JP2003042395A - Gas supply method and gas supply device - Google Patents

Gas supply method and gas supply device

Info

Publication number
JP2003042395A
JP2003042395A JP2001226303A JP2001226303A JP2003042395A JP 2003042395 A JP2003042395 A JP 2003042395A JP 2001226303 A JP2001226303 A JP 2001226303A JP 2001226303 A JP2001226303 A JP 2001226303A JP 2003042395 A JP2003042395 A JP 2003042395A
Authority
JP
Japan
Prior art keywords
gas
pressure
gas supply
cylinder
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001226303A
Other languages
Japanese (ja)
Other versions
JP4815711B2 (en
Inventor
Yasuhiko Kikuchi
泰彦 菊池
Kazunori Watanabe
和則 渡辺
Seiichi Terajima
誠一 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001226303A priority Critical patent/JP4815711B2/en
Publication of JP2003042395A publication Critical patent/JP2003042395A/en
Application granted granted Critical
Publication of JP4815711B2 publication Critical patent/JP4815711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas supply device capable of stably supplying high purify gas wherein moisture quantity contained as an impurity is reduced. SOLUTION: In this gas supply device 1 for supplying hydrogen chloride gas to a vapor phase growth device 8 from cylinders 2 and 3 filled with liquefied hydrogen chloride 2L and 3L, the hydrogen chloride gas is supplied to the vapor phase growth device 8 from the cylinders 2 and 3 only when an internal pressure P of the cylinders 2 and 3 is equal to or higher than a predetermined pressure P0 by which the moisture contained in the liquefied hydrogen chloride 2L and 3L can be maintained in a form of liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液化ガスが充填さ
れたボンベからガスを供給するガス供給装置に関し、特
に気相成長装置に適したガス供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas supply device for supplying gas from a cylinder filled with liquefied gas, and more particularly to a gas supply device suitable for a vapor phase growth device.

【0002】[0002]

【従来の技術】半導体製造プロセスにおいて、各種ガス
が使用される。例えばシリコンエピタキシャルウェーハ
を製造する気相成長装置では、シリコン単結晶ウェーハ
(以下単に「ウェーハ」と称する)上に所定のガスを供
給し、シリコンエピタキシャル層を気相エピタキシャル
成長させる。即ち、図5に示すように、気相成長装置1
0の反応炉11内に備えられるサセプタ11a上にウェ
ーハWを載置し、反応炉11内を所定温度まで昇温す
る。この状態で、反応炉11内に、ジクロロシラン(S
iH2Cl2:dichlorosilane)等の原料ガス、アルシ
ン(AsH3:arsine)やホスフィン(PH3:phosphi
ne)等のドーパントガス、キャリアガスとしての水素ガ
ス等からなる混合ガス(「プロセスガス」と称する)を
供給し、ウェーハWの主表面にシリコンエピタキシャル
層を形成する。その際、反応炉11の内壁面やサセプタ
11a等にシリコンが堆積するので、反応炉11内にエ
ッチングガスを供給して堆積したシリコンを除去する。
2. Description of the Related Art Various gases are used in the semiconductor manufacturing process. For example, in a vapor phase growth apparatus for producing a silicon epitaxial wafer, a predetermined gas is supplied onto a silicon single crystal wafer (hereinafter simply referred to as “wafer”) to grow a silicon epitaxial layer by vapor phase epitaxial growth. That is, as shown in FIG.
The wafer W is placed on the susceptor 11a provided in the reaction furnace 11 of 0 temperature, and the inside of the reaction furnace 11 is heated to a predetermined temperature. In this state, dichlorosilane (S
Source gas such as iH 2 Cl 2 : dichlorosilane), arsine (AsH 3 : arsine) and phosphine (PH 3 : phosphi)
A mixed gas (referred to as a “process gas”) including a dopant gas such as ne) and hydrogen gas as a carrier gas is supplied to form a silicon epitaxial layer on the main surface of the wafer W. At that time, since silicon is deposited on the inner wall surface of the reaction furnace 11 and the susceptor 11a, etching gas is supplied into the reaction furnace 11 to remove the deposited silicon.

【0003】こうしたシリコンエピタキシャルウェーハ
の製造におけるエッチングガスとして、例えば塩化水素
(HCl)ガスが使用される。図5に示すように、塩化
水素ガスは、例えばボンベ30より供給される。このボ
ンベ30内には、液化塩化水素Lが高圧で充填されてい
る。この液化塩化水素Lから気化した塩化水素ガスは、
ボンベ30のガス供給口30aから減圧弁31に導かれ
て、気相成長装置10で使用される圧力にまで減圧され
る。そして開閉弁32が開かれると、配管33を介して
塩化水素ガスが反応炉11内に供給される。シリコンエ
ピタキシャルウェーハの製造では、塩化水素ガスは、例
えば温度300Kにおいて内圧50kgf/cm
2(4.9MPa)であるボンベ30から減圧弁31に
おいて10kgf/cm2(0.98MPa)以下の圧
力まで減圧されて反応炉11に供給される。
Hydrogen chloride (HCl) gas, for example, is used as an etching gas in the production of such a silicon epitaxial wafer. As shown in FIG. 5, hydrogen chloride gas is supplied from, for example, a cylinder 30. The cylinder 30 is filled with liquefied hydrogen chloride L at high pressure. The hydrogen chloride gas vaporized from this liquefied hydrogen chloride L is
The pressure is introduced from the gas supply port 30a of the cylinder 30 to the pressure reducing valve 31 and reduced to the pressure used in the vapor phase growth apparatus 10. When the on-off valve 32 is opened, hydrogen chloride gas is supplied into the reaction furnace 11 via the pipe 33. In the production of silicon epitaxial wafers, hydrogen chloride gas is used at an internal pressure of 50 kgf / cm at a temperature of 300 K, for example.
The pressure is reduced from a cylinder 30 of 2 (4.9 MPa) to a pressure of 10 kgf / cm 2 (0.98 MPa) or less by a pressure reducing valve 31 and supplied to the reaction furnace 11.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ボンベ
30から供給される塩化水素ガス中に、不純物として水
分が含まれてしまい、その純度が低下する場合がある。
そして、塩化水素ガスの純度が低下すると、反応炉11
内に水分が不純物として供給されてしまうだけでなく、
塩化水素ガスに含まれる水分によって配管33の内面が
腐蝕してしまう場合もある。このために、高純度ガスを
安定して供給できるガス供給方法およびガス供給装置が
望まれていた。
However, the hydrogen chloride gas supplied from the cylinder 30 may contain water as an impurity and its purity may be lowered.
When the purity of hydrogen chloride gas decreases, the reaction furnace 11
Not only will water be supplied as impurities inside,
The water contained in the hydrogen chloride gas may corrode the inner surface of the pipe 33. Therefore, a gas supply method and a gas supply device capable of stably supplying a high-purity gas have been desired.

