JP2003041991A - Catalyst deterioration diagnosing device for engine - Google Patents

Catalyst deterioration diagnosing device for engine

Info

Publication number
JP2003041991A
JP2003041991A JP2001229412A JP2001229412A JP2003041991A JP 2003041991 A JP2003041991 A JP 2003041991A JP 2001229412 A JP2001229412 A JP 2001229412A JP 2001229412 A JP2001229412 A JP 2001229412A JP 2003041991 A JP2003041991 A JP 2003041991A
Authority
JP
Japan
Prior art keywords
catalyst
fuel ratio
air
oxygen
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001229412A
Other languages
Japanese (ja)
Inventor
Koji Takahashi
浩二 高橋
Shigeo Okuma
重男 大隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2001229412A priority Critical patent/JP2003041991A/en
Publication of JP2003041991A publication Critical patent/JP2003041991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately diagnose deterioration of a catalyst by a simple and convenient composition. SOLUTION: When fuel injection is restarted (S2) from a state of a maximum quantity of oxygen adsorbed in a catalyst by a fuel cut (S1), an oxygen deficient state is provided by incrementally correcting a fuel injection quantity (S3) so that the adsorbed oxygen is consumed. When a predetermined time has passed from a fuel injection restart (S4) and an air-fuel ratio sensor provided in a downstream side of the catalyst detects a rich air-fuel ratio (S5 and S6), it is determined that the oxygen quantity adsorbed by the catalyst in a fuel cut state is low and it is determined that deterioration accompanying reduction of a maximum absorbing oxygen quantity has occurred (S8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの触媒劣
化診断装置に関し、詳しくは、酸素吸着能力を有する触
媒の劣化を、酸素吸着能力の低下に基づき診断する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine catalyst deterioration diagnosing device, and more particularly to a device for diagnosing deterioration of a catalyst having an oxygen adsorption capacity based on a decrease in the oxygen adsorption capacity.

【0002】[0002]

【従来の技術】従来から、酸素吸着能力(酸素ストレー
ジ能力)を有する三元触媒の劣化を診断する装置とし
て、触媒下流側に設けられた空燃比センサの出力に基づ
く空燃比フィードバック制御を行なわせ、このときの前
記空燃比センサの出力周期に基づいて、前記三元触媒の
劣化(酸素吸着能力の低下)を診断する装置が知られて
いる(特開平7−247830号公報及び特開平10−
061427号公報参照)。
2. Description of the Related Art Conventionally, as a device for diagnosing the deterioration of a three-way catalyst having an oxygen adsorption capacity (oxygen storage capacity), an air-fuel ratio feedback control based on the output of an air-fuel ratio sensor provided on the downstream side of the catalyst is performed. An apparatus for diagnosing the deterioration of the three-way catalyst (decrease in oxygen adsorption capacity) based on the output cycle of the air-fuel ratio sensor at this time is known (JP-A-7-247830 and JP-A-10-).
061427).

【0003】[0003]

【発明が解決しようとする課題】ところで、上記のよう
に、触媒下流側の空燃比センサの出力周期に基づき劣化
診断を行なわせる構成では、触媒の上流側及び下流側で
排気空燃比の変動周期が安定していることが診断の条件
となるが、変動周期の安定状態を的確に判断するのが困
難であり、また、空燃比センサの出力の変動周期を正確
に求めることが困難であり、更に、劣化判定を行なわせ
る閾値の適合が困難であるという問題があった。
By the way, as described above, in the configuration in which the deterioration diagnosis is performed based on the output cycle of the air-fuel ratio sensor on the downstream side of the catalyst, the fluctuation cycle of the exhaust air-fuel ratio on the upstream side and the downstream side of the catalyst. Is a condition for diagnosis, but it is difficult to accurately determine the stable state of the fluctuation cycle, and it is difficult to accurately determine the fluctuation cycle of the output of the air-fuel ratio sensor, Further, there is a problem that it is difficult to adapt the threshold value for making the deterioration determination.

【0004】本発明は上記問題点に鑑みなされたもので
あり、簡便な構成でかつ正確に触媒の劣化(酸素吸着能
力の低下)を診断できるエンジンの触媒劣化診断装置を
提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide an engine catalyst deterioration diagnosing device capable of diagnosing catalyst deterioration (decrease in oxygen adsorption capacity) accurately with a simple structure. To do.

