JP2003042854A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JP2003042854A
JP2003042854A JP2001227466A JP2001227466A JP2003042854A JP 2003042854 A JP2003042854 A JP 2003042854A JP 2001227466 A JP2001227466 A JP 2001227466A JP 2001227466 A JP2001227466 A JP 2001227466A JP 2003042854 A JP2003042854 A JP 2003042854A
Authority
JP
Japan
Prior art keywords
resistance
cable
sensor
temperature
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001227466A
Other languages
Japanese (ja)
Inventor
Taro Endo
太郎 遠藤
Masami Wada
正巳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001227466A priority Critical patent/JP2003042854A/en
Publication of JP2003042854A publication Critical patent/JP2003042854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measuring apparatus by which the temperature of a resistance thermometer sensor is measured remotely and by using a minimum of two cables. SOLUTION: The temperature measuring apparatus is provided with the resistance thermometer sensor, and the resistance value of the sensor is measured in a remote form. In the apparatus, dedicated cables whose resistance values per unit length are already known are connected respectively to both ends of the sensor, resistance values (r1, r2) at a time when the length (L) of the dedicated cables is set are calculated, a prescribed voltage (V) and a prescribed current (i) are applied to a series loop composed of the dedicated cables and the sensor, and the resistance value of the sensor Ro is calculated by an expression of the sensor Ro=(V/i)-[(r1+r2).L] (where V represents the voltage applied to the sensor and (i) represents the current flowing in the sensor).

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、リモート形式でか
つ2線で被測定流体等の温度を算出するようにした温度
測定装置に関する。 【0002】 【従来の技術】従来の温度測定装置にあっては、測温抵
抗体を用いた温度測定を行う場合、ケーブルの持つ抵抗
が誤差を生じるため、4線式、3線式と呼ばれる手法を
用い、ケーブルの抵抗の影響を受けないようにして測定
するものが周知である。 【0003】4線式で温度測定する手法は、図4に示す
ように、ケーブル抵抗Rc1、Rc4の電圧降下分を測
定しないように測温抵抗体Roの抵抗値を測定する手法
である。即ち、電源電圧EからケーブルC1を介して測
温抵抗体Roの一端部に接続し、その他端部をケーブル
C4を介して電流器の一方端部に接続する。加えて、電
圧器に接続するケーブルC2を測温抵抗体Roの一端部
に接続し、測温抵抗体Roの他端部をケーブルC3を介
して電圧器の他方端部に接続する。ここで、ケーブルC
1のケーブル抵抗がRc1、ケーブルC2のケーブル抵
抗がRc2、ケーブルC3のケーブル抵抗がRc3、ケ
ーブルC4のケーブル抵抗がRc4とすると、電源電圧
Eからの電流iは、ケーブル抵抗Rc1−測温抵抗体R
o−ケーブル抵抗Rc4−電流器のルートに従って流れ
る。 【0004】一方、電圧器−ケーブル抵抗Rc2−測温
抵抗体R−ケーブル抵抗Rc3−電圧器のループには電
流iは流れないため、電圧降下を生じない。従って、測
温抵抗体Rの両端の電位差のみを測定することができ
る。 【0005】3線式で温度測定する手法は、図5に示す
ように、4線式の手法に比べてケーブルが1本少ないた
め配線コストが安いが、その分ハード構成は複雑にな
る。先ず、その接続状態は、電源電圧EにケーブルC1
を介して測温抵抗体Roの一端部に接続し、その他端部
にケーブルC2を介して電圧器V1に接続する。同時に