【0005】本発明の課題は、不純物として含まれる水
分の量が低減された高純度ガスを安定して供給できるガ
ス供給方法およびガス供給装置を提供することである。
An object of the present invention is to provide a gas supply method and a gas supply device capable of stably supplying a high-purity gas in which the amount of water contained as impurities is reduced.

【0006】[0006]

【課題を解決するための手段】液化塩化水素Lは、ボン
ベ30内の液化塩化水素L自体から熱を奪いながら気化
してその温度を低下させる。こうして液化塩化水素Lの
温度が水の凝固点以下まで低下すると、液化塩化水素L
中に僅かに含まれる水分から微細な氷が生成する。液化
塩化水素Lの密度1.2kg/m3に比べると、氷の密
度が1kg/m3と軽いことから、微細な氷は、気化す
る塩化水素の蒸気に容易に同伴されてしまう。この微細
な氷が、液化塩化水素Lの蒸気に同伴されると、ボンベ
30から供給される塩化水素ガス中に水分が含まれるよ
うになり、その純度が低下してしまうのである。
Liquefied hydrogen chloride L vaporizes while absorbing heat from the liquefied hydrogen chloride L itself in the cylinder 30 to lower its temperature. When the temperature of liquefied hydrogen chloride L falls below the freezing point of water in this way, liquefied hydrogen chloride L
Fine ice is generated from a small amount of water contained therein. Compared to the density 1.2 kg / m 3 of liquefied hydrogen chloride L, since the density of the ice is light and 1 kg / m 3, fine ice, will be readily entrained in the vapor of the hydrogen chloride vaporized. When this fine ice is entrained in the vapor of the liquefied hydrogen chloride L, the hydrogen chloride gas supplied from the cylinder 30 will contain water, and its purity will decrease.

【0007】そこで、上記課題を解決するため、本発明
のガス供給方法は、ボンベの内圧が、該ボンベに充填さ
れた液化ガスに含まれる水分を液体に保つことができる
圧力以上の時にのみ、前記ボンベからガスを供給するこ
とを特徴とする。
Therefore, in order to solve the above-mentioned problems, the gas supply method of the present invention, the internal pressure of the cylinder, only when the water contained in the liquefied gas filled in the cylinder is equal to or higher than the pressure capable of keeping the liquid as a liquid, It is characterized in that gas is supplied from the cylinder.

【0008】本発明のガス供給方法において、ボンベよ
り導かれるガスを、該ボンベ内の液化ガスに含まれる水
分を液体に保つことができる圧力以上に設定された第1
減圧弁によって減圧し、該第1減圧弁によって減圧され
たガスを、第2減圧弁によって減圧して供給することが
好ましい。
In the gas supply method of the present invention, the gas introduced from the cylinder is set to a pressure equal to or higher than the pressure at which the water contained in the liquefied gas in the cylinder can be kept liquid.
It is preferable that the pressure of the gas reduced by the pressure reducing valve and reduced by the first pressure reducing valve be reduced and supplied by the second pressure reducing valve.

【0009】ここで、液化ガスとしては、例えばアルシ
ン(AsH3)、ホスフィン(PH3)、ジクロロシラン
(SiH2Cl2)、塩化水素ガスが挙げられる。例え
ば、液化ガスが塩化水素ガスである場合には、第1減圧
弁は2.9MPa以上に設定することが好ましい。
Here, examples of the liquefied gas include arsine (AsH 3 ), phosphine (PH 3 ), dichlorosilane (SiH 2 Cl 2 ), and hydrogen chloride gas. For example, when the liquefied gas is hydrogen chloride gas, the first pressure reducing valve is preferably set to 2.9 MPa or more.

【0010】また、本発明のガス供給装置は、液化ガス
を充填した複数本のボンベからガスを供給するガス供給
装置において、前記ボンベの内圧が、該ボンベ内の液化
ガスに含まれる水分を液体に保つことができる圧力以上
の状態の時にのみ、該ボンベからガスを供給するように
構成されているガス供給制御手段を備えたことを特徴と
する。
Further, the gas supply device of the present invention is a gas supply device for supplying gas from a plurality of cylinders filled with liquefied gas, wherein the internal pressure of the cylinder is such that moisture contained in the liquefied gas in the cylinder becomes liquid. The gas supply control means is configured to supply the gas from the cylinder only when the pressure is equal to or higher than the pressure that can be maintained.

