JP2003047861A - Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether - Google Patents

Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether

Info

Publication number
JP2003047861A
JP2003047861A JP2002160883A JP2002160883A JP2003047861A JP 2003047861 A JP2003047861 A JP 2003047861A JP 2002160883 A JP2002160883 A JP 2002160883A JP 2002160883 A JP2002160883 A JP 2002160883A JP 2003047861 A JP2003047861 A JP 2003047861A
Authority
JP
Japan
Prior art keywords
catalyst
dimethyl ether
manufacturing
solvent
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002160883A
Other languages
Japanese (ja)
Inventor
Tsutomu Shikada
勉 鹿田
Takashi Ogawa
高志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2002160883A priority Critical patent/JP2003047861A/en
Publication of JP2003047861A publication Critical patent/JP2003047861A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a catalyst for manufacturing a dimethyl ether at a high yield and a method of manufacturing the dimethyl ether at a high space time yield. SOLUTION: This method of manufacturing the catalyst for manufacturing the dimethyl ether comprises suspending a methanol synthesis catalyst, methanol dehydration catalyst and aqueous gas shift catalyst in a solvent in such a manner that all of the differences in the values of A expressed by the following equation between the respective catalysts attain the values within ±1×10<-6> g/cm: A=D<2> .(P-S) where, D is the average grain size of the catalyst and its unit is cm; P is the density of the catalyst and its unit is g/cm<3> and S is the density of the solvent and its unit is g/cm<3> . This method of manufacturing the dimethyl ether comprises circulating a gaseous mixture composed of carbon monoxide and hydrogen or a gaseous mixture included with carbon dioxide and/or steam further therein through the catalyst obtained by the method of manufacturing the same described above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジメチルエーテル
を製造するための触媒の製造方法、およびその触媒を溶
媒に懸濁したスラリーに一酸化炭素と水素の混合ガスを
流通させてジメチルエーテルを製造する方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a catalyst for producing dimethyl ether, and a method for producing dimethyl ether by passing a mixed gas of carbon monoxide and hydrogen through a slurry obtained by suspending the catalyst in a solvent. It is about.

【0002】[0002]

【従来の技術】従来、溶媒に懸濁した触媒の存在下で、
一酸化炭素、二酸化炭素および水素の混合ガスからジメ
チルエーテルを製造する方法は、いくつか知られてい
る。
2. Description of the Related Art Conventionally, in the presence of a catalyst suspended in a solvent,
There are several known methods for producing dimethyl ether from a mixed gas of carbon monoxide, carbon dioxide and hydrogen.

【0003】例えば、特開平2−9833号公報、特開
平3−181435号公報、特開平3−52835号公
報、特開平4−264046号公報、特表平5−810
069号公報(WO93/10069)には、不活性液体
に懸濁したメタノール合成触媒とメタノール脱水触媒の
混合物に合成ガスを触媒させて、ジメチルエーテルまた
はジメチルエーテルとメタノールの混合物を製造する方
法が開示されている。
For example, JP-A-2-9833, JP-A-3-181435, JP-A-3-52835, JP-A-4-264046 and JP-A-5-810.
069 (WO93 / 10069) discloses a method for producing dimethyl ether or a mixture of dimethyl ether and methanol by catalyzing a mixture of a methanol synthesis catalyst and a methanol dehydration catalyst suspended in an inert liquid with synthesis gas. There is.

【0004】特開平2−9833号公報に開示されてい
る方法は、水素、一酸化炭素および二酸化炭素から成る
合成ガスを固体触媒と接触させ、また固体触媒の存在に
おいて反応させる前記合成ガスからのジメチルエーテル
の直接合成法において、前記合成ガスを固体触媒系の存
在において接触させることから成り、そこにおいて前記
固体触媒は3相(液相)反応器系において液状媒体の懸
濁された単一触媒または複数の触媒の混合物であり、そ
こにおいて前記3相反応器系は少くとも1基の3相反応
器から成る合成ガスからのジメチルエーテルの直接合成
法である。
The method disclosed in Japanese Patent Application Laid-Open No. Hei 2-9833 is a method in which a synthesis gas consisting of hydrogen, carbon monoxide and carbon dioxide is contacted with a solid catalyst and reacted in the presence of the solid catalyst. In a direct process for the synthesis of dimethyl ether, said synthesis gas is contacted in the presence of a solid catalyst system, wherein said solid catalyst is a single catalyst suspended in a liquid medium in a three-phase (liquid phase) reactor system or A mixture of catalysts, wherein the three-phase reactor system is a direct synthesis of dimethyl ether from synthesis gas consisting of at least one three-phase reactor.

【0005】特開平3−181435号公報に開示され
ている方法は、一酸化炭素と水素の混合ガス、あるいは
これにさらに二酸化炭素および/または水蒸気が含まれ
る混合ガスからジメチルエーテルを製造する方法におい
て、触媒を溶媒に懸濁してスラリー状態で使用すること
を特徴とするジメチルエーテルの製造方法である。
The method disclosed in Japanese Patent Application Laid-Open No. 3-181435 is a method for producing dimethyl ether from a mixed gas of carbon monoxide and hydrogen, or a mixed gas containing carbon dioxide and / or steam. In the method for producing dimethyl ether, the catalyst is suspended in a solvent and used in a slurry state.

【0006】特開平3−52835号公報に開示されて
いる方法は、合成ガスを固体メタノール合成触媒の存在
において反応させてメタノールを生産し、又生産された
メタノールを固体脱水触媒の存在において反応させてジ
メチルエーテルを生産する。水素、一酸化炭素及び二酸
化炭素から成る合成ガスからジメチルエーテルを合成す
る方法において、前記合成ガスを、メタノール合成成分
と脱水(エーテル形成)成分から成る固体触媒系の存在に
おいて接触させて反応させ、その際前記固体触媒系3相
(液相)反応器系にある液状媒体中の単一触媒又は複数
の触媒混合物であり、前記反応器系を操作して、最小有
効メタノール速度を少くとも1時間当り触媒1kg当り
1.0gモルのメタノールに維持することを特徴とする
ジメチルエーテル合成法である。
In the method disclosed in Japanese Patent Laid-Open No. 3-52835, synthesis gas is reacted in the presence of a solid methanol synthesis catalyst to produce methanol, and the produced methanol is reacted in the presence of a solid dehydration catalyst. To produce dimethyl ether. In a method of synthesizing dimethyl ether from a synthesis gas consisting of hydrogen, carbon monoxide and carbon dioxide, the synthesis gas is contacted and reacted in the presence of a solid catalyst system consisting of a methanol synthesis component and a dehydration (ether formation) component, A single catalyst or a mixture of catalysts in a liquid medium in the solid catalyst system three-phase (liquid phase) reactor system, wherein the reactor system is operated to obtain a minimum effective methanol rate of at least one hour. This is a dimethyl ether synthesis method characterized in that the amount of methanol is maintained at 1.0 g / kg of catalyst.