【0005】[0005]

【課題を解決するための手段】そのため請求項1記載の
発明は、酸素吸着能力を有し、エンジンの排気管に介装
される触媒の劣化を診断する装置であって、前記触媒に
おける吸着酸素量が最大になっていると推定される状態
から、理論空燃比よりもリッチな混合気での燃焼を開始
させ、該リッチ混合気での燃焼開始からの前記触媒下流
側の排気空燃比の変化に基づいて、前記触媒の劣化を診
断する構成とした。
Therefore, the invention according to claim 1 is an apparatus having a capability of adsorbing oxygen, and diagnosing deterioration of a catalyst interposed in an exhaust pipe of an engine. From the state where the amount is estimated to be the maximum, the combustion in the air-fuel mixture richer than the stoichiometric air-fuel ratio is started, and the change in the exhaust air-fuel ratio on the catalyst downstream side from the start of combustion in the rich air-fuel mixture. The deterioration of the catalyst is diagnosed based on the above.

【0006】かかる構成によると、触媒に吸着されてい
る酸素は、リッチ空燃比の排気(酸素不足の排気)が触
媒に導入されたときに、脱離して酸化処理に使用される
ことになるから、最大量の酸素が吸着されている状態か
ら、リッチ混合気の燃焼を行なわせると、吸着酸素量が
徐々に減り、酸素不足を補える吸着酸素量がなくなる
と、触媒下流側の排気空燃比がリッチ状態を示すように
なる。
According to this structure, the oxygen adsorbed on the catalyst is desorbed and used for the oxidation treatment when the exhaust gas with a rich air-fuel ratio (exhaust gas with insufficient oxygen) is introduced into the catalyst. , When the rich air-fuel mixture is burned from the state where the maximum amount of oxygen is adsorbed, the adsorbed oxygen amount gradually decreases, and when the adsorbed oxygen amount that compensates the oxygen shortage disappears, the exhaust air-fuel ratio on the downstream side of the catalyst becomes It comes to indicate a rich state.

【0007】ここで、触媒が劣化して吸着できる最大酸
素量が少なくなると、触媒下流側の排気空燃比がリッチ
状態を示すようになるのがそれだけ早くなり、これに基
づいて触媒の劣化が推定されることになる。請求項2記
載の発明では、エンジンへの燃料供給が停止されている
状態を、前記触媒における吸着酸素量が最大になってい
ると推定される状態として検出する構成とした。
Here, when the maximum amount of oxygen that can be adsorbed decreases due to deterioration of the catalyst, the exhaust air-fuel ratio on the downstream side of the catalyst becomes richer as quickly as possible, and the deterioration of the catalyst is estimated based on this. Will be done. According to the second aspect of the invention, the state in which the fuel supply to the engine is stopped is detected as the state in which the amount of adsorbed oxygen in the catalyst is estimated to be maximum.

【0008】かかる構成によると、エンジンへの燃料供
給が停止されている状態では、大気がそのまま触媒に導
入されることになり、触媒に最大量の酸素が吸着される
ことになる。請求項3記載の発明では、酸素吸着能力を
有し、エンジンの排気管に介装される触媒の劣化を診断
する装置であって、前記触媒の下流側に、排気中の酸素
濃度に基づいて空燃比を検出する空燃比センサを備え、
エンジンに対する燃料供給の停止状態から燃料供給が再
開されるときに、燃焼混合気の空燃比を理論空燃比より
もリッチ化させ、該リッチ空燃比が基準時間よりも短い
時間で前記空燃比センサによって検出されたか否かに基
づいて、前記触媒の劣化を診断する構成とした。
According to this structure, when the fuel supply to the engine is stopped, the atmosphere is introduced into the catalyst as it is, and the maximum amount of oxygen is adsorbed by the catalyst. According to a third aspect of the present invention, there is provided a device for diagnosing deterioration of a catalyst which is provided in an exhaust pipe of an engine and which has an oxygen adsorbing capacity, and is arranged on the downstream side of the catalyst based on the oxygen concentration in the exhaust gas. Equipped with an air-fuel ratio sensor that detects the air-fuel ratio,
When the fuel supply is restarted from the stopped state of the fuel supply to the engine, the air-fuel ratio of the combustion mixture is made richer than the stoichiometric air-fuel ratio, and the rich air-fuel ratio is shorter than the reference time by the air-fuel ratio sensor. The deterioration of the catalyst is diagnosed based on whether or not it is detected.

【0009】かかる構成によると、エンジンへの燃料供
給が停止されていて、触媒に最大量の酸素が吸着されて
いる状態からリッチ混合気による燃焼を開始させ、リッ
チ空燃比が触媒下流側の空燃比センサで検出されるよう
になるまでの時間が、基準時間よりも短い場合には、燃
料供給が停止されていた状態で触媒に吸着された酸素量
が初期状態よりも少なくなっているものと判断して、触
媒の劣化を判定する。
According to this structure, the combustion with the rich air-fuel mixture is started from the state where the fuel supply to the engine is stopped and the maximum amount of oxygen is adsorbed on the catalyst, and the rich air-fuel ratio is set to the air downstream of the catalyst. If the time until it is detected by the fuel ratio sensor is shorter than the reference time, it means that the amount of oxygen adsorbed by the catalyst when the fuel supply was stopped is less than in the initial state. Then, the deterioration of the catalyst is determined.