【0011】本発明のガス供給装置において、ガス供給
制御手段は、並列に接続した前記複数本のボンベと第2
減圧弁との間に第1減圧弁をそれぞれ介在させ、これら
第1減圧弁の下流側を互いに接続すると共に、これら第
1減圧弁を、前記ボンベ内の液化ガスに含まれる水分を
液体に保つことができる圧力以上でかつ互いに異なる圧
力に設定することにより構成しても良い。
In the gas supply apparatus of the present invention, the gas supply control means includes the plurality of cylinders connected in parallel and the second cylinder.
The first pressure reducing valves are respectively interposed between the pressure reducing valves and the downstream sides of the first pressure reducing valves are connected to each other, and the first pressure reducing valves keep the water contained in the liquefied gas in the cylinder liquid. Alternatively, the pressure may be set to a pressure higher than the above pressure and different from each other.

【0012】また、本発明において、ガス供給制御手段
を、前記複数のボンベと第2減圧弁との間にそれぞれ介
在される圧力制御弁として、該圧力制御弁は、前記複数
のボンベのうちいずれかの内圧が、該ボンベ内の液化ガ
スに含まれる水分を液体に保つことができる圧力よりも
低下したときに閉弁して、該ボンベから前記第2減圧弁
へのガス供給を停止させるように構成しても良い。
In the present invention, the gas supply control means is a pressure control valve interposed between the plurality of cylinders and the second pressure reducing valve, and the pressure control valve is any one of the plurality of cylinders. When the internal pressure of the cylinder becomes lower than the pressure at which the water contained in the liquefied gas in the cylinder can be kept liquid, the valve is closed to stop the gas supply from the cylinder to the second pressure reducing valve. It may be configured to.

【0013】本発明によれば、ガスの供給は、液化ガス
中に含まれる水分を液体に保った状態でなされる。即
ち、ガスの供給に際して、液化ガス中に含まれる水分か
ら微細な氷を生じさせない。すると、水は液化ガスより
も極めて高沸点であるため、液体に保たれている水は気
化せず、液化ガスだけが気化するようになる。これによ
り、化学処理装置等に供給されるガス中に水分が含まれ
ることを抑制できる。以上から、高純度のガスを安定し
て供給できる。
According to the present invention, the gas is supplied in a state where the water contained in the liquefied gas is kept liquid. That is, when the gas is supplied, fine ice is not generated from the water contained in the liquefied gas. Then, since water has a boiling point extremely higher than that of the liquefied gas, the water held in the liquid does not evaporate, but only the liquefied gas evaporates. As a result, it is possible to suppress the inclusion of water in the gas supplied to the chemical treatment device or the like. From the above, a high-purity gas can be stably supplied.

【0014】[0014]

【発明の実施の形態】〔第1の実施の形態〕以下、図
1、図4を参照して、第1の実施の形態のガス供給装置
1を詳細に説明する。このガス供給装置1は、シリコン
エピタキシャルウェーハを製造する気相成長装置8に、
エッチングガスとして使用する塩化水素ガスを供給する
ものである。図1に示すように、ガス供給装置1は、液
化塩化水素(液化ガス)2L、3Lが充填された2本の
ボンベ2、3を備える。これらボンベ2、3が設置され
る雰囲気Fは、その温度が室温(300K)に保たれて
いる。そしてボンベ2、3のガス供給口2a、3aに
は、減圧弁(第1減圧弁)4、5がそれぞれ配管1a、
1bを介して接続されている。これら配管1a、1bに
は、それぞれ逆止弁1e、1fが設けられている。そし
て減圧弁4、5の下流側は、それぞれ配管1cを介して
減圧弁6(第2減圧弁)に接続されている。この減圧弁
6は、開閉弁7を有する配管1dを介して気相成長装置
8に接続されている。こうして、ボンベ2、3は互いに
並列に接続されている。この結果、減圧弁4、5は、配
管1cでのガス圧がスプリング4a、5aに設定した設
定圧A、Bよりも小さい時にはそれぞれ開弁している
が、配管1cでのガス圧が設定圧A、Bよりも大きくな
ると閉弁する。この設定圧A、Bは、後述する所定圧P
0以上で、かつ、およそ1kgf/cm2(9.8×1
-2MPa)程度互いに僅かにずれるように設定されて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] Hereinafter, a gas supply device 1 according to a first embodiment will be described in detail with reference to FIGS. 1 and 4. This gas supply device 1 is applied to a vapor phase growth device 8 for manufacturing a silicon epitaxial wafer,
A hydrogen chloride gas used as an etching gas is supplied. As shown in FIG. 1, the gas supply device 1 includes two cylinders 2 and 3 filled with liquefied hydrogen chloride (liquefied gas) 2L and 3L. The temperature of the atmosphere F in which these cylinders 2 and 3 are installed is kept at room temperature (300K). Pressure reducing valves (first pressure reducing valves) 4 and 5 are provided at the gas supply ports 2a and 3a of the cylinders 2 and 3, respectively.
It is connected via 1b. Check valves 1e and 1f are provided in the pipes 1a and 1b, respectively. The downstream sides of the pressure reducing valves 4 and 5 are connected to the pressure reducing valve 6 (second pressure reducing valve) via the pipes 1c, respectively. The pressure reducing valve 6 is connected to the vapor phase growth apparatus 8 via a pipe 1d having an opening / closing valve 7. Thus, the cylinders 2 and 3 are connected in parallel with each other. As a result, the pressure reducing valves 4 and 5 are opened when the gas pressure in the pipe 1c is smaller than the set pressures A and B set in the springs 4a and 5a, respectively, but the gas pressure in the pipe 1c is set to the set pressure. When it becomes larger than A and B, it closes. The set pressures A and B are predetermined pressures P described later.
0 or more and about 1 kgf / cm 2 (9.8 × 1
It is set to be slightly deviated from each other by about 0 -2 MPa.