【0007】特表平5−810069号公報に開示され
ている方法は、一酸化炭素と水素および水蒸気のいずれ
か一方または両方が含まれる混合ガス、あるいはこれに
さらに二酸化炭素が含まれる混合ガスからジメチルエー
テルを製造する方法において、少なくとも酸化亜鉛と、
酸化銅又は酸化クロムと酸化アルミニウムを含む混合触
媒を粉砕した後、加圧密着させ、その後再度粉砕した触
媒を溶媒に懸濁してスラリー状態で使用することを特徴
とするジメチルエーテルの製造方法である。
The method disclosed in Japanese Patent Publication (KOKAI) No. 5-810069 is based on a mixed gas containing carbon monoxide and one or both of hydrogen and steam, or a mixed gas containing carbon dioxide. In the method for producing dimethyl ether, at least zinc oxide,
A method for producing dimethyl ether, which comprises pulverizing a mixed catalyst containing copper oxide or chromium oxide and aluminum oxide, bringing the catalyst into close contact with the catalyst, and then re-pulverizing the catalyst to be suspended in a solvent and used in a slurry state.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
2−9833号公報、特開平3−52835号公報、特
開平4−264046号公報や特開平3−181435
号公報に開示されたジメチルエーテルの製造方法は、メ
タノール合成触媒とメタノール脱水触媒あるいは水性ガ
スシフト触媒で比重に差があるため、反応器内で溶媒に
懸濁したこれら2種あるいは3種の触媒が分離し、触媒
の濃度分布が生じたり、一方の触媒が沈降するなどし
て、触媒の利用効率が著しく低下するなどの問題があっ
た。
However, JP-A-2-9833, JP-A-3-52835, JP-A-4-264046 and JP-A-3-181435.
In the method for producing dimethyl ether disclosed in Japanese Unexamined Patent Publication No. 2003-242, since there is a difference in specific gravity between a methanol synthesis catalyst and a methanol dehydration catalyst or a water gas shift catalyst, these two or three catalysts suspended in a solvent in a reactor are separated. However, there is a problem that the catalyst utilization efficiency is remarkably lowered due to the concentration distribution of the catalyst or the sedimentation of one catalyst.

【0009】また、特表平5−810069号公報開示
の触媒は、上記3種の触媒を機械的に一体化したもので
あるが、スラリー状態で使用しているうちに、触媒の粒
子同士が剥離して、触媒の濃度分布、沈降が生じる問題
があった。
Further, the catalyst disclosed in JP-A-5-810069 is a mechanically integrated one of the above-mentioned three kinds of catalysts. There was a problem that the catalyst was peeled off to cause catalyst concentration distribution and sedimentation.

【0010】本発明は、上記の問題点を解決し、高収率
でジメチルエーテルを製造するための触媒および空時収
率の高いジメチルエーテルの製造方法を提供することを
目的とする。
An object of the present invention is to solve the above problems and provide a catalyst for producing dimethyl ether in high yield and a method for producing dimethyl ether with high space-time yield.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたもので、本発明者らは、メタノー
ル合成触媒、メタノール脱水触媒および水性ガスシフト
触媒を、以下の式で示されるAの値の各触媒間の差がい
ずれも±1×10-6g/cm以内になるようにして、溶
媒に懸濁することを特徴とするジメチルエーテル製造用
触媒の製造方法 A=D2・(P−S) ただし、Dは触媒の平均粒径で単位はcm、Pは触媒の
粒子密度で単位はg/cm3、Sは溶媒の密度で単位は
g/cm3であるを開発するに至り、この方法で製造さ
れた触媒を溶媒に懸濁してスラリー状態で使用すること
により、一酸化炭素と水素の混合ガス、あるいはこれに
さらに二酸化炭素および/または水蒸気が含まれる混合
ガスから、ジメチルエーテルを高い収率および高い空時
収率で製造し得ることを見い出し、本発明を完成した。
The present invention has been made in order to achieve the above object, and the present inventors show a methanol synthesis catalyst, a methanol dehydration catalyst and a water gas shift catalyst by the following formulas. A method for producing a catalyst for producing dimethyl ether, characterized in that the catalyst is suspended in a solvent such that the difference in the value of A between the catalysts is within ± 1 × 10 −6 g / cm, and A = D 2 · (PS) where D is the average particle size of the catalyst in cm, P is the particle density of the catalyst in g / cm 3 , and S is the density of the solvent in g / cm 3. Up to, by using the catalyst produced by this method in a solvent by suspending it in a solvent, a mixed gas of carbon monoxide and hydrogen, or a mixed gas containing carbon dioxide and / or steam, High yield of dimethyl ether The present invention has been completed by finding that it can be produced at a high rate and a high space-time yield.

【0012】本発明では、メタノール合成触媒、メタノ
ール脱水触媒および水性ガスシフト触媒の各粒子密度お
よび各粒子径を制御してそれぞれ調製した後、物理的に
混合したので、各種触媒を反応中に分離させることな
く、それらの触媒の距離を接近させることにより、以下
に述べる反応サイクルを速やかに進行させ、ジメチルエ
ーテルの収率を向上させる。すなわち本反応は、まず一
酸化炭素と水素からメタノール合成触媒上でメタノール
が生成し、次いでメタノールがメタノール脱水触媒上に
移行して脱水縮合によりジメチルエーテルと水が生成す
る。さらに、水が水性ガスシフト触媒および/またはメ
タノール合成触媒に移動し、一酸化炭素と反応して二酸
化炭素と水素を生成する。反応式は以下の通りである。
In the present invention, the methanol synthesis catalyst, the methanol dehydration catalyst and the water gas shift catalyst are prepared by controlling the particle densities and particle sizes of the catalysts and then physically mixing them, so that the various catalysts are separated during the reaction. Without them, the distances of the catalysts are brought close to each other, so that the reaction cycle described below rapidly proceeds and the yield of dimethyl ether is improved. That is, in this reaction, first, methanol is produced from carbon monoxide and hydrogen on the methanol synthesis catalyst, and then methanol is transferred onto the methanol dehydration catalyst to produce dimethyl ether and water by dehydration condensation. Further, water moves to the water gas shift catalyst and / or the methanol synthesis catalyst and reacts with carbon monoxide to produce carbon dioxide and hydrogen. The reaction formula is as follows.