【0010】[0010]

【発明の効果】請求項1記載の発明によると、触媒に吸
着された最大酸素量がリッチ排気の浄化のために消費さ
れたことを、触媒下流側の排気空燃比に基づいて判断し
て、最大吸着酸素量が減少した劣化状態を診断するの
で、触媒の劣化を簡便な構成で正確に診断できるという
効果がある。
According to the first aspect of the present invention, it is judged based on the exhaust air-fuel ratio on the downstream side of the catalyst that the maximum oxygen amount adsorbed on the catalyst has been consumed for purifying the rich exhaust gas. Since the deterioration state in which the maximum adsorbed oxygen amount is decreased is diagnosed, there is an effect that the deterioration of the catalyst can be accurately diagnosed with a simple configuration.

【0011】請求項2記載の発明によると、触媒が最大
量の酸素を吸着している状態を、的確に判断でき、高い
精度で劣化診断を行なわせることができるという効果が
ある。請求項3記載の発明によると、触媒が最大量の酸
素を吸着している状態を的確に判断し、その最大吸着酸
素量が、リッチ排気の浄化のために消費されたことを、
触媒下流側の排気空燃比に基づいて判断して、最大吸着
酸素量が減少した劣化状態を診断するので、触媒の劣化
を簡便な構成でかつ高い精度で診断できるという効果が
ある。
According to the second aspect of the present invention, there is an effect that the state in which the catalyst adsorbs the maximum amount of oxygen can be accurately determined and the deterioration diagnosis can be performed with high accuracy. According to the third aspect of the present invention, the state in which the catalyst adsorbs the maximum amount of oxygen is accurately determined, and the maximum adsorbed oxygen amount is consumed for purification of the rich exhaust gas.
Since the deterioration state in which the maximum adsorbed oxygen amount is reduced is diagnosed based on the exhaust air-fuel ratio on the downstream side of the catalyst, the deterioration of the catalyst can be diagnosed with a simple configuration and high accuracy.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図1は実施の形態におけるエンジンのシステム構
成図である。この図1において、車両に搭載されるエン
ジン1の各気筒の燃焼室には、エアクリーナ2,吸気通
路3,モータで開閉駆動される電子制御式スロットル弁
4を介して空気が吸入される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a system configuration diagram of an engine in the embodiment. In FIG. 1, air is sucked into a combustion chamber of each cylinder of an engine 1 mounted on a vehicle through an air cleaner 2, an intake passage 3, and an electronically controlled throttle valve 4 which is driven to open and close by a motor.

【0013】各気筒の燃焼室内に燃料(ガソリン)を直
接噴射する電磁式の燃料噴射弁5が設けられており、該
燃料噴射弁5から噴射される燃料と吸入空気とによって
燃焼室内に混合気が形成される。前記燃料噴射弁5は、
コントロールユニット20から出力される噴射パルス信
号によりソレノイドに通電されて開弁し、所定圧力に調
圧された燃料を噴射する。
An electromagnetic fuel injection valve 5 for directly injecting fuel (gasoline) is provided in the combustion chamber of each cylinder, and the fuel mixture injected into the combustion chamber by the fuel injected from the fuel injection valve 5 and the intake air. Is formed. The fuel injection valve 5 is
The injection pulse signal output from the control unit 20 energizes the solenoid to open the valve and injects the fuel whose pressure is adjusted to a predetermined pressure.

【0014】燃焼室内に形成される混合気は、点火栓6
により着火燃焼する。尚、エンジン1を上記の直接筒内
噴射式ガソリンエンジンに限定するものではなく、吸気
ポートに燃料を噴射する構成のエンジンであっても良
い。エンジン1からの排気は排気通路7より排出され、
該排気通路7には排気浄化用の触媒8が介装されてい
る。
The mixture formed in the combustion chamber is ignited by the spark plug 6.
Is ignited and burned. The engine 1 is not limited to the above direct cylinder injection type gasoline engine, but may be an engine configured to inject fuel into the intake port. Exhaust from the engine 1 is exhausted from the exhaust passage 7,
A catalyst 8 for purifying exhaust gas is interposed in the exhaust passage 7.