【0015】この所定圧P0は、以下のように設定され
ている。液化塩化水素2L、3Lは、塩化水素ガスとし
て気化する際に、液化塩化水素2L、3L自体から気化
熱を奪う。この気化熱の消費が著しいと、ボンベ2、3
が設置される雰囲気Fから流入する熱量Q1(図1参
照)だけでは補うことができず、液化塩化水素2L、3
Lの温度Tは、塩化水素の蒸気圧曲線(図4に実線で図
示)に沿って下降する。これに伴って、ボンベ2、3の
内圧Pが蒸気圧曲線に沿って下降していく。具体的に
は、図4に示すように、A点で示される内圧P1(この
場合には5MPa)から塩化水素ガスを気化させると、
ボンベの内圧Pは蒸気圧曲線に沿って下降する。さらに
内圧Pが下降すると、水の状態図における固体/液体の
境界線と塩化水素の蒸気圧曲線との交点(B点)で示さ
れる内圧P2に至る。この内圧P2は、およそ2.5M
Paである。この状態で塩化水素ガスをさらに気化させ
ると、液化塩化水素2L、3Lの温度が水の状態図にお
ける固体/液体の境界線よりも低下し、液化塩化水素2
L、3L中に微細な氷を生成させてしまう。そこで前記
所定圧P0は、P2よりも高圧、すなわち、ボンベ2、
3内の液化塩化水素2L、3Lに含まれる水分を常に液
体に保つことができる2.9MPa以上の圧力に設定す
る。
The predetermined pressure P0 is set as follows. The liquefied hydrogen chlorides 2L and 3L take heat of vaporization from the liquefied hydrogen chlorides 2L and 3L themselves when vaporized as hydrogen chloride gas. When the consumption of this heat of vaporization is remarkable, the cylinders 2, 3
The quantity of heat Q1 (see FIG. 1) flowing from the atmosphere F in which the gas is installed cannot be compensated for, and liquefied hydrogen chloride 2L, 3
The temperature T of L falls along the vapor pressure curve of hydrogen chloride (shown by the solid line in FIG. 4). Along with this, the internal pressure P of the cylinders 2 and 3 decreases along the vapor pressure curve. Specifically, as shown in FIG. 4, when the hydrogen chloride gas is vaporized from the internal pressure P1 indicated by point A (5 MPa in this case),
The internal pressure P of the cylinder falls along the vapor pressure curve. When the internal pressure P further decreases, the internal pressure P2 shown by the intersection (point B) between the solid / liquid boundary line and the vapor pressure curve of hydrogen chloride in the water phase diagram is reached. This internal pressure P2 is about 2.5M
Pa. When the hydrogen chloride gas is further vaporized in this state, the temperatures of the liquefied hydrogen chloride 2L and 3L become lower than the solid / liquid boundary line in the water phase diagram, and the liquefied hydrogen chloride 2L
Fine ice is generated in L and 3L. Therefore, the predetermined pressure P0 is higher than P2, that is, the cylinder 2,
The pressure is set to 2.9 MPa or more so that the water contained in 2 L and 3 L of liquefied hydrogen chloride in 3 can always be kept liquid.

【0016】このようなガス供給装置1によれば、各ボ
ンベ2、3の内圧Pを所定圧P0以上に制御しながら、
減圧弁4、5および減圧弁6を介して塩化水素ガスが気
相成長装置8に供給される。以下、ガス供給装置1によ
って気相成長装置8に塩化水素ガスが供給される様子を
より具体的に説明する。但し以下の説明では、一例とし
て減圧弁4、5の設定圧をA>Bとした場合を説明す
る。
According to such a gas supply device 1, while controlling the internal pressure P of each cylinder 2, 3 to a predetermined pressure P0 or higher,
Hydrogen chloride gas is supplied to the vapor phase growth apparatus 8 via the pressure reducing valves 4 and 5 and the pressure reducing valve 6. Hereinafter, the manner in which the hydrogen chloride gas is supplied to the vapor phase growth apparatus 8 by the gas supply apparatus 1 will be described more specifically. However, in the following description, the case where the set pressure of the pressure reducing valves 4 and 5 is A> B will be described as an example.

【0017】先ず、減圧弁4、5のうち配管1c側のガ
ス圧が最も大きく設定されているボンベ2からのみガス
が供給され始める。これにより、配管1cのガス圧力は
設定圧Aとなる。この時、減圧弁5は閉弁している。こ
うしてボンベ2からのみガス供給されると、気化熱によ
り液化塩化水素2Lの温度がしだいに下る為、ボンベ2
の内圧Pが下降していく。そして、ボンベ2の内圧Pが
設定圧Aよりさらに下降してBに至ると、減圧弁5が開
弁してボンベ3からガスが供給され始めるとともに、ボ
ンベ2からのガス供給が一旦停止する。なおこの時、他
の減圧弁4は開弁しているが逆止弁1eによってガスの
逆流が防止される。一方、ボンベ3からガスを供給して
いる間に、ガス供給が停止したボンベ2は、雰囲気Fか
ら流入する熱量Q1によって液化塩化水素2Lの温度を
上昇させながら、内圧Pがそれぞれの設定圧Aを越える
まで回復させる。こうして、ボンベ2、3の内圧が、該
ボンベ2、3に充填された液化塩化水素2L、3Lに含
まれる水分を液体に保つことができる所定圧P0以上の
時にのみ、何れかのボンベ2、3から継続してガスが供
給される。即ち、第1の実施の形態では、減圧弁4、5
と、減圧弁6と、これらを接続する配管1cとからガス
供給制御手段が構成される。
First, gas starts to be supplied only from the cylinder 2 of the pressure reducing valves 4 and 5 in which the gas pressure on the side of the pipe 1c is set to the maximum. As a result, the gas pressure in the pipe 1c becomes the set pressure A. At this time, the pressure reducing valve 5 is closed. When gas is supplied only from the cylinder 2 in this way, the temperature of the liquefied hydrogen chloride 2 L gradually drops due to the heat of vaporization, so that the cylinder 2
The internal pressure P of is decreasing. When the internal pressure P of the cylinder 2 further falls below the set pressure A and reaches B, the pressure reducing valve 5 opens and gas is supplied from the cylinder 3 and the gas supply from the cylinder 2 is temporarily stopped. At this time, the other pressure reducing valve 4 is opened, but the check valve 1e prevents the reverse flow of gas. On the other hand, while the gas is being supplied from the cylinder 3, the cylinder 2 in which the gas supply is stopped raises the temperature of the liquefied hydrogen chloride 2L by the heat quantity Q1 flowing in from the atmosphere F, while the internal pressure P is set to the respective set pressure A. Restore until it exceeds. Thus, only when the internal pressure of the cylinders 2, 3 is equal to or higher than the predetermined pressure P0 capable of keeping the water contained in the liquefied hydrogen chloride 2L, 3L filled in the cylinders 2, 3 as a liquid, Gas is continuously supplied from 3. That is, in the first embodiment, the pressure reducing valves 4, 5
The gas supply control means is composed of the pressure reducing valve 6 and the pipe 1c connecting them.