【0013】 CO+2H2 → CH3OH (1) 2CH3OH → CH3OCH3+H2O (2) CO+H2O → CO2+H2 (3)CO + 2H 2 → CH 3 OH (1) 2CH 3 OH → CH 3 OCH 3 + H 2 O (2) CO + H 2 O → CO 2 + H 2 (3)

【0014】[0014]

【発明の実施の形態】本発明で使用される触媒は、基本
的にはメタノール合成触媒、メタノール脱水触媒および
水性ガスシフト触媒からなるものであるが、メタノール
合成触媒は優れた水性ガスシフト触媒であり、水性ガス
シフト触媒を兼ねることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst used in the present invention basically comprises a methanol synthesis catalyst, a methanol dehydration catalyst and a water gas shift catalyst. The methanol synthesis catalyst is an excellent water gas shift catalyst, It can also serve as a water gas shift catalyst.

【0015】メタノール合成触媒としては、酸化銅−酸
化亜鉛−アルミナ、酸化亜鉛−酸化クロム−アルミナな
どがある。酸化銅と酸化亜鉛、アルミナの比率は重量比
で酸化銅1に対し酸化亜鉛0.05〜20程度、好まし
くは0.1〜5程度、アルミナ0〜2程度、好ましくは
0〜1程度であり、酸化亜鉛と酸化クロム、アルミナの
場合の比率は重量比で酸化亜鉛1に対し酸化クロム0.
1〜10程度、好ましくは0.5〜5程度、アルミナ0
〜2程度、好ましくは0〜1程度である。メタノール脱
水触媒としては、γ−アルミナ、シリカ・アルミナ、ゼ
オライトなどがある。ゼオライトの金属酸化物成分とし
てはナトリウム、カリウム等のアルカリ金属の酸化物、
カルシウム、マグネシウム等のアルカリ土類金属の酸化
物等である。水性ガスシフト触媒としては、酸化銅一酸
化亜鉛、酸化鉄−酸化クロムなどがある。酸化銅と酸化
亜鉛の比率は重量比で酸化銅は酸化亜鉛1に対し0.1
〜20程度、好ましくは0.5〜10程度であり、酸化
鉄と酸化クロムの比率は重量比で酸化鉄1に対し酸化ク
ロム0.1〜20程度、好ましくは0.5〜10程度であ
る。また、メタノール脱水触媒と水性ガスシフト触媒を
兼ねた触媒として、銅(酸化銅を含む。)−アルミナな
どがある。
Examples of methanol synthesis catalysts include copper oxide-zinc oxide-alumina and zinc oxide-chromium oxide-alumina. The weight ratio of copper oxide to zinc oxide and alumina is about 0.05 to 20 zinc oxide, preferably about 0.1 to 5 zinc oxide, and about 0 to 2 alumina, preferably 0 to 1 with respect to 1 copper oxide. In the case of zinc oxide, chromium oxide, and alumina, the weight ratio of zinc oxide to zinc oxide is 1.0.
1 to 10, preferably 0.5 to 5, alumina 0
It is about 2 to 2, preferably about 0 to 1. Examples of the methanol dehydration catalyst include γ-alumina, silica / alumina, and zeolite. As the metal oxide component of zeolite, oxides of alkali metals such as sodium and potassium,
Examples thereof include oxides of alkaline earth metals such as calcium and magnesium. Examples of the water gas shift catalyst include copper oxide zinc monoxide and iron oxide-chromium oxide. The weight ratio of copper oxide to zinc oxide is 0.1 to 1 zinc oxide.
To about 20, preferably about 0.5 to 10, and the weight ratio of iron oxide to chromium oxide is about 0.1 to 20, preferably about 0.5 to 10 chromium oxide to 1 iron oxide. . Further, as a catalyst that also serves as a methanol dehydration catalyst and a water gas shift catalyst, there is copper (including copper oxide) -alumina or the like.

【0016】これらの各触媒は公知の方法によって製造
すればよく、例えば各金属成分の水溶性塩を用いてこれ
らを含む水溶液を調製する。塩の種類は水溶性であれば
無機酸塩、有機酸塩のいずれであってもよい。ただし、
水中に投入すると加水分解して水酸化物を生じやすいも
のは適当でない。例えば硝酸塩、炭酸塩、有機酸塩、ハ
ロゲン化物、等を使用できる。各成分の濃度としては
0.1〜3モル/l程度でよい。次いで、この水溶液に
塩基を加えて中和し水酸化物を沈澱させ、固液分離して
洗浄後乾燥し、さらに焼成することによって製造でき
る。また、市販品を使用することもできる。
Each of these catalysts may be produced by a known method. For example, a water-soluble salt of each metal component is used to prepare an aqueous solution containing them. The salt may be either an inorganic acid salt or an organic acid salt as long as it is water-soluble. However,
Those that are prone to hydrolysis to form hydroxides when added to water are not suitable. For example, nitrates, carbonates, organic acid salts, halides, etc. can be used. The concentration of each component may be about 0.1 to 3 mol / l. Then, a base is added to this aqueous solution to neutralize the solution to precipitate a hydroxide, and solid-liquid separation is performed, followed by washing, drying, and further firing. Moreover, a commercial item can also be used.

【0017】前述のメタノール合成触媒、メタノール脱
水触媒および水性ガスシフト触媒の混合割合は、特に限
定されることなく各成分の種類あるいは反応条件等に応
じて適宜選定すればよいが、通常は重量比でメタノール
合成触媒1に対しメタノール脱水触媒0.5〜10程
度、水性ガスシフト触媒0〜5程度の範囲が適当である
ことが多い。
The mixing ratio of the above-mentioned methanol synthesis catalyst, methanol dehydration catalyst and water gas shift catalyst is not particularly limited and may be appropriately selected according to the type of each component, reaction conditions and the like, but is usually in a weight ratio. A methanol dehydration catalyst of about 0.5 to 10 and a water gas shift catalyst of about 0 to 5 are often suitable for one methanol synthesis catalyst.

【0018】前記の式で計算されるAの値の各触媒間で
の差は、前述のように1×10-6g/cm以内とするこ
とが好ましいが、より好ましくは5×10-7g/cm以
内である。Aの値の差が1×10-6g/cmよりも大き
いと、一酸化炭素の転化率が低くなる。このAの値の制
御方法は特に限定されないが、一般的には溶媒の密度は
あまり大きな変化がないので主に触媒の平均粒径と粒子
密度で行なうことになる。そして、粒子密度は平均粒径
が一定であれば一般的にはそれ程大きな変化にはならな
いので、まず平均粒径をコントロールするのが簡便であ
る。平均粒径のコントロール方法としては、ボールミル
等による粉砕等がある。平均粒径の測定方法は、ふるい
分け法(JIS Z 8801−1982)、沈降法等に
従って行ない、粒子密度の測定は、比重びん法(JIS
R−5201)、浮力法(JISR6125)に従って
行なう。
The difference in the value of A calculated by the above equation between the catalysts is preferably within 1 × 10 −6 g / cm as described above, but more preferably 5 × 10 −7. Within g / cm. When the difference between the values of A is larger than 1 × 10 −6 g / cm, the conversion rate of carbon monoxide becomes low. The method of controlling the value of A is not particularly limited, but since the density of the solvent does not change so much in general, the average particle size and particle density of the catalyst are mainly used. Further, the particle density generally does not change so much if the average particle size is constant, so it is easy to control the average particle size first. As a method for controlling the average particle diameter, there is pulverization by a ball mill or the like. The average particle size is measured according to the sieving method (JIS Z 8801-1982), the sedimentation method, etc. The particle density is measured by the specific gravity bottle method (JIS.
R-5201), buoyancy method (JISR6125).

【0019】上記触媒は溶媒に懸濁してスラリー化した
状態で使用される。溶媒中に存在させる触媒量は、溶媒
の種類、反応条件などによって適宜決定されるが、通常
は溶媒に対して1〜50重量%である。
The above catalyst is used by suspending it in a solvent to form a slurry. The amount of the catalyst to be present in the solvent is appropriately determined depending on the type of the solvent, the reaction conditions, etc., but is usually 1 to 50% by weight with respect to the solvent.

【0020】本発明でジメチルエーテル合成の際に使用
される溶媒は、反応条件下において液体状態を呈するも
のであれば、そのいずれもが使用可能である。例えば、
脂肪族、芳香族および脂環族の炭化水素、アルコール、
エーテル、エステル、ケトンおよびハロゲン化物、これ
らの化合物の混合物等を使用できる。
Any solvent can be used as the solvent used in the synthesis of dimethyl ether in the present invention as long as it exhibits a liquid state under the reaction conditions. For example,
Aliphatic, aromatic and alicyclic hydrocarbons, alcohols,
Ethers, esters, ketones and halides, mixtures of these compounds and the like can be used.

【0021】また、硫黄分を除去した軽油、減圧軽油、
水素化処理したコールタールの高沸点留分等も使用でき
る。
Further, gas oil from which sulfur has been removed, vacuum gas oil,
High boiling point fractions of hydrotreated coal tar can also be used.

【0022】このようにして形成された触媒−溶媒スラ
リー中に一酸化炭素と水素の混合ガスを流通させること
により、ジメチルエーテルが高収率で得られる。水素と
一酸化炭素の混合割合(H2/CO比)は広範囲のもの
が適用可能である。例えばH2/COモル比で20〜
0.1、好ましくは10〜0.2の混合比のものを使用
できる。
By passing a mixed gas of carbon monoxide and hydrogen through the catalyst-solvent slurry thus formed, dimethyl ether can be obtained in a high yield. A wide range of mixing ratios (H 2 / CO ratio) of hydrogen and carbon monoxide can be applied. For example, the H 2 / CO molar ratio is 20 to
A mixture ratio of 0.1, preferably 10 to 0.2 can be used.

【0023】これは本反応系では、気固触媒反応のよう
に混合ガスが直接触媒に接触することなく、一度、一酸
化炭素と水素が溶媒に溶解した後、触媒と接触するため
に、一酸化炭素と水素の溶媒への溶解性を考慮して溶媒
を選択することにより、ガス組成によらず一定の一酸化
炭素と水素の組成を溶媒中で達成させ、さらに触媒表面
に供給することが可能である。
In this reaction system, the mixed gas does not come into direct contact with the catalyst as in the gas-solid catalytic reaction, but once carbon monoxide and hydrogen are dissolved in the solvent, they come into contact with the catalyst. By selecting the solvent in consideration of the solubility of carbon oxide and hydrogen in the solvent, it is possible to achieve a constant composition of carbon monoxide and hydrogen in the solvent regardless of the gas composition and further supply it to the catalyst surface. It is possible.

【0024】一方、水素と一酸化炭素の割合(H2/CO
比)が著しく小さな(例えば0.1以下)混合ガスある
いは水素を含まない一酸化炭素の場合には、別途スチー
ムを供給して反応器中で一酸化炭素の一部をスチームに
より水素と二酸化炭素に変換することが必要である。
On the other hand, the ratio of hydrogen to carbon monoxide (H 2 / CO
In the case of a mixed gas with a very small ratio (for example, 0.1 or less) or carbon monoxide that does not contain hydrogen, a separate steam is supplied and a part of the carbon monoxide is steamed into hydrogen and carbon dioxide. Need to be converted to.

【0025】また、原料ガスと触媒の間に溶媒が存在し
ているため、ガス組成と触媒表面での組成が必ずしも一
致しないことから、一酸化炭素と水素の混合ガス、ある
いは一酸化炭素ガス中に比較的高濃度(20〜50%)
の二酸化炭素が存在してもよい。
Further, since the solvent is present between the raw material gas and the catalyst, the gas composition and the composition on the surface of the catalyst do not necessarily match. Therefore, in the mixed gas of carbon monoxide and hydrogen or in the carbon monoxide gas. Relatively high concentration (20-50%)
Carbon dioxide may be present.

【0026】また、本発明の製造方法は、原料ガス中に
硫化水素等の硫黄化合物、シアン化水素等のシアン化合
物、塩化水素等の塩素化合物など触媒毒となる成分が存
在していても、触媒に対する影響が気固接触法に比べ著
しく軽減されている。なお、触媒が被毒され、その活性
が低下した場合には、反応器よりスラリーを抜き出し、
新たに高活性触媒を含有するスラリーを反応器へ圧入す
ることにより、反応器全体の生産性を一定に保持するこ
とができる。
Further, according to the production method of the present invention, even if the raw material gas contains a sulfur poison compound such as hydrogen sulfide, a cyanide compound such as hydrogen cyanide, a chlorine compound such as hydrogen chloride, or the like, which is a catalyst poison, the catalyst may be added to the catalyst. The effect is significantly reduced compared to the gas-solid contact method. Incidentally, when the catalyst is poisoned and its activity is lowered, the slurry is extracted from the reactor,
By newly pressing the slurry containing the highly active catalyst into the reactor, the productivity of the entire reactor can be kept constant.

【0027】なお、反応熱は、反応器内へ冷却コイルを
設置し、それに熱水を通過させることにより中圧蒸気と
して回収される。これにより反応温度を自由に制御でき
る。
The reaction heat is recovered as medium pressure steam by installing a cooling coil in the reactor and passing hot water through it. This allows the reaction temperature to be freely controlled.

【0028】反応温度は150〜400℃が好ましく、
特に200〜350℃の範囲が好ましい。反応温度が1
50℃より低くても、また400℃より高くても一酸化
炭素の転化率が低くなる。
The reaction temperature is preferably 150 to 400 ° C,
The range of 200 to 350 ° C. is particularly preferable. Reaction temperature is 1
If it is lower than 50 ° C or higher than 400 ° C, the conversion rate of carbon monoxide is low.

【0029】反応圧力は10〜300kg/cm2が好
ましく、特に15〜150kg/cm2である。反応圧
力が10kg/cm2より低いと一酸化炭素の転化率が
低く、また300kg/cm2より高いと反応器が特殊
なものとなり、また昇圧のために多大なエネルギーが必
要であって経済的でない。
The reaction pressure is preferably 10~300kg / cm 2, in particular 15~150kg / cm 2. If the reaction pressure is lower than 10 kg / cm 2, the conversion rate of carbon monoxide is low, and if it is higher than 300 kg / cm 2 , the reactor becomes special, and a large amount of energy is required for pressurization, which is economical. Not.

【0030】空間速度(触媒1gあたりの標準状態にお
ける混合ガスの供給速度)は、100〜50000ml
/g・hが好ましく、特に500〜30000ml/g
・hである。空間速度が50000ml/g・hより大
きいと一酸化炭素の転化率が低くなり、また100ml
/g・hより小さいと反応器が極端に大きくなって経済
的でない。
The space velocity (feed rate of the mixed gas in a standard state per 1 g of catalyst) is 100 to 50,000 ml.
/ G · h is preferable, especially 500 to 30,000 ml / g
・ It is h. If the space velocity is greater than 50,000 ml / g · h, the conversion rate of carbon monoxide will be low and it will be 100 ml.
If it is smaller than / g · h, the reactor becomes extremely large, which is not economical.

【0031】[0031]

【実施例】I.触媒の調製 1)触媒の調製 硝酸銅(Cu(NO3)2・3H2O)185g、硝酸亜鉛
(Zn(NO3)2・6H2O)117gおよび硝酸アルミ
ニウム(Al(NO3)3・9H2O)52gをイオン交換
水約1lに溶解た水溶液と、炭酸ナトリウム(Na2
3)約200kgをイオン交換水約1lに溶解した水
溶液とを、約60℃に保温したイオン交換水約3lの入
ったステンレス製容器中に、pHが7.0±0.5に保
持されるように調節しながら、約2時間かけて滴下し
た。滴下終了後、そのまま約1時間保持して熟成を行っ
た。なお、この間にpHが7.0±0.5から外れるよ
うであれば、約1mol/lの硝酸水溶液または約1m
ol/lの炭酸ナトリウム水溶液を滴下して、pHを
7.0±0.5にあわせた。次に、生成した沈澱を濾過
した後、洗浄液に硝酸イオンが検出されなくなるまでイ
オン交換水を用いて洗浄した。得られたケーキを120
℃で24時間乾燥した後、さらに空気中350℃で3時
間焼成して目的の触媒を得た。
EXAMPLE I. Catalyst Preparation Copper nitrate Preparation 1) catalyst (Cu (NO 3) 2 · 3H 2 O) 185g, zinc nitrate (Zn (NO 3) 2 · 6H 2 O) 117g and aluminum nitrate (Al (NO 3) 3 · 9H 2 O) (52 g) dissolved in about 1 liter of ion-exchanged water and sodium carbonate (Na 2 C
An aqueous solution of about 200 kg of O 3 ) dissolved in about 1 liter of ion-exchanged water was placed in a stainless steel container containing about 3 liters of ion-exchanged water kept at about 60 ° C. and the pH was maintained at 7.0 ± 0.5. While adjusting so that the mixture was added dropwise over about 2 hours. After the completion of dropping, the mixture was kept for about 1 hour for aging. In addition, if the pH deviates from 7.0 ± 0.5 during this period, an approximately 1 mol / l nitric acid aqueous solution or approximately 1 m
An ol / l sodium carbonate aqueous solution was added dropwise to adjust the pH to 7.0 ± 0.5. Next, the formed precipitate was filtered and then washed with ion-exchanged water until nitrate ions were not detected in the washing liquid. 120 cakes obtained
After drying at ℃ for 24 hours, it was further calcined in air at 350 ℃ for 3 hours to obtain the target catalyst.

【0032】得られた触媒の組成はCuO:ZnO:
Al23=61:32:7(重量比)であった。
The composition of the resulting catalyst was CuO: ZnO:
Al 2 O 3 = 61: 32: 7 (weight ratio).

【0033】2)触媒の調製 硝酸銅(Cu(NO3)2・3H2O)91gおよび硝酸亜
鉛(Zn(NO3)2・6H2O)256gをイオン交換水約
1lに溶解した水溶液と、炭酸ナトリウム(Na2
3)約130gをイオン交換水約1lに溶解した水溶
液とを、約60℃に保温したイオン交換水約3lの入っ
たステンレス製容器中に、pHが8.5±0.5に保持
されるように調節しながら、約2時間かけて滴下した。
滴下終了後、そのまま約1時間保持して熟成を行った。
なお、この間にpHが8.5±0.5から外れるようで
あれば、約1mol/lの硝酸水溶液または約1mol
/lの炭酸ナトリウム水溶液を滴下して、pHを8.5
±0.5にあわせた。次に、生成した沈澱を濾過した
後、洗浄液に硝酸イオンが検出されなくなるまでイオン
交換水を用いて洗浄した。得られたケーキを120℃で
24時間乾燥した後、さらに空気中350℃で3時間焼
成して目的の触媒を得た。
2) Preparation of catalyst An aqueous solution prepared by dissolving 91 g of copper nitrate (Cu (NO 3 ) 2 .3H 2 O) and 256 g of zinc nitrate (Zn (NO 3 ) 2 .6H 2 O) in about 1 l of ion-exchanged water. , Sodium carbonate (Na 2 C
An aqueous solution prepared by dissolving about 130 g of O 3 ) in about 1 liter of ion-exchanged water is kept at a pH of 8.5 ± 0.5 in a stainless steel container containing about 3 liters of ion-exchanged water kept at about 60 ° C. While adjusting so that the mixture was added dropwise over about 2 hours.
After the completion of dropping, the mixture was kept for about 1 hour for aging.
In addition, if the pH deviates from 8.5 ± 0.5 during this period, a nitric acid solution of about 1 mol / l or about 1 mol / l
/ L sodium carbonate aqueous solution was added dropwise to adjust the pH to 8.5.
Adjusted to ± 0.5. Next, the formed precipitate was filtered and then washed with ion-exchanged water until nitrate ions were not detected in the washing liquid. The cake thus obtained was dried at 120 ° C. for 24 hours and then calcined in air at 350 ° C. for 3 hours to obtain a target catalyst.

【0034】得られた触媒の組成はCuO:ZnO=
3:7(重量比)であった。
The composition of the resulting catalyst was CuO: ZnO =
It was 3: 7 (weight ratio).

【0035】3)触媒の調製 アルミナ(日揮化学製,N612)100gを空気中、
120℃で24時間乾燥した後、空気中450℃で3時
間焼成して目的のアルミナ触媒を得た。
3) Preparation of catalyst 100 g of alumina (N612 manufactured by JGC Chemical Co., Ltd.) in air
After drying at 120 ° C. for 24 hours, it was calcined in air at 450 ° C. for 3 hours to obtain the desired alumina catalyst.

【0036】4)触媒の調製 イオン交換水約200mlに酢酸銅(Cu(CH3CO
O)2・H2O)15.7gを溶解し、これに上記3)で
調製したアルミナ触媒95gを投入した後、蒸発乾固
した。ついでこのものを空気中、120℃で24時間乾
燥した後、空気中450℃で3時間焼成した。さらに水
蒸気流中、400℃で3時間処理して触媒を得た。こ
のものの組成はCu:Al23=5:95(重量比)で
あった。
4) Preparation of catalyst Copper acetate (Cu (CH 3 CO 2)
O) 2 · H 2 O) (15.7 g) was dissolved, 95 g of the alumina catalyst prepared in 3) above was added, and the mixture was evaporated to dryness. Then, this was dried in air at 120 ° C. for 24 hours and then calcined in air at 450 ° C. for 3 hours. Further, it was treated at 400 ° C. for 3 hours in a steam flow to obtain a catalyst. The composition of this product was Cu: Al 2 O 3 = 5: 95 (weight ratio).

【0037】5)触媒の調製 硝酸アルミニウム(Al(NO3)3・9H2O)736g
をイオン交換水約2lに溶解した水溶液と、炭酸ナトリ
ウム(Na2CO3)約350gをイオン交換水約2lに
溶解した水溶液とを、常温のイオン交換水約3lの入っ
たステンレス製容器中に、pHが7.5±0.5に保持
されるように調節しながら、約2時間かけて滴下した。
滴下終了後、そのまま約1時間保持して熟成を行った。
なお、この間にpHが7.5±0.5から外れるようで
あれば、約1mol/lの硝酸水溶液または約1mol
/lの炭酸ナトリウム水溶液を滴下して、pHを7.5
±0.5にあわせた。次いで、生成した沈澱を濾過した
後、洗浄液に硝酸イオンが検出されなくなるまでイオン
交換水を用いて洗浄した。得られたケーキを120℃で
24時間乾燥した後、さらに空気中350℃で3時間焼
成してアルミナを得た。
[0037] 5) Preparation of aluminum nitrate catalyst (Al (NO 3) 3 · 9H 2 O) 736g
Was dissolved in about 2 liters of ion-exchanged water, and an aqueous solution of about 350 g of sodium carbonate (Na 2 CO 3 ) dissolved in about 2 liters of ion-exchanged water was placed in a stainless steel container containing about 3 liters of ion-exchanged water at room temperature. , PH was maintained at 7.5 ± 0.5, and the mixture was added dropwise over about 2 hours.
After the completion of dropping, the mixture was kept for about 1 hour for aging.
In addition, if the pH deviates from 7.5 ± 0.5 during this period, about 1 mol / l nitric acid solution or about 1 mol / l
/ L sodium carbonate aqueous solution was added dropwise to adjust the pH to 7.5.
Adjusted to ± 0.5. Then, the formed precipitate was filtered and then washed with ion-exchanged water until nitrate ions were not detected in the washing liquid. The cake thus obtained was dried at 120 ° C. for 24 hours and then calcined in air at 350 ° C. for 3 hours to obtain alumina.

【0038】次に、イオン交換水約200mlに酢酸銅
(Cu(CH3COO)2・H2O)15.7gを溶解し、
これに上記のアルミナ95gを投入した後、蒸発乾固し
た。ついでこのものを空気中、120℃で24時間乾燥
した後、空気中450℃で4時間焼成した。さらに水素
気流中、400℃で3時間処理して触媒を得た。この
ものの組成はCu:Al23=5:95(重量比)であ
った。
Next, 15.7 g of copper acetate (Cu (CH 3 COO) 2 .H 2 O) was dissolved in about 200 ml of ion-exchanged water,
After adding 95 g of the above alumina to this, it was evaporated to dryness. Then, this was dried in air at 120 ° C. for 24 hours and then calcined in air at 450 ° C. for 4 hours. Further, it was treated in a hydrogen stream at 400 ° C. for 3 hours to obtain a catalyst. The composition of this product was Cu: Al 2 O 3 = 5: 95 (weight ratio).

【0039】実施例1 上記の触媒をボールミル中で粉砕して平均粒径16.
9μmの微粉末粒子状にし、また上記の触媒をボール
ミル中で粉砕して平均粒径15.6μmの微粉末粒子状
にし、さらに触媒をボールミル中で粉砕して平均粒径
15.5μmの微粉末粒子状にした。ついでこの微粉末
粒子状触媒2.4g、微粉末粒子状触媒1.2gお
よび微粉末粒子状触媒1.2gを取り、物理的に混合
した。
Example 1 The above catalyst was ground in a ball mill to give an average particle size of 16.
9 μm fine powder particles, and the above catalyst was ground in a ball mill into fine powder particles having an average particle size of 15.6 μm, and the catalyst was further ground in a ball mill to obtain a fine powder having an average particle size of 15.5 μm. It was made into particles. Then, 2.4 g of the fine powdery particulate catalyst, 1.2 g of the fine powdery particulate catalyst and 1.2 g of the fine powdery particulate catalyst were taken and physically mixed.

【0040】実施例2 上記の触媒をボールミル中で粉砕して平均粒径16.
9μmの微粉末粒子状にし、また上記の触媒をボール
ミル中で粉砕して平均粒径15.2μmの微粉末粒子状
にした。ついでこの微粉末粒子状触媒2.4gと微粉
末粒子状触媒1.2gを取り、物理的に混合した。
Example 2 The above catalyst was ground in a ball mill to give an average particle size of 16.
It was made into fine powder particles of 9 μm, and the above catalyst was ground in a ball mill to obtain fine powder particles having an average particle size of 15.2 μm. Then, 2.4 g of the fine powdery particulate catalyst and 1.2 g of the fine powdery particulate catalyst were taken and physically mixed.

【0041】実施例3 平均粒径14.4μmの触媒2.4gと平均粒径12.
9μmの触媒1.2gを物理的に混合した。
Example 3 2.4 g of a catalyst having an average particle size of 14.4 μm and an average particle size of 12.
1.2 g of 9 μm catalyst were physically mixed.

【0042】実施例4 平均粒径16.9μmの触媒2.4gと平均粒径18.
4μmの触媒1.2gを物理的に混合した。
Example 4 2.4 g of a catalyst having an average particle size of 16.9 μm and an average particle size of 18.
1.2 g of 4 μm catalyst were physically mixed.

【0043】比較例1 実施例1において触媒の平均粒径が20.1μm、触
媒の平均粒径が18.5μmであること以外、実施例
1と同じ方法により触媒を混合した。
Comparative Example 1 A catalyst was mixed in the same manner as in Example 1 except that the average particle size of the catalyst was 20.1 μm and the average particle size of the catalyst was 18.5 μm.

【0044】比較例2 実施例2において触媒の平均粒径が12.9μmであ
ること以外、実施例2と同じ方法により触媒を混合し
た。
Comparative Example 2 A catalyst was mixed by the same method as in Example 2 except that the average particle size of the catalyst in Example 2 was 12.9 μm.

【0045】II.触媒の活性化方法および反応方法 内径2cm、高さ2mの気泡塔式反応器に、n−ヘキサ
デカン24g(31.1ml)を加え、これにさらに上
記の粉末粒子状混合触媒を加えて懸濁状態にした。次い
で、この気泡塔に水素、一酸化炭素および窒素から成る
混合ガス(H2:CO:N2=1:1:9、モル比)を約
300ml/minの流速で流通させつつ、室温より2
20℃まで数時間かけて徐々に昇温し、同時に混合ガス
中の窒素の濃度を最終的に0まで徐々に減少させて、さ
らに220℃で約3時間保持して触媒の活性化を行っ
た。
II. Catalyst activation method and reaction method To a bubble column reactor having an inner diameter of 2 cm and a height of 2 m, 24 g (31.1 ml) of n-hexadecane was added, and the above-mentioned powdery particulate mixed catalyst was further added thereto to obtain a suspension state. I chose Then, hydrogen in this bubble column, carbon monoxide and a mixed gas consisting of nitrogen (H2: CO: N 2 = 1: 1: 9, molar ratio) while circulated at a flow rate of about 300 ml / min, 2 from room
The temperature was gradually raised to 20 ° C. over several hours, at the same time, the concentration of nitrogen in the mixed gas was finally gradually decreased to 0, and the temperature was further maintained at 220 ° C. for about 3 hours to activate the catalyst. .

【0046】反応は、所定の反応温度、反応圧力で、H
2/CO/CO2比がモル比で47.5/47.5/5.
0の水素、一酸化炭素、二酸化炭素の混合ガスを常温、
常圧換算で336ml/minの流速で流通させて行っ
た。
The reaction is carried out at a predetermined reaction temperature and reaction pressure under the conditions of H 2
2 / CO / CO 2 ratio is 47.5 / 47.5 / 5.
A mixed gas of hydrogen, carbon monoxide, and carbon dioxide of 0 at room temperature,
The flow was performed at a flow rate of 336 ml / min in terms of atmospheric pressure.

【0047】以上の操作により得られた反応生成物およ
び未反応物はガスクロマトグラフにより分析した。
The reaction products and unreacted products obtained by the above operation were analyzed by gas chromatography.

【0048】III.反応条件および実験結果 反応条件および実験結果を第1表及び第2表に示す。III. Reaction conditions and experimental results The reaction conditions and experimental results are shown in Tables 1 and 2.

【0049】[0049]

【数1】 [Equation 1]

【0050】[0050]

【数2】 [Equation 2]

【0051】[0051]

【数3】 [Equation 3]

【0052】[0052]

【数4】 各速度の単位は全て [mol/g−cat・h][Equation 4] All units of each speed are [mol / g-cat · h]

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】本発明のジメチルエーテル製造用触媒は
メタノール合成触媒、メタノール脱水触媒および水性ガ
スシフト触媒の各粒子密度と粒子径を、方程式に従って
制御したため、これらの各触媒が反応中に分離すること
がなく、したがって反応サイクルが円滑に進行し、高い
ジメチルエーテル収率を得ることができる効果を有す
る。
INDUSTRIAL APPLICABILITY Since the catalyst for producing dimethyl ether of the present invention controls the particle densities and particle sizes of the methanol synthesis catalyst, the methanol dehydration catalyst and the water gas shift catalyst according to the equations, these catalysts may be separated during the reaction. Therefore, the reaction cycle smoothly proceeds and a high dimethyl ether yield can be obtained.

【0056】また、本発明のジメチルエーテルの製造方
法は、メタノール合成触媒、メタノール脱水触媒および
水性ガスシフト触媒を一体化した触媒を溶媒に懸濁して
スラリー状態で使用するように構成したので、ジメチル
エーテルの空時収率が高く、また触媒の目詰まりや触媒
に機械的強度を問題とせず、さらに反応熱の除去、反応
温度の制御が容易であり、さらにまた一酸化炭素と水素
の比率の適用範囲が広く、また高濃度の二酸化炭素の存
在下での反応が可能であるとともに、不純物、触媒毒の
影響が少ないなどの効果を有する。
Further, in the method for producing dimethyl ether of the present invention, a catalyst in which a methanol synthesis catalyst, a methanol dehydration catalyst and a water gas shift catalyst are integrated is suspended in a solvent and used in a slurry state. The yield is high, there is no problem with catalyst clogging or mechanical strength of the catalyst, it is easy to remove the heat of reaction and control the reaction temperature, and the ratio of carbon monoxide to hydrogen is applicable. A wide range of reactions are possible in the presence of high-concentration carbon dioxide, and the effects of impurities and catalyst poisons are small.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA01B BB02B BB04B BC31B BC35B CC29 EB18X EB18Y EC21X EC21Y FA01 FB06 FB07 FC10 4H006 AA02 AC43 BA05 BA07 BA09 BA30 BE20 BE40 4H039 CA61 CL35    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA03 AA08 BA01B BB02B                       BB04B BC31B BC35B CC29                       EB18X EB18Y EC21X EC21Y                       FA01 FB06 FB07 FC10                 4H006 AA02 AC43 BA05 BA07 BA09                       BA30 BE20 BE40                 4H039 CA61 CL35

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メタノール合成触媒、メタノール脱水触
媒および水性ガスシフト触媒を、以下の式で示されるA
の値の各触媒間の差がいずれも±1×10-6g/cm以
内になるようにして、溶媒に懸濁することを特徴とする
ジメチルエーテル製造用触媒の製造方法 A=D2・(P−S) ただし、Dは触媒の平均粒径で単位はcm、Pは触媒の
粒子密度で単位はg/cm3、Sは溶媒の密度で単位は
g/cm3である
1. A methanol synthesis catalyst, a methanol dehydration catalyst and a water gas shift catalyst are represented by the following formula:
The method for producing a catalyst for producing dimethyl ether, characterized in that the catalysts are suspended in a solvent such that the difference in the value of each catalyst is within ± 1 × 10 −6 g / cm, and A = D 2 · ( Where P is the average particle size of the catalyst in cm, P is the particle density of the catalyst in g / cm 3 , and S is the density of the solvent in g / cm 3 .
【請求項2】 請求項1の製造方法で得られた触媒に、
一酸化炭素と水素の混合ガス、あるいはこれにさらに二
酸化炭素および/または水蒸気が含まれる混合ガスを流
通させることを特徴とするジメチルエーテルの製造方法
2. The catalyst obtained by the production method according to claim 1,
A method for producing dimethyl ether, characterized in that a mixed gas of carbon monoxide and hydrogen, or a mixed gas further containing carbon dioxide and / or steam is circulated.
JP2002160883A 2002-06-03 2002-06-03 Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether Pending JP2003047861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160883A JP2003047861A (en) 2002-06-03 2002-06-03 Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160883A JP2003047861A (en) 2002-06-03 2002-06-03 Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33975896A Division JP3341808B2 (en) 1996-04-19 1996-12-19 Catalyst for producing dimethyl ether and method for producing dimethyl ether

Publications (1)

Publication Number Publication Date
JP2003047861A true JP2003047861A (en) 2003-02-18

Family

ID=19194939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160883A Pending JP2003047861A (en) 2002-06-03 2002-06-03 Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether

Country Status (1)

Country Link
JP (1) JP2003047861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511881A (en) * 2012-02-15 2015-04-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalyst activator for the synthesis of dimethyl ether from synthesis gas, method for producing catalyst activator, method for producing dimethyl ether, method of using catalyst activator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511881A (en) * 2012-02-15 2015-04-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalyst activator for the synthesis of dimethyl ether from synthesis gas, method for producing catalyst activator, method for producing dimethyl ether, method of using catalyst activator

Similar Documents

Publication Publication Date Title
EP0845294B1 (en) Catalyst for dimethyl ether, method of producing catalyst and method of producing dimethyl ether
AU2010261572B2 (en) Methanol synthesis process
CA1269360A (en) Catalyst
AU2010261571B2 (en) Carbon oxides conversion processs
EP1948358B1 (en) Use of catalyst compositions and process for oxychlorination
US5389689A (en) Method of producing dimethyl ether
JPS60106534A (en) Fluidized catalyst for methanol synthesis
US20040152791A1 (en) Catalyst
JP3341808B2 (en) Catalyst for producing dimethyl ether and method for producing dimethyl ether
WO2013054092A1 (en) Catalyst precursor
JP2003047861A (en) Method of manufacturing catalyst for dimethyl ether and method of manufacturing dimethyl ether
JPH09173845A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JP2001179103A (en) Catalyst for producing dimethyl ether
JPH09173848A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JP3421902B2 (en) Method for producing dimethyl ether
JPH09173863A (en) Catalyst for producing dimethyl ether, production thereof and production of dimethyl ether
WO2004047986A1 (en) Iron-based copper-containing catalyst
JP2529161B2 (en) Method for producing dimethyl ether
JP2001179104A (en) Catalyst for producing dimethyl ether
JPH0526543B2 (en)
US20050101806A1 (en) Process for the catalytic preparation of alkali metal alkoxides
JP2001314769A (en) Catalyst for manufacturing dimethyl ether, its manufacturing method and manufacturing method of dimethyl ether
KR100244661B1 (en) Copper/zinc oxide/alumina catalyst and methanol preparation thereby
JPH10212259A (en) Production of dimethyl ether from by-product gas from iron mill
JP2003265961A (en) Catalyst and method for steam-reforming of methanol