JP2003043806A - Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner - Google Patents

Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner

Info

Publication number
JP2003043806A
JP2003043806A JP2001236401A JP2001236401A JP2003043806A JP 2003043806 A JP2003043806 A JP 2003043806A JP 2001236401 A JP2001236401 A JP 2001236401A JP 2001236401 A JP2001236401 A JP 2001236401A JP 2003043806 A JP2003043806 A JP 2003043806A
Authority
JP
Japan
Prior art keywords
electrostatic
toner
electrode
transport
common electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001236401A
Other languages
Japanese (ja)
Inventor
Toshio Sakai
捷夫 酒井
Yoichiro Miyaguchi
耀一郎 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001236401A priority Critical patent/JP2003043806A/en
Publication of JP2003043806A publication Critical patent/JP2003043806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the stagnation of toners is resulted when even a piece of electrodes for electrostatic conveyance is disconnected. SOLUTION: The electrostatic conveyance method for the electrostatically charged toner of conveying the electrostatically charged image forming toners by an insulating substrate formed with electrode trains for electrostatic conveyance comprises disposing a common electrode in a position apart from the insulating substrate, impressing a voltage of the polarity reverse from the normal electrostatic charging polarity of the toners to this common electrode for a short time and instantaneously floating the toners stagnated at the disconnected electrode for electrostatic conveyance among the electrode trains of the electrostatic conveyance during the electrostatic conveyance of the toners toward the common electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、帯電した画像形成
用の粉末(ここでは帯電トナーという)を静電搬送用電
極列が形成されている絶縁基板により搬送する帯電トナ
ーの静電搬送方法及び帯電トナーの静電搬送装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of electrostatically carrying charged toner, in which charged image forming powder (herein, referred to as charged toner) is carried by an insulating substrate on which an electrostatic transfer electrode array is formed. The present invention relates to an electrostatic transport device for charged toner.

【0002】[0002]

【従来の技術】帯電した画像形成用のトナーの静電搬送
を行う方法としては、トナーのマクロ搬送を行うもので
あって、トナーの層固まりを高電圧(1.5〜2KV)
で駆動する方法がある。しかし、この方法は、トナーを
連続して駆動するものではなく、電界ショックでパルス
状にトナーを搬送するものである。
2. Description of the Related Art A method of electrostatically carrying charged toner for image formation is to carry out macro-conveying of toner, in which a layer layer of toner is charged at a high voltage (1.5 to 2 KV).
There is a method to drive with. However, this method does not drive the toner continuously, but conveys the toner in a pulse shape by an electric field shock.

【0003】特開平59−181369号公報には、静
電搬送用電極群を有する静電搬送基板と対向電極を有す
る対向電極基板とでトナーを搬送して現像を行い、静電
搬送用電極群に印加する最高の電位の半分の電位を対向
電極に印加しておく現像装置が記載されている。
In Japanese Patent Laid-Open No. 59-181369, toner is transported by an electrostatic transport substrate having an electrostatic transport electrode group and a counter electrode substrate having a counter electrode to develop the electrostatic transport electrode group. There is described a developing device in which a potential that is half the maximum potential applied to the counter electrode is applied to the counter electrode.

【0004】この現像装置では、静電搬送用電極群の電
位は対向電極の電位より高くなったり低くなったりし、
その結果、トナーは対向電極基板に行ったり戻ったりし
ながら静電搬送基板に沿って搬送される。特に、各静電
搬送用電極の真中にいたトナーは対向電極に移動する。
このため、対向電極が存在しなかった場合に各静電搬送
用電極の真中で電界が弱い(電気力線が存在しない)こ
とにより各静電搬送用電極で堆積したトナーがなくな
り、トナー搬送効率が改善される。
In this developing device, the potential of the electrostatic transport electrode group becomes higher or lower than the potential of the counter electrode,
As a result, the toner is transported along the electrostatic transport substrate while going to and returning from the counter electrode substrate. In particular, the toner in the middle of each electrostatic transport electrode moves to the counter electrode.
For this reason, when the counter electrode is not present, the electric field is weak in the middle of each electrostatic transport electrode (there are no electric lines of force), so the toner deposited on each electrostatic transport electrode is lost, and the toner transport efficiency is reduced. Is improved.

【0005】特に、各静電搬送用電極の中心付近にいた
トナーが対向電極基板に移動するため、堆積トナーがほ
とんど存在しなくなり、トナー搬送効率を上げることが
できる。
In particular, since the toner in the vicinity of the center of each electrostatic carrying electrode moves to the counter electrode substrate, almost no accumulated toner exists, and the toner carrying efficiency can be improved.

【0006】[0006]

【発明が解決しようとする課題】上記現像装置では、多
数の静電搬送用電極中の一本でも断線すると、その断線
した静電搬送用電極のところで幅方向全体にトナーの流
れが止まってしまい、トナーが滞留してしまった。本発
明は、断線した静電搬送用電極に滞留するトナーを瞬時
浮かせてトナーの均一な搬送を継続することができる帯
電トナーの静電搬送方法及び帯電トナーの静電搬送装置
を提供することを目的とする。
In the above developing device, if even one of the many electrostatic carrying electrodes is broken, the toner flow stops at the broken electrostatic carrying electrode in the entire width direction. , The toner has accumulated. The present invention provides a method for electrostatically conveying charged toner and a device for electrostatically conveying charged toner, which makes it possible to instantly float the toner staying on the broken electrostatic-conveying electrode and continue the uniform conveyance of the toner. To aim.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、帯電した画像形成用のトナ
ーを静電搬送用電極列が形成されている絶縁基板により
静電搬送する帯電トナーの静電搬送方法において、前記
絶縁基板より離れた位置に共通電極を設け、この共通電
極に前記トナーの正規の帯電極性とは逆極性の電圧を短
時間印加し、前記トナーの静電搬送中に前記静電搬送用
電極列のうちの断線した静電搬送用電極に滞留したトナ
ーを前記共通電極の方向に瞬時浮かせることを特徴とす
る。
In order to achieve the above object, the invention according to claim 1 electrostatically conveys charged toner for image formation by an insulating substrate on which an electrostatic conveyance electrode array is formed. In a method of electrostatically transporting charged toner, a common electrode is provided at a position distant from the insulating substrate, and a voltage having a polarity opposite to the regular charging polarity of the toner is applied to the common electrode for a short period of time to cause electrostatic discharge It is characterized in that the toner staying on the broken electrostatic carrying electrode of the electrostatic carrying electrode array during the carrying is instantaneously floated toward the common electrode.

【0008】請求項2に係る発明は、請求項1記載の帯
電トナーの静電搬送方法において、前記共通電極に印加
する前記電圧の大きさと時間は、前記断線した静電搬送
用電極付近に滞留したトナーの大部分が前記絶縁基板よ
り瞬時離れ、かつ該大部分が前記共通電極に到達しない
範囲であることを特徴とする。
According to a second aspect of the present invention, in the method of electrostatically transporting charged toner according to the first aspect, the magnitude and time of the voltage applied to the common electrode stay in the vicinity of the broken electrostatic transport electrode. Most of the toner is instantaneously separated from the insulating substrate, and most of the toner does not reach the common electrode.

【0009】請求項3に係る発明は、請求項1記載の帯
電トナーの静電搬送方法において、前記共通電極の表面
は薄い絶縁層もしくは前記トナーの正規の帯電極性と反
対極性の電荷の通過を許さない半導体物質で覆われてい
ることを特徴とする。
According to a third aspect of the present invention, in the method of electrostatically transporting charged toner according to the first aspect, the surface of the common electrode is a thin insulating layer or a charge having a polarity opposite to the regular charging polarity of the toner is passed. It is characterized by being covered with an unforgivable semiconductor material.

【0010】請求項4に係る発明は、請求項1記載の帯
電トナーの静電搬送方法において、前記静電搬送用電極
の断線を検出した後に前記共通電極に前記電圧を印加す
ることを特徴とする。
According to a fourth aspect of the invention, in the method of electrostatically transporting charged toner according to the first aspect, the voltage is applied to the common electrode after the disconnection of the electrostatic transport electrode is detected. To do.

【0011】請求項5に係る発明は、請求項4記載の帯
電トナーの静電搬送方法において、最初に前記静電搬送
用電極の断線を検出した場合、断線した前記静電搬送用
電極を挟む両側の正常な前記静電搬送用電極の間で前記
トナーを正規の搬送方向に加速する静電界が形成される
ときに前記共通電極に前記電圧を印加することを特徴と
する。
According to a fifth aspect of the present invention, in the method of electrostatically transporting charged toner according to the fourth aspect, when disconnection of the electrostatic transport electrode is first detected, the broken electrostatic transport electrode is sandwiched. The voltage is applied to the common electrode when an electrostatic field for accelerating the toner in the normal transport direction is formed between the normal electrostatic transport electrodes on both sides.

【0012】請求項6に係る発明は、請求項4記載の帯
電トナーの静電搬送方法において、複数の前記静電搬送
用電極の断線を検出した場合、最多数の断線した前記静
電搬送用電極で、該静電搬送用電極を囲む両側の正常な
前記静電搬送用電極の間で前記トナーを正規の搬送方向
に加速する静電界が形成されるときに前記共通電極に前
記電圧を印加することを特徴とする。
According to a sixth aspect of the present invention, in the method of electrostatically transporting charged toner according to the fourth aspect, when disconnection of a plurality of the electrostatic transport electrodes is detected, the largest number of disconnected electrostatic transport electrodes are used. The voltage is applied to the common electrode when an electrostatic field that accelerates the toner in the normal transport direction is formed between the normal electrodes for electrostatic transport on both sides surrounding the electrode for electrostatic transport by the electrodes. It is characterized by doing.

【0013】請求項7に係る発明は、帯電した画像形成
用のトナーを静電搬送用電極列が形成されている絶縁基
板により静電搬送する帯電トナーの静電搬送装置におい
て、前記絶縁基板より離れた位置に設けられた共通電極
と、この共通電極に前記トナーの正規の帯電極性とは逆
極性の電圧を短時間印加する手段とを有し、前記トナー
の静電搬送中に前記静電搬送用電極列のうちの断線した
静電搬送用電極に滞留したトナーを前記共通電極への前
記電圧の印加により前記共通電極の方向に瞬時浮かせる
ものである。
According to a seventh aspect of the present invention, there is provided a charged toner electrostatic transport device for electrostatically transporting charged image forming toner by an insulating substrate on which an electrostatic transport electrode array is formed. It has a common electrode provided at a distant position and a means for applying a voltage having a polarity opposite to the normal charging polarity of the toner to the common electrode for a short time, and the electrostatic charge is applied during electrostatic transport of the toner. The toner accumulated in the broken electrostatic transporting electrode of the transporting electrode array is momentarily floated toward the common electrode by applying the voltage to the common electrode.

【0014】請求項8に係る発明は、請求項7記載の帯
電トナーの静電搬送装置において、前記共通電極に印加
する前記電圧の大きさと時間は、前記断線した静電搬送
用電極付近に滞留したトナーの大部分が前記絶縁基板よ
り瞬時離れ、かつ該大部分が前記共通電極に到達しない
範囲であるものである。
According to an eighth aspect of the present invention, in the electrostatic transport device for charged toner according to the seventh aspect, the magnitude and time of the voltage applied to the common electrode stay in the vicinity of the broken electrostatic transport electrode. Most of the toner is instantaneously separated from the insulating substrate, and most of the toner does not reach the common electrode.