【0018】〔第2の実施の形態〕第2の実施の形態の
ガス供給装置1は、図2に示すように、ボンベ2、3の
ガス供給口2a、3aに、それぞれ配管1a、1bを介
して圧力制御弁(ガス供給制御手段)11、12が接続
されている。これら圧力制御弁11、12は、それぞれ
配管1a、1bでのガス圧がスプリング11a、12a
に設定した所定圧P0以上の時には開弁しているが、配
管1a、1bでのガス圧が所定圧P0よりも小さくなる
と閉弁する。そして圧力制御弁11、12の下流側はそ
れぞれ配管1cを介して減圧弁6(第2減圧弁)に接続
されている。
[Second Embodiment] As shown in FIG. 2, a gas supply apparatus 1 according to a second embodiment is provided with pipes 1a and 1b at gas supply ports 2a and 3a of cylinders 2 and 3, respectively. Pressure control valves (gas supply control means) 11 and 12 are connected via the pressure control valves. In these pressure control valves 11 and 12, the gas pressures in the pipes 1a and 1b are the springs 11a and 12a, respectively.
The valve is opened when the pressure is equal to or higher than the predetermined pressure P0 set to 1. However, the valve is closed when the gas pressure in the pipes 1a and 1b becomes lower than the predetermined pressure P0. The downstream sides of the pressure control valves 11 and 12 are respectively connected to the pressure reducing valve 6 (second pressure reducing valve) via the pipe 1c.

【0019】このガス供給装置1によって、気相成長装
置8に塩化水素ガスを供給するうちに、気化熱により液
化塩化水素2Lの温度がしだいに下り、例えばボンベ2
の内圧Pが前記所定圧P0よりも低下すると、このボン
ベ2に対応する圧力制御弁11が閉弁してガス供給を停
止させる。そして、ガス供給が停止したボンベ2内の液
化塩化水素2Lに雰囲気Fから熱量Q1が流入し、その
内圧Pが所定圧P0を越えるまで回復すると、圧力制御
弁11が開弁してガス供給が再開される。このボンベ2
と同様にして、ボンベ3からも塩化水素ガスが供給され
る。こうして、複数のボンベ2、3から長期間に渡って
継続して塩化水素ガスが供給される。
While the hydrogen chloride gas is being supplied to the vapor phase growth apparatus 8 by the gas supply apparatus 1, the temperature of the liquefied hydrogen chloride 2L gradually drops due to the heat of vaporization, for example, the cylinder 2
When the internal pressure P of the cylinder 2 becomes lower than the predetermined pressure P0, the pressure control valve 11 corresponding to the cylinder 2 is closed to stop the gas supply. Then, when the heat quantity Q1 flows from the atmosphere F into the liquefied hydrogen chloride 2L in the cylinder 2 in which the gas supply is stopped and the internal pressure P recovers until it exceeds the predetermined pressure P0, the pressure control valve 11 opens and the gas supply is stopped. It will be restarted. This cylinder 2
Similarly to the above, hydrogen chloride gas is also supplied from the cylinder 3. Thus, hydrogen chloride gas is continuously supplied from the plurality of cylinders 2 and 3 for a long period of time.

【0020】〔第3の実施の形態〕第3の実施の形態の
ガス供給装置1は、図3に示すように、ボンベ2、3の
ガス供給口2a、3aに、それぞれ配管1a、1bを介
して電磁弁23、24が接続されている。これら電磁弁
23、24の下流側はそれぞれ配管1cを介して減圧弁
6(第2減圧弁)に接続されている。そして電磁弁2
3、24は制御部25に接続されている。この制御部2
5には、ボンベ2、3の内圧Pをモニタする圧力センサ
21、22が接続されている。そして、例えばボンベ2
の内圧Pが前記所定圧P0より低くなると、圧力センサ
21から信号が出力され、この出力信号を受けた制御部
25が、電磁弁23を閉弁させる。こうしてボンベ2か
らのガス供給が停止される。そして、雰囲気Fから流入
する熱量Q1によってボンベ2の内圧Pが回復すると、
制御部25による制御の下で電磁弁23が開弁し、ボン
ベ2からのガス供給が再開される。即ち、第3の実施の
形態では、圧力センサ21、22と、制御部25と、電
磁弁23、24とからガス供給制御手段が構成される。
[Third Embodiment] As shown in FIG. 3, a gas supply device 1 according to a third embodiment has pipes 1a and 1b at gas supply ports 2a and 3a of cylinders 2 and 3, respectively. The solenoid valves 23 and 24 are connected via the. Downstream sides of these electromagnetic valves 23 and 24 are connected to a pressure reducing valve 6 (second pressure reducing valve) via a pipe 1c. And solenoid valve 2
3, 24 are connected to the control unit 25. This control unit 2
Pressure sensors 21 and 22 for monitoring the internal pressure P of the cylinders 2 and 3 are connected to 5. And, for example, the cylinder 2
When the internal pressure P becomes lower than the predetermined pressure P0, a signal is output from the pressure sensor 21, and the control unit 25 receiving this output signal closes the solenoid valve 23. In this way, the gas supply from the cylinder 2 is stopped. Then, when the internal pressure P of the cylinder 2 is recovered by the heat quantity Q1 flowing from the atmosphere F,
The solenoid valve 23 is opened under the control of the control unit 25, and the gas supply from the cylinder 2 is restarted. That is, in the third embodiment, the gas supply control means is composed of the pressure sensors 21 and 22, the control unit 25, and the electromagnetic valves 23 and 24.