測温抵抗体Roの他端部とケーブルC3を介して電流器
Iに接続すると共に、ケーブルC2とC3との間に電圧
器V2を介在させる。 【0006】このような接続状態において、先ず、ケー
ブル抵抗Rc2には電流が流れないので、電流iは電源
電圧E−ケーブル抵抗Rc1−測温抵抗体Ro−ケーブ
ル抵抗Rc3−電流器Iのルートで流れる。また、ケー
ブル抵抗Rc1とケーブル抵抗Rc3とは等しいケーブ
ルC1、C3を使用すると、ケーブル抵抗Rc1とケー
ブル抵抗Rc3との両端の電圧も等しくなり、その電圧
はV2となる。ここでケーブル抵抗Rc1とケーブル抵
抗Rc2との両端の電圧をV1とすると、測温抵抗体R
oの両端の電圧は(V1−V2)となり、電流iであれ
ば、測温抵抗体Roが下記の式1により求めることがで
きる。 測温抵抗体Ro=(V1−V2)/i・・・式1 【0007】 【発明が解決しようとする課題】しかしながら、従来技
術で説明した測温抵抗体を用いた3線式及び4線式の温
度測定装置において、測温抵抗体の抵抗値を測定するた
めにはハード構成が複雑であり、かつケーブルの数が多
いため、ケーブルのコスト及び構成を複雑にする分のコ
ストが高くなるという問題がある。 【0008】従って、なるべくケーブル本数を少なくす
る手法、例えば、最低2本のケーブルを使用すると共
に、ハードウェアの構成の簡略化を図った測定手法に解
決しなければならない課題を有する。 【0009】 【課題を解決するための手段】上記課題を達成するため
に、本発明に係る渦流量計は、次に示す構成にすること
である。 【0010】(1)測温抵抗体を備え、リモート形式で
前記測温抵抗体の抵抗値を測定する温度測定装置におい
て、前記測温抵抗体の両端部に、単位長当りの抵抗値が
既知の専用ケーブルをそれぞれ接続し、前記専用ケーブ
ルの長さ(L)を設定したときの抵抗値(r1,r2)
を算出し、前記専用ケーブルと測温抵抗体とからなる直
列ループに所定の電圧(V)、電流(i)を印加したと
きに、次式、 測温抵抗体Ro=(V/i)−((r1+r2)・L) (V;測温抵抗体に印加される電圧、i;測温抵抗体を
流れる電流)により、測温抵抗体Roの抵抗値を算出す
ることを特徴とする温度測定装置。 【0011】このように、渦発生体に組み込まれている
測温抵抗体の抵抗値を単位長の抵抗値が既知の専用ケー
ブルを2本使用し、その専用ケーブルの長さを設定して
ケーブル長の抵抗値を算出して測温抵抗体Roの抵抗値
を演算により算出するようにしたことにより、従来の3
本若しくは4本必要であったケーブルの本数を削減する
ことが可能で且つ、演算は極めて簡単なオームの法則に
基づく計算であるため、その構成を複雑にしないで求め
ることができる。 【0012】 【発明の実施の形態】以下、本発明の温度測定装置の実
施形態について図面を参照して説明する。尚、この例で
は、カルマン渦を利用して被測定流体の流量を計測する
渦流量計に本発明の温度測定装置を適用した例を表わ
す。従来技術で説明したものと同じものには同一符号を
付与して説明する。また、本発明は、渦流量計だけでな
く、一般の圧力、流量等の物理量を測定する各種の装置
に適用することができるものである。 【0013】遠隔にて測温抵抗体の温度を測定すること
ができる渦流量計は、図1及び図2に示すように、流路
1内に配置されている渦発生体2を備えた検出器3と、
この検出器3に接続されている単位長当りの抵抗値が既
知の専用ケーブル4と、専用ケーブル4を介して得られ
たデータに基づいて流量及び温度を測定する測定部5と
から構成されている。 【0014】渦発生体2は、流体の流れ方向に対して後
ろ側でカルマン渦を発生させる構造となっており、その
内部に流体の温度を測定するための測温抵抗体Ro及び
ピエゾ素子Pを組み込んだ構造となっている。 【0015】検出器3は、この渦発生体2からの信号を
受信して専用ケーブル4を介して測定部5に送るもので
あり、専用ケーブル4を介して測定部5と接続されてい
る。 【0016】測定部5は、図2に示すように、専用ケー
ブル4を介して得られたピエゾ素子Pからの信号を受信
して流量を測定する流量測定部6と、専用ケーブル4を
介して得られた測温抵抗体Roの抵抗値から温度を測定
する温度測定部7と、流量測定部6及び温度測定部7で
の流量及び温度の計算を行うマイクロプロセッサで構成
されている制御部8と、制御部8で生成したデータを出
力する出力回路部9とから構成されている。 【0017】このような構成からなる装置において、検
出器3、専用ケーブル4、測定部5との電気回路をみる
と、図3に示すように、専用ケーブル4でのケーブル長
Lのケーブル抵抗r1、r2が発生し、測定部5におけ
る電源電圧Eは抵抗R−ケーブル抵抗r1−測温抵抗体
Ro−ケーブル抵抗r2−電流器Iの直列ループが形成
され、専用ケーブル4間に電圧器Vを設けた構成とな
る。 【0018】測定部5の制御部8には、専用ケーブル4
の単位長当りの抵抗値を設定する手段が備わっており、
それは、R=ρ・(L/S)(ρ;抵抗率、L;長さ、
S;断面積)の公式に基づいて抵抗値を設定することが
できる専用ケーブル4のデータが備えられている。 【0019】即ち、カルマン渦を発生させる渦発生体に
組み込まれている測温抵抗体Roの両端部に、単位長当
りの抵抗値が既知の専用ケーブル4をそれぞれ接続し、
専用ケーブル4の長さ(L)を設定した抵抗値(r1,
r2)を算出し、専用ケーブル4と測温抵抗体Roとか
らなる直列ループに所定の電圧(V)、電流(i)を印
加して、次の式2、 測温抵抗体Ro=(V/i)−((r1+r2)・L)・・・式2 (V;測温抵抗体に印加される電圧、i;測温抵抗体を
流れる電流)により、測温抵抗体Roの抵抗値を算出す
るのである。 【0020】このように測温抵抗体Roに、単位長当り
既知の抵抗値を有する専用ケーブル4を接続し、制御部
8において計算で測温抵抗体Roの抵抗値を求めるよう
にすれば、ケーブルは最小本数の2本ですむことにな
る。 【0021】 【発明の効果】以上説明したように、本発明による温度
測定装置は、測温抵抗体の抵抗値を算出するのに、単位
長当りの抵抗値が既知の専用ケーブルを測温抵抗体の両
端部に接続すると共に、この専用ケーブルの抵抗値を差
し引くという計算手法で測温抵抗体の抵抗値を算出する
ことで、簡単な計算式でかつ最小限の2本のケーブルの
みでリモートでの測温抵抗体の抵抗値が測定できるとい
う効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring apparatus which calculates the temperature of a fluid to be measured or the like in a remote manner and in two lines. 2. Description of the Related Art A conventional temperature measuring device is called a four-wire type or a three-wire type because when a temperature is measured using a resistance temperature detector, the resistance of a cable causes an error. It is well known that the measurement is performed by using a technique without being affected by the resistance of the cable. As shown in FIG. 4, a method of measuring temperature by a four-wire system is a method of measuring the resistance value of a resistance thermometer Ro so as not to measure the voltage drop of the cable resistors Rc1 and Rc4. That is, the power supply voltage E is connected to one end of the resistance temperature detector Ro via the cable C1, and the other end is connected to one end of the current source via the cable C4. In addition, the cable C2 connected to the voltage measuring device is connected to one end of the resistance thermometer Ro, and the other end of the temperature measuring resistor Ro is connected to the other end of the voltage measuring device via the cable C3. Here, cable C
1 is Rc1, the cable resistance of the cable C2 is Rc2, the cable resistance of the cable C3 is Rc3, and the cable resistance of the cable C4 is Rc4, the current i from the power supply voltage E is represented by the cable resistance Rc1−thermometer R
o-cable resistance Rc4-flow according to the route of the current generator. On the other hand, the current i does not flow through the loop of the voltmeter-cable resistance Rc2-the resistance thermometer R-the cable resistance Rc3-the voltmeter, so that no voltage drop occurs. Therefore, only the potential difference between both ends of the resistance bulb R can be measured. As shown in FIG. 5, the three-wire method for measuring the temperature has a smaller number of cables than the four-wire method, so that the wiring cost is lower, but the hardware configuration becomes more complicated. First, the connection state is determined by connecting the cable C1 to the power supply voltage E.
Is connected to one end of the resistance temperature detector Ro via the other end, and to the other end via a cable C2 to the voltage generator V1. At the same time, the other end of the resistance thermometer Ro is connected to the current generator I via the cable C3, and a voltage generator V2 is interposed between the cables C2 and C3. In such a connection state, first, since no current flows through the cable resistance Rc2, the current i is obtained through the route of the power supply voltage E-the cable resistance Rc1-the temperature measuring resistor Ro-the cable resistance Rc3-the current generator I. Flows. When the cables C1 and C3 having the same cable resistance Rc1 and cable resistance Rc3 are used, the voltages at both ends of the cable resistance Rc1 and the cable resistance Rc3 become equal, and the voltage becomes V2. Here, assuming that the voltage between both ends of the cable resistance Rc1 and the cable resistance Rc2 is V1, the temperature measuring resistor R
The voltage at both ends of o is (V1−V2), and if the current is i, the resistance bulb Ro can be obtained by the following equation 1. Resistance thermometer Ro = (V1−V2) / i Equation 1 However, the three-wire system and the four-wire system using the resistance temperature detector described in the prior art have been described. In the temperature measurement device of the formula, the hardware configuration is complicated and the number of cables is large in order to measure the resistance value of the resistance temperature detector. There is a problem. Therefore, there is a problem to be solved by a method for reducing the number of cables as much as possible, for example, a measurement method using at least two cables and simplifying the hardware configuration. In order to achieve the above object, a vortex flowmeter according to the present invention has the following configuration. (1) In a temperature measuring apparatus provided with a resistance thermometer and measuring the resistance of the resistance thermometer in a remote format, the resistance per unit length is known at both ends of the resistance thermometer. Resistance values (r1, r2) when the dedicated cables are connected and the length (L) of the dedicated cable is set.
Is calculated, and when a predetermined voltage (V) and current (i) are applied to a series loop composed of the dedicated cable and the resistance temperature detector, the following equation is obtained: resistance temperature detector Ro = (V / i) − ((R1 + r2) · L) The resistance value of the resistance thermometer Ro is calculated by (V: voltage applied to the resistance thermometer, i: current flowing through the resistance thermometer). Temperature measuring device. [0011] As described above, two dedicated cables having a known resistance value of a unit length are used as the resistance value of the resistance temperature detector incorporated in the vortex generator, and the length of the dedicated cable is set. By calculating the resistance value of the length and calculating the resistance value of the resistance temperature detector Ro by calculation, the conventional three-value resistance value is calculated.
Since the number of cables required for four or four cables can be reduced and the calculation is a calculation based on an extremely simple Ohm's law, the calculation can be performed without complicating the configuration. An embodiment of the temperature measuring apparatus according to the present invention will be described below with reference to the drawings. In this example, an example is shown in which the temperature measuring device of the present invention is applied to a vortex flowmeter that measures the flow rate of a fluid to be measured using Karman vortices. The same components as those described in the related art will be described with the same reference numerals. Further, the present invention can be applied not only to a vortex flow meter but also to various devices for measuring physical quantities such as general pressure and flow rate. A vortex flowmeter capable of remotely measuring the temperature of a resistance temperature detector includes a vortex generator 2 having a vortex generator 2 disposed in a flow path 1 as shown in FIGS. Vessel 3,
The detector 3 is connected to a dedicated cable 4 having a known resistance value per unit length and a measuring unit 5 for measuring a flow rate and a temperature based on data obtained through the dedicated cable 4. I have. The vortex generator 2 has a structure for generating Karman vortices on the rear side with respect to the flow direction of the fluid, and has a temperature measuring resistor Ro and a piezo element P for measuring the temperature of the fluid therein. It has a structure incorporating. The detector 3 receives the signal from the vortex generator 2 and sends it to the measuring unit 5 via the dedicated cable 4, and is connected to the measuring unit 5 via the dedicated cable 4. As shown in FIG. 2, the measuring section 5 receives a signal from the piezo element P obtained through the dedicated cable 4 and measures the flow rate. A temperature measuring unit 7 for measuring the temperature from the resistance value of the obtained resistance thermometer Ro, and a control unit 8 composed of a microprocessor for calculating the flow rate and the temperature in the flow rate measuring unit 6 and the temperature measuring unit 7. And an output circuit section 9 for outputting data generated by the control section 8. In the device having the above-described configuration, when the electric circuit of the detector 3, the dedicated cable 4, and the measuring unit 5 is viewed, as shown in FIG. , R2 are generated, and the power supply voltage E in the measuring unit 5 is formed as a series loop of a resistor R, a cable resistor r1, a temperature measuring resistor Ro, a cable resistor r2, and a current source I. The configuration is provided. The control section 8 of the measuring section 5 has a dedicated cable 4
There is a means to set the resistance value per unit length of
R = ρ · (L / S) (ρ; resistivity, L; length,
The data of the dedicated cable 4 that can set the resistance value based on the formula of S (cross section) is provided. That is, a dedicated cable 4 having a known resistance value per unit length is connected to both ends of a resistance temperature detector Ro incorporated in a vortex generator for generating Karman vortices, respectively.
The resistance value (r1,
r2) is calculated, and a predetermined voltage (V) and current (i) are applied to a series loop composed of the dedicated cable 4 and the resistance thermometer Ro, and the following equation 2 is applied, and the resistance thermometer Ro = (V / I) − ((r1 + r2) · L) Equation 2 (V: voltage applied to the resistance thermometer, i: current flowing through the resistance thermometer), the resistance of the resistance thermometer Ro The value is calculated. As described above, if the dedicated cable 4 having a known resistance value per unit length is connected to the resistance thermometer Ro, and the control section 8 calculates the resistance value of the resistance thermometer Ro by calculation, The minimum number of cables is two. As described above, the temperature measuring device according to the present invention uses a dedicated cable having a known resistance value per unit length to calculate the resistance value of the resistance temperature detector. By connecting to both ends of the body and calculating the resistance value of the resistance thermometer using the calculation method of subtracting the resistance value of this dedicated cable, the remote calculation can be performed with a simple calculation formula and with only a minimum of two cables. There is an effect that the resistance value of the resistance temperature detector can be measured at the temperature.

【図面の簡単な説明】 【図1】本発明の温度測定装置を略示的に示したブロッ
ク図である。 【図2】本発明の温度測定装置を略示的に示した構成図
である 【図3】2線式による測温抵抗体の抵抗値を算出するた
めのケーブルの電流のルートを示した説明図である 【図4】4線式手法による従来からの遠隔にて測温抵抗
体の温度を算出する手法を示した説明図である。 【図5】3線式手法による従来からの遠隔にて測温抵抗
体の温度を算出する手法を示した説明図である。 【符号の説明】 1 流路 2 渦発生体 3 検出器 4 専用ケーブル 5 測定部 6 流量測定部 7 温度測定部 8 制御部 9 出力回路部 P ピエゾ素子 Ro 測温抵抗体 r1 ケーブル抵抗 r2 ケーブル抵抗
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram schematically showing a temperature measuring device according to the present invention. FIG. 2 is a configuration diagram schematically showing a temperature measuring device of the present invention. FIG. 3 is a diagram showing a route of a current of a cable for calculating a resistance value of a resistance thermometer by a two-wire system. FIG. 4 is an explanatory diagram showing a conventional method of remotely calculating the temperature of a resistance temperature detector by a 4-wire method. FIG. 5 is an explanatory diagram showing a conventional method of remotely calculating the temperature of a resistance temperature detector by a three-wire method. [Description of Signs] 1 Flow path 2 Vortex generator 3 Detector 4 Dedicated cable 5 Measuring section 6 Flow rate measuring section 7 Temperature measuring section 8 Control section 9 Output circuit section P Piezo element Ro Temperature measuring resistor r1 Cable resistance r2 Cable resistance

Claims (1)

【特許請求の範囲】 【請求項1】 測温抵抗体を備え、リモート形式で前記
測温抵抗体の抵抗値を測定する温度測定装置において、 前記測温抵抗体の両端部に、単位長当りの抵抗値が既知
の専用ケーブルをそれぞれ接続し、 前記専用ケーブルの長さ(L)を設定したときの抵抗値
(r1,r2)を算出し、 前記専用ケーブルと測温抵抗体とからなる直列ループに
所定の電圧(V)、電流(i)を印加したときに、次
式、 測温抵抗体Ro=(V/i)−((r1+r2)・L) (V;測温抵抗体に印加される電圧、i;測温抵抗体を
流れる電流)により、測温抵抗体Roの抵抗値を算出す
ることを特徴とする温度測定装置。
Claims: 1. A temperature measuring device comprising a resistance temperature detector and measuring the resistance value of the resistance temperature detector in a remote manner, wherein both ends of the resistance temperature detector per unit length are provided. A dedicated cable having a known resistance value is connected to each other, and the resistance value (r1, r2) when the length (L) of the dedicated cable is set is calculated. When a predetermined voltage (V) and current (i) are applied to the loop, the following equation is obtained: Resistance thermometer Ro = (V / i) − ((r1 + r2) · L) (V; resistance thermometer) A voltage applied to the temperature measuring device (i; current flowing through the temperature measuring resistor).
JP2001227466A 2001-07-27 2001-07-27 Temperature measuring apparatus Pending JP2003042854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227466A JP2003042854A (en) 2001-07-27 2001-07-27 Temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227466A JP2003042854A (en) 2001-07-27 2001-07-27 Temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JP2003042854A true JP2003042854A (en) 2003-02-13

Family

ID=19060124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227466A Pending JP2003042854A (en) 2001-07-27 2001-07-27 Temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JP2003042854A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220339U (en) * 1985-07-22 1987-02-06
JPH038733U (en) * 1989-06-12 1991-01-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220339U (en) * 1985-07-22 1987-02-06
JPH038733U (en) * 1989-06-12 1991-01-28

Similar Documents

Publication Publication Date Title
KR101869733B1 (en) Method and apparatus for determining a temperature of a vibrating sensor component of a vibrating meter
EP1000324B1 (en) Multiple resistive sensors for a coriolis effect mass flowmeter
JP2631481B2 (en) Mass flow meter and its measurement method
JP4588293B2 (en) Apparatus and method for compensating mass flow rate of a material when an unacceptable error in flow rate occurs due to the density of the material
JP2005308740A (en) Magneto-dielectric flow measuring method and magneto-dielectric flowmeter
CN101828100B (en) Temperature measurement circuit in flowmeter
US7823444B2 (en) Device and process for measuring the velocity of flow of a fluid using pulse signal generated based on feedback
JPS56143915A (en) Measuring device for gas flow rate
JP2003042854A (en) Temperature measuring apparatus
KR200417455Y1 (en) A resistor measuring apparatus
US6086251A (en) Process for operating a thermocouple to measure velocity or thermal conductivity of a gas
JPH0766480B2 (en) Measuring head
US20060191354A1 (en) Device for measuring a volume flow with inductive coupling
JP2965464B2 (en) Flowmeter
JP5877262B1 (en) Calibrator for electromagnetic flowmeter
JP2929356B2 (en) Flowmeter
JPH0449893B2 (en)
CS195306B2 (en) Connection for measuring the quantity of heat consumed in the heat consumer
JP2879256B2 (en) Thermal flow meter
JP3062915B2 (en) 2-wire electromagnetic flowmeter
JP2949527B2 (en) Mass flow meter
JP5284845B2 (en) Vortex flow meter
JP3131758B2 (en) Distributor for electromagnetic flowmeter
JPS59136619A (en) Vortex flowmeter
SU1154534A1 (en) Heat flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921