【0015】請求項9に係る発明は、請求項7記載の帯
電トナーの静電搬送装置において、前記共通電極の表面
は薄い絶縁層もしくは前記トナーの正規の帯電極性と反
対極性の電荷の通過を許さない半導体物質で覆われてい
るものである。
According to a ninth aspect of the present invention, in the electrostatic transport device for charged toner according to the seventh aspect, the surface of the common electrode is a thin insulating layer or a charge having a polarity opposite to the regular charging polarity of the toner is passed. It is covered with an unforgivable semiconductor material.

【0016】請求項10に係る発明は、請求項7記載の
帯電トナーの静電搬送装置において、前記静電搬送用電
極の断線を検出した後に前記共通電極に前記電圧を印加
するものである。
According to a tenth aspect of the present invention, in the electrostatic transport device for charged toner according to the seventh aspect, the voltage is applied to the common electrode after the disconnection of the electrostatic transport electrode is detected.

【0017】請求項11に係る発明は、請求項10記載
の帯電トナーの静電搬送装置において、最初に前記静電
搬送用電極の断線を検出した場合、断線した前記静電搬
送用電極を挟む両側の正常な前記静電搬送用電極の間で
前記トナーを正規の搬送方向に加速する静電界が形成さ
れるときに前記共通電極に前記電圧を印加するものであ
る。
According to an eleventh aspect of the invention, in the electrostatic transport device for charged toner according to the tenth aspect, when the disconnection of the electrostatic transport electrode is first detected, the disconnected electrostatic transport electrode is sandwiched. The voltage is applied to the common electrode when an electrostatic field that accelerates the toner in the normal transport direction is formed between the normal electrostatic transport electrodes on both sides.

【0018】請求項12に係る発明は、請求項10記載
の帯電トナーの静電搬送装置において、複数の前記静電
搬送用電極の断線を検出した場合、最多数の断線した前
記静電搬送用電極で、該静電搬送用電極を囲む両側の正
常な前記静電搬送用電極の間で前記トナーを正規の搬送
方向に加速する静電界が形成されるときに前記共通電極
に前記電圧を印加するものである。
According to a twelfth aspect of the invention, in the electrostatic transport device for charged toner according to the tenth aspect, when disconnection of a plurality of the electrostatic transport electrodes is detected, the largest number of disconnected electrostatic transport electrodes are used. The voltage is applied to the common electrode when an electrostatic field that accelerates the toner in the normal transport direction is formed between the normal electrodes for electrostatic transport on both sides surrounding the electrode for electrostatic transport by the electrodes. To do.

【0019】[0019]

【発明の実施の形態】まず、本発明を応用した画像形成
装置の一例について説明する。この画像形成装置は、図
1に示すような複写機である。像担持体としてのドラム
状感光体1は、図示しない駆動部により時計回り方向に
回転駆動される。コンタクトガラス2上に原稿を載置し
て図示しないプリントスタートスイッチを押すと、原稿
照明光源3とミラー4とを含む走査光学系5と、ミラー
6,7を含む走査光学系8が移動して原稿画像の読み取
りが行われる。この場合、コンタクトガラス2上の原稿
が原稿照明光源3により照明され、その反射光がミラー
4、6、7及びレンズ9を介して画像読み取り素子10
で受光されて読み込まれる。
BEST MODE FOR CARRYING OUT THE INVENTION First, an example of an image forming apparatus to which the present invention is applied will be described. This image forming apparatus is a copying machine as shown in FIG. The drum-shaped photosensitive member 1 as an image carrier is rotationally driven in the clockwise direction by a driving unit (not shown). When a document is placed on the contact glass 2 and a print start switch (not shown) is pressed, the scanning optical system 5 including the document illumination light source 3 and the mirror 4 and the scanning optical system 8 including the mirrors 6 and 7 are moved. The original image is read. In this case, the document on the contact glass 2 is illuminated by the document illumination light source 3, and the reflected light thereof is transmitted through the mirrors 4, 6, 7 and the lens 9 to the image reading element 10.
Is received by and read.

【0020】画像読み取り素子10からの画像信号は、
図示しない回路でデジタル化されて所定の画像処理がな
され、露光手段へ送られる。この露光手段は、例えばレ
ーザ光学系を有する書き込み手段が用いられ、上記画像
処理後の画像信号によりレーザ光源であるレーザダイオ
ード(以下LDという)を駆動して該LDからのレーザ
光をポリゴンミラー13で反射した後にミラー14を介
して感光体1上に照射する。
The image signal from the image reading element 10 is
It is digitized by a circuit (not shown), is subjected to predetermined image processing, and is sent to the exposure means. As the exposing means, for example, a writing means having a laser optical system is used, and a laser diode (hereinafter referred to as an LD), which is a laser light source, is driven by the image signal after the image processing, and the laser light from the LD is reflected by the polygon mirror 13. After being reflected by, the photoconductor 1 is irradiated with the light through the mirror 14.

【0021】感光体1は、帯電装置15によって一様に
帯電され、上記レーザ光により露光されて表面に静電潜
像が形成される。この感光体1の表面の静電潜像は、現
像装置16によって現像され、トナー像として可視像化
される。一方、給紙部17Aまたは17Bから給紙コロ
18Aまたは18Bにより記録材としての転写紙19が
給紙され、この転写紙は転写手段としての転写チャージ
ャ20により感光体1上のトナー像が転写される。
The photoconductor 1 is uniformly charged by the charging device 15 and is exposed by the laser beam to form an electrostatic latent image on the surface. The electrostatic latent image on the surface of the photoconductor 1 is developed by the developing device 16 and visualized as a toner image. On the other hand, a transfer paper 19 as a recording material is fed from a paper feed section 17A or 17B by a paper feed roller 18A or 18B, and the toner image on the photoconductor 1 is transferred to this transfer paper by a transfer charger 20 as a transfer means. It

【0022】このトナー像が転写された転写紙19は、
分離手段としての分離チャージャ21により感光体1の
表面より分離されて搬送ベルト22によって搬送され、
定着装置23でトナー像が定着された後に機外の排紙ト
レイ24へ排紙される。転写後に感光体1の表面に残留
しているトナーはクリーニング装置25によって除去さ
れ、感光体1の表面に残留している電荷は除電ランプ2
6によって消去される。
The transfer paper 19 on which the toner image is transferred is
It is separated from the surface of the photoconductor 1 by a separation charger 21 as a separating means and is conveyed by a conveyor belt 22,
After the toner image is fixed by the fixing device 23, the toner image is discharged to the discharge tray 24 outside the machine. The toner remaining on the surface of the photoconductor 1 after the transfer is removed by the cleaning device 25, and the electric charge remaining on the surface of the photoconductor 1 is removed by the discharging lamp 2.
Erased by 6.

【0023】次に、上記現像装置16を図2乃至図5に
基づいて詳細に説明する。現像装置16は、図2に示す
ように、トナー静電搬送方向へ複数の静電搬送用電極が
配列されてなる静電搬送用電極列を有していて帯電トナ
ーを静電力で搬送するとともに、感光体1の近傍でトナ
ーを静電力でポンピングさせる絶縁基板である静電搬送
基板31と、トナーボックス32と、このトナーボック
ス32から静電搬送基板31に帯電トナーを送り込むフ
レキシブル静電搬送基板33と、トナー静電搬送方向へ
配列された複数の共通電極を有していて静電搬送基板3
1の一部に対向するように設けられた共通電極基板60
と、この共通電極基板60の共通電極にトナーの正規の
帯電極性と同極性の電圧を印加し、複数の静電搬送用電
極中のいずれかの静電搬送用電極が断線した時にトナー
の正規の帯電極性と逆極性の電圧(ここでは正極性の電
圧)を一時的に印加する電源62と、トナーボックス3
2に供給されるトナーを帯電させる帯電ローラ34と、
この帯電ローラ34の周面に接触する帯電ブレード35
と、トナーボックス32へトナーを供給するトナー供給
部36と、このトナー供給部36内のトナーを攪拌する
トナー供給スクリュー37と、静電搬送基板31を外れ
たトナーを回収してトナーボックス32に戻すトナー回
収部38と、静電搬送基板31の静電搬送用電極に対し
てトナー静電搬送及びトナーポンピングのための駆動波
形(5〜100V程度)を印加する駆動手段としての第
1駆動回路41及び第2駆動回路42等を有している。
Next, the developing device 16 will be described in detail with reference to FIGS. As shown in FIG. 2, the developing device 16 has an electrostatic transport electrode array in which a plurality of electrostatic transport electrodes are arranged in the toner electrostatic transport direction, and transports the charged toner by electrostatic force. , An electrostatic transport substrate 31 which is an insulating substrate for pumping toner in the vicinity of the photoconductor 1 by electrostatic force, a toner box 32, and a flexible electrostatic transport substrate for feeding charged toner from the toner box 32 to the electrostatic transport substrate 31. 33, and a plurality of common electrodes arranged in the toner electrostatic transport direction.
Common electrode substrate 60 provided so as to face a part of
Then, a voltage having the same polarity as the normal charging polarity of the toner is applied to the common electrode of the common electrode substrate 60, and when any one of the plurality of electrostatic transfer electrodes is broken, the toner is normally transferred. The toner box 3 and a power source 62 for temporarily applying a voltage having a polarity opposite to the charging polarity (here, a positive voltage).
A charging roller 34 that charges the toner supplied to
The charging blade 35 that contacts the peripheral surface of the charging roller 34
A toner supply unit 36 for supplying toner to the toner box 32; a toner supply screw 37 for stirring the toner in the toner supply unit 36; and a toner detached from the electrostatic transport substrate 31 to be collected in the toner box 32. A first drive circuit as a drive unit that applies a drive waveform (about 5 to 100 V) for electrostatic toner transport and toner pumping to the toner recovery unit 38 for returning and the electrostatic transport electrodes of the electrostatic transport substrate 31. 41 and the 2nd drive circuit 42 grade.

【0024】感光体1と静電搬送基板31との間にはD
C電源43より、現像バイアス電圧であるDCバイアス
(100〜200V程度)が印加される。静電搬送基板
31は、図3に示すように、感光体1の軸方向に感光体
1と略同じ幅を有する支持基板51と、この支持基板5
1の上にトナー静電搬送方向へ配列された多数の静電搬
送用電極52と、この静電搬送用電極52の表面を覆う
薄肉の絶縁層53と、この絶縁層53の表面に設けられ
た表面コート層54とを有している。
D is provided between the photosensitive member 1 and the electrostatic transport substrate 31.
A DC bias (about 100 to 200 V), which is a developing bias voltage, is applied from the C power source 43. As shown in FIG. 3, the electrostatic transport substrate 31 includes a support substrate 51 having a width substantially equal to that of the photoconductor 1 in the axial direction of the photoconductor 1, and the support substrate 5.
1. A large number of electrostatic carrying electrodes 52 arranged in the direction of electrostatic carrying of toner on one surface, a thin insulating layer 53 covering the surface of the electrostatic carrying electrodes 52, and a surface of the insulating layer 53. And a surface coating layer 54.

【0025】各静電搬送用電極52は、図4に示すよう
に、感光体1の軸方向に平行に延びており、感光体1の
軸方向と直交するトナー静電搬送方向において所定の間
隔で配設されている。表面コート層54はトナーとの接
触を低減するために設けられている。支持基板51とし
ては、ガラス基板、樹脂基板あるいはセラミック基板等
の絶縁性材料からなる基板、あるいは、SUSなどの導
電性材料からなる基板にSiO2 等の絶縁膜を成膜した
ものを用いることができる。静電搬送用電極52は、支
持基板51上にAl、Ni−Cr等の導電性材料を0.
1〜0.2μm厚で成膜し、これをフォトリソ技術等の
半導体技術を用いて電極形状にパターン化している。
As shown in FIG. 4, each electrostatic carrying electrode 52 extends parallel to the axial direction of the photoconductor 1 and has a predetermined interval in the toner electrostatic carrying direction orthogonal to the axial direction of the photoconductor 1. It is installed in. The surface coat layer 54 is provided to reduce contact with toner. As the supporting substrate 51, a substrate made of an insulating material such as a glass substrate, a resin substrate or a ceramic substrate, or a substrate made of a conductive material such as SUS and having an insulating film such as SiO 2 formed thereon is used. it can. The electrostatic transfer electrode 52 is made of a conductive material such as Al or Ni—Cr on the support substrate 51.
A film having a thickness of 1 to 0.2 μm is formed, and this is patterned into an electrode shape using a semiconductor technique such as a photolithography technique.