【0021】[実施例]25kgの液化塩化水素を内圧
50kgf/cm2(4.9MPa)で充填した4本の
ボンベを使用して、第1の実施の形態に示した通りにガ
ス供給装置1を構成する。これらボンベに接続される第
1減圧弁の設定圧は、何れも30kgf/cm2(2.
9MPa)以上で互いに1kgf/cm2(9.8×1
-2MPa)ずらして設定する。またボンベを設置する
雰囲気は300K程度の室温に保たれている。ここで図
4に示すように、ボンベの内圧が30kgf/cm
2(2.9MPa)であるとき(図4に示すD点)、ボ
ンベの内圧Pは、前記P2(水の状態図における固体/
液体の境界線と塩化水素の蒸気圧曲線との交点(B点)
で示される内圧)よりも高圧に保たれることになる。こ
のガス供給装置1により塩化水素ガスを気相成長装置1
0に供給したところ、ボンベ1本あたりの液化塩化水素
の残渣量が5kgとなるまで、露点は−40℃を確保で
きていた。従来、液化塩化水素の残渣量が5kg程度に
なるまで使用すると、露点は−30℃以上になる。こう
して、不純物として含まれる水分の量が低減された高純
度の塩化水素ガスを長期間に渡って安定して供給するこ
とができる。
[Example] Using four cylinders filled with 25 kg of liquefied hydrogen chloride at an internal pressure of 50 kgf / cm 2 (4.9 MPa), the gas supply device 1 was used as shown in the first embodiment. Make up. The set pressure of the first pressure reducing valve connected to these cylinders is 30 kgf / cm 2 (2.
9 MPa) or more and 1 kgf / cm 2 (9.8 × 1) to each other
0 -2 MPa) Set the offset. The atmosphere in which the cylinder is installed is kept at room temperature of about 300K. Here, as shown in FIG. 4, the internal pressure of the cylinder is 30 kgf / cm.
2 (2.9 MPa) (point D in FIG. 4), the internal pressure P of the cylinder is P2 (solid / solid in the state diagram of water /
Intersection of liquid boundary line and vapor pressure curve of hydrogen chloride (point B)
Will be maintained at a higher pressure. This gas supply device 1 is used for vapor phase growth device 1 for hydrogen chloride gas.
When it was supplied to 0, a dew point of -40 ° C was secured until the amount of liquefied hydrogen chloride residue per cylinder reached 5 kg. Conventionally, when used until the amount of liquefied hydrogen chloride residue reaches about 5 kg, the dew point becomes -30 ° C or higher. In this way, high-purity hydrogen chloride gas in which the amount of water contained as impurities is reduced can be stably supplied over a long period of time.

【0022】なお、本発明は上記実施の形態に限定され
るものではない。例えば、本実施の形態では、2本のボ
ンベ2、3を用いる構成としたが、ボンベの本数は同様
にして任意に設計できる。また、本実施の形態では、第
1の実施の形態における減圧弁4、5の設定圧A、B、
および、第2の実施の形態における圧力制御弁11、1
2の所定圧P0は、それぞれスプリング4a、5a、1
1a、12aにより設定するように構成したが、その他
にも、油圧、空気圧等により設定するように構成しても
良い。さらに、本実施の形態では、気相成長装置8にエ
ッチングガスとして塩化水素ガスを供給する場合を例示
したが、ジクロロシラン等の原料ガスや、アルシンある
いはホスフィン等のドーパントガスについても同様に適
用できる。さらに本発明は、気相成長装置とは異なる他
の化学処理装置に、水分量を低減して高純度に各種ガス
を供給する場合にも適用できる。その他、本発明の趣旨
を逸脱しない範囲において、適宜に変更可能であること
は勿論である。
The present invention is not limited to the above embodiment. For example, in this embodiment, two cylinders 2 and 3 are used, but the number of cylinders can be similarly designed arbitrarily. Further, in the present embodiment, the set pressures A, B of the pressure reducing valves 4, 5 in the first embodiment,
Also, the pressure control valves 11 and 1 according to the second embodiment.
The predetermined pressure P0 of 2 is the springs 4a, 5a, 1 respectively.
Although it is configured to be set by 1a and 12a, it may be configured by hydraulic pressure, air pressure or the like. Further, in the present embodiment, the case where hydrogen chloride gas is supplied as the etching gas to the vapor phase growth apparatus 8 is illustrated, but the same applies to a source gas such as dichlorosilane or a dopant gas such as arsine or phosphine. . Furthermore, the present invention can also be applied to the case of supplying various gases with high purity by reducing the amount of water to another chemical processing apparatus different from the vapor phase growth apparatus. Of course, other changes can be made without departing from the spirit of the present invention.

【0023】[0023]

【発明の効果】本発明によれば、液化ガス中に微細な氷
を生じさせないため、この微細な氷がガス中に同伴され
ることがない。さらに、液化ガス中に含まれる水分が液
体状態に保たれるので、液化ガスだけが気化する。従っ
て、水分量が低減された高純度のガスを安定して化学処
理装置に供給できる。
According to the present invention, since fine ice is not produced in the liquefied gas, the fine ice is not entrained in the gas. Furthermore, since the water contained in the liquefied gas is kept in a liquid state, only the liquefied gas is vaporized. Therefore, a high-purity gas having a reduced water content can be stably supplied to the chemical treatment device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した第1の実施の形態のガス供給
装置1を示す配管図である。
FIG. 1 is a piping diagram showing a gas supply device 1 of a first embodiment to which the present invention is applied.