【0015】前記触媒8は、酸素吸着能力(酸素ストレ
ージ能力)を有する三元触媒であって、排気中の有害3
成分である一酸化炭素CO及び炭化水素HCを酸化する
と共に、酸化窒素NOxを還元して、無害な二酸化炭
素、水蒸気及び窒素に変換させるものである。そして、
該三元触媒8による浄化性能は、排気空燃比が理論空燃
比であるときに最も高く、排気空燃比がリーンで酸素量
が過剰であると、酸化作用は活発になるが還元作用が不
活発となり、逆に、排気空燃比がリッチで酸素量が少な
いと、酸化作用は不活発になるが還元作用が活発とな
る。
The catalyst 8 is a three-way catalyst having an oxygen adsorption capacity (oxygen storage capacity), and is harmful to the exhaust gas.
It oxidizes carbon monoxide CO and hydrocarbons HC which are components, and reduces nitrogen oxide NOx to convert them into harmless carbon dioxide, water vapor and nitrogen. And
The purification performance by the three-way catalyst 8 is highest when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio, and when the exhaust air-fuel ratio is lean and the amount of oxygen is excessive, the oxidizing action becomes active but the reducing action becomes inactive. Conversely, when the exhaust air-fuel ratio is rich and the amount of oxygen is small, the oxidizing action becomes inactive but the reducing action becomes active.

【0016】但し、前記三元触媒8は酸素を吸着する能
力(酸素ストレージ効果)を有するため、排気空燃比が
一時的にリッチになったときには、それまでに吸着され
ていた酸素を使用し、逆に、排気空燃比が一時的にリー
ンになったときには、余分な酸素を吸着することで、排
気浄化性能を維持できるようになっている。コントロー
ルユニット20は、CPU,ROM,RAM,A/D変
換器及び入出力インターフェイス等を含んで構成される
マイコンを備え、各種センサからの入力信号を受け、こ
れらに基づいて演算処理して、電子制御式スロットル弁
4の開度,燃料噴射弁5による噴射量・噴射時期,点火
栓6による点火時期を制御する。
However, since the three-way catalyst 8 has an ability to adsorb oxygen (oxygen storage effect), when the exhaust air-fuel ratio becomes temporarily rich, the oxygen adsorbed up to that time is used, On the contrary, when the exhaust air-fuel ratio temporarily becomes lean, the exhaust purification performance can be maintained by adsorbing excess oxygen. The control unit 20 includes a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like. The control unit 20 receives input signals from various sensors, performs arithmetic processing based on these signals, and performs electronic processing. The opening degree of the controllable throttle valve 4, the injection amount / injection timing by the fuel injection valve 5, and the ignition timing by the spark plug 6 are controlled.

【0017】前記各種センサとして、エンジン1のクラ
ンク角を検出するクランク角センサ21、カム軸から気
筒判別信号を取り出すカムセンサ22が設けられてお
り、前記クランク角センサ21からの信号に基づきエン
ジンの回転速度Neが算出される。この他、吸気通路3
のスロットル弁4上流側で吸入空気量Qを検出するエア
フローメータ23、アクセルペダルの踏込み量APSを
検出するアクセルセンサ24、スロットル弁4の開度T
VOを検出するスロットルセンサ25、エンジン1の冷
却水温度Twを検出する水温センサ26、触媒8の上流
側及び下流側それぞれに設けられ、排気中の酸素濃度に
基づいて排気空燃比を検出する第1,第2空燃比センサ
27a,27b、車速VSPを検出する車速センサ28
などが設けられている。
As the various sensors, a crank angle sensor 21 for detecting the crank angle of the engine 1 and a cam sensor 22 for extracting a cylinder discrimination signal from the cam shaft are provided, and the engine rotation based on the signals from the crank angle sensor 21 is provided. The speed Ne is calculated. Besides this, the intake passage 3
The air flow meter 23 for detecting the intake air amount Q on the upstream side of the throttle valve 4, the accelerator sensor 24 for detecting the depression amount APS of the accelerator pedal, and the opening T of the throttle valve 4.
A throttle sensor 25 for detecting VO, a water temperature sensor 26 for detecting a cooling water temperature Tw of the engine 1, and upstream and downstream sides of the catalyst 8 for detecting the exhaust air-fuel ratio based on the oxygen concentration in the exhaust gas. 1, 2nd air-fuel ratio sensors 27a and 27b, vehicle speed sensor 28 for detecting vehicle speed VSP
Etc. are provided.

【0018】また、前記コントロールユニット20は、
前記触媒8の劣化を診断する機能を有しており、係る劣
化診断の詳細を、図2のフローチャートに従って説明す
る。図2のフローチャートにおいて、ステップS1で
は、前記燃料噴射弁5による燃料噴射(燃料供給)が停
止される所謂燃料カット状態であるか否かを判別する。
Further, the control unit 20 is
It has a function of diagnosing the deterioration of the catalyst 8, and the details of the deterioration diagnosis will be described with reference to the flowchart of FIG. In the flowchart of FIG. 2, in step S1, it is determined whether or not a so-called fuel cut state in which fuel injection (fuel supply) by the fuel injection valve 5 is stopped.

【0019】前記燃料カットは、例えば、アクセル全閉
で、かつ、エンジン回転速度が所定回転速度以上である
減速運転状態において行なわれるようになっている。燃
料カット状態では、シリンダ内で燃料が燃焼せず、排気
通路7には大気が流れることになるため、触媒8に最大
量の酸素が吸着されることになる。燃料カット状態であ
ることがステップS1で判別されると、ステップS2へ
進み、燃料カット状態から燃料噴射が再開されるか否か
を判別する。
The fuel cut is performed, for example, in a deceleration operation state in which the accelerator is fully closed and the engine rotation speed is equal to or higher than a predetermined rotation speed. In the fuel cut state, the fuel does not burn in the cylinder and the atmosphere flows in the exhaust passage 7, so that the maximum amount of oxygen is adsorbed by the catalyst 8. When the fuel cut state is determined in step S1, the process proceeds to step S2, and it is determined whether fuel injection is restarted from the fuel cut state.

【0020】ステップS2で燃料噴射が再開されると判
別されると、ステップS3へ進み、噴射再開後の燃料噴
射弁5による燃料噴射量を所定割合だけ強制的に増量し
て、所定のリッチ混合気を形成させる設定を行なう。ス
テップS4では、噴射が再開されてから、所定時間が経
過したか否かを判別する。
When it is determined in step S2 that the fuel injection is restarted, the process proceeds to step S3, in which the fuel injection amount by the fuel injection valve 5 after the injection is restarted is forcibly increased by a predetermined ratio to achieve a predetermined rich mixture. Make settings to create energy. In step S4, it is determined whether or not a predetermined time has elapsed since the injection was restarted.

【0021】前記所定時間は、触媒8が正常でその最大
吸着酸素量が所定量以上であるときには、触媒8の下流
側の排気空燃比が略理論空燃比を保持する時間として設
定される。理論空燃比よりもリッチである混合気を燃焼
させると、触媒8に導入される排気が酸素不足となり、
触媒8に吸着されていた酸素が、排気有害成分の酸化処
理に用いられることになり、触媒8に吸着酸素が残って
いる間は、触媒8の下流側の排気空燃比は理論空燃比付
近に維持されることになる。
The predetermined time period is set as a time period during which the exhaust air-fuel ratio on the downstream side of the catalyst 8 maintains a substantially stoichiometric air-fuel ratio when the catalyst 8 is normal and the maximum adsorbed oxygen amount is equal to or more than the predetermined amount. When the air-fuel mixture richer than the stoichiometric air-fuel ratio is burned, the exhaust gas introduced into the catalyst 8 becomes insufficient in oxygen,
The oxygen adsorbed on the catalyst 8 will be used for the oxidation treatment of exhaust harmful components, and while the adsorbed oxygen remains on the catalyst 8, the exhaust air-fuel ratio on the downstream side of the catalyst 8 will be near the stoichiometric air-fuel ratio. Will be maintained.

【0022】そこで、触媒8が正常であるとき、換言す
れば、触媒8における最大吸着酸素量が初期状態での値
を略維持するときに、触媒8の吸着酸素が全て消費され
る時間を基準時間として、前記所定時間を前記基準時間
よりも短い時間として設定する。従って、触媒8が正常
であって、初期の最大吸着酸素量を略維持する状態であ
れば、前記所定時間が経過した時点では、触媒8に吸着
酸素が残っているはずであり、前記所定時間が経過した
時点で既に吸着酸素を使い果たしているとすれば、燃料
カット状態で吸着した酸素量が少なかったため、正常時
よりも早く吸着酸素がなくなったものと判断できる。
Therefore, when the catalyst 8 is normal, in other words, when the maximum adsorbed oxygen amount in the catalyst 8 substantially maintains the value in the initial state, the time when all the adsorbed oxygen in the catalyst 8 is consumed is taken as a reference. As the time, the predetermined time is set as a time shorter than the reference time. Therefore, if the catalyst 8 is normal and the initial maximum amount of adsorbed oxygen is substantially maintained, the adsorbed oxygen should remain on the catalyst 8 when the predetermined time has elapsed. If the adsorbed oxygen has already been exhausted at the time of, the amount of adsorbed oxygen in the fuel cut state was small, so it can be determined that the adsorbed oxygen has disappeared earlier than in the normal state.

【0023】ステップS4で燃料噴射の再開後所定時間
が経過したと判別されると、ステップS5へ進んで、そ
のときの空燃比センサ27bによる検出結果を読み込
む。そして、ステップS6では、ステップS5で読み込
んだ空燃比センサ27bによる検出結果、即ち、触媒8
の下流側での排気空燃比が、理論空燃比付近であるか否
かを判別する。
When it is determined in step S4 that the predetermined time has elapsed after the fuel injection is restarted, the process proceeds to step S5, and the detection result by the air-fuel ratio sensor 27b at that time is read. Then, in step S6, the detection result by the air-fuel ratio sensor 27b read in step S5, that is, the catalyst 8
It is determined whether or not the exhaust air-fuel ratio on the downstream side of is near the stoichiometric air-fuel ratio.

【0024】ステップS6で、触媒8の下流側での排気
空燃比が理論空燃比付近であると判別されたときには、
リッチ混合気を燃焼させているものの、未だ触媒8に吸
着酸素が残っているため、触媒8下流側の排気空燃比が
理論空燃比付近に維持されているものと判断できる。そ
こで、ステップS6で、触媒8の下流側での排気空燃比
が理論空燃比付近であると判別されたときには、ステッ
プS7へ進んで、最大吸着酸素量が所定量以上である触
媒8の正常状態を判定する。
When it is determined in step S6 that the exhaust air-fuel ratio on the downstream side of the catalyst 8 is near the stoichiometric air-fuel ratio,
Although the rich air-fuel mixture is burned, the adsorbed oxygen still remains in the catalyst 8, so it can be determined that the exhaust air-fuel ratio on the downstream side of the catalyst 8 is maintained near the stoichiometric air-fuel ratio. Therefore, when it is determined in step S6 that the exhaust air-fuel ratio on the downstream side of the catalyst 8 is close to the stoichiometric air-fuel ratio, the process proceeds to step S7, and the normal state of the catalyst 8 in which the maximum adsorbed oxygen amount is a predetermined amount or more. To judge.

【0025】一方、ステップS6で、触媒8の下流側で
の排気空燃比が理論空燃比付近を超えてリッチであると
判別されたときには、触媒8に吸着されていた酸素を使
い果たし、リッチ混合気による酸素不足を補うことがで
きなくなったために、触媒8の下流側における排気空燃
比が、リッチ化したものと判断される。上記のように正
常時よりも早く吸着酸素を使い果たしたということは、
燃料カット状態で吸着した酸素量が正常時よりも少なか
ったためであると判断でき、以って、劣化による酸素吸
着能力の低下が推定される。
On the other hand, when it is judged in step S6 that the exhaust air-fuel ratio on the downstream side of the catalyst 8 exceeds the stoichiometric air-fuel ratio and is rich, the oxygen adsorbed on the catalyst 8 is exhausted and the rich air-fuel mixture is exhausted. Since it is no longer possible to make up for the lack of oxygen due to, it is determined that the exhaust air-fuel ratio on the downstream side of the catalyst 8 has become rich. As mentioned above, exhausted oxygen is exhausted faster than normal.
It can be judged that this is because the amount of oxygen adsorbed in the fuel cut state was smaller than that in the normal state, and thus it is estimated that the oxygen adsorption capacity is deteriorated due to deterioration.

【0026】そこで、ステップS6で、触媒8の下流側
での排気空燃比が理論空燃比付近を超えてリッチである
と判別されたときには、ステップS8へ進んで、最大吸
着酸素量が減少した触媒8の劣化状態を判定する。劣化
状態を判定したときには、診断結果を記憶し、また、警
告を発するなどの対策を実行する。
Therefore, when it is determined in step S6 that the exhaust air-fuel ratio on the downstream side of the catalyst 8 is rich above the stoichiometric air-fuel ratio, the routine proceeds to step S8, in which the maximum adsorbed oxygen amount is reduced. The deterioration state of No. 8 is determined. When the deterioration state is determined, the diagnosis result is stored, and a countermeasure such as issuing a warning is executed.

【0027】ステップS9では、燃料噴射量の増量補正
を停止させる。尚、燃料カット状態後の噴射再開時から
前記所定時間が経過するまでの間の排気流量によって、
触媒8に吸着されていた酸素が消費される速度が変化す
るので、前記所定時間を排気流量に応じて変更する構成
としても良い。また、噴射再開後の排気流量の積算値が
所定値に達するのに要する時間の経過を待って、触媒8
下流側の排気空燃比を判断させる構成とすることもでき
る。
In step S9, the correction for increasing the fuel injection amount is stopped. It should be noted that depending on the exhaust flow rate from the restart of injection after the fuel cut state to the elapse of the predetermined time,
Since the speed at which the oxygen adsorbed by the catalyst 8 is consumed changes, the predetermined time may be changed according to the exhaust gas flow rate. Further, after waiting for the elapse of the time required for the integrated value of the exhaust flow rate after the restart of injection to reach a predetermined value, the catalyst 8
It is also possible to adopt a configuration in which the exhaust air-fuel ratio on the downstream side is judged.

【0028】更に、減速燃料カット状態後のアイドル運
転状態を診断条件とすれば、排気流量の大きなばらつき
がなく、排気流量に応じた診断タイミングの設定を省略
することが可能である。また、触媒下流側の空燃比セン
サ27bで、リッチ空燃比が検出されるようになるまで
の時間を計測し、該計測結果が正常時の基準時間よりも
所定時間以上短いときに、触媒8の劣化を判定させるよ
うにしても良い。
Further, by setting the idle operation state after the deceleration fuel cut state as the diagnostic condition, there is no large variation in the exhaust gas flow rate, and it is possible to omit setting the diagnostic timing according to the exhaust gas flow rate. Further, the time until the rich air-fuel ratio is detected is measured by the air-fuel ratio sensor 27b on the downstream side of the catalyst, and when the measurement result is shorter than the reference time in the normal state by a predetermined time or more, the catalyst 8 You may make it determine a deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態におけるエンジンのシステム構成図。FIG. 1 is a system configuration diagram of an engine according to an embodiment.

【図2】実施形態における触媒劣化診断を示すフローチ
ャート。
FIG. 2 is a flowchart showing a catalyst deterioration diagnosis according to the embodiment.

【符号の説明】[Explanation of symbols]

1…エンジン 4…スロットル弁 5…燃料噴射弁 6…点火栓 8…触媒 20…コントロールユニット 21…クランク角センサ 23…エアフローメータ 27a,27b…空燃比センサ 1 ... engine 4 ... Throttle valve 5 ... Fuel injection valve 6 ... Spark plug 8 ... Catalyst 20 ... Control unit 21 ... Crank angle sensor 23 ... Air flow meter 27a, 27b ... Air-fuel ratio sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 314 F02D 45/00 314Z // G01M 15/00 G01M 15/00 Z Fターム(参考) 2G087 AA27 BB28 CC19 EE17 3G084 AA03 BA05 BA13 BA15 BA17 BA24 CA03 CA06 DA10 DA27 EA11 EB01 EB11 EC01 FA05 FA07 FA10 FA20 FA30 FA33 FA39 3G091 AA02 AA17 AA24 AA28 AB03 BA14 BA15 BA19 BA33 BA34 CB02 CB03 CB05 CB08 DA01 DA02 DB10 EA00 EA01 EA05 EA07 EA16 EA30 EA31 EA34 EA36 EA39 FA05 FA19 FB12 HA36 HA37 HA42 3G301 HA01 HA04 HA06 JA15 JA25 JA26 JB09 LA03 LB04 MA01 MA11 MA18 NE01 NE06 NE13 PA01B PD01B PD08A PD08B PD09A PD09B PE01B PE03B PE08B PF01B PF03B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 45/00 314 F02D 45/00 314Z // G01M 15/00 G01M 15/00 Z F term (reference) 2G087 AA27 BB28 CC19 EE17 3G084 AA03 BA05 BA13 BA15 BA17 BA24 CA03 CA06 DA10 DA27 EA11 EB01 EB11 EC01 FA05 FA07 FA10 FA20 FA30 FA33 FA39 3G091 AA02 AA17 AA24 EA02 EA01 EA01 EA01 EA01 EA02 EA01 EA02 BB01 CB02 CB08 CB02 CB02 CB02 CB02 CB02 CB02 CB02 CB03 CB03 CB02 CB02 CB02 CB02 CB02 CB03 CB03 CB03 CB02 CB02 CB03 CB03 EA31 EA34 EA36 EA39 FA05 FA19 FB12 HA36 HA37 HA42 3G301 HA01 HA04 HA06 JA15 JA25 JA26 JB09 LA03 LB04 MA01 MA11 MA18 NE01 NE06 NE13 PA01B PD01B PD08A PD08B PD09A PD09B PE01B PE03B PE08B PF01B PF03B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素吸着能力を有し、エンジンの排気管に
介装される触媒の劣化を診断する装置であって、 前記触媒における吸着酸素量が最大になっていると推定
される状態から、理論空燃比よりもリッチな混合気での
燃焼を開始させ、該リッチ混合気での燃焼開始からの前
記触媒下流側の排気空燃比の変化に基づいて、前記触媒
の劣化を診断することを特徴とするエンジンの触媒劣化
診断装置。
1. A device for diagnosing deterioration of a catalyst interposed in an exhaust pipe of an engine, which has an oxygen adsorbing ability, and which is estimated to have a maximum adsorbed oxygen amount in the catalyst. , Starting combustion in a mixture richer than the stoichiometric air-fuel ratio, and diagnosing deterioration of the catalyst based on a change in the exhaust air-fuel ratio on the downstream side of the catalyst from the start of combustion in the rich mixture. Characteristic engine catalyst deterioration diagnosis device.
【請求項2】エンジンへの燃料供給が停止されている状
態を、前記触媒における吸着酸素量が最大になっている
と推定される状態として検出することを特徴とする請求
項1記載のエンジンの触媒劣化診断装置。
2. The engine according to claim 1, wherein a state in which fuel supply to the engine is stopped is detected as a state in which the amount of adsorbed oxygen in the catalyst is estimated to be maximum. Catalyst deterioration diagnosis device.
【請求項3】酸素吸着能力を有し、エンジンの排気管に
介装される触媒の劣化を診断する装置であって、 前記触媒の下流側に、排気中の酸素濃度に基づいて空燃
比を検出する空燃比センサを備え、 エンジンに対する燃料供給の停止状態から燃料供給が再
開されるときに、燃焼混合気の空燃比を理論空燃比より
もリッチ化させ、該リッチ空燃比が基準時間よりも短い
時間で前記空燃比センサによって検出されたか否かに基
づいて、前記触媒の劣化を診断することを特徴とするエ
ンジンの触媒劣化診断装置。
3. A device for diagnosing deterioration of a catalyst interposed in an exhaust pipe of an engine, which has an oxygen adsorbing capacity, wherein an air-fuel ratio is provided on the downstream side of the catalyst based on an oxygen concentration in exhaust gas. An air-fuel ratio sensor for detecting is provided, and when the fuel supply is restarted from the state where the fuel supply to the engine is stopped, the air-fuel ratio of the combustion mixture is made richer than the stoichiometric air-fuel ratio, and the rich air-fuel ratio is longer than the reference time. A catalyst deterioration diagnosing device for an engine, wherein deterioration of the catalyst is diagnosed based on whether or not it is detected by the air-fuel ratio sensor in a short time.
JP2001229412A 2001-07-30 2001-07-30 Catalyst deterioration diagnosing device for engine Pending JP2003041991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229412A JP2003041991A (en) 2001-07-30 2001-07-30 Catalyst deterioration diagnosing device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229412A JP2003041991A (en) 2001-07-30 2001-07-30 Catalyst deterioration diagnosing device for engine

Publications (1)

Publication Number Publication Date
JP2003041991A true JP2003041991A (en) 2003-02-13

Family

ID=19061767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229412A Pending JP2003041991A (en) 2001-07-30 2001-07-30 Catalyst deterioration diagnosing device for engine

Country Status (1)

Country Link
JP (1) JP2003041991A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340834A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Gas measuring method and gas measuring apparatus
JP2007069152A (en) * 2005-09-08 2007-03-22 Mitsubishi Motors Corp Hc adsorbent and deterioration detecting device for hc adsorbent
US7469530B2 (en) 2004-03-03 2008-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cut control apparatus of internal combustion engine
US7712303B2 (en) 2005-04-22 2010-05-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Degradation estimating apparatus for unburned component adsorption catalyst
JP2013083196A (en) * 2011-10-07 2013-05-09 National Traffic Safety & Environment Laboratory Catalyst degradation diagnosis method under deceleration traveling
KR101338669B1 (en) * 2007-12-10 2013-12-06 현대자동차주식회사 Monitoring method for catalyst of sooty filtering apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340834A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Gas measuring method and gas measuring apparatus
US7469530B2 (en) 2004-03-03 2008-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cut control apparatus of internal combustion engine
US7712303B2 (en) 2005-04-22 2010-05-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Degradation estimating apparatus for unburned component adsorption catalyst
JP2007069152A (en) * 2005-09-08 2007-03-22 Mitsubishi Motors Corp Hc adsorbent and deterioration detecting device for hc adsorbent
KR101338669B1 (en) * 2007-12-10 2013-12-06 현대자동차주식회사 Monitoring method for catalyst of sooty filtering apparatus
JP2013083196A (en) * 2011-10-07 2013-05-09 National Traffic Safety & Environment Laboratory Catalyst degradation diagnosis method under deceleration traveling

Similar Documents

Publication Publication Date Title
JP3902399B2 (en) Air-fuel ratio control device for internal combustion engine
JP3759567B2 (en) Catalyst degradation state detection device
JPH07305644A (en) Air-fuel ratio controller of internal combustion engine
JP3033449B2 (en) Combustion control device for spark ignition internal combustion engine
JP2003041991A (en) Catalyst deterioration diagnosing device for engine
JP4114322B2 (en) Exhaust gas purification device for internal combustion engine
JP2008255952A (en) Sulfur concentration detection device of internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP5113374B2 (en) Exhaust gas purification device for internal combustion engine
JP6995154B2 (en) Exhaust gas purification device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JPWO2003021090A1 (en) Deterioration state evaluation device of exhaust gas purification device
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JP3010855B2 (en) Self-diagnosis device in secondary air supply device of internal combustion engine
JP3858267B2 (en) Exhaust purification device
JP2004108187A (en) Deterioration diagnosis device of exhaust emission control catalyst for internal combustion engine
US7415818B2 (en) Control device of internal combustion engine
JP4218555B2 (en) Sensor abnormality detection device and vehicle equipped with the same
JP4061676B2 (en) Self-diagnosis device for secondary air supply device of internal combustion engine
JPH07247831A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP3770256B2 (en) Engine exhaust purification system
JP2002013429A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205