【0026】各静電搬送用電極52の間隔はトナー径の
2〜10倍であることが良好なトナー搬送速度とトナー
搬送量を確保するために好ましい。また、トナー搬送方
向における静電搬送用電極52の幅はトナー径の1〜3
倍であることが良好なトナー搬送速度とトナー搬送量を
確保するために好ましい。
The distance between the electrostatic transport electrodes 52 is preferably 2 to 10 times the toner diameter in order to secure a good toner transport speed and toner transport amount. Further, the width of the electrostatic carrying electrode 52 in the toner carrying direction is 1 to 3 of the toner diameter.
It is preferable that the number of times is twice in order to secure a good toner conveyance speed and a toner conveyance amount.

【0027】絶縁層53としては、例えばSiO2 、S
iON、TiN、Ta25 などを厚さ0.1μm以下
で成膜して形成している。絶縁層53として比誘電率の
大きな材料を用いることによって、静電搬送用電極52
の駆動電圧の低電圧化を図ることができるとともに、ト
ナーの駆動反跳と搬送速度が大きくなる。表面コート層
54は、トナー搬送面と帯電トナー界面との接触抵抗の
低減を図る機能を有する膜であり、例えばPTFE、P
FAなどのフッ素系樹脂材料を0.1〜0.3μm厚で
コートして形成している。
As the insulating layer 53, for example, SiO 2 , S
iON, TiN, Ta 2 O 5 and the like are formed to a thickness of 0.1 μm or less. By using a material having a large relative dielectric constant as the insulating layer 53, the electrostatic transport electrode 52
It is possible to lower the driving voltage of the toner, and the driving recoil and the conveyance speed of the toner are increased. The surface coat layer 54 is a film having a function of reducing the contact resistance between the toner transport surface and the charged toner interface, and is, for example, PTFE or P.
It is formed by coating a fluorine-based resin material such as FA to a thickness of 0.1 to 0.3 μm.

【0028】フレキシブル静電搬送基板33は、静電搬
送基板31と基本的構成は同様であるが、図5に示すよ
うに、支持基板及び絶縁層を兼ねた絶縁性のFPC基板
61に多数の電極62aを所定の間隔で配設し、FPC
基板61のトナー搬送面側に表面コート層64を成膜し
たものである。
The flexible electrostatic transfer substrate 33 has the same basic structure as the electrostatic transfer substrate 31, but as shown in FIG. 5, a large number of insulating FPC boards 61 also function as a supporting board and an insulating layer. The electrodes 62a are arranged at predetermined intervals, and the FPC
The surface coat layer 64 is formed on the toner carrying surface side of the substrate 61.

【0029】第1駆動回路41は、図5に示すように、
静電搬送基板31の主としてトナーの静電搬送を行う領
域55においてトナー静電搬送方向に順次に連続して配
列されている3本ずつの静電搬送用電極52,52,5
2を1セットとして、各3本ずつの静電搬送用電極52
に複数相(ここでは3相)のパルス状駆動電圧(駆動波
形)Va1、Vb1、Vc1をそれぞれ印加する。同じ
く第2駆動回路42は、静電搬送基板31の主としてト
ナーポンピングを行う領域56においてトナー静電搬送
方向に順次に連続して配列されている3本ずつの電極5
2,52,52を1セットとして、各3本ずつの電極5
2に複数相(ここでは3相)のパルス状駆動電圧(駆動
波形)Va2、Vb2、Vc2をそれぞれ印加する。第
1駆動回路41、第2駆動回路42によるパルス状駆動
電圧は、例えば6相としてもよい。
The first drive circuit 41, as shown in FIG.
Electrostatic transfer electrodes 52, 52, 5 are arranged in sequence in the toner electrostatic transfer direction in the area 55 of the electrostatic transfer substrate 31 where toner is electrostatically transferred.
2 as one set, and three electrostatic transfer electrodes 52 each
A plurality of pulse drive voltages (driving waveforms) Va1, Vb1 and Vc1 of three phases (here, three phases) are applied to each. Similarly, the second drive circuit 42 includes three electrodes 5 arranged in sequence in the toner electrostatic transport direction in the area 56 where toner pumping is mainly performed on the electrostatic transport substrate 31.
2, 52, 52 are one set, and three electrodes 5 each
A plurality of pulse driving voltages (driving waveforms) Va2, Vb2, and Vc2 having a plurality of phases (three phases in this case) are applied to No. 2 respectively. The pulsed drive voltage by the first drive circuit 41 and the second drive circuit 42 may be, for example, 6-phase.

【0030】第1駆動回路41はパルス状駆動電圧(駆
動波形)Va1、Vb1、Vc1を第1駆動周波数f1
で出力し、第2駆動回路42はパルス状駆動電圧(駆動
波形)Va2、Vb2、Vc2を第1駆動周波数f1よ
りも高くてトナーがポンピングを生じる第2駆動周波数
f2(f2>F1)で出力する。具体的には、第1駆動
周波数f1は1KHz〜20KHzの範囲内で、第2駆
動周波数f2は18KHz〜45KHzの範囲内で、使
用するトナー径の範囲、求めるトナー静電搬送速度、ポ
ンピングの程度などに応じて選択することが好ましい。
The first drive circuit 41 supplies pulsed drive voltages (drive waveforms) Va1, Vb1, Vc1 to the first drive frequency f1.
The second drive circuit 42 outputs the pulsed drive voltages (drive waveforms) Va2, Vb2, Vc2 at a second drive frequency f2 (f2> F1) at which the toner is pumped higher than the first drive frequency f1. To do. Specifically, the first drive frequency f1 is in the range of 1 KHz to 20 KHz, the second drive frequency f2 is in the range of 18 KHz to 45 KHz, the range of toner diameter to be used, the toner electrostatic transport speed to be obtained, and the degree of pumping. It is preferable to select according to the above.

【0031】共通電極基板60は、図5に示すように、
静電搬送基板31の主としてトナー静電搬送を行う領域
55を所定の間隔をおいて覆うように設けられており、
図示しないが、静電搬送基板31と同様の支持基板と、
この支持基板の静電搬送基板31と対向する面全体にト
ナー静電搬送方向へ一定の間隔をおいて配列された複数
の共通電極を有している。
The common electrode substrate 60, as shown in FIG.
It is provided so as to cover a region 55 of the electrostatic transport substrate 31 which mainly performs electrostatic transport of toner at a predetermined interval.
Although not shown, a supporting substrate similar to the electrostatic transport substrate 31,
A plurality of common electrodes arranged at regular intervals in the toner electrostatic transport direction are provided on the entire surface of the support substrate facing the electrostatic transport substrate 31.

【0032】次に、図6乃至図8に基づいて、現像装置
16によるトナーの静電搬送及びポンピング動作を説明
する。まず、図6に示すように、第1駆動回路41及び
第2駆動回路42は、グランドGと正の電圧+との間で
変化するパルス状駆動波形Va1、Vb1、Vc1、V
a2、Vb2、Vc2(以下Va、Vb、Vcという)
をそのタイミングをずらして出力する。このとき、図7
に示すように、静電搬送基板31上には負帯電したトナ
ーTがあり、静電搬送基板31の連続した複数の静電搬
送用電極52に第1駆動回路41から図7で示すよう
にそれぞれ「G(グランド)」、「G」、「+(正の電
圧)」、「G」、「G」が印加されたとすると、負帯電
のトナーTは「+」が印加された静電搬送用電極52の
上に位置する。
Next, the electrostatic conveyance and pumping operation of toner by the developing device 16 will be described with reference to FIGS. First, as shown in FIG. 6, the first drive circuit 41 and the second drive circuit 42 have pulse-shaped drive waveforms Va1, Vb1, Vc1, and V that change between the ground G and the positive voltage +.
a2, Vb2, Vc2 (hereinafter referred to as Va, Vb, Vc)
Is output with the timing shifted. At this time,
As shown in FIG. 7, there is negatively charged toner T on the electrostatic transport substrate 31, and a plurality of continuous electrostatic transport electrodes 52 of the electrostatic transport substrate 31 are connected to the first drive circuit 41 from the first drive circuit 41 as shown in FIG. If “G (ground)”, “G”, “+ (positive voltage)”, “G”, and “G” are respectively applied, the negatively charged toner T is electrostatically conveyed to which “+” is applied. It is located on the electrode 52 for.

【0033】次のタイミングで複数の静電搬送用電極5
2には図7に示すようにそれぞれ「+」、「G」、
「G」、「+」、「G」が印加され、負帯電のトナーT
には図7中左側の「G」の静電搬送用電極52との間で
反発力が作用して図7中右側の「+」が印加された静電
搬送用電極52との間で吸引力が作用する。このため、
トナーTは「+」が印加された静電搬送用電極52側に
移動する。さらに次のタイミングで複数の静電搬送用電
極52には図7に示すようにそれぞれ「G」、
「+」、「G」、「G」、「+」が印加され、トナーT
は同様に左右の静電搬送用電極52との間で反発力、吸
引力が作用してさらに「+」が印加された静電搬送用電
極52側に移動する。
At the next timing, a plurality of electrostatic transfer electrodes 5 are formed.
2, as shown in FIG. 7, “+”, “G”,
"G", "+", and "G" are applied, and the toner T is negatively charged.
7, a repulsive force acts between the electrostatic transfer electrode 52 on the left side in FIG. 7 and the electrostatic transfer electrode 52 to which “+” is applied on the right side in FIG. Power acts. For this reason,
The toner T moves to the electrostatic transporting electrode 52 side to which “+” is applied. Further, at the next timing, as shown in FIG.
“+”, “G”, “G”, and “+” are applied to the toner T
Similarly, the repulsive force and the attraction force act between the left and right electrostatic transport electrodes 52, and the electrostatic transport electrodes 52 further move to the electrostatic transport electrode 52 side to which “+” is applied.

【0034】このように静電搬送用電極52に印加する
駆動波形の電位を変化させて見かけ上駆動波形を移動さ
せることによって、トナーTは「+」が印加された静電
搬送用電極52側に引かれながら移動するので、静電搬
送基板31のトナー静電搬送面に沿ってトナーTが搬送
される。なお、正帯電トナーの場合には駆動波形の変化
パターンを逆にすることでトナーを静電搬送できる。
By thus changing the potential of the drive waveform applied to the electrostatic transport electrode 52 to apparently move the drive waveform, the toner T is applied to the electrostatic transport electrode 52 side to which "+" is applied. Since the toner T moves while being pulled by, the toner T is transported along the electrostatic toner transport surface of the electrostatic transport substrate 31. In the case of positively charged toner, the toner can be electrostatically conveyed by reversing the change pattern of the drive waveform.

【0035】静電搬送基板31の静電搬送用電極52に
印加するパルス状駆動波形の駆動周波数を高くするに従
って、トナーの移動速度(静電搬送速度)も速くなる
が、トナーTが「+」の静電搬送用電極52に移動しよ
うとするときにその静電搬送用電極52が「G」に変化
すると、トナーTはその静電搬送用電極52のさらに次
の静電搬送用電極52に移動しようとして飛び跳ねるポ
ンピング現象が発生する。
As the drive frequency of the pulse-shaped drive waveform applied to the electrostatic transfer electrode 52 of the electrostatic transfer substrate 31 is increased, the moving speed of the toner (electrostatic transfer speed) is also increased, but the toner T is "+". When the electrostatic transfer electrode 52 changes to “G” when the electrostatic transfer electrode 52 moves to the electrostatic transfer electrode 52, the toner T is further transferred to the electrostatic transfer electrode 52. There is a pumping phenomenon that jumps when trying to move to.

【0036】実験によると、静電搬送基板31の静電搬
送用電極52に印加するパルス状駆動波形の駆動周波数
が1KHz〜20KHzの範囲内ではトナーTは主とし
て搬送され、静電搬送基板31の静電搬送用電極52に
印加するパルス状駆動波形の駆動周波数が18KHz〜
45KHzの範囲内では、トナーTのポンピング現象が
大きくなった。この場合、駆動周波数の一部が重複して
いるのは、ポンピング現象の発生がトナー粒径、駆動電
圧などにも影響されるためである。
According to experiments, the toner T is mainly transported within the range of 1 KHz to 20 KHz in the drive frequency of the pulse-shaped drive waveform applied to the electrostatic transport electrode 52 of the electrostatic transport substrate 31, and the toner T of the electrostatic transport substrate 31 is transported. The drive frequency of the pulse-shaped drive waveform applied to the electrostatic transport electrode 52 is 18 KHz to
In the range of 45 KHz, the toner T pumping phenomenon became large. In this case, the driving frequencies partially overlap because the occurrence of the pumping phenomenon is affected by the toner particle size, the driving voltage, and the like.

【0037】本複写機では、第1駆動回路41から静電
搬送基板31の主としてトナー静電搬送を行う領域55
の静電搬送用電極52,52,52・・・に対して1K
Hz〜20KHzの第1駆動周波数f1のパルス状駆動
電圧(駆動波形)Va1、Vb1、Vc1をそれぞれ印
加することにより、トナーTを静電搬送基板31のトナ
ー静電搬送面に沿って感光体1の近傍に搬送する。
In the present copying machine, the area 55 where the toner is electrostatically transported from the first drive circuit 41 to the electrostatic transport substrate 31 is mainly used.
1K for the electrostatic transfer electrodes 52, 52, 52 ...
By applying pulsed driving voltages (driving waveforms) Va1, Vb1, and Vc1 having a first driving frequency f1 of Hz to 20 KHz, the toner T is moved along the toner electrostatic transport surface of the electrostatic transport substrate 31 by the photosensitive member 1. To the vicinity of.

【0038】第2駆動回路42から静電搬送基板31の
感光体1の近傍の領域56(現像部)の静電搬送用電極
52,52,52・・・に対して18KHz〜45KH
zの第2駆動周波数f2のパルス状駆動電圧(駆動波
形)Va2、Vb2、Vc2をそれぞれ印加すること
で、図8に示すように、感光体1の近傍でトナーTをポ
ンピングさせて感光体1上の静電潜像を現像する。
18 KHz to 45 KH from the second drive circuit 42 to the electrostatic transfer electrodes 52, 52, 52, ... In a region 56 (developing portion) of the electrostatic transfer substrate 31 near the photosensitive member 1.
By applying the pulsed drive voltages (drive waveforms) Va2, Vb2, and Vc2 of the second drive frequency f2 of z respectively, the toner T is pumped in the vicinity of the photoconductor 1 as shown in FIG. Develop the electrostatic latent image on top.

【0039】ポンピングするトナーTの中には、トナー
Tの正規の静電搬送方向に対して逆反跳するトナーTも
あるが、全体として正規のトナー静電搬送方向にゆっく
りと搬送される。実験によると、ポンピングしているト
ナーは、50μm〜300μm程静電搬送基板31上で
ポンピング現象をしているが、さらに感光体1と静電搬
送基板31との間のDCバイアスにより、ポンピングし
ているトナーが加速されて500μm〜1mmまでポン
ピングが拡散することを確認している。なお、図8では
共通電極基板60を省略している。
Among the toners T to be pumped, there is the toner T that recoils in the normal electrostatic conveyance direction of the toner T, but as a whole, it is slowly conveyed in the normal toner electrostatic conveyance direction. According to an experiment, the toner being pumped exhibits a pumping phenomenon on the electrostatic transport substrate 31 by about 50 μm to 300 μm, but is further pumped by the DC bias between the photoconductor 1 and the electrostatic transport substrate 31. It has been confirmed that the toner being accelerated is accelerated and the pumping spreads to 500 μm to 1 mm. The common electrode substrate 60 is omitted in FIG.

【0040】トナーの静電搬送中に、静電搬送基板31
の主としてトナー静電搬送を行う領域55の静電搬送用
電極52,52,52・・・のいずれかが断線した場合
には、電源62が共通電極基板60の共通電極にトナー
の正規の帯電極性とは逆極性の電圧を短時間印加する。
このため、断線した静電搬送用電極に滞留したトナーは
共通電極の方向に瞬時浮かせられ、均一なトナー静電搬
送が継続されることになる。
During the electrostatic transport of toner, the electrostatic transport substrate 31
When any of the electrostatic carrying electrodes 52, 52, 52 ... In the area 55 for carrying toner electrostatically is disconnected, the power source 62 causes the common electrode of the common electrode substrate 60 to be charged with the regular toner. A voltage having the opposite polarity to the polarity is applied for a short time.
For this reason, the toner staying on the broken electrostatic-transporting electrode is instantly floated toward the common electrode, and the uniform toner electrostatic transport is continued.

【0041】断線した静電搬送用電極による滞留トナー
を共通電極の方向に瞬時浮かせて均一なトナー静電搬送
を継続させる点について実験及び本発明の実施例に基づ
いて以下に具体的に説明する。まず、実験について説明
する。ガラス基板上に、幅10μm、長さ50mmのネ
サ電極群からなる静電搬送用電極列を、静電搬送用電極
間間隔20μmで300本形成して静電搬送基板を作製
し、トナー静電搬送方向に配列されているネサ電極を3
本ごとに同一の電源につなげることで3つの電源につな
げた。この3つの電源を電源A,B,Cとする。試作の
一成分現像器で、平均帯電量−15μC/gに帯電させ
た平均粒径8.0μmの電子写真用乾式トナーを、上記
ガラス基板の一端に静電搬送用電極列の一部を覆うよう
に置き、電源A,B,Cの電圧を100μsecごと
に、300μsecの周期で、それぞれ(+100V、
+100V、0V)、(+100V、0V、+100
V)、(0V、+100V、+100V)と切り替えた
ところ、トナーは200mm/secの速度で静電搬送
基板上を一端側から他端側へ移動した。
The fact that the accumulated toner due to the broken electrostatic transporting electrode is momentarily floated in the direction of the common electrode to continue the uniform electrostatic transport of toner will be specifically described below based on experiments and examples of the present invention. . First, the experiment will be described. On the glass substrate, 300 electrostatic discharge electrode rows consisting of a NES electrode group having a width of 10 μm and a length of 50 mm are formed at an interval of 20 μm between the electrostatic transfer electrodes to prepare an electrostatic transfer substrate. 3 Nesa electrodes arranged in the transport direction
By connecting each book to the same power source, we connected them to three power sources. These three power supplies are referred to as power supplies A, B, and C. In a trial one-component developing device, a dry toner for electrophotography having an average particle size of 8.0 μm charged to an average charge amount of −15 μC / g was covered on one end of the glass substrate to cover a part of the electrode column for electrostatic transport. And the voltages of the power supplies A, B, and C every 100 μsec at a cycle of 300 μsec (+100 V,
+ 100V, 0V), (+ 100V, 0V, +100
V), (0 V, +100 V, +100 V), the toner moved from one end side to the other end side on the electrostatic transport substrate at a speed of 200 mm / sec.

【0042】このトナーの移動状態を高速度カメラで撮
影してスロー再生し、トナーの動きを研究したところ、
僅かではあるが、一部のトナーが上方に飛散して浮遊す
るのが確認された。飛散・浮遊トナーは、複写機やプリ
ンタの機内を汚し、複写機やプリンタの誤動作や画像の
汚れの原因になる。また、飛散・浮遊トナーは、複写機
やプリンタの機外に排出された場合には人間の健康にも
悪影響を与える可能性があるので、排除しなければなら
ない。従来、各種の方法で浮遊トナーの回収が行われて
きたが、浮遊トナーを元から発生させないのが浮遊トナ
ーに対する一番よい対策である。
When the moving state of the toner is photographed by a high speed camera and is reproduced in slow motion, the movement of the toner is studied.
It was confirmed that a part of the toner was scattered and floated up, though it was a little. The scattered / floating toner stains the inside of the copying machine or the printer and causes malfunction of the copying machine or the printer or stains on the image. Further, the scattered / floating toner may have an adverse effect on human health when discharged outside the copying machine or printer, and thus must be eliminated. Conventionally, the floating toner has been collected by various methods, but the best countermeasure against the floating toner is to prevent the floating toner from being originally generated.

【0043】そこで、静電搬送基板から0.05〜0.
1mm離してガラス板をおいた。これで、トナーの飛散
・浮遊は防止できたが、しばらく使っていると静電搬送
基板から離して置いたガラス板がトナーで真っ黒にな
り、そのトナーが時々静電搬送基板上に落下してそこだ
けトナー静電搬送ができなくなって、スジ状にトナーの
無い部分ができた。
Therefore, 0.05 to 0.
A glass plate was placed 1 mm apart. With this, it was possible to prevent the toner from scattering and floating, but after using it for a while, the glass plate placed away from the electrostatic transport substrate became black with toner, and the toner sometimes dropped onto the electrostatic transport substrate. Only that part of the toner could not be electrostatically conveyed, and a stripe-free portion was formed.

【0044】そこで、ただのガラス板の代わりに、片面
に共通電極としてネサ電極を有するガラス板を、その電
極面を下向けにして、すなわち、静電搬送基板に対向す
るようにして、同様に静電搬送基板から0.1mm離し
て置き、共通電極に−20V〜−50Vを印加したとこ
ろ、飛散浮遊トナーが大幅に減少するのが確認された。
Therefore, instead of a simple glass plate, a glass plate having a Nesa electrode as a common electrode on one surface thereof is arranged with its electrode surface facing downward, that is, facing the electrostatic carrier substrate. It was confirmed that when scattered by 0.1 mm from the electrostatic transport substrate and -20 V to -50 V was applied to the common electrode, the amount of scattered floating toner was significantly reduced.

【0045】この実験中、共通電極に印加する電圧の極
性をたまたま間違えて逆にしたところ、多くのトナーが
静電搬送用電極列の形成された静電搬送基板から共通電
極に飛来して付着したが、同時に、断線した静電搬送用
電極付近に滞留していたトナーがかなり無くなっている
のが分かった。
During this experiment, when the polarity of the voltage applied to the common electrode was accidentally reversed and was reversed, a large amount of toner jumped from the electrostatic transport substrate on which the electrostatic transport electrode array was formed and adhered to the common electrode. However, at the same time, it was found that the toner that had accumulated in the vicinity of the broken electrostatic-transporting electrode was substantially gone.

【0046】本来、静電搬送用電極の断線はあってはな
らないことであるが、静電搬送用電極列の幅が10μm
と非常に狭いため、時に静電搬送用電極の断線が起こっ
てしまう。そのとき、断線した静電搬送用電極付近でト
ナーの滞留が起こり、最後には、トナーの流れが断線し
た静電搬送用電極付近で完全にせき止められてしまっ
た。
Originally, the electrostatic transfer electrodes should not be broken, but the width of the electrostatic transfer electrode array is 10 μm.
Since it is extremely narrow, the electrodes for electrostatic transport sometimes break. At that time, toner stayed near the broken electrostatic transport electrode, and finally, the toner flow was completely stopped near the broken electrostatic transport electrode.

【0047】偶然のことながら、トナーの正規の帯電極
性とは逆極性の正電圧を共通電極に印加すると、断線し
た静電搬送用電極付近で滞留していたトナーが減少する
ことがわかったので、共通電極に短時間印加する、トナ
ーの正規の帯電極性とは逆極性の正の電圧は、以下「滞
留トナー解消パルス」、略して「解消パルス」と呼ぶ。
この解消パルスの高さ、幅、印加タイミングを本発明の
実施例1においていろいろふって(変えて)実験した。
Coincidentally, it was found that when a positive voltage having a polarity opposite to the normal charging polarity of the toner is applied to the common electrode, the toner staying near the broken electrostatic carrying electrode is reduced. The positive voltage, which is applied to the common electrode for a short time and has a polarity opposite to the normal charging polarity of the toner, is hereinafter referred to as "staying toner elimination pulse", or "elimination pulse" for short.
Experiments were carried out by varying (changing) the height, width, and application timing of this elimination pulse in Example 1 of the present invention.

【0048】この実験の目的は、極力共通電極まで飛翔
して共通電極に付着するトナーを発生させずに、断線し
た静電搬送用電極で滞留したトナーをほぐして移動させ
ることである。本発明の実施例1では、上記実験のよう
に、ガラス基板上に、幅10μm、長さ50mmのネサ
電極群からなる静電搬送用電極列をトナー静電搬送方向
へ電極間間隔20μmで300本形成して絶縁基板とし
ての静電搬送基板を作製し、上記静電搬送用電極をトナ
ー静電搬送方向へ3本ごとに同一の電源につなげること
により3つの電源につなげた。この3つの電源を電源
A,B,Cとする。試作の一成分現像器で、平均帯電量
−15μC/gに帯電させた平均粒径8.0μmの電子
写真用乾式トナーを、上記静電搬送基板の一端に静電搬
送用電極列の一部を覆うように置き、電源A,B,Cの
電圧を100μsecごとに、300μsecの周期
で、それぞれ(+100V、+100V、0V)、(+
100V、0V、+100V)、(0V、+100V、
+100V)と切り替え、トナーを200mm/sec
の速度で静電搬送基板上を一端側から他端側へ移動させ
た。
The purpose of this experiment is to loosen and move the stagnant toner at the broken electrostatic carrying electrode without causing the toner to fly to the common electrode and adhere to the common electrode as much as possible. In Example 1 of the present invention, as in the above experiment, an electrostatic transfer electrode array composed of a NESA electrode group having a width of 10 μm and a length of 50 mm was formed on the glass substrate in the toner electrostatic transfer direction at an electrode interval of 20 μm for 300 times. An electrostatic transport substrate as an insulating substrate was formed by this formation, and the electrostatic transport electrodes were connected to three power sources by connecting the same power source to each of the three in the toner electrostatic transport direction. These three power supplies are referred to as power supplies A, B, and C. Using a trial one-component developing device, dry toner for electrophotography having an average particle size of 8.0 μm, which was charged to an average charge amount of −15 μC / g, was provided on one end of the electrostatic transport substrate with a part of an electrode column for electrostatic transport. The power supplies A, B, and C at intervals of 100 μsec at a cycle of 300 μsec (+100 V, +100 V, 0 V), (+
100V, 0V, + 100V), (0V, + 100V,
+ 100V) and toner is 200mm / sec
The electrostatic transfer substrate was moved from one end side to the other end side at the speed of.

【0049】片面に共通電極としてネサ電極を有するガ
ラス板を、その電極面を下向けにして、すなわち、静電
搬送基板に対向するようにして静電搬送基板から0.1
mm離して置き、共通電極に電源から−20V〜−50
Vを印加して飛散浮遊トナーを減少させた。また、静電
搬送用電極が断線した場合、電源から共通電極に解消パ
ルスを印加することにより、断線した静電搬送用電極で
滞留したトナーをほぐして移動させた。
A glass plate having a NESA electrode as a common electrode on one side thereof is placed 0.1% from the electrostatic transport substrate so that the electrode surface faces downward, that is, the electrostatic transport substrate faces.
mm apart, and -20V to -50V from the power source to the common electrode
V was applied to reduce the scattered airborne toner. Further, in the case where the electrostatic transport electrode is broken, a canceling pulse is applied from the power supply to the common electrode to loosen and move the accumulated toner on the broken electrostatic transport electrode.

【0050】この実施例1において、断線した静電搬送
用電極がある静電搬送電極基板に少量のトナーを載せ、
静電搬送電極基板から0.05mm離れた共通電極に電
源から−20Vを印加した状態で、約1.2msecの
間、トナーを通常に静電搬送させて断線している静電搬
送用電極にトナーを滞留させた後、共通電極に電源から
解消パルスを印加し、また電源から共通電極に印加する
電圧を−20Vに戻した。その間のトナーの移動や飛翔
の状態を高速度カメラで撮影し、後で、そのスロー再生
を行って観察したところ、次のことが分かった。
In the first embodiment, a small amount of toner is placed on the electrostatic carrying electrode substrate having the broken electrostatic carrying electrode,
To the electrode for electrostatic transport which is normally electrostatically transporting the toner for about 1.2 msec while the electric power is applied to the common electrode 0.05 mm away from the electrostatic transport electrode substrate for about 1.2 msec. After the toner was retained, a cancellation pulse was applied to the common electrode from the power supply, and the voltage applied from the power supply to the common electrode was returned to -20V. During that time, the movement and flying state of the toner was photographed with a high-speed camera, and later, when the slow reproduction was performed and observed, the following was found.

【0051】当然のことながら、解消パルスの高さが高
く、解消パルスの幅が広いほど、断線した静電搬送用電
極で滞留したトナーは少なくなるが、共通電極に飛来し
て共通電極に付着するトナーも多くなった。共通電極に
付着するトナーがほとんど発生せず、かつ断線した静電
搬送用電極で滞留したトナーがほとんどなくなる解消パ
ルスの条件は、解消パルスのパルス高が+80V、解消
パルスのパルス幅が30μsecの時であった。
As a matter of course, as the height of the elimination pulse is higher and the width of the elimination pulse is wider, less toner stays on the broken electrostatic transport electrode, but it jumps to the common electrode and adheres to the common electrode. There is also a lot of toner that does. The condition of the elimination pulse is that the pulse height of the elimination pulse is +80 V and the pulse width of the elimination pulse is 30 μsec, in which almost no toner adheres to the common electrode and almost no toner stays on the broken electrostatic transport electrode. Met.

【0052】さらに、解消パルスは、タイミング的に
は、断線した静電搬送用電極の両側の静電搬送用電極の
電位がその片方が+100Vで、もう片方が0Vのとき
が、断線した静電搬送用電極で滞留したトナーを解消さ
せる上で効果的であった。特に、断線した静電搬送用電
極で滞留したトナーを解消して同時に搬送させるために
は、断線した静電搬送用電極よりトナー静電搬送方向の
静電搬送用電極の電位が+100Vの時が効果的であっ
た。
Further, in the timing of the elimination pulse, when the potentials of the electrostatic carrying electrodes on both sides of the broken electrostatic carrying electrode are +100 V on one side and 0 V on the other side, the broken electrostatic discharge is generated. It was effective in eliminating the toner accumulated in the transport electrodes. In particular, in order to eliminate the staying toner on the broken electrostatic carrying electrode and carry the toner at the same time, the potential of the electrostatic carrying electrode in the toner electrostatic carrying direction is +100 V from the broken electrostatic carrying electrode. It was effective.

【0053】静電搬送用電極列は、ところどころで断線
するのみならず、稀には隣り合った2本の静電搬送用電
極が断線することもあり、可能性としては非常に少ない
が、隣り合った3本の静電搬送用電極が同時に断線する
可能性もあり得る。
The electrostatic carrying electrode array is not only broken in places, but in rare cases, two adjacent electrostatic carrying electrodes are also broken, which is very unlikely. There is a possibility that the three matched electrostatic transport electrodes may be simultaneously broken.

【0054】そこで、静電搬送用電極を2本、3本と強
制的に断線させて同様の実験を行ったところ、すべて、
解消パルスのパルス高が+80V、解消パルスの幅が3
0μsecで、断線した静電搬送用電極による滞留トナ
ーがほとんど解消し、共通電極に付着したトナーもほと
んどなかった。
Therefore, the same experiment was carried out by forcibly disconnecting the electrostatic carrying electrodes from two to three, and all of them were
The pulse height of the cancellation pulse is + 80V and the width of the cancellation pulse is 3
At 0 μsec, almost all the staying toner due to the broken electrostatic transport electrode was eliminated, and almost no toner adhered to the common electrode.

【0055】実験について高速度カメラの映像(動画)
を提示できないので代わりに、同一条件で行ったシミュ
レーションの結果を、図9と図10に示す。図9は実施
例1において解消パルスを共通電極に印加しない場合で
あり、図10は実施例1において解消パルスを定期的に
共通電極に印加した場合である。高速度カメラで見る実
際の実験の方がトナーの数が多いが、基本的なトナーの
動きは図9、図10とよく似ている。
About experiment Video of high-speed camera (movie)
Therefore, the results of the simulation performed under the same conditions are shown in FIGS. 9 and 10. FIG. 9 shows the case where the elimination pulse is not applied to the common electrode in the first embodiment, and FIG. 10 shows the case where the elimination pulse is periodically applied to the common electrode in the first embodiment. Although the number of toner particles is larger in the actual experiment viewed with the high-speed camera, the basic toner movement is very similar to that shown in FIGS.

【0056】図9、図10にそれぞれ示す15コマの映
像は、トナーの位置の時間変化を示している。図9、図
10の左上から右下に向けて、スタートから100μs
ec置きに、1.4msecまでの実験の様子を示して
いる。図9、図10の各コマの上の帯71は電位を濃度
で示していて、左側が−600Vを示し、右側が+60
0Vを示し、その中間はそれぞれその中間の電位を示し
ている。
The images of 15 frames shown in FIGS. 9 and 10 respectively show changes in the toner position with time. From the upper left to the lower right of Figs. 9 and 10, 100 µs from the start
It shows the state of the experiment up to 1.4 msec every other ec. The band 71 on each frame in FIGS. 9 and 10 shows the electric potential in terms of concentration. The left side shows −600 V and the right side shows +60 V.
0 V is shown, and the middle of each represents the potential of the middle.

【0057】帯71の下の白字72は、時間とトナーの
平均帯電量(q/m)を示している。白字72の下に横
に広がる20個の長方形が静電搬送用電極73で、その
幅は10μm、静電搬送用電極73の電極間ギャップが
20μmである。静電搬送用電極73の高さは5μmで
本来、横長の長方形になるはずであるが、横方向を縮め
て示しているために縦長になっている。静電搬送用電極
73が配列されている箇所の中間の何もない部分が、断
線した3本の静電搬送用電極のある位置である。
A white character 72 below the band 71 indicates the time and the average charge amount (q / m) of the toner. Twenty rectangles extending laterally below the white character 72 are the electrostatic transport electrodes 73, the width thereof is 10 μm, and the inter-electrode gap of the electrostatic transport electrodes 73 is 20 μm. The height of the electrostatic transporting electrode 73 is 5 μm, which is supposed to be a horizontally long rectangle, but it is vertically long because the horizontal direction is contracted. An empty portion in the middle of the location where the electrostatic transport electrodes 73 are arranged is the position where the three broken electrostatic transport electrodes are located.

【0058】静電搬送用電極73の下の、白色をバック
にした黒い大小の長方形(本来は円形)74がトナーを
示している。トナーの平均粒径は8.0μm、トナーの
平均帯電量(q/m)は−15μC/gである。白色の
背景は静電搬送基板と、それより50μm離れた共通電
極基板との間の空間で、濃度が電位を示している。な
お、シミュレーションでは実際と逆に、静電搬送用電極
列を有する静電搬送基板を共通電極基板より上に置い
た。この大きさのトナーでは重力の影響はほとんどない
ので、静電搬送基板と共通電極基板との上下関係はどち
らでも同じである。
Under the electrostatic transporting electrode 73, a black and white rectangle (original circle) 74 with a white background indicates the toner. The average particle diameter of the toner is 8.0 μm, and the average charge amount (q / m) of the toner is −15 μC / g. The white background is the space between the electrostatic transport substrate and the common electrode substrate 50 μm away from it, and the concentration indicates the potential. In the simulation, contrary to the actual situation, the electrostatic transport substrate having the electrostatic transport electrode array was placed above the common electrode substrate. Since the toner of this size has almost no influence of gravity, the electrostatic transport substrate and the common electrode substrate have the same vertical relationship.

【0059】静電搬送基板と共通電極基板との間の白っ
ぽい部分は静電搬送用電極の電位が+100Vであり、
それより濃い部分は静電搬送用電極の電位が0Vになっ
ていることを示している。図9、図10の各コマの一番
下の帯75、76は共通電極基板を示し、帯75が絶縁
層、帯76が共通電極を示している。共通電極の高さは
20μmで、その上の絶縁層の厚さは10μmである。
In the whitish portion between the electrostatic transporting substrate and the common electrode substrate, the potential of the electrostatic transporting electrode is + 100V,
The darker portion indicates that the potential of the electrostatic carrying electrode is 0V. The strips 75 and 76 at the bottom of each frame in FIGS. 9 and 10 indicate a common electrode substrate, the strip 75 indicates an insulating layer, and the strip 76 indicates a common electrode. The height of the common electrode is 20 μm, and the thickness of the insulating layer thereon is 10 μm.

【0060】図9の最初(左上)のコマでは、トナー
は、静電搬送基上に均一に分布しているが、100μs
ecごとに、各静電搬送用電極に印加される電圧が+1
00Vと0Vに変わるごとに徐々に、左から右に移動し
ている。そして、右の壁に当たったトナーは、左の壁か
ら出てくるようにプログラムされている。
In the first (upper left) frame of FIG. 9, the toner is uniformly distributed on the electrostatic transporting substrate, but 100 μs.
For each ec, the voltage applied to each electrostatic transport electrode is +1
Each time it changes to 00V and 0V, it gradually moves from left to right. And the toner that hits the right wall is programmed to come out of the left wall.

【0061】図9の個々のトナーの動きを見ると、静電
搬送用電極の存在しない真中部分にある8個のトナーは
まったく移動していないことが分かる。その結果、時間
が経過するとともに、その左にトナーが滞留していき、
1.4msec後の最後のコマ(右下)では、トナーが
積みあがって小タワーを形成している。このとき、右半
分では、そこにいた大部分のトナーが右に移動し右の壁
を抜けて左半分に行ってしまったために残っているトナ
ーがわずかである。
As seen from the movements of the individual toners in FIG. 9, it can be seen that the eight toners in the middle portion where the electrostatic carrying electrode does not exist do not move at all. As a result, as time passes, the toner stays on the left,
At the last frame (bottom right) after 1.4 msec, the toner is piled up to form a small tower. At this time, in the right half, most of the toner that was there moved to the right, passed through the right wall, and went to the left half, so there is only a small amount of toner remaining.

【0062】実際の場合には、断線した静電搬送用電極
の右側にいたトナーは、右に静電搬送基板の端まで移動
し、断線した静電搬送用電極の左側にいたトナーは、断
線した静電搬送用電極まで移動してそこに滞留するわけ
であるが、断線した静電搬送用電極の右側はトナーがな
くなり、断線した静電搬送用電極の左側にはトナーが凝
集するという結果は、シミュレーションとまったく同じ
である。
In the actual case, the toner on the right side of the broken electrostatic carrying electrode moves rightward to the end of the electrostatic carrying substrate, and the toner on the left side of the broken electrostatic carrying electrode breaks. However, the toner on the right side of the broken electrostatic transport electrode runs out of toner, and the toner aggregates on the left side of the broken electrostatic transport electrode. Is exactly the same as the simulation.

【0063】次に、実施例1において、0.6msec
ごとに、共通電極に、+80V、30μsecの解消パ
ルス電圧を加えてシミュレーションを行った。その結果
を図10に示す。図10において、7コマ目と13コマ
目が白っぽくなっているのは、共通電極に+80Vが印
加されたためである。その後、8コマ目と14コマ目を
見ると、静電搬送用電極が存在しない(静電搬送用電極
が断線している)真中部分にいたトナーが、いなくなっ
ていることが分かる。すなわち、これが解消パルスの効
果である。
Next, in Example 1, 0.6 msec
Each time, a simulation was performed by applying a cancellation pulse voltage of +80 V and 30 μsec to the common electrode. The result is shown in FIG. In FIG. 10, the seventh and thirteenth frames are whitish because +80 V is applied to the common electrode. After that, looking at the 8th frame and the 14th frame, it can be seen that the toner in the middle portion where the electrostatic carrying electrode does not exist (the electrostatic carrying electrode is broken) is gone. That is, this is the effect of the cancellation pulse.

【0064】解消パルスにより、それまで動かなかった
静電搬送用電極のない真中部分にいたトナーが動いたの
は、その両側の静電搬送用電極に、+100Vと0Vの
電圧がそれぞれ加わっても、水平方向に、1.0e+6
[V/m]の電界が加わるのみで、垂直、下方向にトナー
を引く電界はほとんどなく、トナーと静電搬送基板との
間に働く付着力(ファンデルワールス力及び液間加橋
力)を上回る静電力が生じなかったのに対して、共通電
極に+80Vが加わると、共通電極と0Vの静電搬送用
電極との間に、強い垂直方向の電界(最大で、約1.3
+6[V/m])が働き、負帯電トナーに強い垂直下方
向の静電力が作用してトナーの静電搬送基板に対する付
着力を切ったためである。
Due to the elimination pulse, the toner in the middle portion where there was no electrostatic transporting electrode that did not move until then moved because the electrostatic transporting electrodes on both sides of the toner moved + 100V and 0V, respectively. , Horizontally, 1.0e +6
Only an electric field of [V / m] is applied, there is almost no electric field that pulls the toner vertically and downward, and the adhesive force (van der Waals force and liquid bridge force) that acts between the toner and the electrostatic transport substrate. However, when +80 V was applied to the common electrode, a strong vertical electric field (up to about 1.3 V) was applied between the common electrode and the electrostatic transport electrode at 0 V.
e +6 [V / m]), and a strong vertical downward electrostatic force acts on the negatively charged toner to cut off the adhesion of the toner to the electrostatic transport substrate.

【0065】解消パルスの印加タイミングをいろいろ検
討したところ、少なくとも断線した静電搬送用電極の両
側の静電搬送用電極のどちらかが0Vになっている時
が、断線した静電搬送用電極で滞留したトナーをほぐし
て移動させるのによかったのも、垂直方向の強い電界が
できていたためと考えられる。
Various examinations were made on the application timing of the elimination pulse. At least when one of the electrostatic carrying electrodes on both sides of the broken electrostatic carrying electrode was at 0 V, the broken electrostatic carrying electrode was used. The reason why it was good to loosen and move the stagnant toner is considered to be due to the strong vertical electric field.

【0066】また、共通電極に電源から解消パルスを印
加する場合には、静電搬送用電極列のいずれかの静電搬
送用電極が断線したことを検出する断線検出手段を設
け、この断線検出手段からの検出信号により、静電搬送
用電極列のいずれかの静電搬送用電極が断線した後に、
電源から共通電極に解消パルスを印加する構成とすれ
ば、不要な電力消費を防ぐことができる。。
Further, when a cancel pulse is applied from the power supply to the common electrode, a disconnection detecting means for detecting disconnection of any one of the electrostatic transfer electrodes of the electrostatic transfer electrode array is provided, and this disconnection detection is performed. According to the detection signal from the means, after one of the electrostatic carrying electrodes of the electrostatic carrying electrode array is broken,
If the cancellation pulse is applied from the power supply to the common electrode, unnecessary power consumption can be prevented. .

【0067】また、断線検出手段により最初に静電搬送
用電極の断線を検出した場合、断線した静電搬送用電極
を挟む両側の正常な静電搬送用電極の間でトナーを正規
の搬送方向に加速する静電界が形成されるときに電源か
ら共通電極に解消パルスを印加するように構成すること
で、効率良く、断線した静電搬送用電極による滞留トナ
ーを解消することができる。
Further, when the disconnection detecting means first detects the disconnection of the electrostatic carrying electrode, the toner is transported in the normal carrying direction between the normal electrostatic carrying electrodes sandwiching the broken electrostatic carrying electrode. By applying the elimination pulse from the power source to the common electrode when the electrostatic field that accelerates to the point is formed, it is possible to efficiently eliminate the staying toner due to the broken electrostatic transport electrode.

【0068】さらに、断線検出手段により複数の静電搬
送用電極の断線を検出した場合、各個所の断線した静電
搬送用電極のうち最多数の断線した静電搬送用電極で、
該静電搬送用電極を囲む両側の正常な静電搬送用電極の
間でトナーを正規の搬送方向に加速する静電界が形成さ
れるときに電源から共通電極に解消パルスを印加するよ
うに構成することで、効率良く、断線した静電搬送用電
極による滞留トナーを解消することができる。
Further, when the disconnection detection means detects disconnection of a plurality of electrostatic transfer electrodes, the largest number of disconnected electrostatic transfer electrodes among the disconnected electrostatic transfer electrodes at each location,
A cancel pulse is applied from the power supply to the common electrode when an electrostatic field that accelerates the toner in the normal transport direction is formed between the normal electrostatic transport electrodes that surround the electrostatic transport electrodes. By doing so, it is possible to efficiently eliminate the staying toner due to the broken electrostatic transport electrode.

【0069】このように、実施例1によれば、絶縁基板
としての静電搬送基板より離れた位置に共通電極を設
け、この共通電極にトナーの正規の帯電極性とは逆極性
の電圧を短時間印加し、トナーの静電搬送中に静電搬送
用電極列のうちの断線した静電搬送用電極に滞留したト
ナーを共通電極の方向に瞬時浮かせるので、静電搬送用
電極が断線しても均一なトナー静電搬送を継続すること
ができる。
As described above, according to the first embodiment, the common electrode is provided at a position distant from the electrostatic carrying substrate as the insulating substrate, and a voltage having a polarity opposite to the regular charging polarity of the toner is shorted to the common electrode. When the toner is electrostatically transferred for a period of time, the toner staying on the broken electrostatic transfer electrode of the electrostatic transfer electrode array is momentarily floated toward the common electrode, so that the electrostatic transfer electrode is disconnected. It is possible to continue uniform toner electrostatic transport.

【0070】また、実施例1によれば、共通電極に印加
する解消パルスの大きさと時間は、断線した静電搬送用
電極付近に滞留したトナーの大部分が静電搬送基板より
瞬時離れ、かつ該大部分が共通電極に到達しない範囲で
あるので、断線した静電搬送用電極による滞留トナーを
解消することができると同時に、共通電極に付着するト
ナーを最小限にすることができる。
Further, according to the first embodiment, the magnitude and time of the elimination pulse applied to the common electrode are such that most of the toner staying in the vicinity of the broken electrostatic transport electrode is instantaneously separated from the electrostatic transport substrate, and Since most of the area does not reach the common electrode, it is possible to eliminate the staying toner due to the broken electrostatic carrying electrode, and at the same time, to minimize the toner attached to the common electrode.

【0071】また、実施例1によれば、静電搬送用電極
の断線を検出した後に共通電極に解消パルスを印加する
ことにより、不要な電力消費を防ぐことができる。ま
た、実施例1によれば、最初に静電搬送用電極の断線を
検出した場合、断線した静電搬送用電極を挟む両側の正
常な静電搬送用電極の間でトナーを正規の搬送方向に加
速する静電界が形成されるときに共通電極に解消パルス
を印加することにより、効率良く、断線した静電搬送用
電極による滞留トナーを解消することができる。
Further, according to the first embodiment, unnecessary power consumption can be prevented by applying the elimination pulse to the common electrode after detecting the disconnection of the electrostatic carrying electrode. Further, according to the first embodiment, when the disconnection of the electrostatic transport electrode is first detected, the toner is transported in the normal transport direction between the normal electrostatic transport electrodes on both sides of the disconnected electrostatic transport electrode. By applying the elimination pulse to the common electrode when the electrostatic field that accelerates to the background is formed, it is possible to efficiently eliminate the staying toner due to the broken electrostatic transport electrode.

【0072】また、実施例1によれば、複数の静電搬送
用電極の断線を検出した場合、最多数の断線した静電搬
送用電極で、該静電搬送用電極を囲む両側の正常な静電
搬送用電極の間でトナーを正規の搬送方向に加速する静
電界が形成されるときに共通電極に解消パルスを印加す
ることにより、効率良く、断線した静電搬送用電極によ
る滞留トナーを解消することができる。
Further, according to the first embodiment, when disconnection of a plurality of electrostatic transport electrodes is detected, the largest number of disconnected electrostatic transport electrodes are used for normal operation on both sides surrounding the electrostatic transport electrodes. By applying a cancellation pulse to the common electrode when an electrostatic field that accelerates the toner in the normal transport direction is formed between the electrostatic transport electrodes, the broken toner due to the broken electrostatic transport electrodes is efficiently removed. It can be resolved.

【0073】次に、本発明の実施例2について説明す
る。実施例1においては、極力共通電極まで飛翔するト
ナーが出ない条件に設定したが、それでも、少々のトナ
ーは共通電極まで飛翔し、そこに付着したり、一旦共通
電極に付着した後にまた静電搬送基板にもどったりする
のが高速度カメラの映像で観察された。
Next, a second embodiment of the present invention will be described. In the first embodiment, the condition is set such that the toner flying to the common electrode does not come out as much as possible, but still, a small amount of toner flies to the common electrode and adheres to the common electrode, or once again adheres to the common electrode, the electrostatic discharge occurs again. It was observed in the image of the high-speed camera that it returned to the transfer board.

【0074】そして、少々ながら、逆方向に移動して静
電搬送基板の左端に集まるトナーが生じた。このトナー
を集めてその帯電量を測定したところ、+3.5μC/
gであることが分かった。これらのトナーは共通電極に
解消パルス(+80V)が印加された時に共通電極まで飛
翔し、そこで正電荷が注入されて帯電極性が本来の負か
ら正に反転し、静電搬送基板に戻ってそこから負帯電ト
ナーとは逆に右から左に移動したものと考えられる。そ
こで、実施例2では、上記実施例1において、共通電極
の表面に、厚さ約0.1μmのSiO層からなる絶縁
層を形成したところ、電荷注入による逆極性トナーの発
生はほとんどなくなった。なお、共通電極の表面は、絶
縁層の代りに、トナーの正規の帯電極性と反対極性の電
荷の通過を許さない半導体物質で覆うようにしても同様
な効果が得られる。
Then, a small amount of toner was generated which moved in the opposite direction and collected at the left end of the electrostatic transport substrate. When this toner was collected and its charge amount was measured, it was +3.5 μC /
It was found to be g. These toners fly to the common electrode when the elimination pulse (+ 80V) is applied to the common electrode, where positive charges are injected to reverse the charging polarity from the original negative polarity to the positive polarity and return to the electrostatic carrier substrate. Therefore, it is considered that the toner has moved from right to left, contrary to the negatively charged toner. Therefore, in Example 2, when an insulating layer made of a SiO 2 layer having a thickness of about 0.1 μm was formed on the surface of the common electrode in Example 1, the generation of reverse polarity toner due to charge injection almost disappeared. . The same effect can be obtained by covering the surface of the common electrode with, instead of the insulating layer, a semiconductor material that does not allow passage of charges having a polarity opposite to the regular charging polarity of the toner.

【0075】このように、実施例2によれば、共通電極
の表面は薄い絶縁層もしくはトナーの正規の帯電極性と
反対極性の電荷の通過を許さない半導体物質で覆われて
いるので、共通電極からトナーへの余分な電荷注入を防
止することができる。
As described above, according to the second embodiment, since the surface of the common electrode is covered with the thin insulating layer or the semiconductor material which does not allow the passage of the charge having the opposite polarity to the regular charge polarity of the toner, the common electrode is formed. It is possible to prevent excessive charge injection from the toner to the toner.

【0076】次に、本発明の実施例3について説明す
る。実施例2によって、帯電極性が反転して静電搬送基
板に戻るトナーはなくなったが、その代わり、共通電極
に付着しつづけるトナーが増加した。これが少量であれ
ば問題ないが、多くなると電界の形、強さに悪い影響を
及ぼす可能性が高い。そこで、実施例3では、実施例2
において、共通電極の表面に、SiO層に代えて、非
粘着性のシリコン樹脂を厚さ約10μmにスプレーコー
トした。この結果、逆極性トナーの発生に加えて、共通
電極に長期にトナーが付着する問題も同時に解消され
た。
Next, a third embodiment of the present invention will be described. According to the second embodiment, there is no toner that returns to the electrostatic transport substrate by reversing the charging polarity, but instead, the amount of toner that continues to adhere to the common electrode increases. If the amount is small, there is no problem, but if the amount is large, there is a high possibility that the shape and strength of the electric field are adversely affected. Therefore, in the third embodiment, the second embodiment
In place of the SiO 2 layer, non-adhesive silicon resin was spray-coated to a thickness of about 10 μm on the surface of the common electrode. As a result, in addition to the generation of the opposite polarity toner, the problem that the toner adheres to the common electrode for a long period of time is also solved.

【0077】[0077]

【発明の効果】以上のように請求項1に係る発明によれ
ば、静電搬送用電極が断線しても均一なトナー静電搬送
を継続することができる。請求項2に係る発明によれ
ば、断線した静電搬送用電極による滞留トナーを解消す
ることができると同時に、共通電極に付着するトナーを
最小限にすることができる。
As described above, according to the first aspect of the invention, it is possible to continue uniform toner electrostatic conveyance even if the electrostatic conveyance electrode is broken. According to the second aspect of the present invention, it is possible to eliminate the staying toner due to the broken electrostatic transport electrode, and at the same time, to minimize the amount of toner attached to the common electrode.

【0078】請求項3に係る発明によれば、共通電極か
らトナーへの余分な電荷注入を防止することができる。
請求項4に係る発明によれば、不要な電力消費を防ぐこ
とができる。請求項5に係る発明によれば、効率良く、
断線した静電搬送用電極による滞留トナーを解消するこ
とができる。
According to the third aspect of the present invention, it is possible to prevent extra charge injection from the common electrode into the toner.
According to the invention of claim 4, unnecessary power consumption can be prevented. According to the invention of claim 5, efficiently,
It is possible to eliminate the staying toner due to the broken electrostatic transport electrode.

【0079】請求項6に係る発明によれば、効率良く、
断線した静電搬送用電極による滞留トナーを解消するこ
とができる。請求項7に係る発明によれば、静電搬送用
電極が断線しても均一なトナー静電搬送を継続すること
ができる。請求項8に係る発明によれば、断線した静電
搬送用電極による滞留トナーを解消することができると
同時に、共通電極に付着するトナーを最小限にすること
ができる。
According to the invention of claim 6, efficiently,
It is possible to eliminate the staying toner due to the broken electrostatic transport electrode. According to the invention of claim 7, it is possible to continue uniform toner electrostatic transport even if the electrostatic transport electrode is broken. According to the invention of claim 8, the staying toner due to the broken electrostatic transport electrode can be eliminated, and at the same time, the toner attached to the common electrode can be minimized.

【0080】請求項9に係る発明によれば、共通電極か
らトナーへの余分な電荷注入を防止することができる。
請求項10に係る発明によれば、不要な電力消費を防ぐ
ことができる。請求項11に係る発明によれば、効率良
く、断線した静電搬送用電極による滞留トナーを解消す
ることができる。請求項12に係る発明によれば、効率
良く、断線した静電搬送用電極による滞留トナーを解消
することができる。
According to the invention of claim 9, extra charge injection from the common electrode to the toner can be prevented.
According to the invention of claim 10, unnecessary power consumption can be prevented. According to the eleventh aspect of the present invention, it is possible to efficiently eliminate the staying toner due to the broken electrostatic transport electrode. According to the twelfth aspect of the invention, it is possible to efficiently eliminate the staying toner due to the broken electrostatic transport electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を応用した画像形成装置の一例を示す断
面図である。
FIG. 1 is a sectional view showing an example of an image forming apparatus to which the present invention is applied.

【図2】同画像形成装置の現像装置を示す断面図であ
る。
FIG. 2 is a sectional view showing a developing device of the image forming apparatus.

【図3】同現像装置における搬送基板を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a carrier substrate in the developing device.

【図4】同搬送基板を示す平面図である。FIG. 4 is a plan view showing the carrier substrate.

【図5】上記画像形成装置の一部を示す概略図である。FIG. 5 is a schematic view showing a part of the image forming apparatus.

【図6】上記搬送基板における静電搬送用電極の駆動波
形を示す波形図である。
FIG. 6 is a waveform diagram showing a drive waveform of an electrode for electrostatic transport on the transport substrate.

【図7】上記現像装置におけるトナー静電搬送原理を説
明するための図である。
FIG. 7 is a diagram for explaining the principle of electrostatic toner transport in the developing device.

【図8】上記現像装置のトナー静電搬送及びポンピング
を説明するための図である。
FIG. 8 is a diagram for explaining electrostatic toner transport and pumping of the developing device.

【図9】トナー静電搬送装置において解消パルスを共通
電極に印加しない場合のトナーの位置の時間変化のシミ
ュレーション結果を示す図である。
FIG. 9 is a diagram showing a simulation result of a temporal change of the toner position when the elimination pulse is not applied to the common electrode in the electrostatic toner transport device.

【図10】トナー静電搬送装置において解消パルスを共
通電極に印加した場合のトナーの位置の時間変化のシミ
ュレーション結果を示す図である。
FIG. 10 is a diagram showing a simulation result of a temporal change of the toner position when a cancel pulse is applied to the common electrode in the electrostatic toner transport device.

【符号の説明】[Explanation of symbols]

1 感光体 31 静電搬送基板 41 第1駆動回路 42 第2駆動回路 52 静電搬送用電極 60 共通電極基板 62 電源 1 photoconductor 31 Electrostatic transfer board 41 first drive circuit 42 Second drive circuit 52 Electrostatic transfer electrode 60 common electrode substrate 62 power

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H077 AB02 AB14 AB15 AC01 AC13 AC16 AD07 AD13 AD14 AD23 AD35 AE02 AE03 DA24 DA42 DA57 DB25 EA14 EA16 GA03 GA04    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2H077 AB02 AB14 AB15 AC01 AC13                       AC16 AD07 AD13 AD14 AD23                       AD35 AE02 AE03 DA24 DA42                       DA57 DB25 EA14 EA16 GA03                       GA04

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】帯電した画像形成用のトナーを静電搬送用
電極列が形成されている絶縁基板により静電搬送する帯
電トナーの静電搬送方法において、前記絶縁基板より離
れた位置に共通電極を設け、この共通電極に前記トナー
の正規の帯電極性とは逆極性の電圧を短時間印加し、前
記トナーの静電搬送中に前記静電搬送用電極列のうちの
断線した静電搬送用電極に滞留したトナーを前記共通電
極の方向に瞬時浮かせることを特徴とする帯電トナーの
静電搬送方法。
1. A method of electrostatically transporting charged toner for electrostatically transporting charged toner for image formation by an insulating substrate on which an electrostatic transport electrode array is formed, wherein a common electrode is provided at a position distant from the insulating substrate. A voltage having a polarity opposite to the regular charging polarity of the toner is applied to the common electrode for a short time, and electrostatic discharge of the electrostatic discharge electrode array in the electrostatic transfer electrode array during electrostatic transfer of the toner is performed. A method of electrostatically transporting charged toner, characterized in that the toner staying on the electrodes is momentarily floated toward the common electrode.
【請求項2】請求項1記載の帯電トナーの静電搬送方法
において、前記共通電極に印加する前記電圧の大きさと
時間は、前記断線した静電搬送用電極付近に滞留したト
ナーの大部分が前記絶縁基板より瞬時離れ、かつ該大部
分が前記共通電極に到達しない範囲であることを特徴と
する帯電トナーの静電搬送方法。
2. A method of electrostatically transporting charged toner according to claim 1, wherein the magnitude and time of the voltage applied to the common electrode is such that most of the toner stayed near the broken electrostatic transport electrode. A method of electrostatically transporting charged toner, characterized in that the charged toner is instantaneously separated from the insulating substrate and most of the area does not reach the common electrode.
【請求項3】請求項1記載の帯電トナーの静電搬送方法
において、前記共通電極の表面は薄い絶縁層もしくは前
記トナーの正規の帯電極性と反対極性の電荷の通過を許
さない半導体物質で覆われていることを特徴とする帯電
トナーの静電搬送方法。
3. The method of electrostatically transporting charged toner according to claim 1, wherein the surface of the common electrode is covered with a thin insulating layer or a semiconductor material that does not allow passage of charges having a polarity opposite to the regular charging polarity of the toner. A method of electrostatically transporting charged toner, which is characterized in that
【請求項4】請求項1記載の帯電トナーの静電搬送方法
において、前記静電搬送用電極の断線を検出した後に前
記共通電極に前記電圧を印加することを特徴とする帯電
トナーの静電搬送方法。
4. The electrostatic charging method for charged toner according to claim 1, wherein the voltage is applied to the common electrode after the disconnection of the electrostatic transfer electrode is detected. Transport method.
【請求項5】請求項4記載の帯電トナーの静電搬送方法
において、最初に前記静電搬送用電極の断線を検出した
場合、断線した前記静電搬送用電極を挟む両側の正常な
前記静電搬送用電極の間で前記トナーを正規の搬送方向
に加速する静電界が形成されるときに前記共通電極に前
記電圧を印加することを特徴とする帯電トナーの静電搬
送方法。
5. The method for electrostatically transporting charged toner according to claim 4, wherein when a disconnection of the electrostatic transport electrode is first detected, the static charge on both sides of the broken electrostatic transport electrode is normal. A method of electrostatically transporting charged toner, comprising applying the voltage to the common electrode when an electrostatic field that accelerates the toner in a regular transport direction is formed between the electrodes for electrical transport.
【請求項6】請求項4記載の帯電トナーの静電搬送方法
において、複数の前記静電搬送用電極の断線を検出した
場合、最多数の断線した前記静電搬送用電極で、該静電
搬送用電極を囲む両側の正常な前記静電搬送用電極の間
で前記トナーを正規の搬送方向に加速する静電界が形成
されるときに前記共通電極に前記電圧を印加することを
特徴とする帯電トナーの静電搬送方法。
6. A method of electrostatically transporting charged toner according to claim 4, wherein, when disconnection of a plurality of said electrostatic transport electrodes is detected, said electrostatic discharge is carried out by the largest number of said electrostatic transport electrodes. The voltage is applied to the common electrode when an electrostatic field for accelerating the toner in the normal transport direction is formed between the normal electrostatic transport electrodes on both sides surrounding the transport electrode. Electrostatic transport method for charged toner.
【請求項7】帯電した画像形成用のトナーを静電搬送用
電極列が形成されている絶縁基板により静電搬送する帯
電トナーの静電搬送装置において、前記絶縁基板より離
れた位置に設けられた共通電極と、この共通電極に前記
トナーの正規の帯電極性とは逆極性の電圧を短時間印加
する手段とを有し、前記トナーの静電搬送中に前記静電
搬送用電極列のうちの断線した静電搬送用電極に滞留し
たトナーを前記共通電極への前記電圧の印加により前記
共通電極の方向に瞬時浮かせることを特徴とする帯電ト
ナーの静電搬送装置。
7. A charged toner electrostatic transport device for electrostatically transporting charged image forming toner by an insulating substrate on which an electrostatic transport electrode array is formed, the electrostatic toner transporting device being provided at a position apart from the insulating substrate. And a means for applying a voltage having a polarity opposite to the regular charging polarity of the toner to the common electrode for a short time. The electrostatic transport device for charged toner, wherein the toner staying on the broken electrostatic transport electrode is instantly floated toward the common electrode by applying the voltage to the common electrode.
【請求項8】請求項7記載の帯電トナーの静電搬送装置
において、前記共通電極に印加する前記電圧の大きさと
時間は、前記断線した静電搬送用電極付近に滞留したト
ナーの大部分が前記絶縁基板より瞬時離れ、かつ該大部
分が前記共通電極に到達しない範囲であることを特徴と
する帯電トナーの静電搬送装置。
8. The electrostatic carrying device for charged toner according to claim 7, wherein the magnitude and time of the voltage applied to the common electrode is such that most of the toner staying in the vicinity of the broken electrostatic carrying electrode. An electrostatic transport device for charged toner, characterized in that it is separated from the insulating substrate instantaneously and most of it is in a range where it does not reach the common electrode.
【請求項9】請求項7記載の帯電トナーの静電搬送装置
において、前記共通電極の表面は薄い絶縁層もしくは前
記トナーの正規の帯電極性と反対極性の電荷の通過を許
さない半導体物質で覆われていることを特徴とする帯電
トナーの静電搬送装置。
9. The electrostatic transport device for charged toner according to claim 7, wherein the surface of the common electrode is covered with a thin insulating layer or a semiconductor material that does not permit passage of charges having a polarity opposite to the regular charging polarity of the toner. An electrostatic transport device for charged toner, which is characterized in that
【請求項10】請求項7記載の帯電トナーの静電搬送装
置において、前記静電搬送用電極の断線を検出した後に
前記共通電極に前記電圧を印加することを特徴とする帯
電トナーの静電搬送装置。
10. The electrostatic charging device for charged toner according to claim 7, wherein the voltage is applied to the common electrode after the disconnection of the electrode for electrostatic transfer is detected. Transport device.
【請求項11】請求項10記載の帯電トナーの静電搬送
装置において、最初に前記静電搬送用電極の断線を検出
した場合、断線した前記静電搬送用電極を挟む両側の正
常な前記静電搬送用電極の間で前記トナーを正規の搬送
方向に加速する静電界が形成されるときに前記共通電極
に前記電圧を印加することを特徴とする帯電トナーの静
電搬送装置。
11. The electrostatic transport device for charged toner according to claim 10, wherein when a disconnection of the electrostatic transport electrode is first detected, the static charge on both sides of the electrostatic transport electrode which is disconnected is normal. An electrostatic transport device for charged toner, wherein the voltage is applied to the common electrode when an electrostatic field that accelerates the toner in a normal transport direction is formed between the electrodes for electrical transport.
【請求項12】請求項10記載の帯電トナーの静電搬送
装置において、複数の前記静電搬送用電極の断線を検出
した場合、最多数の断線した前記静電搬送用電極で、該
静電搬送用電極を囲む両側の正常な前記静電搬送用電極
の間で前記トナーを正規の搬送方向に加速する静電界が
形成されるときに前記共通電極に前記電圧を印加するこ
とを特徴とする帯電トナーの静電搬送装置。
12. An electrostatic carrying device for charged toner according to claim 10, wherein, when disconnection of a plurality of said electrostatic carrying electrodes is detected, said electrostatic carrying is performed by the largest number of said broken electrostatic carrying electrodes. The voltage is applied to the common electrode when an electrostatic field for accelerating the toner in the normal transport direction is formed between the normal electrostatic transport electrodes on both sides surrounding the transport electrode. Electrostatic transport device for charged toner.
JP2001236401A 2001-08-03 2001-08-03 Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner Pending JP2003043806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236401A JP2003043806A (en) 2001-08-03 2001-08-03 Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236401A JP2003043806A (en) 2001-08-03 2001-08-03 Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner

Publications (1)

Publication Number Publication Date
JP2003043806A true JP2003043806A (en) 2003-02-14

Family

ID=19067678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236401A Pending JP2003043806A (en) 2001-08-03 2001-08-03 Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner

Country Status (1)

Country Link
JP (1) JP2003043806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178924A (en) * 2005-12-28 2007-07-12 Brother Ind Ltd Developer conveying device and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178924A (en) * 2005-12-28 2007-07-12 Brother Ind Ltd Developer conveying device and image forming apparatus
US7822373B2 (en) 2005-12-28 2010-10-26 Brother Kogyo Kabushiki Kaisha Developer conveying device and image-forming apparatus with electrodes for conveying charged developer
JP4687457B2 (en) * 2005-12-28 2011-05-25 ブラザー工業株式会社 Developer transport device and image forming apparatus

Similar Documents

Publication Publication Date Title
US7308222B2 (en) Toner supplying system for an image forming apparatus
US7200352B2 (en) Developing apparatus, developing method, image forming apparatus, image forming method and cartridge thereof
JP2002341656A (en) Electrostatic transportation device, developing device and image forming apparatus
JP4810397B2 (en) Image forming apparatus
JP2002307740A (en) Electrostatic transfer device, development device, imaging device and toner supply device
JP2009204672A (en) Electrophotographic image forming apparatus
US8167410B2 (en) Image forming apparatus
US5790920A (en) Toner image processing apparatus
JP2003043806A (en) Electrostatic conveyance method for electrostatically charged toner and electrostatic conveyance device for electrostatically charged toner
JP2003098826A (en) Fine particle carrying apparatus and image forming apparatus
JP2005195953A (en) Development device and image forming apparatus equipped therewith
JP2002182491A (en) Transfer/carrying belt device and image forming apparatus
JP4194250B2 (en) Image forming apparatus
JP2002258601A (en) Image forming device, developing device and fine powder carrying device
JP2002268301A (en) Transfer and carry belt device
JP2003098821A (en) Developing apparatus and image forming apparatus
JP5459582B2 (en) Developing device and image forming apparatus
JP3169029B2 (en) Developing device
JP2002278274A (en) Electrostatic carrying device, electrostatic carrying method and image forming apparatus
JPH0736287A (en) Electrophotographic method and image forming device
JP2012042667A (en) Development device, process cartridge, and image forming apparatus
JP2003098820A (en) Electrostatic transfer device and imaging apparatus
JP2008070751A (en) Developing device, process unit and image forming apparatus
JP2003145825A (en) Imaging apparatus
US20070098447A1 (en) Color image forming apparatus