【図2】本発明を適用した第2の実施の形態のガス供給
装置1を示す配管図である。
FIG. 2 is a piping diagram showing a gas supply device 1 according to a second embodiment of the present invention.

【図3】本発明を適用した第3の実施の形態のガス供給
装置1を示す配管図である。
FIG. 3 is a piping diagram showing a gas supply device 1 according to a third embodiment of the present invention.

【図4】本発明のガス供給装置1により塩化水素ガスが
高純度に供給される理由を説明するための塩化水素と水
の状態図を示す図である。
FIG. 4 is a diagram showing a state diagram of hydrogen chloride and water for explaining the reason why hydrogen chloride gas is supplied with high purity by the gas supply device 1 of the present invention.

【図5】従来のガス供給装置を概念的に示した図であ
る。
FIG. 5 is a diagram conceptually showing a conventional gas supply device.

【符号の説明】[Explanation of symbols]

1 ガス供給装置 2、3 ボンベ 2L、3L 液化塩化水素(液化ガス) 4、5 減圧弁(第1減圧弁) 6 減圧弁(第2減圧弁) 11、12 圧力制御弁(ガス供給制御手段) 21、22 圧力センサ(ガス供給制御手段の一部) 23、24 電磁弁(ガス供給制御手段の一部) 25 制御部(ガス供給制御手段の一部) 1 gas supply device A few cylinders 2L, 3L Liquefied hydrogen chloride (liquefied gas) 4, 5 pressure reducing valve (first pressure reducing valve) 6 Pressure reducing valve (second pressure reducing valve) 11, 12 Pressure control valve (gas supply control means) 21, 22 Pressure sensor (a part of gas supply control means) 23, 24 Solenoid valve (part of gas supply control means) 25 Control part (a part of gas supply control means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/3065 H01L 21/302 N 5F045 (72)発明者 寺嶋 誠一 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社磯部工場内 Fターム(参考) 3E072 DB03 3J071 AA01 BB11 BB14 CC11 DD01 EE02 EE24 FF11 4G068 AA01 AB02 AC20 AD40 AF06 4K030 AA03 CA04 EA01 5F004 AA13 BC08 BD04 DA29 DB02 EA38 5F045 AA03 AB02 AC12 EB06 EE02─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/3065 H01L 21/302 N 5F045 (72) Inventor Seiichi Terashima 2-13, Isobe, Annaka-shi, Gunma No. 1 Shin-Etsu Semiconductor Co., Ltd. Isobe Factory F-term (Reference) 3E072 DB03 3J071 AA01 BB11 BB14 CC11 DD01 EE02 EE24 FF11 4G068 AA01 AB02 AC20 AD40 AF06 4K030 AA03 CA04 EA01 5F004 AA13 BC08 BD04 5F02 A02 A02 A02 A45 A02 A45 A02 A02 A45 A02 A45 A02 A45 A02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ボンベの内圧が、該ボンベに充填された
液化ガスに含まれる水分を液体に保つことができる圧力
以上の時にのみ、前記ボンベからガスを供給することを
特徴とするガス供給方法。
1. A gas supply method characterized in that gas is supplied from the cylinder only when the internal pressure of the cylinder is equal to or higher than a pressure capable of keeping the water contained in the liquefied gas filled in the cylinder as a liquid. .
【請求項2】 ボンベより導かれるガスを、該ボンベ内
の液化ガスに含まれる水分を液体に保つことができる圧
力以上に設定された第1減圧弁によって減圧し、該第1
減圧弁によって減圧されたガスを、第2減圧弁によって
減圧して供給することを特徴とする請求項1記載のガス
供給方法。
2. The gas introduced from the cylinder is decompressed by a first pressure reducing valve set to a pressure equal to or higher than a pressure at which water contained in the liquefied gas in the cylinder can be kept in a liquid state.
The gas supply method according to claim 1, wherein the gas whose pressure has been reduced by the pressure reducing valve is reduced in pressure by the second pressure reducing valve before being supplied.
【請求項3】 前記液化ガスは液化塩化水素であり、前
記第1減圧弁は2.9MPa以上に設定することを特徴
とする請求項2記載のガス供給方法。
3. The gas supply method according to claim 2, wherein the liquefied gas is liquefied hydrogen chloride, and the first pressure reducing valve is set to 2.9 MPa or more.
【請求項4】 液化ガスを充填した複数本のボンベから
ガスを供給するガス供給装置において、 前記ボンベの内圧が、該ボンベ内の液化ガスに含まれる
水分を液体に保つことができる圧力以上の状態の時にの
み、該ボンベからガスを供給するように構成されている
ガス供給制御手段を備えたことを特徴とするガス供給装
置。
4. A gas supply device for supplying gas from a plurality of cylinders filled with liquefied gas, wherein the internal pressure of the cylinder is equal to or higher than a pressure at which water contained in the liquefied gas in the cylinder can be kept liquid. A gas supply device comprising gas supply control means configured to supply gas from the cylinder only in the state.
【請求項5】 前記ガス供給制御手段は、 並列に接続した前記複数本のボンベと第2減圧弁との間
に第1減圧弁をそれぞれ介在させ、 これら第1減圧弁の下流側を互いに接続すると共に、こ
れら第1減圧弁を、前記ボンベ内の液化ガスに含まれる
水分を液体に保つことができる圧力以上でかつ互いに異
なる圧力に設定することにより構成されていることを特
徴とする請求項4記載のガス供給装置。
5. The gas supply control means includes a first pressure reducing valve interposed between the plurality of cylinders connected in parallel and a second pressure reducing valve, and the downstream sides of the first pressure reducing valves are connected to each other. In addition, the first pressure reducing valve is configured to have a pressure higher than or equal to a pressure at which the water contained in the liquefied gas in the cylinder can be kept in a liquid state and different from each other. 4. The gas supply device according to 4.
【請求項6】 前記ガス供給制御手段は、前記複数のボ
ンベと第2減圧弁との間にそれぞれ介在される圧力制御
弁であり、 該圧力制御弁は、前記複数のボンベのうちいずれかの内
圧が、該ボンベ内の液化ガスに含まれる水分を液体に保
つことができる圧力よりも低下したときに閉弁して、該
ボンベから前記第2減圧弁へのガス供給を停止させるこ
とを特徴とする請求項4記載のガス供給装置。
6. The gas supply control means is a pressure control valve interposed between the plurality of cylinders and a second pressure reducing valve, and the pressure control valve is one of the plurality of cylinders. A valve is closed when the internal pressure is lower than a pressure at which water contained in the liquefied gas in the cylinder can be kept in a liquid state, and the gas supply from the cylinder to the second pressure reducing valve is stopped. The gas supply device according to claim 4.
【請求項7】 前記液化ガスは液化塩化水素であること
を特徴とする請求項4〜6のいずれか一つに記載のガス
供給装置。
7. The gas supply device according to claim 4, wherein the liquefied gas is liquefied hydrogen chloride.
JP2001226303A 2001-07-26 2001-07-26 Gas supply method and gas supply apparatus Expired - Fee Related JP4815711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226303A JP4815711B2 (en) 2001-07-26 2001-07-26 Gas supply method and gas supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226303A JP4815711B2 (en) 2001-07-26 2001-07-26 Gas supply method and gas supply apparatus

Publications (2)

Publication Number Publication Date
JP2003042395A true JP2003042395A (en) 2003-02-13
JP4815711B2 JP4815711B2 (en) 2011-11-16

Family

ID=19059141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226303A Expired - Fee Related JP4815711B2 (en) 2001-07-26 2001-07-26 Gas supply method and gas supply apparatus

Country Status (1)

Country Link
JP (1) JP4815711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152869A (en) * 2013-02-08 2014-08-25 Air Water Plant & Engineering Inc Liquefied gas supply device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585596A (en) * 1981-06-30 1983-01-12 Toshiba Corp Method of supplying gas in vessel
JPH01163534U (en) * 1988-05-02 1989-11-15
JPH02201509A (en) * 1989-01-31 1990-08-09 Yazaki Corp Gas pressure governing/weigher
JPH0675011U (en) * 1993-03-24 1994-10-21 株式会社ユタカ Pressure regulator
JPH0972495A (en) * 1995-08-31 1997-03-18 Toshiba Eng Co Ltd Liquefied gas feeding device
JPH1043575A (en) * 1996-02-23 1998-02-17 L'air Liquide Bulk transportation of ultrahigh purity gas at high flow velocity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585596A (en) * 1981-06-30 1983-01-12 Toshiba Corp Method of supplying gas in vessel
JPH01163534U (en) * 1988-05-02 1989-11-15
JPH02201509A (en) * 1989-01-31 1990-08-09 Yazaki Corp Gas pressure governing/weigher
JPH0675011U (en) * 1993-03-24 1994-10-21 株式会社ユタカ Pressure regulator
JPH0972495A (en) * 1995-08-31 1997-03-18 Toshiba Eng Co Ltd Liquefied gas feeding device
JPH1043575A (en) * 1996-02-23 1998-02-17 L'air Liquide Bulk transportation of ultrahigh purity gas at high flow velocity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152869A (en) * 2013-02-08 2014-08-25 Air Water Plant & Engineering Inc Liquefied gas supply device and method

Also Published As

Publication number Publication date
JP4815711B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN105845562B (en) Engraving method
KR101369935B1 (en) Fluid purification system with low temperature purifier
TW570890B (en) Self-evacuating micro-environment system
US8029621B2 (en) Raw material feeding device, film formation system and method for feeding gaseous raw material
US5782980A (en) Low pressure chemical vapor deposition apparatus including a process gas heating subsystem
KR100683011B1 (en) System and method for controlled delivery of liquefied gases including control aspects
US5426865A (en) Vacuum creating method and apparatus
JP2003042395A (en) Gas supply method and gas supply device
JP2010153741A (en) Method of manufacturing semiconductor device, and substrate processing apparatus
JPH0927455A (en) Manufacture of semiconductor substrate and material gas supplying apparatus
US9250014B2 (en) Vacuum storage method and device for crystalline material
JP2002363751A (en) Method and device for producing single crystal silicon carbide thin film
CN117342560B (en) Silicon carbide powder synthesis method
Gruber Growth of high purity magnesium oxide single crystals by chemical vapor transport techniques
JP2007045666A (en) Crystal growth apparatus and crystal production method
KR20010022888A (en) Gas distribution system for a process reactor and method for processing semiconductor substrates
JP4586958B2 (en) Single crystal pulling equipment and evacuation method
JPH0585890A (en) Apparatus for forming thin film
JPS54102295A (en) Epitaxial crowth method
JPH047847A (en) Vapor growth equipment
JP5032406B2 (en) Group III nitride crystal growth method
JPH11199207A (en) Ozone beam generation and device therefor
JPH03273630A (en) Method and apparatus for manufacturing semiconductor device
BATCHELOR et al. 1 North Carolina State University, Department of Electrical Engineering, Box 791 1, Raleigh, NC 27695-7911, USA? North Carolina State University, Department of Materials Science and Engineering, Box
JPH04267325A (en) Method and apparatus for manufacturing thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees