JP2003047853A - Catalyst and method for reforming dimethyl ether - Google Patents

Catalyst and method for reforming dimethyl ether

Info

Publication number
JP2003047853A
JP2003047853A JP2001238657A JP2001238657A JP2003047853A JP 2003047853 A JP2003047853 A JP 2003047853A JP 2001238657 A JP2001238657 A JP 2001238657A JP 2001238657 A JP2001238657 A JP 2001238657A JP 2003047853 A JP2003047853 A JP 2003047853A
Authority
JP
Japan
Prior art keywords
dimethyl ether
reforming
catalyst
catalyst component
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001238657A
Other languages
Japanese (ja)
Other versions
JP4175452B2 (en
Inventor
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Satoru Watanabe
渡辺  悟
Masanao Yonemura
将直 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001238657A priority Critical patent/JP4175452B2/en
Publication of JP2003047853A publication Critical patent/JP2003047853A/en
Application granted granted Critical
Publication of JP4175452B2 publication Critical patent/JP4175452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst useful to reform dimethyl ether, with which it becomes possible to effectively carry out both of the reforming reaction of dimethyl ether and the CO shift reaction at a low temperature in the absence of other catalyst, and to provide a method of reforming dimethyl ether. SOLUTION: The catalyst useful to reform dimethyl ether, which contains a reforming catalyst component for the dimethyl ether reforming reaction for obtaining hydrogen from dimethyl ether and water and a CO-shift catalyst component for the CO shift reaction for removing CO being a byproduct, is prepared. Reforming of dimethyl ether is performed by using the above catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジメチルエーテル
から効率的に水素を製造するためのジメチルエーテル改
質触媒およびジメチルエーテル改質方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a dimethyl ether reforming catalyst and a dimethyl ether reforming method for efficiently producing hydrogen from dimethyl ether.

【0002】[0002]

【従来の技術】燃料電池は、水素と酸素から水を得る電
池反応によって起電力を得ている。原料の水素は、原燃
料と水を改質触媒の存在下に反応させて得られる。この
ような燃料電池のうち、固体高分子型燃料電池(PEF
C:Polymer Electrolyte Fue
l Cell)が優れた性能を発揮できるものとして注
目されている。このような固体高分子型燃料電池では、
水素を燃料とし、アノード(燃料極)、カソード(空気
極)における電極反応によって起電力を得ている。
2. Description of the Related Art Fuel cells obtain electromotive force by a cell reaction in which water is obtained from hydrogen and oxygen. Raw material hydrogen is obtained by reacting raw fuel and water in the presence of a reforming catalyst. Among such fuel cells, polymer electrolyte fuel cells (PEF)
C: Polymer Electrolyte Fue
l Cell) is attracting attention as a material capable of exhibiting excellent performance. In such a polymer electrolyte fuel cell,
Using hydrogen as fuel, electromotive force is obtained by electrode reaction at the anode (fuel electrode) and cathode (air electrode).

【0003】上記原燃料としては、メタノール、エタノ
ールが用いられていたが、ジメチルエーテルも採用の選
択枝として採用されつつある。ジメチルエーテルでは、
メタネーション反応の副反応を抑制するために、700
℃以上で改質反応を行なう。そして、副生するCO(一
酸化炭素)を450℃付近のCOシフト反応によってC
Oを除去するようにしている。
Although methanol and ethanol have been used as the above-mentioned raw fuel, dimethyl ether is being adopted as an option. With dimethyl ether,
In order to suppress side reactions of the methanation reaction, 700
Carry out a reforming reaction at a temperature above ℃. Then, CO (carbon monoxide), which is a by-product, is converted into C by a CO shift reaction near 450 ° C.
I try to remove O.

