JP2003043486A - Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display - Google Patents

Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display

Info

Publication number
JP2003043486A
JP2003043486A JP2001228932A JP2001228932A JP2003043486A JP 2003043486 A JP2003043486 A JP 2003043486A JP 2001228932 A JP2001228932 A JP 2001228932A JP 2001228932 A JP2001228932 A JP 2001228932A JP 2003043486 A JP2003043486 A JP 2003043486A
Authority
JP
Japan
Prior art keywords
liquid crystal
retardation
compensating
crystal display
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001228932A
Other languages
Japanese (ja)
Inventor
Ichiro Fukuda
一郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2001228932A priority Critical patent/JP2003043486A/en
Publication of JP2003043486A publication Critical patent/JP2003043486A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decrease the power consumption of an optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display formed by laminating a liquid crystal cell for compensation on a liquid crystal cell for driving with which a reflection plate in which a pixel electrode in formed integrally with it is assembled and successively laminating an optical retardation plate and one polarizing plate thereon. SOLUTION: The power consumption of the reflection type liquid crystal display is drastically decreased by adjusting the retardation values of the liquid crystal cell for driving and the liquid crystal cell for compensation based on the relation between the driving voltage and the display characteristics of the optical retardation plate compensation single polarizing plate mode reflection type two-layer liquid crystal display to reduce the driving voltage while the excellent display characteristics (luminance, a contrast ratio and achromatic display) is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、情報信号によっ
て表示制御される駆動用液晶セルに補償用液晶セルある
いは補償用液晶セルに代わる補償用液晶高分子フィルム
を接合させ積層した2層液晶セル構造を基礎にその補償
用液晶セルあるいは補償用液晶高分子フィルム上に更に
位相差板あるいはこれに代わる1/4波長板と1枚の偏光
板を順に付加積層した反射型液晶ディスプレイ、すなわ
ち位相差板補償・単偏光板式反射型2層液晶ディスプレ
イに関するもので、反射型液晶ディスプレイおける表示
特性と液晶駆動電圧(オン電圧)の関係に基づいて反射
型液晶ディスプレイの消費電力を低減させる省電力技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-layer liquid crystal cell structure in which a driving liquid crystal cell whose display is controlled by an information signal and a compensating liquid crystal cell or a compensating liquid crystal polymer film in place of the compensating liquid crystal cell are bonded and laminated. A reflective liquid crystal display in which a retardation plate or a 1/4 wavelength plate instead of the retardation plate and one polarizing plate are sequentially laminated on the compensating liquid crystal cell or compensating liquid crystal polymer film, that is, a retardation plate. Compensation / single-polarizing type reflective two-layer liquid crystal display, and power saving technology for reducing the power consumption of the reflective liquid crystal display based on the relationship between the display characteristics of the reflective liquid crystal display and the liquid crystal drive voltage (ON voltage) Is.

【0002】[0002]

【従来の技術】高機能情報端末機の急速な普及に伴っ
て、低消費電力、薄型・軽量、高画質の反射型液晶ディ
スプレイの要求が高まっており、従来から各種の反射型
液晶ディスプレイが提案されている。なお本願において
は、各種の液晶あるいは液晶ディスプレイを次の略称
(略号)で示す。 「TN液晶」 :Twisted Nematic 液晶 「STN液晶」:Super Twisted Nematic 液晶 「P液晶」 :Parallel 液晶=ねじれ角度が0°す
なわち平行配向をもつ液晶 「DTN−LCD」 :Double-Layered Twisted Nemati
c Liquid Crystal Display=駆動用液晶セルと補償用
液晶セルの2層の液晶セルを備えた2層TN液晶ディス
プレイ 「FDTN−LCD」:Film Double-Layered Twisted
Nematic Liquid Crystal Display=補償用液晶セルと
同じ分子配向をもつ補償用液晶高分フィルムで上記補償
用液晶セルを置き換えた2層TN液晶ディスプレイ 「MDTN−LCD」:Modified Double-Layered Twis
ted Nematic Liquid Crystal Display=駆動用液晶セ
ルと補償用液晶セルまたは補償用液晶高分子フィルムの
各リタデーション(retardation)の大きさが異なる変
形2層TN液晶ディスプレイ 「MFDTN−LCD」:Modified Film Double-Layere
d Twisted Nematic Liquid Crystal Display=補償用
液晶セルと同じ分子配向をもつ補償用液晶高分子フィル
ムで上記補償用液晶セルが置き換えられ且つ駆動用液晶
セルと補償用液晶セルまたは補償用液晶高分子フィルム
の各リタデーションの大きさが異なる変形2層TN液晶
ディスプレイ 「DP−LCD」 :Double-Layered Parallel Liq
uid Crystal Display=平行配向のP液晶を用いた駆動
用液晶セルと補償用液晶セルの2層の液晶セルを備えた
2層P液晶ディスプレイ 「FDP−LCD」 :Film Double-Layered Parallel
Liquid Crystal Display=補償用液晶セルと同じリタ
デーションをもつ位相差板で上記補償用液晶セルを置き
換えた2層P液晶ディスプレイ
2. Description of the Related Art With the rapid spread of high-performance information terminals, the demand for low power consumption, thin, lightweight, and high-quality reflective liquid crystal displays is increasing. Conventionally, various reflective liquid crystal displays have been proposed. Has been done. In the present application, various liquid crystals or liquid crystal displays are represented by the following abbreviations (abbreviations). "TN liquid crystal": Twisted Nematic liquid crystal "STN liquid crystal": Super Twisted Nematic liquid crystal "P liquid crystal": Parallel liquid crystal = liquid crystal "DTN-LCD" with a twist angle of 0 °, that is, parallel alignment: Double-Layered Twisted Nemati
c Liquid Crystal Display = 2-layer TN liquid crystal display “FDTN-LCD” including a driving liquid crystal cell and a compensating liquid crystal cell “FDTN-LCD”: Film Double-Layered Twisted
Nematic Liquid Crystal Display = MDTN-LCD, a two-layer TN liquid crystal display in which the compensating liquid crystal cell having the same molecular orientation as the compensating liquid crystal cell is substituted for the compensating liquid crystal cell "MDTN-LCD": Modified Double-Layered Twis
ted Nematic Liquid Crystal Display = Modified Film Double-Layere "Modified Film Double-Layere", which is a modified two-layer TN liquid crystal display with different retardation sizes of the driving liquid crystal cell and the compensating liquid crystal cell or the compensating liquid crystal polymer film.
d Twisted Nematic Liquid Crystal Display = The compensating liquid crystal polymer film having the same molecular orientation as the compensating liquid crystal cell replaces the compensating liquid crystal cell, and the driving liquid crystal cell and the compensating liquid crystal cell or compensating liquid crystal polymer film Deformed 2-layer TN liquid crystal display "DP-LCD" with different retardation sizes: Double-Layered Parallel Liq
uid Crystal Display = FDP-LCD, a two-layer P liquid crystal display having two liquid crystal cells, a driving liquid crystal cell and a compensating liquid crystal cell using P-liquid crystal in parallel alignment: Film Double-Layered Parallel
Liquid Crystal Display = 2-layer P liquid crystal display in which the compensating liquid crystal cell is replaced with a retardation plate having the same retardation as the compensating liquid crystal cell.

【0003】バックライトを備えた透過型液晶ディスプ
レイに比し消費電力が小さい反射型液晶ディスプレイと
して、画素電極を一体化した反射板を液晶セルに組み込
むことにより偏光板の数を1枚に減らし、その液晶セル
に位相差板、あるいは1/4波長板などの光学素子を付加
した構成の位相差板補償・単偏光板式反射型TN−LC
Dや位相差板補償・単偏光板式反射型STN−LCDは
従来から知られている。また本願発明者などによって、
特開平11−249165号公開特許公報に示されるよ
うな位相差板補償・単偏光板式反射型DTN−LCDや
位相差板補償・単偏光板式反射型FDTN−LCD、特
開平2001−91949号公開特許公報に示されるよ
うな1/4波長板を用いた位相差板補償・単偏光板式反射
型DTN−LCDや位相差板補償・単偏光板式反射型F
DTN−LCD、信学技報,EID2000-256(2001-01) pp.7
-12 に示されるような位相差板補償・単偏光板式反射型
MDTN−LCDや位相差板補償・単偏光板式反射型M
FDTN−LCDなどの位相差板補償・単偏光板式反射
型2層液晶ディスプレイが提案されている。そしてこれ
ら従来の位相差板補償・単偏光板式反射型2層液晶ディ
スプレイは、いずれも5ボルト程度の液晶駆動電圧で作
動させている。
As a reflective liquid crystal display which consumes less power than a transmissive liquid crystal display equipped with a backlight, the number of polarizing plates is reduced to one by incorporating a reflective plate in which pixel electrodes are integrated into a liquid crystal cell. Phase difference plate compensation / single-polarizer type reflection type TN-LC in which an optical element such as a phase difference plate or a quarter wave plate is added to the liquid crystal cell
D and retardation plate compensating / single-polarizing plate type reflective STN-LCDs have been conventionally known. In addition, by the inventors of the present application,
JP-A No. 11-249165, retardation plate compensating / single-polarizing plate reflection type DTN-LCD and retardation plate compensating / single-polarizing plate reflection type FDTN-LCD as disclosed in JP-A No. 11-249165, JP-A No. 2001-91949. Phase difference plate compensation / single-polarizer type reflection type DTN-LCD and phase difference plate compensation / single-polarizer type reflection type F using 1/4 wavelength plate as disclosed in the publication
DTN-LCD, IEICE Technical Report, EID2000-256 (2001-01) pp.7
-12 Retardation plate compensation / single-polarizer type reflective MDTN-LCD and retardation plate compensation / single-polarizer type reflective M
A retardation plate compensating / single polarizing plate type reflective two-layer liquid crystal display such as FDTN-LCD has been proposed. Each of these conventional retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal displays is operated at a liquid crystal drive voltage of about 5 volts.

【0004】[0004]

【発明が解決しようとする課題】昨今液晶ディスプレイ
の普及が進む中で、反射型液晶ディスプレイの消費電力
を更に低減させることが求められ、先の反射型2層液晶
ディスプレイにおいても消費電力の一段の低減を模索し
なければならない。反射型液晶ディスプレイの消費電力
を低減させる有効な一つの手段は、その駆動電圧を低く
抑えることであるが、一般に液晶駆動電圧を低くすると
液晶ディスプレイの表示特性(表示の明るさ即ち明状態
の反射率、コントラスト比、無彩色即ち着色のない白
黒、カラー表示における分光反射率の波長依存度など)
が劣化することから、液晶駆動電圧の低電圧化が躊躇さ
れている。
With the recent widespread use of liquid crystal displays, it is required to further reduce the power consumption of the reflection type liquid crystal display, and the power consumption of the reflection type two-layer liquid crystal display is further reduced. We must seek reduction. One effective means of reducing the power consumption of a reflective liquid crystal display is to keep its drive voltage low. Generally, when the liquid crystal drive voltage is lowered, the display characteristics of the liquid crystal display (brightness of display, that is, reflection of bright state) Ratio, contrast ratio, achromatic color, that is, black and white without coloring, wavelength dependence of spectral reflectance in color display, etc.)
Therefore, there is hesitation in lowering the liquid crystal drive voltage.

【0005】この発明は、このような状況に鑑み、先に
提案した反射型2層液晶ディスプレイにおいて、その駆
動電圧と表示特性の関係をシミュレーションした上で、
駆動用液晶セルのリタデーションと補償用液晶セルのリ
タデーションを等値拘束する(等しい数値に保つ)こと
なく調整設定することにより、良好な表示特性を維持し
ながら液晶駆動電圧を従来より大幅に低く設定できるよ
うにし、これによって反射型2層液晶ディスプレイの消
費電力の一層の低減を図ろうとするものである。
In view of such a situation, the present invention simulates the relationship between the driving voltage and the display characteristics in the reflection type two-layer liquid crystal display previously proposed, and then,
By setting the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal cell without equal constraint (keeping the same numerical value), the liquid crystal drive voltage can be set significantly lower than before while maintaining good display characteristics. Therefore, it is intended to further reduce the power consumption of the reflective two-layer liquid crystal display.

【0006】[0006]

【課題を解決するための手段】この目的を達するため
に、この発明では、画素電極を一体に形成した反射板を
組み込んだ駆動用液晶セルと、補償用液晶セルを積層
し、これに位相差板と1枚の偏光板を付加積層して成る
2層液晶ディスプレイにおいて、駆動用液晶セルのリタ
デーションと補償用液晶セルのリタデーションを等値拘
束することなく調整設定し、液晶駆動電圧(オン電圧)
を3.5ボルト以下に設定することにより、位相差板補
償・単偏光板式反射型2層液晶ディスプレイの消費電力
を低減させる。
In order to achieve this object, according to the present invention, a driving liquid crystal cell in which a reflecting plate integrally formed with pixel electrodes is incorporated and a compensating liquid crystal cell are laminated, and a retardation film is formed thereon. In a two-layer liquid crystal display consisting of a plate and one polarizing plate additionally laminated, the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal cell are adjusted and set without equal constraint, and the liquid crystal driving voltage (ON voltage) is set.
By setting the voltage to 3.5 V or less, the power consumption of the retardation plate compensating / single polarizing plate type reflective two-layer liquid crystal display is reduced.

【0007】[0007]

【発明の実施の形態】この発明の基本的な実施形態の一
つは、画素電極を一体に形成した反射板を組み込んだ駆
動用液晶セルと、補償用液晶セルを積層し、これに位相
差板と1枚の偏光板を付加積層して2層液晶ディスプレ
イを構成し、駆動用液晶セルのリタデーションと補償用
液晶セルのリタデーションを等値拘束することなく調整
設定し、液晶駆動電圧(オン電圧)を3.5ボルト以下
に設定した位相差板補償・単偏光板式反射型2層液晶デ
ィスプレイである。
BEST MODE FOR CARRYING OUT THE INVENTION One of the basic embodiments of the present invention is to stack a driving liquid crystal cell incorporating a reflecting plate integrally formed with pixel electrodes and a compensating liquid crystal cell on which a retardation film is formed. A two-layer liquid crystal display is constructed by additionally laminating a plate and one polarizing plate, and the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal cell are adjusted and set without equal constraint, and the liquid crystal driving voltage (ON voltage ) Is set to 3.5 V or less, and is a retardation plate-compensating / single-polarizing type reflective two-layer liquid crystal display.

【0008】この発明の基本的な他の実施形態は、画素
電極を一体に形成した反射板を組み込んだ駆動用液晶セ
ルと、補償用液晶セルと同じ分子配向をもつ補償用液晶
高分子フィルムを積層し、これに位相差板と1枚の偏光
板を付加積層して2層液晶ディスプレイを構成し、駆動
用液晶セルのリタデーションと補償用液晶高分子フィル
ムのリタデーションを等値拘束することなく調整設定
し、液晶駆動電圧を3.5ボルト以下に設定した位相差板
補償・単偏光板式反射型2層液晶ディスプレイである。
Another basic embodiment of the present invention is to provide a driving liquid crystal cell incorporating a reflecting plate integrally formed with pixel electrodes, and a compensating liquid crystal polymer film having the same molecular orientation as the compensating liquid crystal cell. A two-layer liquid crystal display is constructed by laminating and additionally laminating a retardation plate and one polarizing plate on it, and adjusting the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal polymer film without equal constraint. It is a reflective two-layer liquid crystal display with retardation plate compensation and single polarization plate set and liquid crystal drive voltage set to 3.5 V or less.

【0009】またこの発明の他の基本的な実施形態の一
つは、画素電極を一体に形成した反射板を組み込んだ駆
動用液晶セルと、補償用液晶セルあるいは補償用液晶高
分子フィルムを積層し、これに1/4波長板と1枚の偏光
板を付加積層して2層液晶ディスプレイを構成し、駆動
用液晶セルのリタデーションと補償用液晶セルあるいは
補償用液晶高分子フィルムのリタデーションを等値拘束
することなく調整設定し、液晶駆動電圧を3.5ボルト
以下に設定した位相差板補償・単偏光板式反射型2層液
晶ディスプレイである
In another basic embodiment of the present invention, a driving liquid crystal cell incorporating a reflection plate integrally formed with pixel electrodes and a compensating liquid crystal cell or a compensating liquid crystal polymer film are laminated. Then, a quarter-wave plate and one polarizing plate are additionally laminated to form a two-layer liquid crystal display, and the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal cell or the compensating liquid crystal polymer film, etc. It is a reflective two-layer liquid crystal display with retardation plate compensation and single polarizing plate, which is adjusted and set without restricting the value and the liquid crystal drive voltage is set to 3.5 V or less.

【0010】[0010]

【実施例】以下この発明の実施例を図面を参考に説明す
る。図1は、位相差板補償・単偏光板式反射型DTN−
LCDの実施例である。図1において、Aは情報信号に
よって表示制御される駆動用液晶セル(「駆動セル」と
略す)、Bは補償用液晶セル「補償セル」と略す)で、
駆動用液晶セルAと補償用液晶セルBは接合し積層状態
となって2層液晶構造が形成されている。駆動用液晶セ
ルAは、画素電極(図示省略)を一体に形成した反射板
(鏡面反射板)11を付着した基板5と、共通透明電極
(ITO = Indium Tin Oxide)3を付着した透明基板4
と、互いに対向した反射板(画素電極)11と共通透明
電極3の間に封入された駆動用液晶層(駆動用TN液晶
層)1からなり、補償用液晶セルBは、透明基板4a,
4bの間に補償用液晶層(補償用TN液晶層)2が封入
されたものである。また6は位相差板、9は偏光板、1
0は前方拡散板で、それらは透明基板4bの端面に順に
積層状態で付加されている。なお画素電極と一体化した
反射板11を駆動用液晶セルA内に組み込むことによ
り、偏光板9は1枚のみ付加することで足りる。そして
反射板11に一体形成した画素電極と共通透明電極3の
間に液晶駆動電圧(「駆動電圧」と略す)eが印加され
る。この液晶駆動電圧eは3.5V(ボルト)以下で、従
来適用されてきた5Vあるいは4.5Vのより大幅に低い
電圧である。また、駆動用液晶セルAのリタデーション
(△n・d)Aの大きさと補償用液晶セルBのリタデー
ション(△n・d)Bの大きさは等しくなっている。な
お△nは複屈折率、dはセルギャップ(液晶層の厚さ)
または位相差板の厚さである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a retardation plate compensation / single polarizing plate type reflection type DTN-.
It is an example of LCD. In FIG. 1, A is a driving liquid crystal cell (abbreviated as “driving cell”) whose display is controlled by an information signal, and B is a compensating liquid crystal cell (abbreviated as “compensation cell”),
The driving liquid crystal cell A and the compensating liquid crystal cell B are joined to be in a laminated state to form a two-layer liquid crystal structure. The driving liquid crystal cell A includes a substrate 5 to which a reflecting plate (specular reflecting plate) 11 integrally formed with pixel electrodes (not shown) is attached, and a transparent substrate 4 to which a common transparent electrode (ITO = Indium Tin Oxide) 3 is attached.
And a driving liquid crystal layer (driving TN liquid crystal layer) 1 enclosed between a reflective plate (pixel electrode) 11 and a common transparent electrode 3 which face each other. The compensating liquid crystal cell B includes a transparent substrate 4a,
A compensation liquid crystal layer (compensation TN liquid crystal layer) 2 is enclosed between 4b. Further, 6 is a retardation plate, 9 is a polarizing plate, 1
Reference numeral 0 denotes a front diffusion plate, which is sequentially laminated on the end surface of the transparent substrate 4b. By incorporating the reflection plate 11 integrated with the pixel electrode in the driving liquid crystal cell A, it is sufficient to add only one polarizing plate 9. Then, a liquid crystal drive voltage (abbreviated as “drive voltage”) e is applied between the pixel electrode integrally formed on the reflector 11 and the common transparent electrode 3. The liquid crystal drive voltage e is 3.5 V (volts) or less, which is a significantly lower voltage of 5 V or 4.5 V which has been conventionally applied. Further, the magnitude of the retardation (Δn · d) A of the driving liquid crystal cell A and the magnitude of the retardation (Δn · d) B of the compensating liquid crystal cell B are equal. Where Δn is the birefringence, d is the cell gap (thickness of the liquid crystal layer)
Alternatively, it is the thickness of the retardation plate.

【0011】図2は、この発明に係るカラー表示用の位
相差板補償・単偏光板式反射型DTN−LCDの実施例
であるが、図2から明らかなように、駆動セルAの共通
透明電極3と透明基板4の間にマイクロカラーフィルタ
12を配設しているところ以外は、図1に示した構成と
同じである。
FIG. 2 shows an embodiment of a retardation plate compensating / single-polarizing plate type reflection type DTN-LCD for color display according to the present invention. As is apparent from FIG. 2, the common transparent electrode of the driving cell A is shown. 3 is the same as the configuration shown in FIG. 1 except that the micro color filter 12 is disposed between the transparent substrate 4 and the transparent substrate 4.

【0012】図3は、この発明に係る位相差板を2枚装
着した位相差板2枚補償・単偏光板式反射型DTN−L
CDの実施例である。図1と図3を対比すれば明らかな
ように、図3で示される位相差板2枚補償・単偏光板式
反射型DTN−LCDは、表示特性を高めるために2枚
の位相差板6,7を並設したもので、その他の構成は図
1に示したところと同じである。
FIG. 3 is a reflection type DTN-L of a single polarizing plate type compensating plate having two retardation plates mounted with two retardation plates according to the present invention.
It is an example of CD. As is clear from comparison between FIG. 1 and FIG. 3, the two phase difference plate compensation / single-polarizing plate reflection type DTN-LCD shown in FIG. 3 has two phase difference plates 6 in order to enhance display characteristics. 7 are arranged side by side, and other configurations are the same as those shown in FIG.

【0013】図4は、この発明の他の実施例で、1/4波
長板補償・単偏光板式反射型DTN−LCDを示すもの
である。図1と図4を対比すれば明らかなように、図4
で示される1/4波長板補償・単偏光板式反射型DTN−
LCDは、一種の位相差板の機能を果す1/4波長板8を
位相差板6に代えて配設したもので、その他の構成は図
1に示すところと同じである。
FIG. 4 shows another embodiment of the present invention, which shows a 1/4 wavelength plate compensating single polarizing plate type reflection type DTN-LCD. As is clear from comparing FIG. 1 and FIG.
1/4 wavelength plate compensation / single polarizing plate type reflective DTN-
The LCD has a 1/4 wavelength plate 8 which functions as a kind of retardation plate instead of the retardation plate 6, and the other structure is the same as that shown in FIG.

【0014】図5は、この発明の他の実施例で、位相差
板補償・単偏光板式反射型FDTN−LCDを示すもの
である。図1と図5を対比すれば明らかなように、図5
で示される位相差板補償・単偏光板式反射型FDTN−
LCDは、LCDを薄く軽くする目的で、補償セルBに相
当する補償用液晶高分子フィルム13を駆動セルAと位
相差板6の間に配設したもので、その他の構成は図1に
示すところと同じである。そして補償セルBに代えて置
かれる補償用液晶高分子フィルム13は、補償セルBの
分子配向と同じ分子配向をもった液晶高分子フィルムで
ある。
FIG. 5 shows another embodiment of the present invention, which shows a retardation plate compensating / single polarizing plate type reflection type FDTN-LCD. As is clear from comparison between FIG. 1 and FIG.
Compensation / single polarizing plate type reflection type FDTN-
The LCD has a compensating liquid crystal polymer film 13 corresponding to the compensating cell B disposed between the driving cell A and the retardation plate 6 for the purpose of making the LCD thin and light, and the other structure is shown in FIG. It is the same as that. The compensating liquid crystal polymer film 13 placed in place of the compensating cell B is a liquid crystal polymer film having the same molecular orientation as that of the compensating cell B.

【0015】図6は、この発明の他の実施例で、相差板
補償・単偏光板式反射型MDTN−LCDを示すもので
ある。図6で示される位相差板補償・単偏光板式反射型
MDTN−LCDは、駆動セルAのリタデーション(△
n・d)Aの大きさと補償セルBのリタデーション(△
n・d)Bの大きさが等しくなく、この点で図1の相差
板補償・単偏光板式反射型DTN−LCDとは異なる
が、その他の構成は図1に示すところと同じである。
FIG. 6 shows another embodiment of the present invention, which shows a retardation plate compensating / single polarizing plate type reflection type MDTN-LCD. The retardation plate compensating / single polarizing plate type reflective MDTN-LCD shown in FIG.
n · d) A and retardation of compensation cell B (△
The sizes of n · d) B are not equal, and this point is different from the phase difference plate compensating / single-polarizing plate reflection type DTN-LCD in FIG. 1, but other configurations are the same as those shown in FIG.

【0016】図7は、この発明の他の実施例で、位相差
板補償・単偏光板式反射型MFDTN−LCDを示すも
のである。図7で示される位相差板補償・単偏光板式反
射型MFDTN−LCDは、駆動セルAのリタデーショ
ン(△n・d)Aの大きさと補償用液晶高分子フィルム
13のリタデーション(△n・d)Fの大きさが異なっ
ており、この点で図5の位相差板補償・単偏光板式反射
型FDTN−LCDとは異なるが、その他の構成は図5
に示すところと同じである。
FIG. 7 shows another embodiment of the present invention, which shows a retardation plate compensating / single polarizing plate type reflection type MFDTN-LCD. The retardation plate compensating / single-polarizing plate type reflective MFDTN-LCD shown in FIG. 7 has a retardation (Δn · d) A of the driving cell A and a retardation (Δn · d) of the compensating liquid crystal polymer film 13. The size of F is different, and in this respect, it is different from the retardation plate compensation / single-polarizing plate type reflection type FDTN-LCD of FIG. 5, but other configurations are as shown in FIG.
It is the same as that shown in.

【0017】なお、上記全ての実施例において、反射板
11を鏡面反射板として前方拡散板10を付加している
が、反射板11として拡散性反射板を用いれば前方拡散
板10を省くことができる。
In all of the above embodiments, the front diffuser plate 10 is added by using the reflector 11 as a specular reflector, but if the diffuser reflector is used as the reflector 11, the front diffuser plate 10 can be omitted. it can.

【0018】また、図5に示す位相差板補償・単偏光板
式反射型FDTN−LCD、図6に示す位相差板補償・
単偏光板式反射型MDTN−LCD、図7に示す位相差
板補償・単偏光板式反射型MFDTN−LCDのいずれ
においても、図2に示すように、駆動セルAの共通透明
電極3と透明基板4の間にマイクロカラーフィルタ12
を配設することによりカラー表示用位相差板補償・単偏
光板式反射型2層液晶ディスプレイとなり、また必要に
応じて図3に示すように、2枚の位相差板6,7を並設
できることは言うまでもない。
Further, the retardation plate compensation / single-polarizing plate type reflection type FDTN-LCD shown in FIG.
In both the single polarizing plate type reflection type MDTN-LCD and the retardation plate compensating / single polarizing plate type reflection type MFDTN-LCD shown in FIG. 7, as shown in FIG. Between the micro color filters 12
By providing a phase difference plate compensation / single-polarizing plate reflection type two-layer liquid crystal display for color display, and as necessary, two phase difference plates 6 and 7 can be arranged side by side as shown in FIG. Needless to say.

【0019】また上記の各実施例におけるTN液晶に代
えて既に知られている平行配向の液晶を用いて上記実施
例に対応するDP−LCDやFDP−LCDなどの2層
P液晶ディスプレイを構成することもできる。DP−L
CDあるいはFDP−LCDには特有の特徴がある。す
なわちDP−LCDは、2層液晶ディスプレイを構成す
る際、高価で且つ可視光全域で1/4波長板となる理想特
性が未だ実現されていない1/4波長板を必要とせず、ま
た平行配光のP液晶を用いる液晶セルはシンプルで製造
も容易であるという優れた特徴がある。さらに単偏光板
式反射型DP−LCDでは、無彩色表示が得られず、そ
のため色消し用(補償用)の位相差板を付加した構成の
位相差板補償・単偏光板式反射型DP−LCDは特有の
技術的意味をもつものである。さらに加えて、位相差板
補償・単偏光板式反射型DP−LCDあるいは位相差板
補償・単偏光板式反射型FDP−LCDは、構成がシン
プルで製造し易く安価な上に、その液晶セルのリタデー
ションが、駆動電圧(オン電圧)が約2.5Vより低くな
って初めて、製造可能の目安とするリタデーション値0.
2μmより大きくなるという特徴があることから、駆動
電圧(オン電圧)が約2.5Vより低い電圧で初めて実用
に役立つという特徴がある。この発明においてこれらの
実用上の重要な特徴が認識さたことから、位相差板補償
・単偏光板式反射型DP−LCDや位相差板補償・単偏
光板式反射型FDP−LCDは新規な液晶ディスプレイ
と認識できる。
Further, the already known parallel-aligned liquid crystal is used in place of the TN liquid crystal in each of the above-mentioned embodiments to construct a two-layer P liquid crystal display such as a DP-LCD or FDP-LCD corresponding to the above-mentioned embodiments. You can also DP-L
The CD or FDP-LCD has unique characteristics. That is, the DP-LCD does not require a 1/4 wavelength plate, which is expensive and has not yet realized the ideal characteristic of a 1/4 wavelength plate in the entire visible light range, when configuring a two-layer liquid crystal display, and the parallel arrangement is also possible. The liquid crystal cell using the light P liquid crystal has the excellent feature that it is simple and easy to manufacture. Further, in the single polarizing plate type reflection type DP-LCD, an achromatic display cannot be obtained. Therefore, the retardation plate compensating single polarizing plate type reflection type DP-LCD having the structure in which the achromatic (compensation) phase difference plate is added is It has a unique technical meaning. In addition, the retardation plate compensating / single-polarizing plate reflection type DP-LCD or the retardation plate compensating / single-polarizing plate reflection type FDP-LCD is simple in structure, easy to manufacture and inexpensive, and has retardation of its liquid crystal cell. However, only when the drive voltage (ON voltage) becomes lower than about 2.5V, the retardation value of 0.
Since it has a characteristic of being larger than 2 μm, it has a characteristic of being practically useful only when the driving voltage (ON voltage) is lower than about 2.5V. Since these important features for practical use are recognized in the present invention, the retardation plate compensation / single polarizing plate reflection type DP-LCD and the retardation plate compensation / single polarizing plate reflection type FDP-LCD are novel liquid crystal displays. Can be recognized.

【0020】次に上記実施例を含むこの発明の位相差板
補償・単偏光板式反射型2層液晶ディスプレイにおける
駆動電圧(オン電圧)eと表示特性の関係について見
る。位相差板補償・単偏光板式反射型2層液晶ディスプ
レイを代表して図1に示した位相差板補償・単偏光板式
反射型DTN−LCDと、図5に示した位相差板補償・
単偏光板式反射型FDTN−LCDを基に解析する。
Next, the relationship between the driving voltage (ON voltage) e and the display characteristics in the retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display of the present invention including the above-mentioned embodiments will be described. Phase difference plate compensation / single-polarizer type reflection type two-layer liquid crystal display is shown as a representative of the phase difference plate compensation / single-polarizer type reflection type DTN-LCD and phase difference plate compensation shown in FIG.
The analysis is based on a single polarizing plate type reflective FDTN-LCD.

【0021】位相差板補償・単偏光板式反射型DTN−
LCDや位相差板補償・単偏光板式反射型FDTN−L
CDにおいて、位相差板6,7あるいは1/4波長板8を
除いた構成では、補償セルB(または補償用液晶高分子
フィルム13)と駆動セルAの間に次の3条件が成立し
ていれば、2層型の補償原理により、駆動電圧オフ時に
全ての可視光において反射率が50%の理想的な明状態
が得られることが分かっている。
Phase difference plate compensation / single polarizing plate type reflection type DTN-
LCD and retarder compensation, single polarizing plate type reflective FDTN-L
In the CD without the retardation plates 6 and 7 or the quarter-wave plate 8, the following three conditions are established between the compensation cell B (or the compensating liquid crystal polymer film 13) and the driving cell A. Then, it is known that an ideal bright state with a reflectance of 50% is obtained for all visible light when the driving voltage is off, due to the two-layer type compensation principle.

【0022】その3条件とは、 [1] 補償用液晶セルB(または補償用液晶高分子フ
ィルム13)の補償用液晶層2のねじれ角と、駆動用液
晶セルAの駆動用液晶層1のねじれ角は、互いに角度が
等しくねじれ方向が逆方向であること。すなわち、補償
用液晶層2のねじれ角度がφのとき、駆動用液晶層1の
ねじれ角が(−φ)であること。 [2]補償用液晶セルBと駆動用液晶セルAの隣接する
分子が互いに直交していること。 [3] 補償用液晶セルBと駆動用液晶セルAのリタデ
ーションが等しいこと。 である。そして位相差板は、駆動電圧オフ時の理想的な
明状態をできる限り保ちながら、高いコントラスト比の
無彩色表示を得るために付加したものである。
The three conditions are: [1] The twist angle of the compensating liquid crystal layer 2 of the compensating liquid crystal cell B (or the compensating liquid crystal polymer film 13) and the driving liquid crystal layer 1 of the driving liquid crystal cell A. The twist angles must be the same and the twist directions must be opposite. That is, when the twist angle of the compensating liquid crystal layer 2 is φ, the twist angle of the driving liquid crystal layer 1 is (−φ). [2] Adjacent molecules of the compensating liquid crystal cell B and the driving liquid crystal cell A are orthogonal to each other. [3] The retardation of the compensating liquid crystal cell B is equal to that of the driving liquid crystal cell A. Is. The phase difference plate is added to obtain an achromatic display with a high contrast ratio while keeping the ideal bright state when the drive voltage is off as much as possible.

【0023】解析にあたり、液晶セル内の配向分布はOs
een-Frankの弾性体理論、光の伝播特性はStokes parame
ter を用いて求めている。解析に用いた各軸角の定義は
図8に示す通りである。すなわち、Pは偏光板の透過
軸、βはその透過軸の方位角、OPは位相差板の光軸
(遅相軸)、γはその光軸の方位角、R1,R2は補償
セルB(または補償用液晶高分子フィルム13)表面の
液晶分子の配向方向、R3,R4は駆動用液晶セルのラ
ビング方向(液晶分子の長軸方向)、φは液晶および液
晶高分子フィルムのねじれ角である。
In the analysis, the orientation distribution in the liquid crystal cell is Os.
een-Frank elastic body theory, light propagation characteristics are Stokes parame
It is calculated using ter. The definition of each axis angle used in the analysis is as shown in FIG. That is, P is the transmission axis of the polarizing plate, β is the azimuth angle of the transmission axis, OP is the optical axis (slow axis) of the retardation plate, γ is the azimuth angle of the optical axis, and R1 and R2 are compensation cells B ( Alternatively, the alignment direction of the liquid crystal molecules on the surface of the compensating liquid crystal polymer film 13), R3 and R4 are the rubbing directions of the driving liquid crystal cells (the major axis directions of the liquid crystal molecules), and φ is the twist angle of the liquid crystal and the liquid crystal polymer film. .

【0024】そしてねじれ角φを10°〜63°の範囲
において変化させ、その他の設計パラメータおよび材料
パラメータは表1に示す値すなわちTN−LCDにおけ
る代表的な値とし、また偏光板は理想特性として、偏光
板の透過軸の方位角β、位相差板の光軸の方位角γ、位
相差板のリタデーション(△n・d)R、液晶層のリタ
デーション(△n・d)LCを表2に示す範囲で変化さ
せて、液晶セル法線方向の表示特性に及ぼす影響を調
べ、駆動電圧eを4.5V〜1.5Vの範囲の中で変化させて
各駆動電圧eにおける最適セル条件を求めた。
Then, the twist angle φ is changed in the range of 10 ° to 63 °, the other design parameters and material parameters are the values shown in Table 1, that is, the typical values in the TN-LCD, and the polarizing plate has the ideal characteristics. Table 2 shows the azimuth angle β of the transmission axis of the polarizing plate, the azimuth angle γ of the optical axis of the retardation plate, the retardation (Δn · d) R of the retardation plate, and the retardation (Δn · d) LC of the liquid crystal layer. The influence on display characteristics in the normal direction of the liquid crystal cell was investigated by changing the range shown, and the driving voltage e was changed within the range of 4.5 V to 1.5 V to obtain the optimum cell condition at each driving voltage e.

【0025】なお最適セル条件とは、明状態の反射率4
9%以上、コントラスト比16:1以上、且つ無彩色と
なるセル条件を良好セル条件とた上で、その良好セル条
件を満たすものの中で分光反射率の波長依存性が最も小
さいものを最適セル条件とした。また無彩色表示の条件
は、1931年CIE−xy色度図上に描いたセル法線
方向の色軌跡が、D65標準光源の座標から0.05以内の円
に納まることとした。
The optimum cell condition is a reflectance of 4 in the bright state.
A cell condition of 9% or more, a contrast ratio of 16: 1 or more and an achromatic color is defined as a good cell condition, and the one having the smallest wavelength dependence of the spectral reflectance among those satisfying the good cell condition is the optimum cell. It was a condition. The condition for achromatic display is that the color locus in the cell normal direction drawn on the 1931 CIE-xy chromaticity diagram falls within a circle within 0.05 from the coordinates of the D65 standard light source.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】図9は、駆動電圧4.5V、液晶のねじれ
角63°の場合の良好セル条件(明状態の反射率が49
%以上、コントラスト比16:1以上、無彩色となるセ
ル条件)を、位相差板6のリタデーション(△n・d)
R と液晶層のリタデーション(△n・d)LC の関係
として示したものであり、図10は、駆動電圧4.5
V、液晶の捩れ角63°の場合の良好セル条件を、位相
差板6のリタデーション(△n・d)R と位相差板6
の光軸の方位角γの関係として示したものである。
FIG. 9 shows good cell conditions (the reflectance in the bright state is 49 when the driving voltage is 4.5 V and the twist angle of the liquid crystal is 63 °).
%, A contrast ratio of 16: 1 or more, and a cell condition for producing an achromatic color), the retardation of the retardation plate 6 (Δn · d)
The relationship between R and the retardation (Δn · d) LC of the liquid crystal layer is shown in FIG.
V, the good cell condition when the twist angle of the liquid crystal is 63 °, the retardation (Δn · d) R of the retardation plate 6 and the retardation plate 6
It is shown as a relation of the azimuth angle γ of the optical axis.

【0029】図9,図10から明らかなように、良好セ
ル条件は幾つかのセル群となっており、図10に示され
るA群、B群、C群、D群の各群における表示特性を調
べた結果、C群のコントラスト比は他のセル群のコント
ラスト比より高いが、分光反射率の波長依存性が最も小
さく且つ約30:1程度のコントラスト比が得られるA
群の最適セル条件がカラーフィルター方式のカラー表示
に最も適していることが確認された。
As is clear from FIGS. 9 and 10, the good cell condition is several cell groups, and the display characteristics in each of the groups A, B, C, and D shown in FIG. As a result, although the contrast ratio of the C group is higher than that of the other cell groups, the wavelength dependence of the spectral reflectance is the smallest and the contrast ratio of about 30: 1 can be obtained.
It was confirmed that the optimum cell condition of the group is most suitable for color display by the color filter method.

【0030】次にねじれ角φと表示特性の関係を見る
と、良好セル条件は図9、図10に示されるようなセル
群になり、ねじれ角φによってセル条件は異なるが、ね
じれ角63°のときのA群に対応するセル群が存在する
ことが確認された。図11は、各ねじれ角φにおける図
10のA群に相当する群の最適セル条件のリタデーショ
ン(△n・d)LC を示している。図11中の黒丸は
計算点であり、ねじれ角φが小さくなると液晶層のリタ
デーション(△n・d)LC が次第に小さくなること
を示している。そして表示特性の面では、ねじれ角φが
60°以下において単偏光板式液晶ディスプレイの極限
の表示性能に近い無彩色表示となるセル条件が存在する
が、液晶セルの製造面を考慮して、その製造に適した液
晶層のリタデーション(△n・d)LC の目安を0.2μ
m以上とすれば、図11に照らしてねじれ角60°付近
が条件を満足するねじれ角と言える。
Looking at the relationship between the twist angle φ and the display characteristics, the good cell condition is a cell group as shown in FIGS. 9 and 10, and the cell condition varies depending on the twist angle φ, but the twist angle is 63 °. It was confirmed that there is a cell group corresponding to the A group at the time. FIG. 11 shows the retardation (Δn · d) LC of the optimum cell condition of the group corresponding to the group A of FIG. 10 at each twist angle φ. The black circles in FIG. 11 are calculation points, and indicate that the retardation (Δn · d) LC of the liquid crystal layer gradually decreases as the twist angle φ decreases. In terms of display characteristics, there is a cell condition for an achromatic color display that is close to the ultimate display performance of a single polarizing plate type liquid crystal display when the twist angle φ is 60 ° or less. The retardation of the liquid crystal layer suitable for manufacturing (△ n ・ d) is 0.2μ
If it is m or more, it can be said that a twist angle of about 60 ° is a twist angle satisfying the conditions in view of FIG.

【0031】次に駆動電圧eと表示特性の関係について
見る。液晶のねじれ角φを10°〜63°の範囲にとり
駆動電圧eを4.5Vから1.5V変化させて表示特性を調べ
たところ、液晶のねじれ角φと駆動電圧eの全ての組み
合わせにおいて良好セル条件が存在し、例えば駆動電圧
eが4.5Vにおいては図10に示されるような幾つかの
セル群が形成され、また図10のA群に相当する分光反
射率の波長依存性が最も小さく且つコントラスト比も十
分高いセル群が存在することが確認された。
Next, the relationship between the drive voltage e and the display characteristics will be described. When the display characteristics were examined by changing the driving voltage e from 4.5 V to 1.5 V with the liquid crystal twist angle φ in the range of 10 ° to 63 °, good cell conditions were obtained for all combinations of the liquid crystal twist angle φ and the driving voltage e. 10 exist, some cell groups are formed as shown in FIG. 10 when the driving voltage e is 4.5 V, and the spectral reflectance corresponding to the group A in FIG. 10 has the smallest wavelength dependence and contrast. It was confirmed that there was a cell group with a sufficiently high ratio.

【0032】そこで上記A群に対応するセル群の液晶層
のリタデーション(△n・d)LCに注目したところ、
ねじれ角φに関係なく駆動電圧eが低下するとリタデー
ション(△n・d)LC が大きくなるという顕著な特
性が認められた。図12は、その代表例としてねじれ角
φと駆動電圧eの各組み合わせにおける最適セル条件と
なる液晶層のリタデーション(△n・d)LC を示し
たものである。図12から明らかなように、駆動電圧e
を低下させるとねじれ角φに関係なくリタデーション
(△n・d)LC が大きくなり、例えば駆動電圧eが
3.0V以下になると、ねじれ角φが10°においても、
リタデーション(△n・d)LC は、液晶セルの製造
に適した目安としている0.20μmより大きくなることが
確認された。なお、駆動電圧eが1.5Vにおける最適セ
ル条件のリタデーション(△n・d)LC は、ねじれ
角φに関係なく約1.10μmと大きくなることから図12
には示していない。
Then, when attention is paid to the retardation (Δn · d) LC of the liquid crystal layer of the cell group corresponding to the group A,
It was confirmed that the retardation (Δn · d) LC increases as the driving voltage e decreases regardless of the twist angle φ. FIG. 12 shows, as a representative example, the retardation (Δn · d) LC of the liquid crystal layer which is the optimum cell condition in each combination of the twist angle φ and the driving voltage e. As is clear from FIG. 12, the drive voltage e
Is decreased, the retardation (Δn · d) LC increases regardless of the twist angle φ.
Below 3.0V, even if the twist angle φ is 10 °,
It was confirmed that the retardation (Δn · d) LC was larger than 0.20 μm, which is a standard suitable for manufacturing a liquid crystal cell. The retardation (Δn · d) LC under the optimum cell condition when the driving voltage e is 1.5 V is as large as about 1.10 μm regardless of the twist angle φ.
Not shown in.

【0033】また、最適セル条件の表示特性と駆動電圧
eの関係を調べたところ、次のような傾向が見られた。 [1] 明状態の反射率は、駆動電圧eや、ねじれ角φ
に関係なく49%以上が得られる。 [2] 明状態の分光反射率の波長依存性は、ねじれ角
φが小さくなると駆動電圧eに依存しなくなる。 [3] 明状態の反射率は、一部の例外を除き、ねじれ
角φに関係なく駆動電圧の低下と共に小さくなり、した
がってコントラスト比は駆動電圧eの低下と共に高くな
る。 [4] 暗状態の分光反射率の波長依存性は、ねじれ角
φが小さくなると駆動電圧eに依存しなくなる。 [5] 駆動電圧eや、ねじれ角φに関係なく、同程度
の優れた無彩色表示が得られる。 [6] 反射率―電圧特性は、駆動電圧が約3.0Vより
小さくなると谷形(駆動電圧で最小となる谷形)を描
く。
When the relationship between the display characteristics under the optimum cell condition and the driving voltage e was examined, the following tendency was found. [1] The reflectance in the bright state depends on the driving voltage e and the twist angle φ.
49% or more can be obtained regardless of [2] The wavelength dependence of the spectral reflectance in the bright state does not depend on the drive voltage e as the twist angle φ becomes smaller. [3] With a few exceptions, the reflectance in the bright state decreases with decreasing drive voltage regardless of the twist angle φ, and therefore the contrast ratio increases with decreasing drive voltage e. [4] The wavelength dependence of the spectral reflectance in the dark state does not depend on the drive voltage e as the twist angle φ becomes smaller. [5] The same excellent achromatic display can be obtained regardless of the drive voltage e and the twist angle φ. [6] The reflectance-voltage characteristic draws a valley shape (the valley shape that is the minimum at the driving voltage) when the driving voltage becomes lower than about 3.0V.

【0034】以上の代表例として、図13、図14、図
15は液晶のねじれ角φが30°のときの表示特性の駆
動電圧依存性を示し、表3には図13ないし図15のセ
ル条件となる液晶層のリタデーション(△n・d)LC
と、明状態の反射率と、コントラスト比を示してい
る。また、図16、図17、図18は駆動電圧eが2.0
Vのときの表示特性のねじれ角依存性を示し、表4には
図16ないし図18のセル条件となる液晶層のリタデー
ション(△n・d)LC と、明状態の反射率と、コン
トラスト比を示している。そして表3から、液晶のねじ
れ角φが30°の場合、駆動電圧が3.0Vより低くなる
と液晶層のリタデーション(△n・d)LC が0.20μ
mより大きくなることが分かり、図16ないし図18と
表4から、駆動電圧eが2.0Vでも、ねじれ角φに関係
なく単偏光板式の極限に近い表示性能の無彩色表示が得
られることが分かる。なお、単偏光板式の極限の表示性
能とは、明状態の反射率が50%、コントラスト比が無
限大、分光反射率が波長に依存しない、の3条件を満た
す表示性能である。
As a representative example of the above, FIGS. 13, 14 and 15 show the drive voltage dependence of the display characteristics when the twist angle φ of the liquid crystal is 30 °, and Table 3 shows the cells of FIGS. Liquid crystal layer retardation (Δn · d) LC
And, the reflectance in the bright state and the contrast ratio are shown. Further, in FIGS. 16, 17, and 18, the driving voltage e is 2.0.
The dependence of the display characteristics on the twist angle is shown in Table 4. Table 4 shows the retardation (Δn · d) LC of the liquid crystal layer which is the cell condition of FIGS. 16 to 18, the reflectance in the bright state, and the contrast ratio. Is shown. From Table 3, when the twist angle φ of the liquid crystal is 30 °, the retardation (Δn · d) LC of the liquid crystal layer is 0.20μ when the driving voltage is lower than 3.0V.
16 to FIG. 18 and Table 4, it can be seen from FIG. 16 to FIG. 18 and Table 4 that even if the driving voltage e is 2.0 V, an achromatic display with a display performance close to the limit of a single polarizing plate type can be obtained regardless of the twist angle φ. I understand. The ultimate display performance of the single-polarizer type is display performance satisfying three conditions: the reflectance in the bright state is 50%, the contrast ratio is infinite, and the spectral reflectance does not depend on the wavelength.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】図12から明らかなように、最適セル条件
の液晶層のリタデーション(△n・d)LC が、ねじ
れ角φに関係なく駆動電圧eの低下と共に大きくなって
いることから、駆動電圧eを2.0Vまで低下させても単
偏光板式液晶ディスプレイの極限に近い表示性能の無彩
色表示が得られる現象は、基本的には図4に示されるよ
うな1/4波長板補償・単偏光板式反射型DTN−LCD
を含む2層液晶セル構造に起因していると考えられる。
そこで1/4波長板補償・単偏光板式反射型DTN−LC
Dについて、表示特性と駆動電圧eの関係を見る。
As is apparent from FIG. 12, since the retardation (Δn · d) LC of the liquid crystal layer under the optimum cell condition increases with the decrease of the drive voltage e regardless of the twist angle φ, the drive voltage e The phenomenon that an achromatic display with display performance close to the limit of a single-polarizer type liquid crystal display can be obtained even if the voltage is lowered to 2.0 V is basically a 1/4 wavelength plate compensation / single-polarizer type as shown in FIG. Reflective DTN-LCD
It is considered that this is due to the two-layer liquid crystal cell structure including.
Therefore, quarter-wave plate compensation / single-polarizer type reflective DTN-LC
Regarding D, the relationship between the display characteristics and the drive voltage e is examined.

【0038】位相差板補償・単偏光板式反射型DTN-LCD
では、駆動用液晶セルと偏光板の間に挟む補償用液晶セ
ルやその補償用液晶セルに代わる補償用高分子フィルム
の種類に関係なく、反射率と反射板上での光の楕円率の
間には、図19に示すような関係がある。したがって、
反射板上で全ての可視光が直線偏光になれば、全ての可
視光の反射率が50%となる理想的な無彩色の明状態が
得られ、逆に反射板上で全ての可視光が円偏光になれ
ば、全ての可視光の反射率が0%となる理想的な無彩色
の暗状態が得られることになる。
Phase-difference compensating / single-polarizing type reflective DTN-LCD
Then, regardless of the type of the compensating liquid crystal cell sandwiched between the driving liquid crystal cell and the polarizing plate or the compensating polymer film that replaces the compensating liquid crystal cell, there is a difference between the reflectance and the ellipticity of light on the reflector. , There is a relationship as shown in FIG. Therefore,
If all visible light is linearly polarized on the reflector, an ideal achromatic bright state where the reflectance of all visible light is 50% is obtained. Conversely, all visible light is reflected on the reflector. With circularly polarized light, an ideal achromatic dark state where the reflectance of all visible light is 0% can be obtained.

【0039】すなわち、図4に示されるような1/4波長
板補償・単偏光板式反射型DTN−LCDにおいて、1/
4波長板8のリタデーションが全ての可視光に対し各波
長の1/4の大きさであるとし、偏光板9と1/4波長板の方
位角の差を45°に設定すると、この偏光板9と1/4波
長板8の組み合わせは全ての可視光に対して円偏光板と
なり、偏光板9を透過した全ての可視光は円偏光とな
る。
That is, in the 1/4 wavelength plate compensation / single-polarizing plate reflection type DTN-LCD as shown in FIG.
If the retardation of the four-wave plate 8 is 1/4 of each wavelength for all visible light, and the azimuth difference between the polarizing plate 9 and the one-quarter wavelength plate is set to 45 °, this polarizing plate The combination of 9 and the quarter-wave plate 8 becomes a circularly polarizing plate for all visible light, and all visible light transmitted through the polarizing plate 9 becomes circularly polarized light.

【0040】この設定の基に、駆動電圧オフ時に補償セ
ルBと駆動セルAの間に、次の3条件が成立しておれ
ば、2層型の補償原理により、1/4波長板8を透過した
円偏光はそのまま反射板11上に到達する。その3条件
は、 [1] 補償セルB(または補償用液晶高分子フィルム
13)の補償用液晶層2のねじれ角と、駆動セルAの駆
動用液晶層1のねじれ角は、互いに角度が等しくねじれ
方向が逆方向であること。すなわち、補償用液晶層2の
ねじれ角度がφのとき、駆動用液晶層1のねじれ角が
(−φ)であること。 [2]補償セルBの補償用液晶層2のリタデーションと
駆動セルAの駆動用液晶層1のリタデーションが等しい
こと。 [3]補償セルBと駆動セルAの隣接する分子が互いに
直交していること。 である。したがって、駆動電圧オフ時では、反射板11
上の光は波長に関係なく円偏光となり、全ての可視光の
反射率が0となる理想的な無彩色の暗状態が得られるこ
とになる。
Based on this setting, if the following three conditions are established between the compensation cell B and the drive cell A when the drive voltage is off, the quarter-wave plate 8 is formed by the two-layer type compensation principle. The transmitted circularly polarized light reaches the reflector 11 as it is. The three conditions are: [1] The twisting angle of the compensating liquid crystal layer 2 of the compensating cell B (or the compensating liquid crystal polymer film 13) and the twisting angle of the driving liquid crystal layer 1 of the driving cell A are equal to each other. The twist direction should be the opposite direction. That is, when the twist angle of the compensating liquid crystal layer 2 is φ, the twist angle of the driving liquid crystal layer 1 is
Must be (-φ). [2] The retardation of the compensating liquid crystal layer 2 of the compensating cell B and the retardation of the driving liquid crystal layer 1 of the driving cell A are equal. [3] Adjacent molecules of the compensation cell B and the driving cell A are orthogonal to each other. Is. Therefore, when the drive voltage is off, the reflection plate 11
The upper light is circularly polarized light regardless of the wavelength, and an ideal achromatic dark state in which the reflectance of all visible light is 0 is obtained.

【0041】一方、駆動電圧オン時に明るい無彩色の明
状態がえられるか否かは明白ではないため、数値解析
(シミュレーション)を用いて調べる。そこで解析にあ
たり、液晶セル内の配向分布はOseen-Frankの弾性体理
論、光の伝播特性はStokes parameter を用いて求めて
いる。解析に用いた各軸角の定義は図20に示す通りで
ある。すなわち、Pは偏光板の透過軸、βはその透過軸
の方位角、OPは1/4波長板の光軸(遅相軸)、γはそ
の光軸の方位角、R1,R2は補償セルBのラビング方
向または液晶分子の長軸方向、R3,R4は駆動セルの
ラビング方向または液晶分子の長軸方向で、各軸角は軸
方向R1を基準としている。なお、φは液晶および液晶
高分子フィルムのねじれ角である。
On the other hand, since it is not clear whether or not a bright achromatic bright state can be obtained when the drive voltage is turned on, a numerical analysis (simulation) is used to investigate. Therefore, in the analysis, the orientation distribution in the liquid crystal cell was obtained using the Oseen-Frank elastic body theory, and the light propagation characteristics were obtained using the Stokes parameter. The definition of each axis angle used in the analysis is as shown in FIG. That is, P is the transmission axis of the polarizing plate, β is the azimuth angle of the transmission axis, OP is the optical axis (slow axis) of the quarter-wave plate, γ is the azimuth angle of the optical axis, and R1 and R2 are compensation cells. The rubbing direction of B or the long axis direction of the liquid crystal molecules, R3 and R4 are the rubbing directions of the driving cells or the long axis direction of the liquid crystal molecules, and each axial angle is based on the axial direction R1. Note that φ is the twist angle of the liquid crystal and the liquid crystal polymer film.

【0042】そして設計および材料パラメータの値に表
5に示すTN−LCDにおける代表的な値を用い、偏光
板9と1/4波長板8の組み合わせは円偏光板になる条件
に設定し駆動電圧(オン電圧)4.5V〜1.5VのTFT
(Thin Film Transistor)LCDの駆動を想定してセル
法線方向の表示特性を調べた。また1/4波長板8は、設
計法が明らかになっていることから、全ての可視光に対
し各波長の1/4のリタデーションを有するものとした。
Then, using typical values in the TN-LCD shown in Table 5 as the values of the design and material parameters, the combination of the polarizing plate 9 and the 1/4 wavelength plate 8 is set to the condition that a circular polarizing plate is set, and the driving voltage is set. (ON voltage) 4.5V to 1.5V TFT
(Thin Film Transistor) The display characteristics in the cell normal direction were examined under the assumption of LCD driving. Since the design method has been clarified, the 1/4 wavelength plate 8 has a retardation of 1/4 of each wavelength with respect to all visible light.

【0043】[0043]

【表5】 [Table 5]

【0044】図4に示すような1/4波長板補償・単偏光
板式反射型DTN−LCDならびにその補償用液晶セル
Bを補償用液晶高分子フィルム13に置き換えた1/4波
長板補償・単偏光板式反射型FDTN−LCDでは、前
述のように、駆動電圧オフ時(0V)に、原理的に全て
の可視光の反射率が0%となる理想的な無彩色の暗状態
が得られることから、駆動電圧オン時の表示特性を最適
化すればよいことになる。
As shown in FIG. 4, a quarter-wave plate compensation / single-polarizing plate type reflection DTN-LCD and a quarter-wave plate compensation / mono-lens unit in which the compensating liquid crystal cell B is replaced with a compensating liquid crystal polymer film 13 are used. As described above, in the polarizing plate type reflection type FDTN-LCD, it is theoretically possible to obtain an ideal achromatic dark state in which the reflectance of all visible light is 0% when the driving voltage is off (0 V). Therefore, it is sufficient to optimize the display characteristics when the drive voltage is on.

【0045】駆動電圧オン時に最も明るい表示を得るた
めには、図19に示される反射率と反射板上での楕円率
の関係から、駆動電圧オン時に視感度の最も高い波長5
50nmの光が反射板上で直線偏光になればよく、その
ためには、図4に示される1/4波長板補償・単偏光板式
反射型DTN−LCDの構造から1/4波長板8を除いた
構成において、駆動電圧オン時に波長550nmの光が
反射板上で円偏光になるセル条件に設定すれば良いこと
になる。
In order to obtain the brightest display when the driving voltage is turned on, from the relationship between the reflectance and the ellipticity on the reflection plate shown in FIG.
It suffices that the light of 50 nm becomes linearly polarized on the reflection plate. For that purpose, the 1/4 wavelength plate 8 is excluded from the structure of the 1/4 wavelength plate compensation / single polarizing plate type reflection type DTN-LCD shown in FIG. In the above configuration, it suffices to set the cell condition in which the light having a wavelength of 550 nm is circularly polarized on the reflection plate when the driving voltage is turned on.

【0046】そこで、液晶のねじれ角φ、偏光板9の方
位角β、駆動セルAのリタデーション(△n・d)Dと
波長λの比(△n・d)D/λ を表6に示した範囲で
変化させて、光が反射板11上で円偏光になるセル条件
を求めて、1/4波長板補償・単偏光板式反射型DTN−
LCDの表示特性を確認した。
Table 6 shows the twist angle φ of the liquid crystal, the azimuth angle β of the polarizing plate 9 and the ratio (Δn · d) D / λ of the retardation (Δn · d) D and the wavelength λ of the driving cell A. The cell condition that the light becomes circularly polarized on the reflection plate 11 is obtained by changing the range, and the 1/4 wavelength plate compensation / single polarization plate type reflection type DTN-
The display characteristics of the LCD were confirmed.

【0047】[0047]

【表6】 [Table 6]

【0048】先ず図4に示される1/4波長板補償・単偏
光板式反射型DTN−LCDの構成から1/4波長板8を
取り除いた構成で、駆動電圧オン時に反射板11上で円
偏光(楕円率0.99以上)になるセル条件を求めた。その
結果、駆動セルのリタデーションと波長の比(△n・
d)/λ、ねじれ角φ、偏光板9の方位角βの間に図
21に示されるような関係があることが確認された。図
21の(a)特性は、ねじれ角φに対する駆動セルのリ
タデーションと波長の比(△n・d)/λの関係であ
り、図21の(b)特性は、ねじれ角φに対する偏光板
9の方位角βの関係であり、図21の(a)(b)特性
によって、各駆動電圧eにおける1組のセル条件を示し
ている。そして、駆動電圧オン時に反射板11上で円偏
光になる駆動セルのリタデーションと波長の比(△n・
d)/λは、駆動電圧eの低下と共に次第に大きくな
っていることが分かる。なお、駆動電圧1.5Vでは、光
が反射板11上で円偏光になる駆動セルのリタデーショ
ンと波長の比(△n・d)/λは、ねじれ角βに関係
なく約2.0になることから、図21上には示していな
い。
First, the 1/4 wavelength plate compensating / single-polarizing plate type reflection DTN-LCD shown in FIG. 4 is removed from the 1/4 wavelength plate 8 and the circularly polarized light is polarized on the reflecting plate 11 when the driving voltage is turned on. The cell conditions for obtaining an ellipticity of 0.99 or more were obtained. As a result, the ratio of the retardation of the driving cell to the wavelength (Δn ·
d) It was confirmed that there is a relationship as shown in FIG. 21 among D / λ, the twist angle φ, and the azimuth angle β of the polarizing plate 9. The (a) characteristic of FIG. 21 is the relationship between the retardation of the drive cell and the wavelength (Δn · d) D / λ with respect to the twist angle φ, and the (b) characteristic of FIG. 21 is the polarizing plate with respect to the twist angle φ. The relationship between the azimuth angles β of 9 is shown, and one set of cell conditions at each drive voltage e is shown by the characteristics (a) and (b) of FIG. Then, when the drive voltage is turned on, the ratio of the retardation of the drive cell that becomes circularly polarized light on the reflection plate 11 and the wavelength (Δn ·
d) It can be seen that D / λ gradually increases as the driving voltage e decreases. At a drive voltage of 1.5 V, the ratio of the retardation to the wavelength of the drive cell (Δn · d) D / λ where the light is circularly polarized on the reflection plate 11 becomes about 2.0 regardless of the twist angle β. , Not shown in FIG.

【0049】次いで図21に示された結果を基に、各駆
動電圧において、視感度が最も高い波長550nmの光
が反射板11上で円偏光となるセル条件を求め、これに
1/4波長板8を挿入したときの表示特性を調べた結果、
次のことが確認された。 [1]図21から求められる全てのセル条件において、
明状態の反射率が49%よりも高い無彩色表示となるこ
と。 [2]各ねじれ角において、2つのセル条件が存在する
駆動電圧4.5V〜2.5Vの範囲では、いずれも駆動セルの
リタデーション(△n・d) が小さいセル条件の分
光反射率の波長依存性が小さいこと。 [3]分光反射率の波長依存性は、2.5Vより高い駆動
電圧域では、ねじれ角が小さくなると次第に大きくなる
傾向があり、駆動電圧が2.0Vより低くなると殆ど変化
しないこと。 [4]分光反射率の波長依存性は、ねじれ角が30°よ
り大きい場合には、駆動電圧が2.5Vまでの低下する範
囲において、駆動電圧の低下と共に小さくなり、ねじれ
角が20°より小さくなると、液晶駆動電圧によって殆
ど変化しないこと。
Next, based on the results shown in FIG. 21, the cell conditions under which the light with the wavelength of 550 nm, which has the highest luminosity factor, is circularly polarized on the reflection plate 11 at each drive voltage are obtained, and the cell conditions are obtained.
As a result of examining the display characteristics when the 1/4 wavelength plate 8 is inserted,
The following was confirmed. [1] In all cell conditions obtained from FIG. 21,
Achromatic display with a reflectance in the bright state higher than 49%. [2] Retardation (Δn · d) D of the driving cell is small in the range of driving voltage 4.5V to 2.5V where there are two cell conditions at each twist angle. Smallness. [3] The wavelength dependence of the spectral reflectance tends to gradually increase as the twist angle becomes smaller in the driving voltage range higher than 2.5V, and hardly changes when the driving voltage becomes lower than 2.0V. [4] When the twist angle is larger than 30 °, the wavelength dependence of the spectral reflectance becomes smaller as the drive voltage lowers in the range where the drive voltage drops to 2.5V, and the twist angle becomes smaller than 20 °. In that case, there is almost no change depending on the liquid crystal drive voltage.

【0050】このような表示特性の代表例として、図2
2は駆動電圧2.5Vのときの分光反射率のねじれ角依存
性を示し、図23はねじれ角50°における分光反射率
の駆動電圧依存性を示すものである。また図24は、各
駆動電圧において分光反射率の波長依存性が最も小さく
なるセル条件(最適セル条件)の分光反射率特性を示
し、図25はその色軌跡を示し、図26はその反射率−
電圧特性を示すものである。また表7は、セル条件と明
状態の反射率を示すものである。そして、これらの図表
から、各駆動電圧においてセル条件を最適化すると、少
なくとも駆動電圧2.5Vまでは位相差補償・単偏光版式
反射型2層液晶ディスプレイの極限に極めて近い表示特
性が得られることや、駆動電圧2.0Vでも分光反射率の
波長依存性の小さい無彩色表示が得られることが分か
る。なお、駆動電圧1.5Vでは、反射板11上で円偏光
になる駆動セルのリタデーションと波長の比(△n・
d)/λは約2.0となり、したがって波長550nm
の光が反射板11上で円偏光になる駆動セルAのリタデ
ーション(△n・d) は約1.1μmとかなり大きく
なることなどから低電圧化の限界は2.0V〜1.5Vの間の
電圧となる。
As a typical example of such display characteristics, FIG.
2 shows the dependence of the spectral reflectance on the twist angle at a driving voltage of 2.5 V, and FIG. 23 shows the dependence of the spectral reflectance on the driving voltage at a twist angle of 50 °. 24 shows the spectral reflectance characteristic under the cell condition (optimal cell condition) in which the wavelength dependence of the spectral reflectance is the smallest at each driving voltage, FIG. 25 shows its color locus, and FIG. 26 shows its reflectance. −
It shows a voltage characteristic. Table 7 shows the cell conditions and the reflectance in the bright state. From these charts, if the cell conditions are optimized at each drive voltage, it is possible to obtain display characteristics extremely close to the limit of the phase difference compensation / single polarization plate type reflective two-layer liquid crystal display up to a drive voltage of at least 2.5V. It can be seen that even with a driving voltage of 2.0 V, an achromatic color display with a small wavelength dependence of the spectral reflectance can be obtained. At a drive voltage of 1.5 V, the ratio of the retardation of the drive cell that becomes circularly polarized light on the reflection plate 11 to the wavelength (Δn ·
d) D / λ is about 2.0, and thus the wavelength is 550 nm
Of the driving cell A, which becomes circularly polarized light on the reflector 11, the retardation (Δn · d) D is about 1.1 μm, which is considerably large. Therefore, the lowering voltage limit is between 2.0V and 1.5V. Becomes

【0051】[0051]

【表7】 [Table 7]

【0052】このように駆動電圧を2.0Vまで下げて
も、駆動電圧4.5Vの場合とほぼ同等の優れた無彩色表
示が得られる。このメカニズムは、駆動電圧eの低下と
共に、図21の(a)特性で駆動セルのリタデーション
と波長の比(△n・d)/λが大きくなり、それに伴
い表7の最適セル条件となる駆動セルAのリタデーショ
ン(△n・d)D が大きくなっていることから、本質的
に2層型のセル構造に起因していると考えられる。すな
わち、駆動電圧が低下すると駆動セル内の残留複屈折は
大きくなるが、補償セルと駆動セルのねじれ角は互いに
逆であることから、この残留複屈折は補償セルのリタデ
ーションを減少させる効果をもつ。したがって、駆動セ
ルに高い電圧が印加されたときと同等の分光反射率を得
るためには、補償セルのリタデーションを駆動セルの残
留複屈折の効果で減少する分だけ予め大きく設定しなけ
ればならない。但し、補償セルと駆動セルのリタデ−シ
ョンを等しくするために、この補正を繰り返し行い、各
駆動電圧における駆動セルAのリタデーション(△n・
d)D を最適値に収斂させる必要がある。このようにし
て最適セル条件となる駆動セルAのリタデーション
(△n・d)D は大きくなるが、実際には単純な現象で
ないことから、表示特性を最適化するためには、図21
および表7のようにねじれ角φや偏光板の方位角βの調
整も併せて必要になる。
Thus, even if the driving voltage is lowered to 2.0 V, an excellent achromatic display which is almost equal to the driving voltage of 4.5 V can be obtained. With this mechanism, as the drive voltage e decreases, the retardation of the drive cell and the wavelength ratio (Δn · d) D / λ in the characteristic (a) of FIG. Since the retardation (Δn · d) D of the driving cell A is large, it is considered that it is essentially due to the two-layer type cell structure. That is, the residual birefringence in the drive cell increases as the drive voltage decreases, but the twist angles of the compensation cell and the drive cell are opposite to each other, and thus this residual birefringence has the effect of reducing the retardation of the compensation cell. . Therefore, in order to obtain the spectral reflectance equivalent to that when a high voltage is applied to the driving cell, the retardation of the compensation cell must be set large in advance by the amount that the retardation of the driving cell reduces. However, in order to equalize the retardation of the compensation cell and the driving cell, this correction is repeated, and the retardation (Δn
d) It is necessary to make D converge to an optimum value. In this way, the retardation of the driving cell A which becomes the optimum cell condition
(Δn · d) D becomes large, but since it is not a simple phenomenon in practice, in order to optimize the display characteristics, it is necessary to use FIG.
Also, as shown in Table 7, it is necessary to adjust the twist angle φ and the azimuth angle β of the polarizing plate.

【0053】このように駆動電圧の低下と共に最適セル
条件の駆動セルのリタデーション(△n・d)D が大き
くなることは、駆動電圧の低下と共に液晶材料の選択肢
が拡大することにもなり、また駆動電圧を低くすること
で初めて駆動セルのリタデーション (△n・d)D
液晶ディスプレイの製造に適した大きさになるセル条件
が出現するなどの効果をもたらす。
As described above, the increase in the retardation (Δn · d) D of the driving cell under the optimum cell condition as the driving voltage lowers also increases the choice of liquid crystal materials as the driving voltage lowers. Only when the driving voltage is lowered does the cell condition appear such that the retardation (Δn · d) D of the driving cell becomes suitable for manufacturing a liquid crystal display.

【0054】なお上記では、補償セルおよび駆動セルの
液晶の複屈折率△nは波長によらず一定としてきたが、
液晶にZLI-2293の複屈折率△nの波長分散を用いた場合
でも、セル条件を最適化することで液晶の複屈折率△n
に波長分散がないときと略同等の無彩色表示が得られる
ことを確認している。
In the above description, the birefringence index Δn of the liquid crystal in the compensation cell and the driving cell is constant regardless of the wavelength.
Even when the wavelength dispersion of the birefringence Δn of ZLI-2293 is used for the liquid crystal, the birefringence of the liquid crystal Δn can be optimized by optimizing the cell conditions.
It has been confirmed that an achromatic display that is almost the same as when there is no wavelength dispersion is obtained.

【0055】[0055]

【発明の効果】上記の実施例からも明らかなように、こ
の発明によれば、画素電極を一体に形成した反射板を組
み込んだ駆動用液晶セルと、補償用液晶セルあるいは補
償用液晶高分子フィルムを積層し、これに位相差板ある
いは1/4波長板と1枚の偏光板を不可積層してなる2層
液晶ディスプレイにおいて、従来の設計認識を超えて駆
動用液晶セルのリタデーションと、補償用液晶セルある
いは補償用液晶高分子フィルムのリタデーションを等し
い値に拘束することなく調整して設定することにより、
液晶駆動電圧を従来に比して大幅に低下させて3,5V以
下に設定するもので、液晶駆動電圧を2.0Vまで低下さ
せても、単偏光板式の液晶ディスプレイの極限に近い表
示性能の無彩色表示が得られ、液晶駆動電圧を大幅に低
下させることにより、良好な表示特性(反射率が約50
%で分光反射率の波長依存度が小さい無彩色表示)を維
持し高画質を保ちながら反射型液晶ディスプレイの消費
電力を更に低減させることができる。この発明は、アク
ティブマトリクス方式の反射型液晶ディスプレイに対し
てその消費電力低減効果が大きく、従来多用されている
オン電圧5VのTFT駆動の反射型液晶ディスプレイに
ついて見れば、その消費電力を1/6〜1/7に低減さ
せることができる。
As is apparent from the above embodiments, according to the present invention, a driving liquid crystal cell incorporating a reflection plate integrally formed with a pixel electrode, a compensating liquid crystal cell or a compensating liquid crystal polymer. In a two-layer liquid crystal display in which a film is laminated and a retardation plate or a quarter-wave plate and one polarizing plate are not laminated on it, the retardation and compensation of the driving liquid crystal cell are exceeded, beyond the conventional design recognition. By adjusting and setting the retardation of the liquid crystal cell for compensation or the liquid crystal polymer film for compensation without being restricted to the same value,
The liquid crystal drive voltage is set to 3,5 V or less by drastically lowering that of the conventional one. Even if the liquid crystal drive voltage is lowered to 2.0 V, the display performance is almost the same as that of the single-polarizer type liquid crystal display. Colored display is obtained, and the liquid crystal drive voltage is drastically reduced, resulting in good display characteristics (reflectance of about 50%).
%, It is possible to further reduce the power consumption of the reflective liquid crystal display while maintaining high image quality by maintaining an achromatic color display in which the wavelength dependence of the spectral reflectance is small. The present invention has a great effect of reducing the power consumption as compared with an active matrix type reflective liquid crystal display, and in the case of a TFT driven reflective type liquid crystal display with an on-voltage of 5 V which has been widely used conventionally, the power consumption is 1/6. It can be reduced to 1/7.

【0056】また、液晶駆動電圧を低下させると液晶の
リタデーションが大きくなることから、駆動電圧が低下
することで材料の選択肢が拡大し、また製造可能となる
液晶のねじれ角が拡大する。
Further, when the liquid crystal drive voltage is lowered, the retardation of the liquid crystal is increased, so that the drive voltage is lowered, the choice of materials is expanded, and the twist angle of the liquid crystal which can be manufactured is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す位相差板補償・単偏
光板式反射型DTN−LCDの基本要素構成断面図。
FIG. 1 is a sectional view of the basic elements of a retardation plate compensating / single polarizing plate type reflective DTN-LCD showing an embodiment of the present invention.

【図2】この発明の他の実施例を示すカラー表示用位相
差板補償・単偏光板式反射型DTN−LCDの基本要素
構成断面図。
FIG. 2 is a sectional view of the basic elements of a retardation plate compensating / single-polarizing plate reflection type DTN-LCD for color display showing another embodiment of the present invention.

【図3】この発明の他の実施例を示す位相差板2枚補償
・単偏光板式反射型DTN−LCDの基本要素構成断面
図。
FIG. 3 is a cross-sectional view of a basic element configuration of a retardation plate compensating single polarizing plate type DTN-LCD according to another embodiment of the present invention.

【図4】この発明の他の実施例を示す1/4波長板補償・
単偏光板式反射型DTN−LCDの基本要素構成断面
図。
FIG. 4 is a quarter-wave plate compensator according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of a basic element configuration of a single polarizing plate type reflective DTN-LCD.

【図5】この発明の他の実施例を示す位相差板補償・単
偏光板式反射型FDTN−LCDの基本要素構成断面
図。
FIG. 5 is a cross-sectional view of a basic element configuration of a retardation plate compensating / single-polarizing plate type reflection type FDTN-LCD showing another embodiment of the present invention.

【図6】この発明の他の実施例を示す位相差板補償・単
偏光板式反射型MDTN−LCDの基本要素構成断面
図。
FIG. 6 is a cross-sectional view showing the basic elements of a retardation plate compensating / single-polarizing plate type reflection type MDTN-LCD according to another embodiment of the present invention.

【図7】この発明の他の実施例を示す位相差板補償・単
偏光板式反射型MFDTN−LCDの基本要素構成断面
図。
FIG. 7 is a sectional view showing a basic element configuration of a retardation plate compensating / single polarizing plate type reflection type MFDTN-LCD according to another embodiment of the present invention.

【図8】この発明に関する位相差板補償・単偏光板式反
射型DTN−LCD,FDTN−LCDの軸角定義説明
図。
FIG. 8 is an explanatory view of the axial angle definition of the retardation plate compensating / single-polarizing plate type reflection type DTN-LCD, FDTN-LCD according to the present invention.

【図9】この発明に関する位相差板補償・単偏光板式反
射型2層液晶ディスプレイの特性図[位相差板のリタデ
ーション(△n・d)Rと液晶層のリタデーション(△
n・d)LCの関係図]。
FIG. 9 is a characteristic diagram of a retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display according to the present invention [retardation (Δn · d) R of retardation plate and retardation (Δ) of liquid crystal layer]
n ・ d) LC relationship diagram].

【図10】同2層液晶ディスプレイの特性図[位相差板
のリタデーション(△n・d)Rと位相差板の光軸の方
位角γの関係図]。
FIG. 10 is a characteristic diagram of the same two-layer liquid crystal display [relationship between retardation (Δn · d) R of the retardation plate and azimuth angle γ of the optical axis of the retardation plate].

【図11】同2層液晶ディスプレイの特性図[液晶のね
じれ角φと液晶層のリタデーション(△n・d)LCの関
係図]。
FIG. 11 is a characteristic diagram of the same two-layer liquid crystal display [a relational diagram between the twist angle φ of the liquid crystal and the retardation (Δn · d) LC of the liquid crystal layer].

【図12】同2層液晶ディスプレイの特性図[駆動電圧
と液晶層のリタデーション(△n・d)LCの関係図]。
FIG. 12 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram of drive voltage and retardation (Δn · d) LC of the liquid crystal layer].

【図13】同2層液晶ディスプレイの特性図[光の波長
と反射率の関係図]。
FIG. 13 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram of light wavelength and reflectance].

【図14】同2層液晶ディスプレイの特性図[CIE−x
y色度図 色軌跡]。
FIG. 14 is a characteristic diagram of the two-layer liquid crystal display [CIE-x
y Chromaticity diagram Color locus].

【図15】同2層液晶ディスプレイの特性図[駆動電圧
と反射率の関係図]。
FIG. 15 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram between drive voltage and reflectance].

【図16】同2層液晶ディスプレイの特性図[光の波長
と反射率の関係図]。
FIG. 16 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram between light wavelength and reflectance].

【図17】同2層液晶ディスプレイの特性図[CIE−x
y色度図 色軌跡]。
FIG. 17 is a characteristic diagram of the two-layer liquid crystal display [CIE-x
y Chromaticity diagram Color locus].

【図18】同2層液晶ディスプレイの特性図[駆動電圧
と反射率の関係図]。
FIG. 18 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram between drive voltage and reflectance].

【図19】単偏光板式反射型液晶ディスプレイの反射率
と反射板上での光の楕円率の間の関係図。
FIG. 19 is a relationship diagram between the reflectance of a single polarizing plate type reflective liquid crystal display and the ellipticity of light on a reflector.

【図20】この発明に関する1/4波長板補償・単偏光板
式反射型DTN−LCDの軸角定義説明図。
FIG. 20 is an explanatory diagram of the axial angle definition of the quarter-wave plate compensation / single-polarizing plate type reflective DTN-LCD according to the present invention.

【図21】同2層液晶ディスプレイの特性図[駆動セル
のリタデーションと波長の比(△n・d)/λならび
に偏光板の方位角βと液晶のねじれ角φの関係図]。
FIG. 21 is a characteristic diagram of the same two-layer liquid crystal display [relationship between a retardation of a driving cell and a wavelength (Δn · d) D / λ, a relational diagram of an azimuth angle β of a polarizing plate and a twist angle φ of a liquid crystal].

【図22】同2層液晶ディスプレイの特性図[光の波長
と反射率の関係図]。
FIG. 22 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram between light wavelength and reflectance].

【図23】同2層液晶ディスプレイの特性図[光の波長
と反射率の関係図]。
FIG. 23 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram of light wavelength and reflectance].

【図24】同2層液晶ディスプレイの特性図[光の波長
と反射率の関係図]。
FIG. 24 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram between light wavelength and reflectance].

【図25】同2層液晶ディスプレイの特性図[CIE−x
y色度図 色軌跡]。
FIG. 25 is a characteristic diagram of the same two-layer liquid crystal display [CIE-x
y Chromaticity diagram Color locus].

【図26】同2層液晶ディスプレイの特性図[駆動電圧
と反射率の関係図]。
FIG. 26 is a characteristic diagram of the same two-layer liquid crystal display [relationship diagram between drive voltage and reflectance].

【符号の説明】[Explanation of symbols]

A:駆動用液晶セル(駆動セル) B:補償用液晶セル(補償セル) 1:駆動用液晶層(駆動用TN液晶層) 2:補償用液晶層(補償用TN液晶層) 3:共通透明電極(ITO) 4,4a,4b:透明基板 5:基板 6:位相差板 7:位相差板 8:1/4波長板 9:偏光板 10:前方拡散板 11:反射板(鏡面反射板)(画素電極を含む) 12:マイクロカラーフィルタ(カラーフィルタ) 13:補償用液晶高分子フィルム e:液晶駆動電圧(駆動電圧)(オン電圧) P:偏光板の透過軸 OP:位相差板の光軸 R1,R2:補償用液晶セルまたは補償用液晶高分子フィル
ムの表面の液晶分子の配向方向 R3,R4:駆動用セルのラビング方向(液晶分子の長軸方
向) β:偏光板の透過軸の方位角 γ:位相差板の光軸(遅相軸)の方位角 φ:液晶のねじれ角 λ:光の波長 △n:複屈折率 d:セルギャップ(液晶層厚) △ n・d:リタデーション
A: Driving liquid crystal cell (driving cell) B: Compensating liquid crystal cell (compensating cell) 1: Driving liquid crystal layer (driving TN liquid crystal layer) 2: Compensating liquid crystal layer (compensating TN liquid crystal layer) 3: Common transparent Electrodes (ITO) 4, 4a, 4b: Transparent substrate 5: Substrate 6: Phase difference plate 7: Phase difference plate 8: 1/4 wavelength plate 9: Polarizing plate 10: Front diffusion plate 11: Reflection plate (specular reflection plate) (Including pixel electrode) 12: Micro color filter (color filter) 13: Compensation liquid crystal polymer film e: Liquid crystal drive voltage (drive voltage) (ON voltage) P: Transmission axis OP of polarizing plate: Light of retardation plate Axis R1, R2: Alignment direction of liquid crystal molecules on the surface of compensating liquid crystal cell or compensating liquid crystal polymer film R3, R4: Rubbing direction of driving cell (long axis direction of liquid crystal molecule) β: Transmission axis of polarizing plate Azimuth γ: Azimuth of optical axis (slow axis) of retardation plate φ: Twist angle of liquid crystal λ: Light wavelength Δn: Birefringence d: Cell gap (liquid crystal layer thickness) Δn · d: Retardation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 画素電極を一体に形成した反射板を組み
込んだ駆動用液晶セルと、補償用液晶セルを積層し、こ
れに位相差板と1枚の偏光板を付加積層して成る2層液
晶ディスプレイにおいて、駆動用液晶セルのリタデーシ
ョンと補償用液晶セルのリタデーションを等値拘束する
ことなく調整設定し、液晶駆動電圧を3.5ボルト以下
に設定したことを特徴とする位相差板補償・単偏光板式
反射型2層液晶ディスプレイ。
1. A two-layer structure in which a driving liquid crystal cell incorporating a reflecting plate integrally formed with pixel electrodes and a compensating liquid crystal cell are laminated, and a retardation plate and one polarizing plate are additionally laminated thereon. In the liquid crystal display, the retardation of the retardation plate compensation is characterized in that the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal cell are adjusted and set without equal constraint, and the liquid crystal driving voltage is set to 3.5 V or less. Single polarizing plate type reflective two-layer liquid crystal display.
【請求項2】 画素電極を一体に形成した反射板を組み
込んだ駆動用液晶セルと、補償用液晶セルと同じ分子配
向をもつ補償用液晶高分子フィルムを積層し、これに位
相差板と1枚の偏光板を付加積層して成る2層液晶ディ
スプレイにおいて、駆動用液晶セルのリタデーションと
補償用液晶高分子フィルムのリタデーションを等値拘束
することなく調整設定し、液晶駆動電圧を3.5ボルト
以下に設定したことを特徴とする位相差板補償・単偏光
板式反射型2層液晶ディスプレイ。
2. A driving liquid crystal cell in which a reflecting plate integrally formed with pixel electrodes is incorporated, and a compensating liquid crystal polymer film having the same molecular orientation as that of the compensating liquid crystal cell are laminated, and a retardation plate and 1 In a two-layer liquid crystal display in which a number of polarizing plates are additionally laminated, the retardation of the driving liquid crystal cell and the retardation of the compensating liquid crystal polymer film are adjusted and set without equal constraint, and the liquid crystal driving voltage is 3.5 V. A retardation plate compensating / single polarizing plate type reflective two-layer liquid crystal display characterized by the following settings.
【請求項3】 位相差板に代えて1/4波長板を配設した
ことを特徴とする請求項1または請求項2に記載の位相
差板補償・単偏光板式反射型2層液晶ディスプレイ。
3. A retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display according to claim 1, wherein a quarter wave plate is provided in place of the retardation plate.
【請求項4】 2枚の位相差板を並設したことを特徴と
する請求項1または請求項2に記載の位相差板補償・単
偏光板式反射型2層液晶ディスプレイ。
4. The retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display according to claim 1, wherein two retardation plates are arranged in parallel.
【請求項5】 駆動用液晶セルにカラーフィルタを組み
込んだ請求項1ないし請求項4のいずれか1項に記載の
位相差板補償・単偏光板式反射型2層液晶ディスプレ
イ。
5. The retardation plate compensating / single polarizing plate type reflective two-layer liquid crystal display according to claim 1, wherein a color filter is incorporated in the driving liquid crystal cell.
【請求項6】 2層液晶ディスプレイがDTN−LCD
であることを特徴とする請求項1ないし請求項5のいず
れか1項に記載の位相差板補償・単偏光板式反射型2層
液晶ディスプレイ。
6. The two-layer liquid crystal display is a DTN-LCD.
The retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display according to any one of claims 1 to 5.
【請求項7】 2層液晶ディスプレイがFDTN−LC
Dであることを特徴とする請求項1ないし請求項5のい
ずれか1項に記載の位相差板補償・単偏光板式反射型2
層液晶ディスプレイ。
7. A two-layer liquid crystal display is FDTN-LC.
6. The retardation plate compensating / single polarizing plate type reflection type 2 according to claim 1, wherein the reflection type 2 is D.
Layer liquid crystal display.
【請求項8】 2層液晶ディスプレイがMDTN−LC
Dであることを特徴とする請求項1ないし請求項5のい
ずれか1項に記載の位相差板補償・単偏光板式反射型2
層液晶ディスプレイ。
8. A two-layer liquid crystal display is MDTN-LC.
6. The retardation plate compensating / single polarizing plate type reflection type 2 according to claim 1, wherein the reflection type 2 is D.
Layer liquid crystal display.
【請求項9】 2層液晶ディスプレイがMFDTN−L
CDであることを特徴とする請求項1ないし請求項5の
いずれか1項に記載の位相差板補償・単偏光板式反射型
2層液晶ディスプレイ。
9. The two-layer liquid crystal display is MFDTN-L.
The retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display according to any one of claims 1 to 5, which is a CD.
【請求項10】 2層液晶ディスプレイがDP−LCD
であることを特徴とする請求項1ないし請求項5のいず
れか1項に記載の位相差板補償・単偏光板式反射型2層
液晶ディスプレイ。
10. A two-layer liquid crystal display is DP-LCD.
The retardation plate compensating / single-polarizing plate type reflective two-layer liquid crystal display according to any one of claims 1 to 5.
【請求項11】 2層液晶ディスプレイがFDP−LC
Dであることを特徴とする請求項1ないし請求項5のい
ずれか1項に記載の位相差板補償・単偏光板式反射型2
層液晶ディスプレイ。
11. A two-layer liquid crystal display is FDP-LC.
6. The retardation plate compensating / single polarizing plate type reflection type 2 according to claim 1, wherein the reflection type 2 is D.
Layer liquid crystal display.
JP2001228932A 2001-07-30 2001-07-30 Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display Pending JP2003043486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228932A JP2003043486A (en) 2001-07-30 2001-07-30 Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228932A JP2003043486A (en) 2001-07-30 2001-07-30 Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display

Publications (1)

Publication Number Publication Date
JP2003043486A true JP2003043486A (en) 2003-02-13

Family

ID=19061357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228932A Pending JP2003043486A (en) 2001-07-30 2001-07-30 Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display

Country Status (1)

Country Link
JP (1) JP2003043486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507821A (en) * 2018-12-28 2019-03-22 郴州市晶讯光电有限公司 A kind of DTN liquid crystal display
CN109983397A (en) * 2016-11-24 2019-07-05 松下液晶显示器株式会社 Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983397A (en) * 2016-11-24 2019-07-05 松下液晶显示器株式会社 Liquid crystal display device
CN109983397B (en) * 2016-11-24 2022-07-01 松下液晶显示器株式会社 Liquid crystal display device having a plurality of pixel electrodes
CN109507821A (en) * 2018-12-28 2019-03-22 郴州市晶讯光电有限公司 A kind of DTN liquid crystal display

Similar Documents

Publication Publication Date Title
JP3321559B2 (en) Liquid crystal display
JP5313763B2 (en) Liquid crystal display
JPH03223715A (en) Liquid crystal display element
WO2010104528A1 (en) Normally black transflective liquid crystal displays
KR20040051578A (en) A method for manufacturing liquid crystal display device
US20020180913A1 (en) Reverse reflectance mode direct-view liquid crystal display employing a liquid crystal having a characteristic wavelength in the non-visible spectrum
US8085370B2 (en) Single-polarizer reflective bistable twisted nematic (BTN) liquid crystal display device
KR20040104662A (en) Liquid crystal display device
JP2000029010A (en) Liquid crystal display device
JP2003233069A (en) Reflective or translucent liquid crystal display device
KR20010051811A (en) Discotic-type twist-film compensated single-domain or two-domain twisted nematic liquid crystal displays
KR20000017461A (en) Reflective liquid crystal display device
US7705939B2 (en) Transflective liquid crystal display
US20040201801A1 (en) Semi-transmission type liquid crystal display device
JPH09197388A (en) Reflection type liquid crystal display device
JP2003043486A (en) Optical retardation plate compensation and single polarizing plate reflection type two-layer liquid crystal display
JP2000111728A (en) Laminated phase difference plate
JP3725187B2 (en) Liquid crystal display device and electronic device
JP2000081619A (en) Reflection type liquid crystal display device
JPH0943596A (en) Reflection type liquid crystal display element and liquid crystal display device formed by using the same
JP2001091949A (en) Reflection type liquid crystal display
JPH0659258A (en) Liquid crystal display device
JPH1026777A (en) Liquid crystal display element
JP2002148611A (en) Semitransmission type liquid crystal display device
JPH0728053A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330