as oil is applied between the compressed material 1 and the rigid frame member 8. That isotropically compresses the material 1 to be compressed by applying hydrostatic pressure through it, (4)
For example, as shown in FIG. 13, as disclosed in Japanese Patent Laid-Open No. 05-010862, two wedge-shaped members arranged in the second axial direction along with the compression in the first axial direction by the compressing member 9 are shown. There is one that compresses by utilizing the fact that the interval between the members 11 is narrower with respect to the frame member 8.

【0003】[0003]

【発明が解決しようとする課題】以上述べた従来の二軸
圧縮装置に共通する問題点は,被圧縮材を全体的に圧縮
変形させる際に,第一軸方向と第二軸方向の圧縮量を自
由に独立して変化させることができない点である。
The problem common to the above-described conventional biaxial compressors is that the compression amount in the first axial direction and the second axial direction when the material to be compressed is wholly compressed and deformed. Is that it cannot be changed independently.

【0004】すなわち図10の機構では,第一軸方向と
第二軸方向の圧縮量を変えることはできるが,圧縮用部
材9に接していない部分は圧縮されないために被圧縮材
1の全体を変形させることができない。図11の機構で
は第一軸方向に圧縮するのみであり,第二軸方向には被
圧縮材1の寸法が変化しない。図12の機構では第一軸
方向と第二軸方向に負荷される圧縮力が等しいため,各
軸方向の圧縮量は被圧縮材1の性質によって定まる。例
えば被圧縮材1が等方性である場合には,各軸方向の圧
縮量は等しくなる。図13の機構では,第一軸方向と第
二軸方向の変形量は異なるが,その割合はくさび型部材
11および枠材8の斜面の角度によって定まり,圧縮量
の割合を変えるためには角度の異なる部材を用意しなけ
ればならない。
That is, in the mechanism shown in FIG. 10, the amount of compression in the first axial direction and the amount of compression in the second axial direction can be changed, but since the portion not in contact with the compression member 9 is not compressed, the entire compressed material 1 is compressed. It cannot be transformed. The mechanism of FIG. 11 only compresses in the first axial direction, and the dimension of the material to be compressed 1 does not change in the second axial direction. In the mechanism of FIG. 12, since the compression forces applied in the first axial direction and the second axial direction are equal, the amount of compression in each axial direction is determined by the property of the material to be compressed 1. For example, when the material to be compressed 1 is isotropic, the amount of compression in each axial direction is equal. In the mechanism of FIG. 13, the deformation amounts in the first axis direction and the second axis direction are different, but the ratio is determined by the angle of the slope of the wedge member 11 and the frame member 8. Different materials must be prepared.

【0005】しかしながら材料試験においては,被圧縮
材に対して第一軸方向と第二軸方向の圧縮量を試験毎に
変えながら荷重変化を調べることにより,被圧縮材の総
合的な力学的性質を求めることが要求される。また,実
際の圧縮加工において被圧縮材がうける変形経路は複雑
であることから,加工中における被圧縮材の力学的性質
の変化を調べるために,試験途中で各軸方向の圧縮量の
割合を変えることが求められる場合もある。さらに圧縮
加工においては,要求に応じて被圧縮材が所定の寸法に
なるように第一軸方向および第二軸方向の圧縮量を変え
なければならない。
However, in the material test, by examining the load change while changing the compression amount in the first axial direction and the second axial direction with respect to the material to be compressed, the comprehensive mechanical properties of the material to be compressed are examined. Is required. In addition, since the deformation path that the material to be compressed undergoes in actual compression processing is complicated, in order to investigate the changes in the mechanical properties of the material to be compressed during processing, the ratio of the amount of compression in each axial direction was determined during the test. Sometimes it is required to change. Further, in compression processing, the compression amount in the first axial direction and the second axial direction must be changed so that the material to be compressed has a predetermined size according to demand.

【0006】本発明は,以上述べたような課題に対し
て,第一軸方向と第二軸方向の圧縮量を独立して変える
ことができ,被圧縮材全体に自由な二軸圧縮経路と任意
の四角形断面を与えることを可能にした二軸圧縮装置で
ある。
In order to solve the above-mentioned problems, the present invention can independently change the compression amounts in the first axial direction and the second axial direction, and provides a free biaxial compression path for the entire compressed material. It is a biaxial compression device that makes it possible to give an arbitrary rectangular cross section.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に,本発明の二軸圧縮装置では,第一軸方向及び第一軸
方向と異なる第二軸方向の圧縮力を発生する負荷手段
と,第一軸方向の圧縮に伴って第一軸方向に移動可能な
機構を持つ部材と,それに相対する部材と,第二軸方向
の圧縮に伴って第二軸方向に移動可能な機構を持つ部材
と,それに相対する部材を備え,それら4つの部材で構
成される四角孔内で材料を圧縮するようにしている。
In order to solve the above-mentioned problems, in the biaxial compressor of the present invention, a load means for generating a compressive force in a first axial direction and a second axial direction different from the first axial direction is provided. , A member having a mechanism that can move in the first axial direction with compression in the first axial direction, a member that faces it, and a mechanism that can move in the second axial direction with compression in the second axial direction A member and a member opposite to the member are provided, and the material is compressed in a square hole composed of these four members.

【0008】一般的には後述するような理由で,第一軸
方向と第二軸方向は互いに直交していることが望まし
い。
Generally, it is desirable that the first axis direction and the second axis direction are orthogonal to each other for the reason described below.

【0009】前記4つの部材のうち,被圧縮材に第一軸
方向の圧縮力を伝える部材によって第一軸方向に移動可
能な部材が押されて移動し,被圧縮材に第二軸方向の圧
縮力を伝える部材により第二軸方向に移動可能な部材が
押されて移動する機構を持つとさらに有効である。
Of the four members, the member that transmits the compressive force in the first axial direction to the material to be compressed pushes and moves the member that is movable in the first axial direction, so that the material to be compressed moves in the second axial direction. It is more effective to have a mechanism in which a member that moves in the second axial direction is pushed and moved by a member that transmits a compressive force.

【0010】また,前記4つの部材がそれぞれ被圧縮材
に直接接触する接触面と,接触面に対して任意の角度を
なす側面を持ち,例えば4つの部材をそれぞれABCD
とすると,部材Aの接触面の一部が部材Bの側面と接触
し,部材Bの接触面の一部が部材Cの側面と接触し,部
材Cの接触面の一部が部材Dの側面と接触し,部材Dの
接触面の一部が部材Aの側面と接触するように配置す
る。そして,これら4つの部材の接触面で形成された,
閉じた四角孔内で被圧縮材を二軸圧縮することができ
る。
Further, each of the four members has a contact surface that directly contacts the material to be compressed and a side surface that makes an arbitrary angle with respect to the contact surface. For example, each of the four members is an ABCD.
Then, a part of the contact surface of member A contacts the side surface of member B, a part of the contact surface of member B contacts the side surface of member C, and a part of the contact surface of member C contacts the side surface of member D. And a part of the contact surface of the member D contacts the side surface of the member A. And formed by the contact surfaces of these four members,
The material to be compressed can be biaxially compressed in the closed square hole.

【0011】さらに,第一軸方向に移動可能な機構を持
つ部材とそれに相対する部材が第一軸方向に複数個配置
され,それらに同時に第二軸方向の圧縮力を伝える部材
を持ち,第二軸方向に移動可能な機構を持つ部材とそれ
に相対する部材が第二軸方向に複数個配置され,それら
に同時に第一軸方向の圧縮力を伝える部材を持つような
構成が可能である。
Further, a member having a mechanism movable in the first axial direction and a plurality of members facing the member are arranged in the first axial direction, and at the same time, a member for transmitting a compressive force in the second axial direction is provided. It is possible to adopt a structure in which a plurality of members having a mechanism movable in two axial directions and members facing the members are arranged in the second axial direction, and at the same time, a member for transmitting a compressive force in the first axial direction is possible.

【0012】この場合,第一軸方向の圧縮力が第二軸方
向に複数個配置された部材の対称軸上に負荷され,第二
軸方向の圧縮力が第一軸方向に複数個配置された部材の
対称軸上に負荷されることが効果的である。
In this case, the compressive force in the first axial direction is applied on the axis of symmetry of the members arranged in the second axial direction, and the plural compressive forces in the second axial direction are arranged in the first axial direction. Effectively, it is loaded on the axis of symmetry of the member.

【0013】[0013]

【作用】前記したように,第一軸方向の圧縮に伴って第
一軸方向に移動可能な機構を持つ部材により第二軸方向
の圧縮力を被圧縮材に伝えるようにすれば,第一軸方向
の圧縮を妨げることなく第二軸方向にも同時に圧縮する
ことが可能になる。同様に,第二軸方向の圧縮に伴って
第二軸方向に移動可能な機構を持つ部材により第一軸方
向の圧縮力を被圧縮材に伝えれば,第二軸方向の圧縮を
妨げることなく第一軸方向にも圧縮することができる。
As described above, if a member having a mechanism that can move in the first axial direction with the compression in the first axial direction is used to transmit the compressive force in the second axial direction to the material to be compressed, It is possible to simultaneously compress in the second axial direction without disturbing the axial compression. Similarly, by transmitting the compressive force in the first axial direction to the material to be compressed by the member having a mechanism that can move in the second axial direction with the compression in the second axial direction, the compression in the second axial direction can be prevented. It can also be compressed in the first axial direction.

【0014】一般的に用いられている工業用素材の断面
形状は長方形が多く,第一軸と第二軸を直交させ,被圧
縮材に対して最終的に長方形断面を与えることにより,
例えば金属加工の一種である鍛造や,木材加工における
集成材成形など,工業用素材の圧縮加工に本発明を広く
利用できると期待される。
The cross-sectional shape of commonly used industrial materials is often rectangular, and by making the first axis and the second axis orthogonal to each other and finally giving a rectangular cross section to the material to be compressed,
For example, it is expected that the present invention can be widely used for compression processing of industrial materials such as forging, which is a kind of metal processing, and laminated wood forming in wood processing.

【0015】また,前記4つの部材のうち,被圧縮材に
第一軸方向の圧縮力を伝える部材によって第一軸方向に
移動可能な部材が押されて移動し,被圧縮材に第二軸方
向の圧縮力を伝える部材により第二軸方向に移動可能な
部材が押されて移動するようにすれば,それら移動可能
な部材を動かすのに軸方向圧縮力以外の新たな負荷手段
を必要とせず,装置の構成部材の数を減らすことができ
る。
Of the above four members, the member that transmits the compressive force in the first axial direction to the material to be compressed pushes the movable member in the first axial direction to move the material to be compressed into the second shaft. If the members that move in the second axial direction are pushed and moved by the members that transmit the compressive force in the directional direction, new load means other than the axial compressive force is needed to move the movable members. Therefore, the number of components of the device can be reduced.

【0016】さらに,前記4つの部材がそれぞれ被圧縮
材に直接接触する接触面とそれに任意の角度をなす側面
を持ち,各部材の接触面の一部が隣接する部材の側面に
順次接触し,4つの部材で閉じた四角孔を形成するよう
に配置すれば,被圧縮材を四角形断面に変形させる際,
前記のように移動可能な部材を新たな負荷手段を必要と
せず動かすのに効率的であるとともに,後に実施例にて
示すように各軸における圧縮が互いに干渉しない機構を
容易に達成することができる。
Further, each of the four members has a contact surface that directly contacts the material to be compressed and a side surface that makes an arbitrary angle with it, and a part of the contact surface of each member sequentially contacts the side surfaces of the adjacent members, By arranging four members to form a closed square hole, when deforming the material to be compressed into a quadrangular cross section,
As described above, it is efficient to move the movable member without the need for a new load means, and it is easy to achieve a mechanism in which the compression in each axis does not interfere with each other, as will be shown in the examples later. it can.

【0017】また,第一軸方向に移動可能な機構を持つ
部材とそれに相対する部材が第一軸方向に複数個配置さ
れ,それらに同時に第二軸方向の圧縮力を伝える部材を
持ち,第二軸方向に移動可能な機構を持つ部材とそれに
相対する部材が第二軸方向に複数個配置され,それらに
同時に第一軸方向の圧縮力を伝える部材を持つことによ
り,負荷手段を増やすことなく,複数個の被圧縮材に対
して同時に圧縮力を加えることが可能になる。さらに,
被圧縮材の強度が高い場合に圧縮を容易にするためには
被圧縮材の寸法を小さくすることが有効であるが,必要
な圧縮力を発生させるために負荷手段を含めた装置全体
の寸法を小さくすることは難しい場合が多い。このよう
な際に,小さい被圧縮材をある間隔だけ離して複数個配
置し,それらを同時に圧縮することにより,被圧縮材と
装置全体の寸法差が大きくても圧縮力を安定して負荷す
ることが可能になる。
Further, a member having a mechanism movable in the first axial direction and a plurality of members opposed thereto are arranged in the first axial direction, and at the same time, a member for transmitting a compressive force in the second axial direction is provided. To increase the load means by arranging a plurality of members having a mechanism movable in two axial directions and members facing each other in the second axial direction and simultaneously transmitting a compressive force in the first axial direction to them Instead, it becomes possible to apply a compressive force to a plurality of materials to be compressed at the same time. further,
When the strength of the material to be compressed is high, it is effective to reduce the size of the material to be compressed, but in order to generate the necessary compression force, the size of the entire device including the load means It is often difficult to reduce the. In such a case, by arranging a plurality of small compressed materials at a certain distance and compressing them at the same time, the compressive force is stably applied even if the dimensional difference between the compressed material and the entire device is large. It will be possible.

【0018】また,第一軸方向の圧縮力を第二軸方向に
複数個配置された部材の対称軸上に負荷し,同様に第二
軸方向の圧縮力を第一軸方向に複数個配置された部材の
対称軸上に負荷することにより,負荷軸が安定し,圧縮
力の偏りに伴うモーメントの発生を抑止することができ
る。
Further, a compressive force in the first axial direction is applied on the axis of symmetry of the members arranged in the second axial direction, and a plurality of compressive forces in the second axial direction are similarly arranged in the first axial direction. By loading on the axis of symmetry of the fixed member, the load axis is stabilized and it is possible to suppress the generation of a moment due to the bias of the compression force.

【0019】[0019]

【発明の実施の形態及び実施例】以下,本発明の実施例
を添付図面に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0020】まず,図1および図2に示す実施例では,
第一軸と第二軸が直交しており,被圧縮材1の断面形状
を長方形としている。この被圧縮材1の各面と接触する
ように4つの圧縮用可動部材2が配置されている。圧縮
用可動部材2のうち,第一軸方向の圧縮力を伝えるため
の相対する2つは,それらに取り付けられた可動機構4
により,第二軸方向の圧縮に伴って滑らかに第二軸方向
に移動することが可能であるとともに,バネ5が取り付
けられているために,第二軸方向の圧縮力が除かれると
元の方向へ戻るようになっている。同様に,圧縮用可動
部材2のうち第二軸方向の圧縮力を伝えるための相対す
る2つは,第一軸方向の圧縮に伴って滑らかに第一軸方
向に移動し,バネ5により元の方向へ戻ることができ
る。可動機構4は可動機構保持部材3に取り付けられて
おり,載荷装置7は剛体の枠材8と可動機構保持部材3
の間に取り付けられている。すなわち,載荷装置7で発
生させた圧縮力は,可動機構保持部材3,可動機構4,
圧縮用可動部材2を介して被圧縮材1に伝えられる。こ
の例では,載荷装置7を各軸あたり2つずつ,計4つを
対称的に配置している。
First, in the embodiment shown in FIGS. 1 and 2,
The first axis and the second axis are orthogonal to each other, and the material 1 to be compressed has a rectangular cross-sectional shape. Four compression movable members 2 are arranged so as to contact the respective surfaces of the material to be compressed 1. Of the movable members 2 for compression, two opposing members for transmitting the compressive force in the first axial direction are movable mechanisms 4 attached to them.
As a result, it is possible to smoothly move in the second axial direction with the compression in the second axial direction, and since the spring 5 is attached, the original compression force in the second axial direction is removed. It is supposed to return to the direction. Similarly, two of the movable movable members 2 facing each other for transmitting the compressive force in the second axial direction move smoothly in the first axial direction with the compression in the first axial direction. You can go back to. The movable mechanism 4 is attached to the movable mechanism holding member 3, and the loading device 7 includes a rigid frame member 8 and the movable mechanism holding member 3.
Is installed between. That is, the compressive force generated by the loading device 7 is applied to the movable mechanism holding member 3, the movable mechanism 4, and the movable mechanism 4.
It is transmitted to the material to be compressed 1 via the movable member 2 for compression. In this example, two loading devices 7 are arranged symmetrically, two for each axis.

【0021】この実施例では,被圧縮材1の断面形状を
長方形としているが,例えば円形断面を長方形に加工す
る場合など,断面形状が長方形以外でも二軸圧縮が可能
である。
In this embodiment, the cross-sectional shape of the material to be compressed 1 is rectangular, but biaxial compression is possible even if the cross-sectional shape is not rectangular, such as when processing a circular cross-section into a rectangle.

【0022】圧縮用可動部材2の接触面は,被圧縮材1
と接触するとともに,隣接する圧縮用可動部材2の側面
とも接触している。圧縮による被圧縮材1の寸法変化に
伴って,圧縮用可動部材2の接触面において被圧縮材1
と接触する面積は減少する一方,隣接する圧縮用可動部
材2の側面と接触する面積は増加する。したがって,圧
縮用可動部材2の接触面は全体的に摩擦が小さく滑らか
であること望ましい。圧縮用可動部材2にそのような性
質を持たせることが難しければ,圧縮用可動部材2と被
圧縮材1の間に摩擦が低減するような表面処理を施され
た部材を付加することも可能である。なお,この実施例
では接触面の一部が隣接する圧縮用可動部材2の側面と
面接触しているが,この部分にかかる力は主としてバネ
5によるものであり,圧縮荷重と比べると極めて小さい
ので,必ずしも面接触である必要はない。
The contact surface of the movable member 2 for compression is the compressed material 1
In addition to being in contact with, the side surface of the adjacent compression movable member 2 is also in contact therewith. Due to the dimensional change of the material to be compressed 1 due to compression, the material to be compressed 1 on the contact surface of the movable member 2 for compression.
The area in contact with the side surface of the adjacent compression movable member 2 increases while the area in contact with the side surface increases. Therefore, it is desirable that the contact surface of the compression movable member 2 has small friction and is smooth as a whole. If it is difficult to provide the compression movable member 2 with such a property, it is possible to add a member which is subjected to a surface treatment for reducing friction between the compression movable member 2 and the material 1 to be compressed. Is. In this embodiment, a part of the contact surface is in surface contact with the side surface of the adjacent compression movable member 2, but the force applied to this part is mainly due to the spring 5, which is extremely small compared with the compression load. Therefore, the surface contact does not necessarily have to be made.

【0023】可動機構保持部材3は,可動機構4を介し
て圧縮用可動部材2に載荷装置7で発生した圧縮力を伝
える役目を持つ。また,各軸方向に平行なガイド6が取
り付けられており,可動機構保持部材3のみがこのガイ
ド6に沿って動くように配置されているので,第一軸方
向の圧縮力を伝える可動機構保持部材3は第一軸方向に
のみ移動でき,第二軸方向の荷重を伝える可動機構保持
部材3は第二軸方向にのみ移動できるようになってい
る。すなわちこのガイド6は,被圧縮材1の重心が圧縮
軸からずれることに起因して発生するモーメントの影響
を抑える役目を持っている。ただしこの実施例では,各
軸方向の相対する2つの載荷装置7の圧縮量を等しくす
ることにより圧縮軸が常に被圧縮材1の重心を通るよう
にできるので,ガイド6が無くても大きな支障はない。
The movable mechanism holding member 3 has a role of transmitting the compressive force generated in the loading device 7 to the movable moving member 2 for compression via the movable mechanism 4. Further, since the guides 6 parallel to the respective axial directions are attached and only the movable mechanism holding member 3 is arranged so as to move along the guides 6, the movable mechanism holding member for transmitting the compression force in the first axial direction is held. The member 3 can move only in the first axial direction, and the movable mechanism holding member 3 that transmits the load in the second axial direction can move only in the second axial direction. That is, the guide 6 has a function of suppressing the influence of the moment generated due to the displacement of the center of gravity of the material to be compressed 1 from the compression axis. However, in this embodiment, since the compression shafts can always pass through the center of gravity of the material to be compressed 1 by equalizing the compression amounts of the two loading devices 7 that face each other in the respective axial directions, there is a great obstacle even without the guide 6. There is no.

【0024】可動機構4は,第一軸方向の圧縮力を伝え
る圧縮用可動部材2が第二軸方向に,第二軸方向の圧縮
力を伝える圧縮用可動部材2が第一軸方向に移動できる
ように設けられており,高い圧縮力が負荷されている状
態でも滑らかに動くことが求められる。また,圧縮力が
偏ってモーメントが生じた場合でも,圧縮用可動部材2
が決められた方向以外には移動しないことが必要であ
る。この実施例では転子によるころがり機構を用いてい
るが,上述の必要条件を満たすのであれば弾性体などに
置き換えることも可能である。
In the movable mechanism 4, the movable compression member 2 transmitting the compressive force in the first axial direction moves in the second axial direction, and the movable movable member 2 transmitting the compressive force in the second axial direction moves in the first axial direction. It is designed so that it can move smoothly even when a high compression force is applied. In addition, even if the compressive force is biased to generate a moment, the movable moving member 2
It is necessary that the robot does not move in any direction other than the fixed direction. In this embodiment, the rolling mechanism using the trochanter is used, but it can be replaced with an elastic body or the like if the above-mentioned requirements are satisfied.

【0025】バネ5は,圧縮用可動部材2の側面が,隣
接する圧縮用可動部材2の接触面の一部と常に接触を保
つために取り付けられている。このバネによる力は被圧
縮材1の圧縮力よりも十分小さく,圧縮試験において測
定される圧縮力に影響を与えない程度に抑える必要があ
る。なお,この実施例ではバネを用いているが,除荷時
に復元性を持つゴムなどの材料で置き換えることもでき
る。
The spring 5 is attached so that the side surface of the compression movable member 2 always keeps contact with a part of the contact surface of the adjacent compression movable member 2. The force of this spring is sufficiently smaller than the compressive force of the material to be compressed 1 and must be suppressed to the extent that it does not affect the compressive force measured in the compression test. Although a spring is used in this embodiment, it can be replaced with a material such as rubber which has a restoring property at the time of unloading.

【0026】載荷装置7は,各軸上で対称的に2つずつ
配置されている。前述のように各軸上で相対する2つの
載荷装置7によって負荷される圧縮量を等しくすること
により,圧縮軸が常に被圧縮材1の重心を通るので,圧
縮力の偏りによるモーメントの発生を抑えることができ
る。
Two loading devices 7 are symmetrically arranged on each axis. As described above, by making the compression amounts applied by the two loading devices 7 opposed to each other on each axis equal, the compression axis always passes through the center of gravity of the material 1 to be compressed, so that a moment is generated due to the bias of the compression force. Can be suppressed.

【0027】図3に示す実施例では,互いに離れて対称
的に配置されている4つの被圧縮材1を同時に圧縮す
る。各々の被圧縮材1は,2つの圧縮用可動部材2と,
圧縮用部材9と,可動機構保持兼圧縮用部材10の間で
構成される四角孔内で圧縮される。前記図1,2の実施
例では被圧縮材1に接触する4つの部材すべてを移動可
能な部材としたが,図3の実施例では被圧縮材1つに対
して各軸あたり1つずつ,計2つの部材が移動可能であ
れば,各軸の圧縮量を独立させた二軸圧縮が可能である
ことを示している。
In the embodiment shown in FIG. 3, four compressed materials 1 symmetrically arranged apart from each other are simultaneously compressed. Each compressed material 1 has two movable members 2 for compression,
It is compressed in a square hole formed between the compression member 9 and the movable mechanism holding / compression member 10. In the embodiment of FIGS. 1 and 2, all the four members that come into contact with the material to be compressed 1 are movable members, but in the embodiment of FIG. This indicates that if the two members in total can be moved, biaxial compression with independent compression amounts for each axis is possible.

【0028】この実施例で載荷装置7によって発生され
た第一軸方向の圧縮力は,まず可動機構保持部材3に伝
えられ,2つの可動機構4および圧縮用可動部材2を介
して,第二軸方向に並べて配置された2つの被圧縮材1
に対して同時に負荷される。一方,載荷装置7によって
発生された第二軸方向の圧縮力は,圧縮用部材9を介し
て第一軸方向に並べて配置された2つの被圧縮材に同時
に負荷される。このような場合,特に可動機構保持部材
3および圧縮用部材9には,2つの被圧縮材1を同時に
変形させるための圧縮力が加えられるので,圧縮力によ
って変形しない高い剛性が求められる。
The compressive force in the first axial direction generated by the loading device 7 in this embodiment is first transmitted to the movable mechanism holding member 3 and then passed through the two movable mechanisms 4 and the compression movable member 2 to the second movable mechanism holding member 3. Two compressed materials 1 arranged side by side in the axial direction
Are simultaneously loaded against. On the other hand, the compressive force in the second axial direction generated by the loading device 7 is simultaneously applied via the compression member 9 to the two materials to be compressed arranged side by side in the first axial direction. In such a case, a compressive force for simultaneously deforming the two members 1 to be compressed is applied to the movable mechanism holding member 3 and the compressing member 9, and therefore, high rigidity that does not deform due to the compressive force is required.

【0029】この実施例のような配置によれば,4つの
被圧縮材1の力学的性質が等しければ,ガイド6を用い
なくても圧縮力の偏りに起因するモーメントの発生を抑
えることができ,載荷装置7による圧縮力を常に対称軸
上に負荷することができる。また,前述のように被圧縮
材1の強度が高く被圧縮材1の寸法を小さくしたい場合
でも,各軸方向の圧縮力を安定して負荷することが可能
になる。
According to the arrangement of this embodiment, if the four compressed members 1 have the same mechanical properties, it is possible to suppress the generation of the moment due to the bias of the compression force without using the guide 6. The compressive force of the loading device 7 can always be applied on the axis of symmetry. Further, as described above, even if the material to be compressed 1 has high strength and the size of the material to be compressed 1 is to be reduced, it is possible to stably apply the compressive force in each axial direction.

【0030】図3に示した実施例について,第一軸方向
および第二軸方向に圧縮する際の各部材の動きを図4を
用いて説明する。第一軸方向に圧縮する際は,可動機構
保持部材3が圧縮力により第一軸方向下向きに移動する
に伴って,圧縮用可動部材2aも第一軸方向下向きに移
動する。したがって,被圧縮材1は圧縮用可動部材2a
と可動機構保持兼圧縮用部材10の間で第一軸方向に圧
縮されるが,このとき圧縮用可動部材2bは圧縮用可動
部材2aによって押されて第一軸方向下向きへ移動する
ので,第一軸方向の圧縮を妨げることはない。
With respect to the embodiment shown in FIG. 3, the movement of each member during compression in the first axial direction and the second axial direction will be described with reference to FIG. When compressing in the first axial direction, the movable member 2a for compression also moves downward in the first axial direction as the movable mechanism holding member 3 moves downward in the first axial direction by the compression force. Therefore, the material 1 to be compressed is the movable member 2a for compression.
And the movable mechanism holding / compressing member 10 is compressed in the first axial direction. At this time, the compressing movable member 2b is pushed by the compressing movable member 2a and moves downward in the first axial direction. It does not prevent uniaxial compression.

【0031】一方,第二軸方向に圧縮する際は,圧縮用
部材9が第二軸方向右向きに移動するので,圧縮用部材
9と圧縮用可動部材2bの間で被圧縮材が第二軸方向に
圧縮される。このとき,圧縮用可動部材2aは圧縮用部
材9によって押されて第二軸方向右向きに移動するの
で,第二軸方向の圧縮を妨げることはない。このような
機構により,被圧縮材に二軸圧縮を加える際に各軸方向
の圧縮量を独立して変化させることが可能となる。
On the other hand, when compressing in the second axial direction, the compression member 9 moves rightward in the second axial direction, so that the material to be compressed is the second shaft between the compression member 9 and the compression movable member 2b. Compressed in the direction. At this time, since the compression movable member 2a is pushed by the compression member 9 and moves rightward in the second axial direction, it does not hinder the compression in the second axial direction. With such a mechanism, when biaxial compression is applied to the material to be compressed, the compression amount in each axial direction can be changed independently.

【0032】図5は,さらに被圧縮材1の数を増やして
8つとした場合の実施例である。このように圧縮用可動
部材2や可動機構保持部材3,可動機構4,可動機構保
持兼圧縮用部材10などを複数個用いることによって,
複数個の被圧縮材1を同時に二軸圧縮することが可能で
ある。なお,この実施例では被圧縮材1をほぼ等間隔で
配置しているが,等間隔に配置していない場合でも各部
材の寸法を変更することによって容易に対応できる。
FIG. 5 shows an embodiment in which the number of compressed materials 1 is further increased to eight. In this way, by using a plurality of the compression movable member 2, the movable mechanism holding member 3, the movable mechanism 4, the movable mechanism holding and compressing member 10, and the like,
It is possible to simultaneously biaxially compress a plurality of materials 1 to be compressed. In this embodiment, the compressed materials 1 are arranged at substantially equal intervals, but even if they are not arranged at equal intervals, it can be easily dealt with by changing the size of each member.

【0033】図6に示す実施例は,被圧縮材1の断面形
状が平行四辺形の場合,あるいは被圧縮材の最終断面形
状を平行四辺形に加工する場合である。図1,2で示し
た実施例との大きな違いは,第二軸方向の圧縮に用いて
いる圧縮用可動部材2bの被圧縮材1との接触面が第二
軸方向に対して垂直ではなく,それに合わせて第一軸方
向に圧縮するための圧縮用可動部材2aの圧縮用可動部
材2bと接触している側面の一部も同様に傾けている点
である。このように圧縮用可動部材2の形状を変えるこ
とにより,断面が長方形以外の四角形である被圧縮材1
に対しても二軸圧縮が可能となる。
The embodiment shown in FIG. 6 is for the case where the material 1 to be compressed has a parallelogram cross section or the final material to be compressed has a parallelogram shape. The major difference from the embodiment shown in FIGS. 1 and 2 is that the contact surface of the compression movable member 2b used for compression in the second axial direction with the material to be compressed 1 is not perpendicular to the second axial direction. In accordance therewith, a part of the side surface of the compression movable member 2a for compressing in the first axial direction which is in contact with the compression movable member 2b is also inclined in the same manner. By changing the shape of the compression movable member 2 in this way, the compressed material 1 having a quadrangle other than a rectangular cross section
Also, biaxial compression is possible.

【0034】図7に示す実施例は,図6の実施例と各部
材の配置は同様であるが,第二軸方向の圧縮に用いてい
る2つの圧縮用可動部材2bの形状が異なっており,被
圧縮材1の第二軸方向に圧縮される2つの面が互いに平
行でない場合である。すなわち,被圧縮材1が非対称な
四角形断面を持つ場合でも,このような実施例によって
二軸圧縮が可能であることを示している。
The embodiment shown in FIG. 7 has the same arrangement of each member as the embodiment of FIG. 6, but the shapes of the two compression movable members 2b used for compression in the second axial direction are different. The case where the two surfaces of the material to be compressed 1 that are compressed in the second axial direction are not parallel to each other. That is, even if the material to be compressed 1 has an asymmetrical rectangular cross section, it is possible to perform biaxial compression by such an embodiment.

【0035】図8では,図6と同様に被圧縮材1の断面
形状が平行四辺形である場合の実施例を示している。し
かしながら図6の例とは異なり,第一軸方向と第二軸方
向が直交しておらず,圧縮用可動部材2,可動機構保持
部材3および枠材8などを第二軸方向に対して垂直にな
るように傾けている。すなわち,第二軸方向に圧縮する
ための各部材は,載荷装置7による圧縮力が被圧縮材1
の面に対して垂直に負荷できるように配置されており,
可動機構4は第二軸方向に対して垂直に移動可能となる
ように設けている。このように圧縮力を被圧縮材1の面
に対して常に垂直に負荷することの利点は,第二軸方向
の圧縮が第一軸方向の圧縮力に及ぼす影響を低減するこ
とである。すなわち図6の実施例では,第二軸方向と圧
縮用可動部材2bの接触面が垂直でないために,第二軸
方向の圧縮力によって第一軸方向に分力が発生するが,
図8の実施例ではそのような分力の発生を抑えることが
できる。したがって図8の実施例のような配置は,例え
ば二軸圧縮試験において,被圧縮材1を第一軸方向へ圧
縮するために要する負荷力を正確に測定したい場合など
に有利である。
Similar to FIG. 6, FIG. 8 shows an embodiment in which the material 1 to be compressed has a parallelogram-shaped cross section. However, unlike the example of FIG. 6, the first axial direction and the second axial direction are not orthogonal to each other, and the compression movable member 2, the movable mechanism holding member 3, the frame member 8 and the like are perpendicular to the second axial direction. Is inclined to become. That is, each member for compressing in the second axial direction is compressed by the loading device 7 by the compressive material 1.
It is arranged so that it can be loaded vertically to the plane of
The movable mechanism 4 is provided so as to be vertically movable with respect to the second axis direction. The advantage of always applying the compressive force perpendicularly to the surface of the material to be compressed 1 is to reduce the influence of the compression in the second axial direction on the compressive force in the first axial direction. That is, in the embodiment of FIG. 6, since the contact surface between the second axial direction and the compression movable member 2b is not vertical, a component force is generated in the first axial direction by the compressive force in the second axial direction.
In the embodiment shown in FIG. 8, the generation of such component force can be suppressed. Therefore, the arrangement as in the embodiment of FIG. 8 is advantageous, for example, in the case where it is desired to accurately measure the load force required to compress the material 1 to be compressed in the first axial direction in a biaxial compression test.

【0036】以上で示した実施例では,全て載荷装置7
を各軸あたり2つずつ,計4つ用いていたが,図9の実
施例では,載荷装置7を各軸あたり1つ,計2つとして
いる。すなわち,圧縮用可動部材2および可動機構4を
用いることにより,本発明に係る二軸圧縮に要する載荷
装置7は必ずしも4つ必要でないことを示している。し
かしながらこの場合,圧縮変形が進行すると載荷装置7
による圧縮軸が被圧縮材1の重心から徐々にずれるの
で,このずれによって生じるモーメントの影響を抑える
工夫が必要となる。この実施例では,ガイド6が可動機
構保持部材3の移動方向を制限することによって,モー
メントの影響を抑えている。
In the embodiment shown above, all the loading devices 7
2 were used for each axis, for a total of four, but in the embodiment of FIG. 9, there are two loading devices, one for each axis. That is, it is shown that the use of the compression movable member 2 and the movable mechanism 4 does not necessarily require four loading devices 7 required for the biaxial compression according to the present invention. However, in this case, as the compressive deformation progresses, the loading device 7
Since the compression axis due to is gradually displaced from the center of gravity of the material to be compressed 1, it is necessary to devise a method for suppressing the influence of the moment caused by this deviation. In this embodiment, the guide 6 limits the moving direction of the movable mechanism holding member 3 to suppress the influence of the moment.

【0037】[0037]

【発明の効果】本発明は以上説明したように構成されて
いるので,以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0038】第一軸方向の圧縮に伴って第一軸方向に移
動し被圧縮材に第二軸方向の圧縮力を伝える圧縮用可動
部材と,第二軸方向の圧縮に伴って第二軸方向に移動し
被圧縮材に第一軸方向の圧縮力を伝える圧縮用可動部材
を用いることにより,被圧縮材に対して第一軸方向と第
二軸方向の圧縮量を互いに影響することなく独立して制
御することができ,被圧縮材全体に自由な二軸変形経路
と任意の四角形断面を与えることが可能となる。
A movable member for compression that moves in the first axial direction with the compression in the first axial direction and transmits a compressive force in the second axial direction to the material to be compressed, and a second shaft in accordance with the compression in the second axial direction. By using a compression movable member that moves in the direction of the axis and transmits the compressive force in the first axial direction to the material to be compressed, the amount of compression in the first axial direction and the amount of compression in the second axial direction do not affect each other with respect to the material to be compressed. It can be controlled independently, and it is possible to give a free biaxial deformation path and arbitrary quadrangular cross section to the whole compressed material.

【0039】また,強度の高い被圧縮材の圧縮試験を行
う場合には,高い負荷力が必要とされることから,被圧
縮材は小さい方が装置設計も容易となり望ましいが,一
定距離だけ離して配置した複数個の被圧縮材を同時に圧
縮することにより,被圧縮材が小さい場合でも圧縮力を
安定して負荷することができる。
Further, when performing a compression test on a material to be compressed having a high strength, a high load force is required. Therefore, it is desirable that the material to be compressed is small so that the device can be easily designed. By compressing a plurality of compressed materials arranged in parallel, the compressive force can be stably applied even if the compressed material is small.

【0040】加えて,圧縮力を複数個配置された部材の
対称軸上に負荷することにより,負荷軸を安定な状態に
保つことができ,圧縮力の偏りが防止される。
In addition, by applying a compressive force on the axis of symmetry of a member in which a plurality of members are arranged, it is possible to keep the load shaft in a stable state and prevent bias of the compressive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る二軸圧縮装置の一実施例を示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a biaxial compression device according to the present invention.

【図2】図1におけるA−A’線断面図である。FIG. 2 is a sectional view taken along the line A-A ′ in FIG.

【図3】被圧縮材を4つとした際の一実施例を示す縦断
面図である。
FIG. 3 is a vertical cross-sectional view showing an embodiment when there are four compressed materials.

【図4】図3の実施例における圧縮時の各部材の動きを
示す要部拡大縦断面図である。
FIG. 4 is an enlarged longitudinal sectional view of an essential part showing the movement of each member at the time of compression in the embodiment of FIG.

【図5】被圧縮材を8つとした際の一実施例を示す縦断
面図である。
FIG. 5 is a vertical cross-sectional view showing an example in which there are eight compressed materials.

【図6】被圧縮材の断面が平行四辺形である場合の一実
施例を示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing an example in which the material to be compressed has a parallelogram cross section.

【図7】被圧縮材の断面が回転対称形でない四角形であ
る場合の一実施例を示す縦断面図である。
FIG. 7 is a vertical cross-sectional view showing an example where the material to be compressed has a quadrangular shape that is not rotationally symmetrical.

【図8】第一軸と第二軸が直交していない場合の一実施
例を示す縦断面図である。
FIG. 8 is a vertical cross-sectional view showing an embodiment in which the first axis and the second axis are not orthogonal to each other.

【図9】載荷装置を各軸あたり1つとした場合の一実施
例を示す縦断面図である。
FIG. 9 is a vertical cross-sectional view showing an embodiment in which one loading device is provided for each axis.

【図10】従来の圧縮用部材が離れて配置されている場
合の二軸圧縮方法を示す要部の概念図である。
FIG. 10 is a conceptual diagram of a main part showing a biaxial compression method when conventional compression members are arranged apart from each other.

【図11】従来の第二軸方向の変形が拘束されている二
軸圧縮方法を示す要部の概念図である。
FIG. 11 is a conceptual diagram of a main part showing a conventional biaxial compression method in which deformation in the second axial direction is restricted.

【図12】従来の流体による静水圧を利用した二軸圧縮
方法を示す要部の概念図である。
FIG. 12 is a conceptual diagram of a main part showing a conventional biaxial compression method using hydrostatic pressure of a fluid.

【図13】従来のくさび形部材を用いた二軸圧縮方法を
示す要部の概念図である。
FIG. 13 is a conceptual diagram of a main part showing a conventional biaxial compression method using a wedge-shaped member.

【符号の説明】[Explanation of symbols]

1 被圧縮材 2 圧縮用可動部材 3 可動機構保持部材 4 可動機構 5 バネ 6 ガイド 7 載荷装置 8 枠材 9 圧縮用部材 10 可動機構保持兼圧縮用部材 11 くさび形部材 1 Compressed material 2 Moving member for compression 3 Movable mechanism holding member 4 movable mechanism 5 springs 6 guides 7 Loading device 8 frame materials 9 Compression member 10 Movable mechanism holding and compression member 11 wedge-shaped members

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被圧縮材を第一軸方向及び第一軸方向と
異なる第二軸方向に同時に圧縮する二軸圧縮装置におい
て,第一軸方向及び第二軸方向の圧縮力を発生する負荷
手段と,第一軸方向の圧縮に伴って第一軸方向に移動可
能な機構を持つ部材と,それに相対する部材と,第二軸
方向の圧縮に伴って第二軸方向に移動可能な機構を持つ
部材と,それに相対する部材を備え,それら4つの部材
で構成される四角孔内で材料を圧縮することを特徴とす
る二軸圧縮装置。
1. A biaxial compression device for simultaneously compressing a material to be compressed in a first axial direction and a second axial direction different from the first axial direction, and a load generating a compressive force in the first axial direction and the second axial direction. Means, a member having a mechanism movable in the first axial direction with compression in the first axial direction, a member facing the member, and a mechanism movable in the second axial direction with compression in the second axial direction A biaxial compressing device comprising a member having a member and a member facing the member, and compressing a material in a square hole composed of these four members.
【請求項2】 前記第一軸方向と第二軸方向が互いに垂
直であることを特徴とする請求項1記載の二軸圧縮装
置。
2. The biaxial compression device according to claim 1, wherein the first axial direction and the second axial direction are perpendicular to each other.
【請求項3】 前記4つの部材のうち,被圧縮材に第一
軸方向の圧縮力を伝える部材により第一軸方向に移動可
能な部材が押されて移動し,被圧縮材に第二軸方向の圧
縮力を伝える部材により第二軸方向に移動可能な部材が
押されて移動することを特徴とする請求項1又は2記載
の二軸圧縮装置。
3. Among the four members, a member that transmits a compressive force in the first axial direction to the material to be compressed pushes and moves the member that is movable in the first axial direction, so that the material to be compressed has a second shaft. The biaxial compression device according to claim 1 or 2, wherein a member that transmits a compressive force in a direction pushes and moves a member that is movable in the second axial direction.
【請求項4】 前記4つの部材がそれぞれ被圧縮材に直
接接触する接触面とそれに任意の角度をなす側面を持
ち,各部材の接触面の一部が,隣接する部材の側面に順
次接触し,4つの部材で閉じた四角孔を形成するように
配置することを特徴とする請求項1,2又は3記載の二
軸圧縮装置。
4. Each of the four members has a contact surface that directly contacts the compressed material and a side surface that makes an arbitrary angle with the contact surface, and a part of the contact surface of each member sequentially contacts the side surfaces of the adjacent members. The biaxial compression device according to claim 1, wherein the biaxial compression device is arranged so as to form a closed square hole with four members.
【請求項5】 第一軸方向に移動可能な機構を持つ部材
とそれに相対する部材が第一軸方向に複数個配置され,
それらに同時に第二軸方向の圧縮力を伝える部材を持
ち,第二軸方向に移動可能な機構を持つ部材とそれに相
対する部材が第二軸方向に複数個配置され,それらに同
時に第一軸方向の圧縮力を伝える部材を持つことを特徴
とする請求項1,2,3又は4記載の二軸圧縮装置。
5. A plurality of members having a mechanism movable in the first axial direction and members facing the member are arranged in the first axial direction,
A member having a mechanism for transmitting a compressive force in the second axial direction to them at the same time, and a member having a mechanism movable in the second axial direction and a member facing the member are arranged in the second axial direction, and at the same time, the first shaft The biaxial compression device according to claim 1, 2, 3 or 4, further comprising a member for transmitting a compressive force in a direction.
【請求項6】 第一軸方向の圧縮力が第二軸方向に複数
個配置された部材の対称軸上に負荷され,第二軸方向の
圧縮力が第一軸方向に複数個配置された部材の対称軸上
に負荷されることを特徴とする請求項5記載の二軸圧縮
装置。
6. A compressive force in the first axial direction is applied on the axis of symmetry of a member arranged in the second axial direction, and a plurality of compressive forces in the second axial direction are arranged in the first axial direction. The biaxial compression device according to claim 5, wherein the biaxial compression device is loaded on the axis of symmetry of the member.
JP2001237265A 2001-08-06 2001-08-06 Biaxial compression apparatus Pending JP2003050188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237265A JP2003050188A (en) 2001-08-06 2001-08-06 Biaxial compression apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237265A JP2003050188A (en) 2001-08-06 2001-08-06 Biaxial compression apparatus

Publications (1)

Publication Number Publication Date
JP2003050188A true JP2003050188A (en) 2003-02-21

Family

ID=19068373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237265A Pending JP2003050188A (en) 2001-08-06 2001-08-06 Biaxial compression apparatus

Country Status (1)

Country Link
JP (1) JP2003050188A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961397B1 (en) 2008-10-30 2010-06-07 금오공과대학교 산학협력단 Jig For Break-Down Test
CN101846593A (en) * 2010-06-17 2010-09-29 山东大学 Numerical control air pressure flexible loading experimental device
CN102175533A (en) * 2011-02-16 2011-09-07 山东大学 Ultra-large type geotechnical engineering three-dimensional model test system
CN102519768A (en) * 2011-12-21 2012-06-27 中联煤层气有限责任公司 Rock sample sealing structure used for three dimensional permeability determination
CN102607955A (en) * 2012-02-17 2012-07-25 中国地质大学(武汉) Biaxial compression test device for fractured rock mass
CN103217345A (en) * 2013-03-27 2013-07-24 山东大学 Device and method for measuring actual triaxial creep of geotechnical engineering test specimen
WO2014153697A1 (en) * 2013-03-27 2014-10-02 山东大学 Device for measuring true triaxial creep of geotechnical engineering test block and method therefor
CN104677807A (en) * 2015-04-01 2015-06-03 河南理工大学 True-triaxial seepage characteristic and strength testing device for large-size soil sample
CN104777039A (en) * 2014-11-13 2015-07-15 中国石油大学(华东) Experimental device for research on rock high temperature thermal rupture under stress effect
CN105424473A (en) * 2016-01-22 2016-03-23 华北理工大学 Backfill triaxial loading and unloading failure process test device and test method thereof
CN105842086A (en) * 2016-06-08 2016-08-10 长江水利委员会长江科学院 Low-friction laminar ring type bidirectional dynamic shear testing machine
CN106053221A (en) * 2016-05-24 2016-10-26 南华大学 Bidirectional loading test device for rectangular rock mass
CN108124460A (en) * 2017-04-28 2018-06-05 山东大学 Intelligent numerical control super-pressure is very three-dimensional non-homogeneous plus unloads and voltage stabilizing model assay systems
CN108896394A (en) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 Material Biaxial Compression loading device
WO2020118776A1 (en) * 2018-12-11 2020-06-18 山东大学 True three-dimensional physical model testing system for simulating burst water disaster in deep cavern
DE102019001442A1 (en) * 2019-03-02 2020-09-03 Technische Universität Dortmund Device and method for performing compression tests on specimens to characterize materials and corresponding specimens
CN116593323A (en) * 2023-07-19 2023-08-15 常州市建筑材料研究所有限公司 Special detection device of building block brickwork shear strength

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961397B1 (en) 2008-10-30 2010-06-07 금오공과대학교 산학협력단 Jig For Break-Down Test
CN101846593A (en) * 2010-06-17 2010-09-29 山东大学 Numerical control air pressure flexible loading experimental device
CN102175533A (en) * 2011-02-16 2011-09-07 山东大学 Ultra-large type geotechnical engineering three-dimensional model test system
CN102519768A (en) * 2011-12-21 2012-06-27 中联煤层气有限责任公司 Rock sample sealing structure used for three dimensional permeability determination
CN102607955A (en) * 2012-02-17 2012-07-25 中国地质大学(武汉) Biaxial compression test device for fractured rock mass
US9551639B2 (en) 2013-03-27 2017-01-24 Shandong University Device and method for measuring true triaxial creep of geotechnical engineering test block
CN103217345A (en) * 2013-03-27 2013-07-24 山东大学 Device and method for measuring actual triaxial creep of geotechnical engineering test specimen
WO2014153697A1 (en) * 2013-03-27 2014-10-02 山东大学 Device for measuring true triaxial creep of geotechnical engineering test block and method therefor
CN104777039A (en) * 2014-11-13 2015-07-15 中国石油大学(华东) Experimental device for research on rock high temperature thermal rupture under stress effect
CN104677807A (en) * 2015-04-01 2015-06-03 河南理工大学 True-triaxial seepage characteristic and strength testing device for large-size soil sample
CN105424473A (en) * 2016-01-22 2016-03-23 华北理工大学 Backfill triaxial loading and unloading failure process test device and test method thereof
CN106053221A (en) * 2016-05-24 2016-10-26 南华大学 Bidirectional loading test device for rectangular rock mass
CN105842086A (en) * 2016-06-08 2016-08-10 长江水利委员会长江科学院 Low-friction laminar ring type bidirectional dynamic shear testing machine
CN108124460A (en) * 2017-04-28 2018-06-05 山东大学 Intelligent numerical control super-pressure is very three-dimensional non-homogeneous plus unloads and voltage stabilizing model assay systems
WO2018195919A1 (en) * 2017-04-28 2018-11-01 山东大学 Intelligent numerically-controlled extra-high pressure true three-dimensional non-uniform loading and unloading and pressure regulating model test system
CN108124460B (en) * 2017-04-28 2018-12-14 山东大学 Intelligent numerical control super-pressure is very three-dimensional non-homogeneous plus unloads and pressure stabilizing model assay systems
US10408718B2 (en) 2017-04-28 2019-09-10 Shandong University Three-dimensional non-uniform loading/unloading and steady pressure model test system
CN108896394A (en) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 Material Biaxial Compression loading device
CN108896394B (en) * 2018-07-13 2023-12-29 中国工程物理研究院总体工程研究所 Material biax compression loading device
WO2020118776A1 (en) * 2018-12-11 2020-06-18 山东大学 True three-dimensional physical model testing system for simulating burst water disaster in deep cavern
DE102019001442A1 (en) * 2019-03-02 2020-09-03 Technische Universität Dortmund Device and method for performing compression tests on specimens to characterize materials and corresponding specimens
CN116593323A (en) * 2023-07-19 2023-08-15 常州市建筑材料研究所有限公司 Special detection device of building block brickwork shear strength
CN116593323B (en) * 2023-07-19 2023-11-14 常州市建筑材料研究所有限公司 Special detection device of building block brickwork shear strength

Similar Documents

Publication Publication Date Title
JP2003050188A (en) Biaxial compression apparatus
EP2581626A1 (en) Vibration dampening device
US5448918A (en) Biaxial compression testing device
US20180348025A1 (en) Programmable elastic metamaterials
US7348709B2 (en) Heavy-load nanopositioner with dual-parallel flexure design
Moon et al. Design of large-displacement compliant joints
Wang et al. Design and performance of a compact stick-slip type piezoelectric actuator based on right triangle flexible stator
Yang et al. Design, analysis and testing of a novel decoupled 2-DOF flexure-based micropositioning stage
Fan et al. Design and development of a novel monolithic compliant XY stage with centimeter travel range and high payload capacity
JP2018080923A (en) Biaxial compression and tension testing jig and biaxial compression and tension testing method
Ma et al. A reusable metastructure for tri-directional energy dissipation
US3797303A (en) Biaxial compression-testing machine
EP2293041A2 (en) A test specimen for testing through-thickness properties
Tolou et al. Concept and modeling of a statically balanced compliant laparoscopic grasper
JP2006242587A (en) Strength testing machine of structure
Wronicz et al. Experimental and numerical study of strain progress during and after riveting process for brazier rivet and rivet with compensator-squeezing force and rivet type effect
US20200240576A1 (en) Orthogonal two axis kinematic translation stage
JPH0355136A (en) Actuator unit and stage device capable of level adjustment with use thereof
OHTSUKI et al. Analysis of Large Deformations in a Net Structure (Towards Deformation Analysis in a Medical Device: Stent)
WO2020084848A1 (en) Seismic isolation unit and seismic isolation device
Zhu et al. Fatigue study on the right circular flexure hinges for designing compliant mechanisms
Mazumdar et al. A simplified approach to the analysis of large deflections of plates
Gonçalves Junior et al. Characterization of the elasto-kinematic behavior of generalized cross-spring bearings
Xue et al. Analytical and case studies of a sandwich structure using Euler-Bernoulli beam equation
Batlle et al. Interaction Forces between Rigid Bodies