【0004】しかし、このように温度域を変えて、改質
反応とCOシフト反応を行わせるためには、各々の反応
に合わせて触媒装置を設ける必要があり、PEFC装置
の大きさをコンパクト化するにあたって改善が望まれて
いた。
However, in order to carry out the reforming reaction and the CO shift reaction by changing the temperature range in this way, it is necessary to provide a catalyst device for each reaction, and the size of the PEFC device is made compact. Improvement was desired in order to do so.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に対
してなされたもので、ジメチルエーテルの改質反応と、
COシフト反応とを効率的に単一の触媒で、しかも低温
で行うことを可能とするジメチルエーテル改質触媒およ
びジメチルエーテルの改質方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and includes a modification reaction of dimethyl ether,
An object of the present invention is to provide a dimethyl ether reforming catalyst and a method for reforming dimethyl ether, which can efficiently carry out the CO shift reaction with a single catalyst and at a low temperature.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るジメチルエーテル改質触媒は、ジメチ
ルエーテルと水から水素を得るためのジメチルエーテル
改質反応のための改質触媒成分と、副生するCOを除去
するCOシフト反応のためのCOシフト触媒成分とを含
む。本発明に係るジメチルエーテル改質触媒は、上記改
質触媒成分が白金を固体酸作用を有する担体に担持して
成る改質触媒成分とし、上記COシフト触媒成分がC
u、Zn、Cr、FeおよびAlの各々の酸化物から成
るグループから選択された少なくとも2種以上の複合酸
化物とすることをその実施の形態として含む。
To achieve the above object, a dimethyl ether reforming catalyst according to the present invention comprises a reforming catalyst component for a dimethyl ether reforming reaction for obtaining hydrogen from dimethyl ether and water, and a by-product. CO shift catalyst component for a CO shift reaction to remove the CO that is generated. In the dimethyl ether reforming catalyst according to the present invention, the reforming catalyst component is a reforming catalyst component in which platinum is supported on a carrier having a solid acid action, and the CO shift catalyst component is C
Its embodiment includes forming at least two or more composite oxides selected from the group consisting of oxides of u, Zn, Cr, Fe and Al.

【0007】上記改質触媒成分と上記COシフト触媒成
分とは、粉末混合することが好適である。また、その
他、改質触媒成分の粉末にCOシフト触媒成分を担持す
ることによっても本発明のジメチルエーテル改質触媒を
得ることができる。上記固体酸作用を有する担体として
は、γ−Al23、チタニア、ZrO2、ゼオライトお
よびメタロシリケートから成るグループから選ばれた少
なくとも1種が好適である。そして、固体酸作用を有す
る担体の固体酸量は、ピリジン吸着量で0.1mmol
/g以上とすることが好適である。
The reforming catalyst component and the CO shift catalyst component are preferably powder-mixed. In addition, the dimethyl ether reforming catalyst of the present invention can also be obtained by supporting the CO shift catalyst component on the powder of the reforming catalyst component. As the carrier having a solid acid action, at least one selected from the group consisting of γ-Al 2 O 3 , titania, ZrO 2 , zeolite and metallosilicate is suitable. The solid acid amount of the carrier having a solid acid action is 0.1 mmol in terms of pyridine adsorption amount.
/ G or more is preferable.

【0008】また、本発明は、別の側面において、上記
したジメチルエーテル改質触媒を用いたジメチルエーテ
ルの改質方法である。このようなジメチルエーテル改質
方法では、ジメチルエーテルに対し、水と酸素を加え、
部分酸化反応も生じさせるようにすることが好適であ
る。このように酸素をも加えることによって、ジメチル
エーテル改質反応と上記部分酸化反応とを併発させ、オ
ートサーマル反応を行うようにすることができる。
In another aspect, the present invention is a method for reforming dimethyl ether using the above-mentioned dimethyl ether reforming catalyst. In such a dimethyl ether reforming method, water and oxygen are added to dimethyl ether,
It is preferable to cause a partial oxidation reaction. By thus adding oxygen as well, it is possible to cause the dimethyl ether reforming reaction and the above-mentioned partial oxidation reaction to occur simultaneously and to carry out the autothermal reaction.

【0009】[0009]

【発明の実施の形態】以下、本発明に係るジメチルエー
テル改質触媒とジメチルエーテル改質方法をその実施の
形態等についてさらに詳細に説明する。本発明に係るジ
メチルエーテル改質触媒は、改質触媒成分として、白金
を固体酸作用を有する担体に担持して成るものを採用す
ることが好適である。このような、担体としてはγ−A
23が一般的である。γ−Al23は固体酸性を有す
るためジメチルエーテルの加水分解作用を有し、メタノ
ールを中間体として活性金属の作用により、CO、H2
に分解することができる。なお、固体酸性を有するアナ
ターゼ型TiO2等のチタニア、ジルコニア(Zr
2)、ゼオライト、メタロシリケート等もγ−Al2
3と同様な作用を有する。したがって、これらも本発明
に係るジメチルエーテルの改質触媒の担体として用いる
ことができる。また、これらの固体酸作用を有する担体
の固体酸量は、ピリジン吸着量で0.1mmol/g以
上であることが好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the dimethyl ether reforming catalyst and the dimethyl ether reforming method according to the present invention will be described in more detail with reference to embodiments thereof. The dimethyl ether reforming catalyst according to the present invention preferably employs a reforming catalyst component in which platinum is supported on a carrier having a solid acid function. As such a carrier, γ-A
l 2 O 3 is common. Since γ-Al 2 O 3 has a solid acidity, it has a hydrolytic action on dimethyl ether, and CO, H 2
Can be decomposed into Incidentally, titania such as anatase type TiO 2 having solid acidity, zirconia (Zr
O 2 ), zeolite, metallosilicate, etc. are also γ-Al 2 O
Has the same effect as 3 . Therefore, these can also be used as a carrier for the dimethyl ether reforming catalyst according to the present invention. The solid acid amount of these carriers having a solid acid action is preferably 0.1 mmol / g or more in terms of pyridine adsorption amount.

【0010】上記担体に担持される金属(改質触媒成分
の活性金属)としてはメタネーション作用が少ないPt
が好ましい。もっとも、イリジウム、ロジウム、パラジ
ウム等であっても良い。すなわち、イリジウム、Pt、
ロジウムおよびパラジウム、さらにこれらに加えてこれ
らの化合物(酸化物、塩化物)から成るグループから選
択した少なくとも一の活性金属(活性金属化合物)であ
っても良い。
As a metal (active metal of the reforming catalyst component) supported on the above carrier, Pt having a small methanation effect
Is preferred. However, it may be iridium, rhodium, palladium or the like. That is, iridium, Pt,
It may be at least one active metal (active metal compound) selected from the group consisting of rhodium and palladium, as well as these compounds (oxides, chlorides).

【0011】さらに、COシフト能力を有する触媒成分
(COシフト触媒成分)としてCu、Zn、Cr、Fe
およびAlの各々の酸化物から成るグループから選択さ
れた少なくとも2種以上の複合酸化物が好ましい。これ
らの複合酸化物は、主に共沈法等により調製される。ま
た、COシフト触媒成分は、含浸法によりジメチルエー
テル分解作用を有する触媒、すなわちジメチルエーテル
改質触媒成分に担持しても良い。
Further, Cu, Zn, Cr, Fe are used as a catalyst component having a CO shift ability (CO shift catalyst component).
And at least two or more complex oxides selected from the group consisting of oxides of Al and Al are preferable. These complex oxides are mainly prepared by a coprecipitation method or the like. Further, the CO shift catalyst component may be supported on a catalyst having a dimethyl ether decomposition action by the impregnation method, that is, a dimethyl ether reforming catalyst component.

【0012】ジメチルエーテル改質機能を持つ触媒とC
Oシフト機能を持つ触媒はおのおの1mm以下(好まし
くは0.5mm以下)の粒径が良く、好ましくは粉末粉
砕した触媒成分を混合させてペレット触媒化する方が良
い。各触媒成分の粒径が小さい方が好ましい理由は、ジ
メチルエーテルの改質で生じたCOが近接したCOシフ
ト機能を有する触媒に吸着されて、容易に拡散しCOシ
フト反応を進行させることができるためである。なお、
ジメチルエーテル改質機能を持つ触媒とCOシフト機能
を持つ触媒の配合比率は、(改質触媒成分):(COシ
フト触媒成分)=95:5〜5:95が好ましい。
A catalyst having a dimethyl ether reforming function and C
Each of the catalysts having an O shift function has a particle size of 1 mm or less (preferably 0.5 mm or less), and it is preferable to mix powder-crushed catalyst components to form a pellet catalyst. The reason why the particle size of each catalyst component is preferably small is that CO generated by the reforming of dimethyl ether is adsorbed by a catalyst having a CO shift function in close proximity and can easily diffuse to advance the CO shift reaction. Is. In addition,
The mixing ratio of the catalyst having a dimethyl ether reforming function and the catalyst having a CO shift function is preferably (reforming catalyst component) :( CO shift catalyst component) = 95: 5 to 5:95.

【0013】本発明に係るジメチルエーテル改質触媒を
用いることにより、ジメチルエーテルを450℃付近の
低温で分解し、さらに、COシフト反応も同時に行わせ
るため、水素濃度が高く、CO濃度が低いガスを製造す
ることが可能である。
By using the dimethyl ether reforming catalyst according to the present invention, dimethyl ether is decomposed at a low temperature of around 450 ° C. and a CO shift reaction is also carried out at the same time, so that a gas having a high hydrogen concentration and a low CO concentration is produced. It is possible to

【0014】ジメチルエーテルと水(水蒸気)とから
は、以下の反応によって、水素とCOを生成する。 CH3OCH3+H2O→2CO+4H2 ・・・・(1) 従来は、メタネーション反応を抑制するために、700
℃付近で行っていたが、本発明では、メタネーション反
応が少ない触媒を用いるので、450℃またはその付近
の低温で実施することができる。また、該温度で、次の
COシフト反応も同時に進行する。 CO+H2O→CO2+H2 ・・・・・(2)
Hydrogen and CO are produced from dimethyl ether and water (steam) by the following reaction. CH 3 OCH 3 + H 2 O → 2CO + 4H 2 ... (1) Conventionally, in order to suppress the methanation reaction, 700
Although it was carried out at around 0 ° C., in the present invention, since a catalyst with less methanation reaction is used, it can be carried out at a low temperature of at or around 450 ° C. Further, at the temperature, the next CO shift reaction also proceeds at the same time. CO + H 2 O → CO 2 + H 2 (2)

【0015】さらに、本発明に係るジメチルエーテル改
質方法では、ジメチルエーテルに対し、水と酸素(空
気)を加え、部分酸化反応も生じさせるようにすること
ができる。部分酸化反応をさらに適量に併発することに
よりオートサーマル反応として実施することができる。
Furthermore, in the dimethyl ether reforming method according to the present invention, water and oxygen (air) can be added to dimethyl ether to cause a partial oxidation reaction. The partial oxidation reaction can be carried out as an autothermal reaction by further concurrently generating an appropriate amount.

【0016】[0016]

【実施例】実施例1(触媒の調製) (触媒1の調製)担体として比表面積150m2/gの
γ型アルミナ粉末(以下γ−Al23(γアルミナ)と
もいう)を蒸発皿に入れ、塩化白金酸水溶液をγ−Al
23に滴下し、100℃のホットプレート上にて滴下し
た水分を蒸発させた。粉末を攪拌させながら均一に白金
が担持されるようにし、このような含浸法にて担体に対
して1重量%の白金(Pt)を担持した。上記γ−Al
23担持Pt触媒粉末を120℃で12時間乾燥させた
後、550℃で5時間空気雰囲気下にて焼成を行い、粉
末触媒成分1を得た。
Example 1 (Preparation of catalyst) (Preparation of catalyst 1) γ-type alumina powder (hereinafter also referred to as γ-Al 2 O 3 (γ-alumina)) having a specific surface area of 150 m 2 / g was used as a carrier in an evaporation dish. Put chloroplatinic acid aqueous solution into γ-Al
2 O 3 was dropped, and the dropped water was evaporated on a hot plate at 100 ° C. While stirring the powder, platinum was uniformly loaded, and 1% by weight of platinum (Pt) was loaded on the carrier by such an impregnation method. Γ-Al
The 2 O 3 -supported Pt catalyst powder was dried at 120 ° C. for 12 hours and then calcined at 550 ° C. for 5 hours in an air atmosphere to obtain a powder catalyst component 1.

【0017】また、硝酸銅、硝酸亜鉛、硝酸アルミニウ
ムを[Cu:Zn:Al=50:40:10(原子
比)]の割合で水に溶かし、0.01モル/L溶液の酸
溶液(=A溶液)を得た。さらに、アルカリ溶液として
炭酸ナトリウム水溶液(=B溶液)0.01モル/L溶
液を調製した。A溶液とB溶液を同時に別の容器にpH
7の中性を一定に保ちながら注ぎ、40℃において中和
沈殿を生成させた。
Further, copper nitrate, zinc nitrate, and aluminum nitrate are dissolved in water in a ratio of [Cu: Zn: Al = 50: 40: 10 (atomic ratio)], and a 0.01 mol / L solution of an acid solution (= A solution) was obtained. Furthermore, a 0.01 mol / L solution of an aqueous sodium carbonate solution (= B solution) was prepared as an alkaline solution. PH of solution A and solution B in different containers at the same time
7 was poured while keeping the neutrality constant, and a neutralized precipitate was formed at 40 ° C.

【0018】次に、沈殿物溶液を3時間熟成させなが
ら、洗浄濾過を行い、110℃で12時間乾燥し、その
後、300℃で5時間、空気雰囲気にて焼成を行い、粉
末触媒成分2を得た。粉末触媒成分1と粉末触媒成分2
を重量比にて1:1にてサンプリングし、めのう乳鉢に
て粉末混合を2時間行った。この場合各々の粉末成分は
50μm以下になり、2つの混合物の粉末を得た。つぎ
にこの混合物に、にアルミナゾルバインダー2%と水を
添加して、3mmφの粒状触媒を成型したのち、400
℃で5時間焼成した。本粒状触媒を触媒1とした。
Next, while aging the precipitate solution for 3 hours, it is washed and filtered, dried at 110 ° C. for 12 hours, and then calcined at 300 ° C. for 5 hours in an air atmosphere to obtain powder catalyst component 2. Obtained. Powder catalyst component 1 and powder catalyst component 2
Was sampled at a weight ratio of 1: 1 and powder mixing was carried out for 2 hours in an agate mortar. In this case, each powder component was 50 μm or less, and powders of two mixtures were obtained. Next, 2% of alumina sol binder and water were added to this mixture to mold a 3 mmφ granular catalyst, and then 400
Calcination was carried out for 5 hours. This granular catalyst was designated as catalyst 1.

【0019】(触媒2〜6の調製)上記触媒1の粉末触
媒成分2の調製法において、A溶液の調製において硝酸
銅の代わりに、硝酸クロム、硝酸鉄を同一の原子比にて
調製し、同様な方法により、粉末触媒成分3(Cr:Z
n:Al=50:40:10…原子比)、粉末触媒成分
4(Fe:Zn:Al=50:40:10…原子比)を
得た。さらに、A溶液の調製法において、硝酸銅と硝酸
アルミニウムの代わりに、硝酸クロムまたは硝酸鉄を添
加し、Cr:Zn=50:50(原子比)、Fe:Zn
=50:50(原子比)を上記と同様な方法で得、粉末
触媒成分5、6を得た。粉末触媒成分1と粉末触媒成分
3〜6を、触媒1と同様にに粉砕混合及び粒状成型し、
触媒2〜5を得た。
(Preparation of Catalysts 2 to 6) In the preparation method of the powder catalyst component 2 of the above catalyst 1, instead of copper nitrate in the preparation of the solution A, chromium nitrate and iron nitrate were prepared at the same atomic ratio, By the same method, powder catalyst component 3 (Cr: Z
n: Al = 50: 40: 10 ... atomic ratio), and powder catalyst component 4 (Fe: Zn: Al = 50: 40: 10 ... atomic ratio) was obtained. Further, in the method for preparing the solution A, chromium nitrate or iron nitrate is added instead of copper nitrate and aluminum nitrate, and Cr: Zn = 50: 50 (atomic ratio), Fe: Zn.
= 50: 50 (atomic ratio) was obtained in the same manner as above to obtain powder catalyst components 5 and 6. The powder catalyst component 1 and the powder catalyst components 3 to 6 are pulverized, mixed and granulated in the same manner as the catalyst 1.
Catalysts 2-5 were obtained.

【0020】(触媒6、7の調製)上記触媒1の調製法
において、粉末触媒成分1(Pt/γ−Al23)に硝
酸銅と硝酸亜鉛と硝酸アルミニウム水溶液(溶液7)、
または硝酸クロム、硝酸亜鉛の水溶液(溶液8)を各々
含浸させ、攪拌して蒸発乾固後に300℃で5時間焼成
を行い、粉末触媒6、7を得た。粉末触媒成分1に対す
る担持量は、粉末触媒6はCu:5重量%、Zn:4重
量%、Al:1重量%、粉末触媒7は、Cr:5重量
%、Zn:5重量%であった。この粉末は触媒1と同様
と同様な方法に粒状触媒とし、触媒6、7を得た。
(Preparation of catalysts 6 and 7) In the preparation method of the catalyst 1, the powder catalyst component 1 (Pt / γ-Al 2 O 3 ) was added to copper nitrate, zinc nitrate and an aqueous solution of aluminum nitrate (solution 7).
Alternatively, each of them was impregnated with an aqueous solution of chromium nitrate and zinc nitrate (solution 8), stirred, evaporated to dryness, and then baked at 300 ° C. for 5 hours to obtain powder catalysts 6 and 7. The supported amounts of the powder catalyst 6 on the powder catalyst component 1 were Cu: 5% by weight, Zn: 4% by weight, Al: 1% by weight, and the powder catalyst 7 was Cr: 5% by weight, Zn: 5% by weight. . This powder was made into a granular catalyst in the same manner as in Catalyst 1 to obtain Catalysts 6 and 7.

【0021】(比較触媒1、2、3)上記触媒1の調製
法において、粉末触媒成分1のγ−Al23に担持する
触媒として、塩化白金酸の代わりに、塩化ルテニウム、
塩化ニッケルの各水溶液を各々含浸して粉末触媒化し、
各々金属でRu:1%、Ni:12%を担持させた。本
粉末触媒成分を比較粉末1、比較粉末2とした。さら
に、触媒1と同様な方法で3mmφの粒状触媒を調製
し、比較触媒1、 2を得た。さらに、粉末触媒成分1
のみにおいて、触媒1と同様に粒状触媒を調製し、比較
触媒3を得た。
(Comparative Catalysts 1, 2, 3) In the preparation method of the above-mentioned catalyst 1, ruthenium chloride, instead of chloroplatinic acid, was used as the catalyst supported on γ-Al 2 O 3 of powder catalyst component 1.
Impregnated with each aqueous solution of nickel chloride to form a powder catalyst,
Ru: 1% and Ni: 12% were supported by the respective metals. The present powder catalyst components were designated as comparative powder 1 and comparative powder 2. Further, a 3 mmφ granular catalyst was prepared in the same manner as the catalyst 1, and comparative catalysts 1 and 2 were obtained. Furthermore, powder catalyst component 1
In the same manner, a granular catalyst was prepared in the same manner as catalyst 1 to obtain comparative catalyst 3.

【0022】実施例2 (ジメチルエーテル水蒸気改質試験:反応条件1)上記
触媒1〜7、比較触媒1、2、3を用いて、以下の条件
においてジメチルエーテルの水蒸気改質試験を行った。
原料はジメチルエーテル(CH3OCH3)と水蒸気、空
気を[水蒸気/ジメチルエーテル(C1ベース)]=
4.0(モル比)の条件で混合させ、20cc充填した
触媒層(3mmφペレット充填:円筒形:径26mm
φ、長さ25mm)を触媒層平均温度450℃、550
℃に保持し、上記原料をGHSV5000h-1(流量1
00L/h)で供給した。
Example 2 (Dimethyl ether steam reforming test: reaction condition 1) Using the above catalysts 1 to 7 and comparative catalysts 1, 2 and 3, a steam reforming test of dimethyl ether was conducted under the following conditions.
The raw materials are dimethyl ether (CH 3 OCH 3 ), steam, and air [steam / dimethyl ether (C1 base)] =
A catalyst layer (3 mmφ pellet filling: cylindrical: diameter 26 mm, which was mixed under conditions of 4.0 (molar ratio) and filled with 20 cc
φ, length 25 mm) is the catalyst layer average temperature 450 ℃, 550
The above raw materials were maintained at GHSV 5000h -1 (flow rate 1
00 L / h).

【0023】反応管出口ガス組成の炭化水素はガスクロ
マトグラムで分析した。ジメチルエーテル転化率(η)
は=[1−出口ジメチルエーテル/入口ジメチルエーテ
ル(C1ベース)]×100にて求めた。また、生成物
の水素濃度、CO濃度、CH 4濃度(いずれもドライベ
ース)もガスクロマトグラフ法にて求めた。上記触媒の
活性評価試験結果を表1に示す。
Hydrocarbons having a gas composition at the outlet of the reaction tube are
It was analyzed by a matogram. Dimethyl ether conversion (η)
== [1-outlet dimethyl ether / inlet dimethyl ether
(C1 base)] × 100. Also the product
Hydrogen concentration, CO concentration, CH FourConcentration (Dry
Was also determined by gas chromatography. Of the above catalyst
The results of the activity evaluation test are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】上記結果より、本発明に係る触媒1〜7は
いずれの反応温度においてもジメチルエーテル転化率9
0%以上、水素濃度60%以上、CH4副生率5%以
下、CO濃度7%以下となり、低温で高効率にて水素を
製造でき、CH4やCOの副生物が少ないことを確認し
た。しかし、比較触媒1、2は何れも550℃以下にお
いてCH4の副生が多く、さらに、比較触媒3はCOの
副生が多いことがわかる。なお、本発明の触媒1〜7に
おいて、十分な水素製造活性を有し、かつCH4および
COが少ない理由として、メタネーション作用が低いP
tを活性金属に用いた粉末触媒成分1とCOシフト活性
を有するB成分のハイブリッド作用によると考えられ
る。
From the above results, the catalysts 1 to 7 according to the present invention have a dimethyl ether conversion of 9 at any reaction temperature.
0% or more, hydrogen concentration 60% or more, CH 4 byproduct rate 5% or less, CO concentration 7% or less, it was confirmed that hydrogen can be produced with high efficiency at low temperature, and CH 4 and CO byproducts are small. . However, it can be seen that the comparative catalysts 1 and 2 both have a large amount of CH 4 by- products at 550 ° C. or lower, and the comparative catalyst 3 has a large amount of CO-by-products. In addition, in the catalysts 1 to 7 of the present invention, the reason for having sufficient hydrogen production activity and having a small amount of CH 4 and CO is P having a low methanation action.
It is considered that this is due to the hybrid action of the powder catalyst component 1 using t as an active metal and the component B having CO shift activity.

【0026】実施例3 上記触媒1を用いて、実施例2で行った水蒸気改質条件
において、空気/ジメチルエーテル(C1ベース):
1.5、2.5(モル比)の空気を供給し,オートサー
マル条件において活性評価を行った。さらに、水蒸気/
ジメチルエーテル(C1ベース)モル比の影響について
も検討を行った。表2に温度触媒温度450℃、550
℃の試験条件と活性評価結果を示す(Run番号11〜
15)。
Example 3 Using the above catalyst 1, under the steam reforming conditions carried out in Example 2, air / dimethyl ether (C1 based):
Air was supplied at 1.5 and 2.5 (molar ratio), and the activity was evaluated under autothermal conditions. In addition, steam /
The influence of the dimethyl ether (C1 base) molar ratio was also examined. Table 2 shows the temperature catalyst temperature 450 ° C., 550
C test conditions and activity evaluation results are shown (Run number 11 to
15).

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示す試験結果より、本発明に係る触
媒1を用いて、空気を添加したオートサーマル条件や部
分酸化条件、および種々の空気、水蒸気分圧条件におい
ても450℃程度で十分なジメチルエーテル分解活性を
有し、さらにCH4、COの副生もないことを確認し
た。
From the test results shown in Table 2, using the catalyst 1 of the present invention, about 450 ° C. is sufficient even under autothermal conditions and partial oxidation conditions in which air is added, and various air and steam partial pressure conditions. It was confirmed that the compound has a dimethyl ether decomposition activity and that CH 4 and CO are not by-products.

【0029】[0029]

【発明の効果】上記したところから明らかなように、本
発明によれば、ジメチルエーテルの改質反応と、COシ
フト反応とを効率的に単一の触媒で、しかも低温で行う
ことを可能とするジメチルエーテル改質触媒およびジメ
チルエーテルの改質方法が提供される。
As is apparent from the above, according to the present invention, it is possible to efficiently carry out the dimethyl ether reforming reaction and the CO shift reaction with a single catalyst and at a low temperature. A dimethyl ether reforming catalyst and a method for reforming dimethyl ether are provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 悟 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA01 EA06 EB32 EC01 EC02 EC03 EC05 4G069 AA03 AA08 BA01A BA01B BA04A BA05A BA07A BA45A BB02A BB02B BC16A BC16B BC31A BC31B BC35A BC35B BC58A BC58B BC66A BC66B BC75A BC75B CB81 CC25 EA02Y EB18Y EC27 EC28 FA01 FA02 FB07 FB14 FB19 ZA01A ZA37A    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoru Watanabe             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center (72) Inventor Masanao Yonemura             4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture               Mitsubishi Heavy Industries Ltd. Hiroshima Research Center F term (reference) 4G040 EA01 EA06 EB32 EC01 EC02                       EC03 EC05                 4G069 AA03 AA08 BA01A BA01B                       BA04A BA05A BA07A BA45A                       BB02A BB02B BC16A BC16B                       BC31A BC31B BC35A BC35B                       BC58A BC58B BC66A BC66B                       BC75A BC75B CB81 CC25                       EA02Y EB18Y EC27 EC28                       FA01 FA02 FB07 FB14 FB19                       ZA01A ZA37A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ジメチルエーテルと水から水素を得るた
めのジメチルエーテル改質反応のための改質触媒成分
と、副生するCOを除去するCOシフト反応のためのC
Oシフト触媒成分とを含むジメチルエーテル改質触媒。
1. A reforming catalyst component for a dimethyl ether reforming reaction for obtaining hydrogen from dimethyl ether and water, and C for a CO shift reaction for removing CO as a by-product.
A dimethyl ether reforming catalyst containing an O shift catalyst component.
【請求項2】 上記改質触媒成分が白金を固体酸作用を
有する担体に担持して成る改質触媒成分であり、上記C
Oシフト触媒成分がCu、Zn、Cr、FeおよびAl
の各々の酸化物から成るグループから選択された少なく
とも2種以上の複合酸化物であることを特徴とする請求
項1のジメチルエーテル改質触媒。
2. The reforming catalyst component is a reforming catalyst component comprising platinum supported on a carrier having a solid acid function, and the above C
O shift catalyst component is Cu, Zn, Cr, Fe and Al
The dimethyl ether reforming catalyst according to claim 1, which is a composite oxide of at least two or more kinds selected from the group consisting of the respective oxides.
【請求項3】 上記改質触媒成分と上記COシフト触媒
成分とを粉末混合して成ることを特徴とする請求項1ま
たは2のジメチルエーテル改質触媒。
3. The dimethyl ether reforming catalyst according to claim 1, wherein the reforming catalyst component and the CO shift catalyst component are powder-mixed.
【請求項4】 請求項2の改質触媒成分の粉末にCOシ
フト触媒成分を担持して成ることを特徴とするジメチル
エーテル改質触媒。
4. A dimethyl ether reforming catalyst comprising a powder of the reforming catalyst component of claim 2 and a CO shift catalyst component supported on the powder.
【請求項5】 上記固体酸作用を有する担体がγ−Al
23、チタニア、ZrO2、ゼオライトおよびメタロシ
リケートから成るグループから選ばれた少なくとも1種
の担体であることを特徴とする請求項2〜4のいずれか
のジメチルエーテル改質触媒。
5. The carrier having a solid acid action is γ-Al.
The dimethyl ether reforming catalyst according to claim 2, which is at least one carrier selected from the group consisting of 2 O 3 , titania, ZrO 2 , zeolite and metallosilicate.
【請求項6】 上記固体酸作用を有する担体の固体酸量
が、ピリジン吸着量で0.1mmol/g以上であるこ
とを特徴とする請求項2〜5のいずれかのジメチルエー
テル改質触媒。
6. The dimethyl ether reforming catalyst according to claim 2, wherein the solid acid amount of the carrier having a solid acid action is 0.1 mmol / g or more in terms of pyridine adsorption amount.
【請求項7】 請求項1〜6のいずれかのジメチルエー
テル改質触媒を用いてジメチルエーテルを改質すること
を特徴とするジメチルエーテル改質方法。
7. A method for reforming dimethyl ether, which comprises reforming dimethyl ether using the catalyst for reforming dimethyl ether according to claim 1.
【請求項8】 ジメチルエーテルに対し、水と酸素を加
え、部分酸化反応も生じさせるようにしたことを特徴と
する請求項7のジメチルエーテル改質方法。
8. The method for reforming dimethyl ether according to claim 7, wherein water and oxygen are added to dimethyl ether to cause a partial oxidation reaction.
【請求項9】 請求項8のジメチルエーテル改質方法に
おいて、ジメチルエーテル改質反応と上記部分酸化反応
とによって、オートサーマル反応を行うようにしたこと
を特徴とするジメチルエーテル改質方法。
9. The dimethyl ether reforming method according to claim 8, wherein an autothermal reaction is performed by the dimethyl ether reforming reaction and the partial oxidation reaction.
JP2001238657A 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method Expired - Fee Related JP4175452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238657A JP4175452B2 (en) 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238657A JP4175452B2 (en) 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method

Publications (2)

Publication Number Publication Date
JP2003047853A true JP2003047853A (en) 2003-02-18
JP4175452B2 JP4175452B2 (en) 2008-11-05

Family

ID=19069535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238657A Expired - Fee Related JP4175452B2 (en) 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method

Country Status (1)

Country Link
JP (1) JP4175452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087566A1 (en) * 2003-04-01 2004-10-14 Haldor Topsøe A/S Process for the preparation of a hydrogen-rich stream
JP2005095738A (en) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc Catalyst for steam reforming of dimethyl ether having solid acid-containing coating layer
CN1331731C (en) * 2003-04-01 2007-08-15 赫多特普索化工设备公司 Process for the preparation of a hydrogen-rich stream.
JP2019193913A (en) * 2018-05-01 2019-11-07 公立大学法人首都大学東京 Hydrogen manufacturing catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087566A1 (en) * 2003-04-01 2004-10-14 Haldor Topsøe A/S Process for the preparation of a hydrogen-rich stream
CN1331731C (en) * 2003-04-01 2007-08-15 赫多特普索化工设备公司 Process for the preparation of a hydrogen-rich stream.
US7517374B2 (en) 2003-04-01 2009-04-14 Haldor Topsoe A/S Process for the preparation of a hydrogen-rich stream
JP2005095738A (en) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc Catalyst for steam reforming of dimethyl ether having solid acid-containing coating layer
JP2019193913A (en) * 2018-05-01 2019-11-07 公立大学法人首都大学東京 Hydrogen manufacturing catalyst
JP7257019B2 (en) 2018-05-01 2023-04-13 東京都公立大学法人 Hydrogen production catalyst

Also Published As

Publication number Publication date
JP4175452B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
US10857523B2 (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
US6723298B1 (en) Method for catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
EP1866083B1 (en) Nickel on Ceria/Zirconia catalyst
JP3345782B2 (en) Catalyst for syngas production and method for producing carbon monoxide
US6312660B1 (en) Process for preparing synthesis gas
JP4851655B2 (en) Process for the conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
US7105147B2 (en) Method for partial oxidation of methane using dense, oxygen selective permeation ceramic membrane
US7771702B2 (en) Sulfur-tolerant catalysts and related precursors and processes
US6677068B2 (en) Catalyst for selective oxidation of carbon monoxide present in hydrogen-containing gases, and elimination of carbon monoxide and solid polymer electrolyte fuel cell system which make use of the catalyst
US20090108238A1 (en) Catalyst for reforming hydrocarbons
JPH11276893A (en) Metal fine particle-supported hydrocarbon modifying catalyst and its production
CN107624081A (en) Nickel tephroite and nickel galaxite are used for the purposes of the CO 2 reformation of methane as bulk metal catalyst
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP2003080072A (en) Co shift catalyst and method for producing the same
US11712689B2 (en) High activity platinum and nickel yolk-shell catalysts
KR100579945B1 (en) Catalyst for water-gas shift reaction of carbon monoxide
US20040147394A1 (en) Catalyst for production of hydrogen
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JPS60202740A (en) Catalyst for reforming methanol
JP4380969B2 (en) Dimethyl ether reforming catalyst
JP2003146615A (en) Method for manufacturing hydrogen
JP4335505B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming system
JPS60122038A (en) Catalyst for reforming methanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees