JP2003040932A - Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method - Google Patents

Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method

Info

Publication number
JP2003040932A
JP2003040932A JP2001229837A JP2001229837A JP2003040932A JP 2003040932 A JP2003040932 A JP 2003040932A JP 2001229837 A JP2001229837 A JP 2001229837A JP 2001229837 A JP2001229837 A JP 2001229837A JP 2003040932 A JP2003040932 A JP 2003040932A
Authority
JP
Japan
Prior art keywords
optically active
polymer
separating agent
group
macromonomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001229837A
Other languages
Japanese (ja)
Inventor
Tsutomu Oishi
勉 大石
Yongyon Li
ヨンギョン リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi Technology Licensing Organization Ltd
Original Assignee
Yamaguchi Technology Licensing Organization Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi Technology Licensing Organization Ltd filed Critical Yamaguchi Technology Licensing Organization Ltd
Priority to JP2001229837A priority Critical patent/JP2003040932A/en
Publication of JP2003040932A publication Critical patent/JP2003040932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new optically-active monomer, capable of expecting an excellent optical property, and a polymer thereof, and to provide a separating agent composed of this polymer and a separation method of an optically active material using this separating agent. SOLUTION: The new optically-active polyacrylamide macromonomer by general formula (1) (In the formula, R1 is a methyl group or an alkoxycarbonyl group, R2 is a phenyl group, a naphthyl group or a benzyl group, m is a number of 2-5,000, and the mark of * is an optically active carbon), the polymer thereof, the separating agent, composed of this polymer, of the optically active material, and the separation method of the optically active material using this separating agent, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学活性ポリアク
リルアミドマクロモノマーとその重合体及びその重合体
からなる分離剤並びにその分離剤を用いた分離方法に関
する。
TECHNICAL FIELD The present invention relates to an optically active polyacrylamide macromonomer, a polymer thereof, a separating agent comprising the polymer, and a separating method using the separating agent.

【0002】[0002]

【従来の技術】光学分割用分離剤、液晶、非線形光学材
料などの機能材料として利用されている光学活性な合成
高分子物質は、従来から数多く知られている。例えば、
光学活性メタクリル酸トリフェニルメチル重合体(特開
昭56-106907号公報、特開昭56-142216号公報)、光学活
性アクリル酸アミド重合体(特開昭56-167708号公
報)、メタクリル酸ジフェニル−2−ピリジルメチル
(特開昭57-209908号公報)、シリカゲル表面に化学結
合した側鎖に光学活性置換基を有するポリ(メタ)アク
リルアミド化合物(特開昭63-001446号公報)、光学活
性な合成高分子化合物を用いた液晶組成物(特開平01-0
79230号公報)、光学活性メタクリル酸エステル重合体
(特開平08-208749号公報、特開2001-114832号公報)等
が知られている。
2. Description of the Related Art Many optically active synthetic polymer substances used as functional materials such as separating agents for optical resolution, liquid crystals and nonlinear optical materials have been known. For example,
Optically active triphenylmethyl methacrylate polymer (JP-A-56-106907, JP-A-56-142216), optically active acrylic acid amide polymer (JP-A-56-167708), diphenyl methacrylate -2-pyridylmethyl (JP-A-57-209908), poly (meth) acrylamide compound having an optically active substituent on the side chain chemically bonded to the surface of silica gel (JP-A-63-001446), optically active Composition using various synthetic polymer compounds (Patent Document 1)
79230), optically active methacrylic acid ester polymers (JP 08-208749 A, JP 2001-114832 A) and the like are known.

【0003】[0003]

【発明が解決しようとする課題】然しながら、これらの
光学活性高分子は、それぞれ特異な性質を有するが、得
意とする応用範囲が自ずと狭いものである。例えば、上
記の光学活性高分子を光学活性物質の分離剤とした場
合、分離可能なラセミ体化合物や使用可能な溶媒は限ら
れている。従って、このような応用範囲を広げるために
は、新規な光学活性高分子の種類を増やすことが必要で
ある。
However, although each of these optically active polymers has unique properties, its application range is naturally narrow. For example, when the above-mentioned optically active polymer is used as a separating agent for an optically active substance, the separable racemic compound and usable solvent are limited. Therefore, in order to expand such application range, it is necessary to increase the kinds of novel optically active polymers.

【0004】本発明は、上述した状況に鑑みなされたも
ので、優れた光学物性が期待できる、新規な光学活性モ
ノマーとその重合体及びその重合体からなる分離剤並び
にその分離剤を用いた光学活性物質の分離方法を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and is a novel optically active monomer, a polymer thereof, a separating agent comprising the polymer, and an optical using the separating agent, which are expected to have excellent optical properties. It is an object to provide a method for separating an active substance.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明者は鋭意研究を重ねた結果、新規な光学活性
ポリアクリルアミドマクロモノマーを見出し、更に、そ
の重合体が光学分割剤としての優れた性能を発現するこ
とを見出し、本発明を完成するに至ったものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventor has conducted extensive studies and, as a result, found a novel optically active polyacrylamide macromonomer, and further, a polymer thereof as an optical resolving agent. The inventors have found that they exhibit excellent performance and completed the present invention.

【0006】即ち、本発明の光学活性ポリアクリルアミ
ドマクロモノマーは、下記一般式(1)で表される新規
な光学活性モノマーであり、本発明の重合体は、下記一
般式(2)で表されるその光学活性モノマーの重合体で
あり、本発明の分離剤は、その重合体からなる光学活性
物質の分離剤であり、本発明の分離方法は、その分離剤
を用いて光学活性物質を分離する方法である。
That is, the optically active polyacrylamide macromonomer of the present invention is a novel optically active monomer represented by the following general formula (1), and the polymer of the present invention is represented by the following general formula (2). Which is a polymer of the optically active monomer, the separating agent of the present invention is a separating agent of the optically active substance consisting of the polymer, and the separating method of the present invention is a method of separating an optically active substance using the separating agent. Is the way to do it.

【0007】[0007]

【化3】 [Chemical 3]

【0008】(式中、R1は、メチル基、又はアルコキシ
カルボニル基を、R2は、フェニル基、ナフチル基、又は
ベンジル基を表し、mは2〜5000の範囲の数、*印は光
学活性炭素を表す。)
(In the formula, R 1 represents a methyl group or an alkoxycarbonyl group, R 2 represents a phenyl group, a naphthyl group, or a benzyl group, m is a number in the range of 2 to 5000, and * indicates optical. Represents activated carbon.)

【0009】[0009]

【化4】 [Chemical 4]

【0010】(式中、R1は、メチル基、又はアルコキシ
カルボニル基を、R2は、フェニル基、ナフチル基、又は
ベンジル基を表し、mとnは2〜5000の範囲の数、*印
は光学活性炭素を表す。)
(In the formula, R 1 represents a methyl group or an alkoxycarbonyl group, R 2 represents a phenyl group, a naphthyl group, or a benzyl group, m and n are numbers in the range of 2 to 5000, and * marks Represents optically active carbon.)

【0011】[0011]

【発明の実施の形態】本発明の光学活性アクリルアミド
マクロモノマーは、上記一般式(1)で表される化合物
であり、その製造方法は、特に本発明を限定するもので
はないが、例えば、下記一般式(3)で表される光学活
性ポリアクリルアミドを2−メタクリロイルオキシエチ
ルイソシアナートと反応させることにより調製すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The optically active acrylamide macromonomer of the present invention is a compound represented by the above general formula (1), and the production method thereof is not particularly limited to the present invention. It can be prepared by reacting the optically active polyacrylamide represented by the general formula (3) with 2-methacryloyloxyethyl isocyanate.

【0012】[0012]

【化5】 [Chemical 5]

【0013】(式中、R1は、メチル基、又はアルコキシ
カルボニル基を、R2は、フェニル基、ナフチル基、又は
ベンジル基を表し、mは2〜5000の範囲の数、*印は光
学活性炭素を表す。)
(In the formula, R 1 represents a methyl group or an alkoxycarbonyl group, R 2 represents a phenyl group, a naphthyl group, or a benzyl group, m is a number in the range of 2 to 5000, and * indicates an optical Represents activated carbon.)

【0014】本発明の光学活性アクリルアミドマクロモ
ノマーの重合体は、上記一般式(2)で表される化合物
であり、その製造方法は、特に本発明を限定するもので
はないが、例えば、本発明の上記一般式(1)のマクロ
モノマーを、ラジカル開始剤(反応開始剤)存在下、ラ
ジカル重合することにより調製することができる。
The polymer of the optically active acrylamide macromonomer of the present invention is a compound represented by the above general formula (2), and the production method thereof is not particularly limited, but for example, the present invention is used. The macromonomer of the above general formula (1) can be prepared by radical polymerization in the presence of a radical initiator (reaction initiator).

【0015】なお、ラジカルを生成させる方法として
は、上記のラジカル開始剤を加える方法に限定されるも
のではなく、例えば光、放射線などを照射する方法など
も使用可能である。
The method of generating radicals is not limited to the method of adding the above-mentioned radical initiator, and for example, a method of irradiating with light, radiation or the like can be used.

【0016】ラジカル開始剤としては、特に限定するも
のではないが、例えば、アゾビスイソブチロニトリル、
2, 2'−アゾビスイソブチレート、4, 4'−アゾビス
(4−シアノ吉草酸)などのアゾ系や、過酸化ベンゾイ
ル、ジ−t−ブチルパーオキサイド、ベンゾイルパーオ
キサイド、ラウロイルパーオキサイドなどの過酸化物
系、過硫酸カリウム、硝酸セリウムアンモニウム等のレ
ドックス系などが挙げられ、使用量としては、反応に供
する原料に対して0.01〜10モル%の範囲で使用するのが
好適である。
The radical initiator is not particularly limited, but for example, azobisisobutyronitrile,
Azo compounds such as 2,2′-azobisisobutyrate and 4,4′-azobis (4-cyanovaleric acid), benzoyl peroxide, di-t-butyl peroxide, benzoyl peroxide, lauroyl peroxide, etc. And a redox system such as potassium persulfate and cerium ammonium nitrate, etc., and the amount used is preferably 0.01 to 10 mol% with respect to the raw material to be used in the reaction.

【0017】重合に用いる溶剤としては、反応に不活性
な溶剤であればあらゆる溶剤が使用可能であるが、通常
は、反応に用いる原料及び反応開始剤を充分に溶解させ
ることのできる溶剤を用いる。具体的には、テトラヒド
ロフラン(以下、THFと略す)、N, N-ジメチルホルムア
ミド(以下、DMFと略す)、ジクロロメタン、クロロホ
ルム、ベンゼン、トルエン、キシレン等が挙げられ、使
用量としては、反応に供する原料に対して重量で1〜10
0倍程度使用するのが好適である。
As the solvent used for the polymerization, any solvent can be used as long as it is an inert solvent for the reaction. Usually, a solvent that can sufficiently dissolve the raw materials and the reaction initiator used for the reaction is used. . Specific examples thereof include tetrahydrofuran (hereinafter abbreviated as THF), N, N-dimethylformamide (hereinafter abbreviated as DMF), dichloromethane, chloroform, benzene, toluene, xylene, and the like. 1 to 10 by weight of raw material
It is preferable to use about 0 times.

【0018】反応温度は、反応に供する原料や反応開始
剤の種類により異なり、特に限定するものではないが、
通常、50〜150℃の範囲が好適である。
The reaction temperature varies depending on the types of raw materials and reaction initiators used in the reaction and is not particularly limited,
Usually, the range of 50 to 150 ° C is suitable.

【0019】反応時間は、原料や反応開始剤の種類によ
り異なり、特に限定するものではないが、通常、1時間
〜240時間の範囲で反応は完結する。
The reaction time varies depending on the types of raw materials and reaction initiators and is not particularly limited, but usually the reaction is completed within a range of 1 hour to 240 hours.

【0020】反応終了後、ヘキサン、ヘプタン、メタノ
ール、エタノール等の生成物の溶解度が低い溶剤に反応
液を滴下晶析させることにより、本発明の光学活性ポリ
アクリルアミドマクロモノマーの重合体を粉末として取
得できる。純度を向上させるために、THFやDMF等の溶剤
に溶解させ、再度メタノール等の溶解度が低い溶剤に投
入し、再晶析を行っても良い。なお、これらの溶剤は、
単独で使用しても良いし、2種類以上の溶剤を混合して
使用しても良い。
After completion of the reaction, the polymer of the optically active polyacrylamide macromonomer of the present invention is obtained as a powder by dropping and crystallization of the reaction solution in a solvent having a low solubility of products such as hexane, heptane, methanol and ethanol. it can. In order to improve the purity, it may be dissolved in a solvent such as THF or DMF and then re-crystallized by adding it again to a solvent having a low solubility such as methanol. Incidentally, these solvents are
They may be used alone or as a mixture of two or more kinds of solvents.

【0021】本発明の光学活性ポリアクリルアミドマク
ロモノマーの重合体は、光学活性物質の分離剤として使
用することができる。
The polymer of the optically active polyacrylamide macromonomer of the present invention can be used as a separating agent for an optically active substance.

【0022】本発明の光学活性ポリアクリルアミドマク
ロモノマーの重合体を用いて光学活性物質を分離する方
法としては、特に限定するものではないが、例えば、原
料である上記一般式(2)で表される光学活性ポリアク
リルアミドマクロモノマーを、表面にビニル基を有する
多孔質の担体存在下で重合することにより、本発明の光
学活性ポリアクリルアミドマクロモノマーの重合体を多
孔質の担体に化学的な結合をさせた分離剤を調製し、こ
れを充填したカラムを用い、高速液体クロマトグラフィ
ーにより光学活性物質を容易に分離することができる。
The method of separating an optically active substance using the polymer of the optically active polyacrylamide macromonomer of the present invention is not particularly limited, but is represented by, for example, the above-mentioned general formula (2) as a raw material. The optically active polyacrylamide macromonomer is polymerized in the presence of a porous carrier having a vinyl group on the surface to chemically bond the polymer of the optically active polyacrylamide macromonomer of the present invention to the porous carrier. The optically active substance can be easily separated by high performance liquid chromatography using a column packed with the prepared separating agent.

【0023】本発明の光学活性ポリアクリルアミドマク
ロモノマーの重合体を担持させる担体としては、特に限
定するものではないが、シリカゲル、アルミナ、架橋ス
チレン、ポリシロキサン等が挙げられる。担体の粒子と
しては1μm〜200μm、平均細孔径としては10Å〜300Å
のものが高速液体クロマトグラフィーにおける分離剤と
しては好ましい。
The carrier for supporting the polymer of the optically active polyacrylamide macromonomer of the present invention is not particularly limited, and examples thereof include silica gel, alumina, crosslinked styrene, polysiloxane and the like. The carrier particles are 1 μm to 200 μm, and the average pore size is 10Å to 300Å
Those described above are preferable as the separating agent in high performance liquid chromatography.

【0024】表面にビニル基を有する多孔質の担体の調
製方法は、特に限定するものではないが、例えば、シリ
カゲルを3−アミノプロピルトリエトキシシランで表面
処理し、続いて2−メタクリロイルオキシエチルイソシ
アナートと反応させたものが挙げられる。
The method for preparing the porous carrier having a vinyl group on the surface is not particularly limited. For example, silica gel is surface-treated with 3-aminopropyltriethoxysilane, and then 2-methacryloyloxyethylisocyanate is used. One that has been reacted with nato.

【0025】担持方法としては、特に限定するものでは
ないが、本発明の光学活性ポリアクリルアミドマクロモ
ノマーの重合体を多孔質の担体に化学的に結合させても
よいし、本発明の光学活性ポリアクリルアミドマクロモ
ノマーの重合体を多孔質の担体と接触させ物理的に担持
させてもよい。
The supporting method is not particularly limited, but the polymer of the optically active polyacrylamide macromonomer of the present invention may be chemically bonded to a porous carrier, or the optically active polyacrylamide of the present invention may be used. A polymer of acrylamide macromonomer may be brought into contact with a porous carrier to be physically supported.

【0026】担体に対する光学活性ポリアクリルアミド
マクロモノマーの重合体の担持量としては、用いる担体
の種類、物性により異なり、特に限定するものではない
が、通常、充填剤の重量に対して1〜50重量%の範囲で
担持可能である。
The amount of the optically active polyacrylamide macromonomer polymer supported on the carrier varies depending on the type and physical properties of the carrier used and is not particularly limited, but is usually 1 to 50% by weight with respect to the weight of the filler. It can be supported in the range of%.

【0027】本発明の光学活性ポリアクリルアミドマク
ロモノマーの重合体を多孔質の担体に担持させた分離剤
は、水素結合やπ−π相互作用等が可能な光学活性物質
の分離に適用可能である。例えば、高速液体クロマトグ
ラフィー用のカラムの充填剤として使用する場合、溶離
液としてヘキサン-イソプロパノールを用いる順相系、
アルコール-水等を用いる逆相系のいずれにおいても幅
広く応用可能である。
The separating agent in which the polymer of the optically active polyacrylamide macromonomer of the present invention is supported on a porous carrier is applicable to the separation of optically active substances capable of hydrogen bonding, π-π interaction and the like. . For example, when used as a packing material for a column for high performance liquid chromatography, a normal phase system using hexane-isopropanol as an eluent,
It can be widely applied to any reversed phase system using alcohol-water or the like.

【0028】以上、詳細に説明した実施の形態により、
本発明は、優れた光学物性が期待できる、新規な光学活
性モノマーとその重合体及びその重合体からなる分離剤
並びにその分離剤を用いた光学活性物質の分離方法を提
供するものであると共に、(1)ラジカル重合で調製で
きるため製造が簡便である、(2)担体と化学結合又は
物理結合の両方が可能である、(3)化学結合型分離剤
とした場合、溶離液に制限がなく、順相系、逆相系共に
使用できる、などの効果を有するものである。
According to the embodiment described in detail above,
The present invention provides excellent optical properties, a novel optically active monomer, a polymer and a separating agent comprising the polymer, and a method for separating an optically active substance using the separating agent, (1) Easy to manufacture because it can be prepared by radical polymerization, (2) both a chemical bond and a physical bond are possible with a carrier, and (3) when a chemical bond type separating agent is used, the eluent is not limited. In addition, it can be used in both normal phase and reverse phase systems.

【0029】[0029]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明がこれらの実施例に限定されるものではな
いことは言うまでもない。
EXAMPLES The present invention will be specifically described below with reference to examples, but it goes without saying that the present invention is not limited to these examples.

【0030】以下の実施例において、平均分子量は、ゲ
ルパーミエーションクロマトグラフィー(島津製SPD-10
A)によりポリスチレン換算で算出し、旋光度はJASCO製
DIP-140により測定したものである。なお、調製した光
学活性アクリルアミドマクロモノマーの重合体の分離能
測定には、島津製液体クロマトグラフィーLC-10AT、紫
外可視検出器SPD-10A、クロマトパックC-R8Aを用いた。
In the following examples, the average molecular weight was determined by gel permeation chromatography (SPD-10 manufactured by Shimadzu Corporation).
Calculated in terms of polystyrene according to A) and the optical rotation is made by JASCO
It is measured by DIP-140. Liquid chromatography LC-10AT manufactured by Shimadzu, UVD detector SPD-10A, and Chromatopack C-R8A were used to measure the separability of the prepared polymer of optically active acrylamide macromonomer.

【0031】実施例1 重合管に(S)−メチルベンジルアクリルアミド(以下
MBZAAと略す)1g、4, 4'−アゾビス(4−シアノ吉
草酸)(以下ACPAと略す)80mg及びTHF5mLを仕込
み、窒素雰囲気下、60℃で振とうさせながら24時間重合
を行った。
Example 1 (S) -methylbenzylacrylamide (hereinafter
MBZAA) 1 g, 4,4′-azobis (4-cyanovaleric acid) (hereinafter abbreviated as ACPA) 80 mg and THF 5 mL were charged, and polymerization was carried out for 24 hours while shaking at 60 ° C. under a nitrogen atmosphere.

【0032】反応終了後、反応液を100mLのメタノー
ル/水(2/1volume)に投入し、析出物をろ取して、
室温、減圧下で乾燥させた。乾燥後、生成物を最少量の
THFに溶解させ、再度100mLのメタノール/水(2/1
volume)に投入し再晶析を行った。さらに同様な方法に
よりもう一度再晶析を行った後、室温、減圧下で乾燥す
ることにより、末端にカルボニル基を持つポリ(MBZA
A)(以下、PreMB-1と略す)0.95gを得た(収率95
%)。
After completion of the reaction, the reaction solution was poured into 100 mL of methanol / water (2/1 volume ) and the precipitate was collected by filtration.
It was dried at room temperature under reduced pressure. After drying, use the minimum amount of product
Dissolve in THF and again 100 mL of methanol / water (2/1
volume ) and recrystallized. After recrystallization by the same method, it is dried at room temperature under reduced pressure to give poly (MBZA with a carbonyl group at the terminal.
A) (hereinafter referred to as PreMB-1) 0.95 g was obtained (yield 95
%).

【0033】旋光度 [α]435 25=−125.3゜(C
=1.0g/dL,DMF) 分子量 Mn=11700 多分散度 Mw/Mn=
1.62
Optical rotation [α] 435 25 = -125.3 ° (C
= 1.0 g / dL, DMF) Molecular weight Mn = 11700 Polydispersity Mw / Mn =
1.62

【0034】実施例2 実施例1と同じ装置を用い、MBZAA1g、アゾビスイソ
ブチロニトリル(以下AIBNと略す)5mg、2−メルカ
プトエタノール18mg及びTHF5mLを仕込み、60℃で
振とうさせながら24時間重合を行い、実施例1と同じ後
処理操作の後、末端にヒドロキシル基を持つポリ(MBZA
A)(以下、PreMB-2略す)1gを得た(収率100%)。
Example 2 Using the same apparatus as in Example 1, 1 g of MBZAA, 5 mg of azobisisobutyronitrile (hereinafter abbreviated as AIBN), 18 mg of 2-mercaptoethanol and 5 mL of THF were charged and shaken at 60 ° C. for 24 hours. Polymerization was carried out, and after the same post-treatment operation as in Example 1, poly (MBZA
1 g of A) (hereinafter abbreviated as PreMB-2) was obtained (yield 100%).

【0035】旋光度 [α]435 25=−129.4゜(C
=1.0g/dL,DMF) 分子量 Mn=3000 多分散度 Mw/Mn=
1.62
Optical rotation [α] 435 25 = -129.4 ° (C
= 1.0 g / dL, DMF) Molecular weight Mn = 3000 Polydispersity Mw / Mn =
1.62

【0036】実施例3 実施例1と同じ装置を用い、(S)−フェニルアラニン
エチルエステルアクリルアミド(以下PAEAAと略す)1
g、ACPA12mg及びTHF5mLを仕込み、60℃で振とう
させながら24時間重合を行い、実施例1と同じ後処理操
作の後、末端にカルボニル基を持つポリ(PAEAA)(以
下、PrePAE-1と略す)0.98gを得た(収率98%)。
Example 3 Using the same apparatus as in Example 1, (S) -phenylalanine ethyl ester acrylamide (hereinafter abbreviated as PAEAA) 1
g, ACPA 12 mg and THF 5 mL were charged, polymerization was carried out for 24 hours while shaking at 60 ° C., and after the same post-treatment operation as in Example 1, poly (PAEAA) having a carbonyl group at the terminal (hereinafter abbreviated as PrePAE-1). ) 0.98 g was obtained (yield 98%).

【0037】旋光度 [α]435 25=+62.0゜(C=
1.0g/dL,DMF) 分子量 Mn=9100 多分散度 Mw/Mn=
1.35
Optical rotation [α] 435 25 = + 62.0 ° (C =
1.0 g / dL, DMF) Molecular weight Mn = 9100 Polydispersity Mw / Mn =
1.35

【0038】実施例4 実施例1と同じ装置を用い、PAEAA1g、AIBN4mg、
2−メルカプトエタノール13mg及びTHF5mLを仕込
み、60℃で振とうさせながら24時間重合を行い、実施例
1と同じ後処理操作の後、末端にヒドロキシル基を持つ
ポリ(PAEAA)(以下、PrePAE-2と略す)0.95gを得た
(収率95%)。
Example 4 Using the same apparatus as in Example 1, 1 g of PAEAA, 4 mg of AIBN,
13 mg of 2-mercaptoethanol and 5 mL of THF were charged, polymerization was carried out for 24 hours while shaking at 60 ° C., and after the same post-treatment operation as in Example 1, poly (PAEAA) having a hydroxyl group at the terminal (hereinafter referred to as PrePAE-2 Abbreviated) 0.95 g was obtained (yield 95%).

【0039】旋光度 [α]435 25=+61.5゜(C=
1.0g/dL,DMF) 分子量 Mn=3100 多分散度 Mw/Mn=
1.34
Optical rotation [α] 435 25 = + 61.5 ° (C =
1.0 g / dL, DMF) Molecular weight Mn = 3100 Polydispersity Mw / Mn =
1.34

【0040】実施例5 100mLナスフラスコ中に、PreMB-1を5g、2−メタク
リロイルオキシエチルイソシアナート0.2g、ジ−n−
ブチル錫ジラウレート20mg及びTHF50mLを仕込み、5
0℃で24時間反応させた。
Example 5 In a 100 mL round-bottomed flask, 5 g of PreMB-1, 0.2 g of 2-methacryloyloxyethyl isocyanate, di-n-
Charge 20 mg of butyltin dilaurate and 50 mL of THF, and add 5
The reaction was carried out at 0 ° C for 24 hours.

【0041】反応終了後、反応溶液を減圧下で濃縮し、
100mLのメタノール/水(2/1v olume)に投入し
た。析出物をろ取し、室温、減圧下で乾燥させた。乾燥
後、生成物を最少量のTHFに溶解させ、再度100mLのメ
タノール/水(2/1volume)に投入し再晶析を行っ
た。さらに同様な方法によりもう一度再晶析を行った
後、室温、減圧下で乾燥することにより高分子量ポリ
(MBZAA)マクロモノマー(以下、PMB-1と略す)を得た
(転化率100%)。
After completion of the reaction, the reaction solution was concentrated under reduced pressure,
It was placed in a 100mL of methanol / water (2/1 v olume). The precipitate was collected by filtration and dried under reduced pressure at room temperature. After drying, the product was dissolved in a minimum amount of THF and re-crystallized by adding it again to 100 mL of methanol / water (2/1 volume ). Further, recrystallization was performed again by the same method and then dried at room temperature under reduced pressure to obtain a high molecular weight poly (MBZAA) macromonomer (hereinafter abbreviated as PMB-1) (conversion rate 100%).

【0042】旋光度 [α]435 25=−118.9゜(C
=1.0g/dL,DMF) 分子量 Mn=12700 多分散度 Mw/Mn=
1.40 還元粘度 ηred=0.097(DMF,30℃)
Optical rotation [α] 435 25 = -118.9 ° (C
= 1.0 g / dL, DMF) Molecular weight Mn = 12700 Polydispersity Mw / Mn =
1.40 Reduced viscosity η red = 0.097 (DMF, 30 ° C)

【0043】実施例6 実施例5と同じ装置を用い、PreMB-2を5g、2−メタ
クリロイルオキシエチルイソシアナート0.2g、ジ−n
−ブチル錫ジラウレート20mg及びTHF50mLを仕込
み、50℃で24時間反応を行い、実施例5と同じ後処理操
作の後、低分子量ポリ(MBZAA)マクロモノマー(以
下、PMB-2と略す)を得た(転化率90%)。
Example 6 Using the same apparatus as in Example 5, 5 g of PreMB-2, 0.2 g of 2-methacryloyloxyethyl isocyanate, di-n
-Butyltin dilaurate (20 mg) and THF (50 mL) were charged and reacted at 50 ° C for 24 hours, and after the same post-treatment operation as in Example 5, a low molecular weight poly (MBZAA) macromonomer (hereinafter abbreviated as PMB-2) was obtained. (Conversion rate 90%).

【0044】旋光度 [α]435 25=−120.8゜(C
=1.0g/dL,DMF) 分子量 Mn=3400 多分散度 Mw/Mn=
1.50 還元粘度 ηred=0.092(DMF,30℃)
Optical rotation [α] 435 25 = -120.8 ° (C
= 1.0 g / dL, DMF) Molecular weight Mn = 3400 Polydispersity Mw / Mn =
1.50 Reduced viscosity η red = 0.092 (DMF, 30 ° C)

【0045】実施例7 実施例5と同じ装置を用い、PrePAE-1を5g、2−メタ
クリロイルオキシエチルイソシアナート0.2g、ジ−n
−ブチル錫ジラウレート20mg及びTHF50mLを仕込
み、50℃で24時間反応を行い、実施例5と同じ後処理操
作の後、高分子量ポリ(PAEAA)マクロモノマー(以
下、PPAE-1と略す)を得た(転化率100%)。
Example 7 Using the same apparatus as in Example 5, 5 g of PrePAE-1, 0.2 g of 2-methacryloyloxyethyl isocyanate, di-n
-Butyltin dilaurate (20 mg) and THF (50 mL) were charged and reacted at 50 ° C for 24 hours, and after the same post-treatment operation as in Example 5, a high molecular weight poly (PAEAA) macromonomer (hereinafter abbreviated as PPAE-1) was obtained. (Conversion rate 100%).

【0046】旋光度 [α]435 25=+60.8゜(C=
1.0g/dL,DMF) 分子量 Mn=12900 多分散度 Mw/Mn=
1.21 還元粘度 ηred=0.058(DMF,30℃)
Optical rotation [α] 435 25 = + 60.8 ° (C =
1.0 g / dL, DMF) Molecular weight Mn = 12900 Polydispersity Mw / Mn =
1.21 Reduced viscosity η red = 0.058 (DMF, 30 ° C)

【0047】実施例8 実施例5と同じ装置を用い、PrePAE-2を5g、2−メタ
クリロイルオキシエチルイソシアナート0.2g、ジ−n
−ブチル錫ジラウレート20mg及びTHF50mLを仕込
み、50℃で24時間反応を行い、実施例5と同じ後処理操
作の後、低分子量ポリ(PAEAA)マクロモノマー(以
下、PPAE-2と略す)を得た(転化率95%)。
Example 8 Using the same apparatus as in Example 5, 5 g of PrePAE-2, 0.2 g of 2-methacryloyloxyethyl isocyanate, di-n
-Butyltin dilaurate (20 mg) and THF (50 mL) were charged, the reaction was carried out at 50 ° C for 24 hours, and after the same post-treatment operation as in Example 5, a low molecular weight poly (PAEAA) macromonomer (hereinafter abbreviated as PPAE-2) was obtained. (Conversion rate 95%).

【0048】旋光度 [α]435 25=+59.9゜(C=
1.0g/dL,DMF) 分子量 Mn=3900 多分散度 Mw/Mn=
1.22 還元粘度 ηred=0.032(DMF,30℃)
Optical rotation [α] 435 25 = + 59.9 ° (C =
1.0 g / dL, DMF) Molecular weight Mn = 3900 Polydispersity Mw / Mn =
1.22 Reduced viscosity η red = 0.032 (DMF, 30 ° C)

【0049】実施例9 重合管に、実施例5で調製したマクロモノマーPMB-1を5
00mg、AIBN0.2モル%及びTHF1mLを仕込み、窒素雰
囲気下、60℃で振とうさせながら24時間重合を行った。
Example 9 Into a polymerization tube, 5 of the macromonomer PMB-1 prepared in Example 5 was added.
00 mg, AIBN 0.2 mol% and THF 1 mL were charged, and polymerization was carried out for 24 hours while shaking at 60 ° C. in a nitrogen atmosphere.

【0050】重合終了後、反応液を100mLのTHFに投入
し、析出物をろ取し、THFで洗浄後、減圧下で乾燥させ
た。乾燥後、析出物をDMF2mLに溶解させ、100mLの
THF/メタノール(8/2volume)混合溶液に投入し再
晶析を行った。さらに同様な方法によりもう一度再晶析
を行った後、室温、減圧下で乾燥することにより目的物
のポリ(PMB-1)350mgを得た(収率70%)。
After completion of the polymerization, the reaction solution was poured into 100 mL of THF, the precipitate was collected by filtration, washed with THF and dried under reduced pressure. After drying, the precipitate was dissolved in 2 mL of DMF, and 100 mL of
The mixture was poured into a THF / methanol (8/2 volume ) mixed solution for recrystallization. Further, recrystallization was performed again by the same method, and then dried at room temperature under reduced pressure to obtain 350 mg of the target poly (PMB-1) (yield 70%).

【0051】旋光度 [α]435 25=−119.0゜(C
=1.0g/dL,DMF) 還元粘度 ηred=0.141(DMF,30℃)
Optical rotation [α] 435 25 = -119.0 ° (C
= 1.0 g / dL, DMF) Reduced viscosity η red = 0.141 (DMF, 30 ° C)

【0052】実施例10 実施例9と同じ装置を用い、実施例6で調製したマクロ
モノマーPMB-2を500mg、AIBN0.2モル%及びTHF1mL
を仕込み、窒素雰囲気下、60℃で振とうさせながら24時
間重合を行い、実施例9と同じ後処理操作の後、目的物
のポリ(PMB-2)425mgを得た(収率85%)。
Example 10 Using the same apparatus as in Example 9, 500 mg of macromonomer PMB-2 prepared in Example 6, 0.2 mol% of AIBN and 1 mL of THF were used.
Was charged and polymerized for 24 hours while shaking at 60 ° C. in a nitrogen atmosphere, and after the same post-treatment operation as in Example 9, 425 mg of the target poly (PMB-2) was obtained (yield 85%). .

【0053】旋光度 [α]435 25=−135.3゜(C
=1.0g/dL,DMF) 還元粘度 ηred=0.146(DMF,30℃)
Optical rotation [α] 435 25 = -135.3 ° (C
= 1.0 g / dL, DMF) Reduced viscosity η red = 0.146 (DMF, 30 ° C)

【0054】実施例11 実施例9と同じ装置を用い、実施例7で調製したマクロ
モノマーPPAE-1を500mg、AIBN0.2モル%及びTHF1m
Lを仕込み、窒素雰囲気下、60℃で振とうさせながら24
時間重合を行い、実施例9と同じ後処理操作の後、目的
物のポリ(PPAE-1)400mgを得た(収率80%)。
Example 11 Using the same apparatus as in Example 9, 500 mg of macromonomer PPAE-1 prepared in Example 7, 0.2 mol% of AIBN and 1 m of THF were used.
Charge L and shake under nitrogen atmosphere at 60 ° C for 24
After time-polymerization and the same post-treatment as in Example 9, 400 mg of the target poly (PPAE-1) was obtained (yield 80%).

【0055】旋光度 [α]435 25=+71.8゜(C=
1.0g/dL,DMF) 還元粘度 ηred=0.137(DMF,30℃)
Optical rotation [α] 435 25 = + 71.8 ° (C =
1.0 g / dL, DMF) Reduced viscosity η red = 0.137 (DMF, 30 ° C)

【0056】実施例12 実施例9と同じ装置を用い、実施例8で調製したマクロ
モノマーPPAE-2を500mg、AIBN0.2モル%及びTHF1m
Lを仕込み、窒素雰囲気下、60℃で振とうさせながら24
時間重合を行い、実施例9と同じ後処理操作の後、目的
物のポリ(PPAE-2)425mgを得た(収率85%)。
Example 12 Using the same apparatus as in Example 9, 500 mg of macromonomer PPAE-2 prepared in Example 8, 0.2 mol% of AIBN and 1 m of THF were used.
Charge L and shake under nitrogen atmosphere at 60 ° C for 24
After time-polymerization and the same post-treatment operation as in Example 9, 425 mg of the target poly (PPAE-2) was obtained (yield 85%).

【0057】旋光度 [α]435 25=+82.4゜(C=
1.0g/dL,DMF) 還元粘度 ηred=0.135(DMF,30℃)
Optical rotation [α] 435 25 = + 82.4 ° (C =
1.0 g / dL, DMF) Reduced viscosity η red = 0.135 (DMF, 30 ° C)

【0058】参考例1:表面にビニル基を有するシリカ
ゲルの調製 還流コンデンサーを備えた100mLのナスフラスコにシ
リカゲル(東ソー社製TSK-GEL SI100、平均粒径5μ
m、平均細孔径100Å)10g、3−アミノプロピルトリ
エトキシシラン14mL及びトルエン80mLを仕込み、24
時間還流を行った。反応物を冷却後、ろ過、次いでトル
エン、アセトン、メタノールの順で洗浄、乾燥すること
により、3−アミノプロピルトリエトキシシラン処理シ
リカゲルを得た。
Reference Example 1: Preparation of silica gel having vinyl group on the surface Silica gel (TSK-GEL SI100 manufactured by Tosoh Corp., average particle size 5 μm) was placed in a 100 mL eggplant flask equipped with a reflux condenser.
m, average pore size 100 Å) 10 g, charged with 3-aminopropyltriethoxysilane 14 mL and toluene 80 mL, 24
Refluxed for hours. After cooling the reaction product, it was filtered, washed with toluene, acetone, and methanol in this order, and dried to obtain 3-aminopropyltriethoxysilane-treated silica gel.

【0059】続いて、100mLのナスフラスコに3−ア
ミノプロピルトリエトキシシラン処理シリカゲル8g、
2-メタクリロイルオキシエチルイソシアナート16mL
及びジクロロメタン80mLを仕込み、35℃で36時間反応
させた。反応終了後、ろ過、次いでジクロロメタン、ア
セトン、メタノールの順で洗浄、乾燥することにより、
表面にビニル基を有するシリカゲルを得た。
Then, in a 100 mL eggplant-shaped flask, 8 g of silica gel treated with 3-aminopropyltriethoxysilane,
2-methacryloyloxyethyl isocyanate 16mL
And 80 mL of dichloromethane were charged and reacted at 35 ° C. for 36 hours. After completion of the reaction, filtration, followed by washing with dichloromethane, acetone and methanol in this order and drying,
A silica gel having a vinyl group on the surface was obtained.

【0060】実施例13〜16:ポリマクロモノマーを
化学的に結合させたシリカゲルの調製及びそのカラム充
填 50mLのシュレンク管に、参考例1で調製した表面にビ
ニル基を有するシリカゲル1g、実施例5〜8で調製し
たマクロモノマー(PMB-1、PMB-2、PPAE-1、PPAE-2)0.
5g、AIBN10mg及びTHF10mLを仕込み、窒素雰囲気
下、60℃で24時間振とうさせながら反応を行った。反応
終了後、反応物をろ過、次いでTHF、アセトン、メタノ
ールの順で洗浄、乾燥した。このようにして、目的物の
ポリマクロモノマーを化学的に結合させたシリカゲルを
得た。
Examples 13 to 16: Preparation of silica gel chemically bound to polymacromonomer and its column packing In a Schlenk tube of 50 mL, 1 g of silica gel having a vinyl group on the surface prepared in Reference Example 1, Example 5 Macromonomers (PMB-1, PMB-2, PPAE-1, PPAE-2) prepared in ~ 8.
5 g, AIBN 10 mg and THF 10 mL were charged, and the reaction was carried out under nitrogen atmosphere while shaking at 60 ° C. for 24 hours. After completion of the reaction, the reaction product was filtered, washed with THF, acetone, and methanol in this order and dried. In this way, silica gel to which the desired polymacromonomer was chemically bound was obtained.

【0061】シリカゲルに化学的に結合したポリマクロ
モノマーの重量は、以下のような操作により算出した。
実施例9〜12で調製したポリマクロモノマーと参考例
1で調製した表面にビニル基を有するシリカゲルを適当
な重量比で混合し、赤外分光スペクトル測定を行い、70
0cm-1のポリマクロモノマー中のフェニル基に起因す
る吸収と、800cm-1のシリカゲルに起因する吸収の吸
光強度比より検量線を作成した。次いで実施例13〜1
6で調製したポリマクロモノマーを化学的に結合させた
シリカゲルの赤外分光スペクトル測定を行い、先ほど作
成した検量線を用いてシリカゲルに化学結合したポリマ
クロモノマーの担持量を算出した。
The weight of the polymacromonomer chemically bonded to silica gel was calculated by the following operation.
The polymacromonomer prepared in Examples 9 to 12 and the silica gel having a vinyl group on the surface prepared in Reference Example 1 were mixed in an appropriate weight ratio, and the infrared spectroscopic spectrum was measured.
A calibration curve was prepared from the absorption intensity ratio of the absorption due to the phenyl group in the polymacromonomer at 0 cm −1 and the absorption due to the silica gel at 800 cm −1 . Then Examples 13-1
The infrared spectroscopic spectrum of the silica gel chemically bound to the polymacromonomer prepared in 6 was measured, and the supported amount of the polymacromonomer chemically bound to the silica gel was calculated using the calibration curve prepared above.

【0062】調製したポリマクロモノマーを化学的に結
合させたシリカゲルをメタノールに分散させた後、ステ
ンレス製の2mm(ID)×150mm(L)のカラムに高圧
ポンプを用い、流量1.0〜2.0mL/min、最高圧力20
0kg/cm2で充填した。
After dispersing the prepared silica gel chemically bound to the polymacromonomer in methanol, a stainless steel column of 2 mm (ID) × 150 mm (L) was used with a high-pressure pump and a flow rate of 1.0 to 2.0 mL / min, maximum pressure 20
It was filled with 0 kg / cm 2 .

【0063】得られたカラムの理論段数の測定は、溶離
液にメタノールを用い、トルエンの溶出により測定し
た。なお、理論段数は下式により算出した。
The theoretical plate number of the obtained column was measured by using methanol as an eluent and eluting with toluene. The theoretical plate number was calculated by the following formula.

【0064】理論段数(N)=5.54×[Tr/(W
1/2)]2 Tr=保持時間(sec) W1/2=半値幅(mm)
Theoretical plate number (N) = 5.54 × [Tr / (W
1/2 )] 2 Tr = holding time (sec) W 1/2 = full width at half maximum (mm)

【0065】表1に、シリガケルに化学的に結合したポ
リマクロモノマーの量(担持量)及び作成したカラムの
理論段数を示す。
Table 1 shows the amount (supported amount) of the polymacromonomer chemically bound to Silyaker and the theoretical plate number of the prepared column.

【0066】[0066]

【表1】 [Table 1]

【0067】比較例1 50mLのシュレンク管に、参考例1で調製した表面にビ
ニル基を有するシリカゲル1g、マクロモノマーの調製
原料であるPAEAA0.5g、AIBN10mg及びTHF10mLを仕
込み、窒素雰囲気下、60℃で24時間振とうさせながら反
応を行った。反応終了後、反応物をろ過、次いでTHF、
アセトン、メタノールの順で洗浄、乾燥した。このよう
にして、ポリ(PAEAA)を化学的に結合させたシリカゲ
ルを得た。ポリ(PAEAA)のシリカゲルへの担持量は11.
8%であった。
Comparative Example 1 A 50 mL Schlenk tube was charged with 1 g of silica gel having vinyl groups on the surface prepared in Reference Example 1, 0.5 g of PAEAA as a raw material for preparing a macromonomer, 10 mg of AIBN and 10 mL of THF, and the mixture was kept at 60 ° C. under a nitrogen atmosphere. The reaction was carried out while shaking for 24 hours. After completion of the reaction, the reaction product is filtered, then THF,
Acetone and methanol were washed in this order and dried. Thus, silica gel chemically bound to poly (PAEAA) was obtained. The loading amount of poly (PAEAA) on silica gel is 11.
It was 8%.

【0068】調製したポリ(PAEAA)を化学的に結合さ
せたシリカゲルをメタノールに分散させた後、ステンレ
ス製の2mm(ID)×150mm(L)のカラムに高圧ポン
プを用い、流量1.0〜2.0mL/min、最高圧力200k
g/cm2で充填した。得られたカラムの理論段数は460
であった。
After dispersing the prepared silica gel chemically bound to poly (PAEAA) in methanol, a stainless steel column of 2 mm (ID) × 150 mm (L) was used with a high-pressure pump and a flow rate of 1.0 to 2.0 mL. / Min, maximum pressure 200k
It was filled with g / cm 2 . The theoretical plate number of the obtained column is 460.
Met.

【0069】実施例17〜20 実施例13〜16で調製したカラムを用い、表2中に示
した条件下で各種ラセミ体の分離を行った。結果を表2
中に併せて示す。
Examples 17 to 20 Using the columns prepared in Examples 13 to 16, various racemates were separated under the conditions shown in Table 2. The results are shown in Table 2.
Shown together.

【0070】[0070]

【表2】 備考1 ラセミ体(1):メントール ラセミ体(2):マンデル酸 備考2 移動相50/50 :メタノール/水(vol/v
ol) 移動相95/5:n−ヘキサン/2−プロパノール(vol
/vol)
[Table 2] Remarks 1 Racemate (1): Menthol racemate (2): Mandelic acid Remarks 2 Mobile phase 50/50: Methanol / water (vol / v)
mobile phase 95/5: n-hexane / 2-propanol (vol)
/ Vol)

【0071】実施例19、20のクロマトグラムを、比
較例1で調製したカラムを用い、同様に、溶離液にn−
ヘキサン/2−プロパノール(95/5)、流速 0.1mL/
minでマンデル酸を分析したクロマトグラムと共に図
1に示す。
The chromatograms of Examples 19 and 20 were analyzed by using the column prepared in Comparative Example 1, and the eluent was n-
Hexane / 2-propanol (95/5), flow rate 0.1 mL /
It is shown in FIG. 1 together with a chromatogram obtained by analyzing mandelic acid at min.

【0072】この結果より、本発明により得られた光学
活性ポリアクリルアミドマクロモノマーの重合体からな
る分離剤は、従来の光学活性ポリアクリルアミドからな
る分離剤に比べて、高い不斉認識能を持ち且つ広い応用
範囲を有することが明らかである。
From these results, the separating agent composed of the polymer of the optically active polyacrylamide macromonomer obtained according to the present invention has a higher chiral recognition ability than the conventional separating agents composed of the optically active polyacrylamide. It is clear that it has a wide range of applications.

【0073】[0073]

【発明の効果】本発明は、優れた光学物性を有する新規
な光学活性モノマーとその重合体及びその重合体からな
る分離剤並びにその分離剤を用いた光学活性物質の分離
方法を提供するものであると共に、ラジカル重合で調製
できるため製造が簡便である、担体と化学結合又は物理
結合の両方が可能である、化学結合型分離剤とした場
合、溶離液に制限がなく、順相系、逆相系共に使用でき
る、などの効果を有する。
INDUSTRIAL APPLICABILITY The present invention provides a novel optically active monomer having excellent optical properties, a polymer thereof, a separating agent comprising the polymer, and a method for separating an optically active substance using the separating agent. In addition, since it can be prepared by radical polymerization, it is easy to produce. Both a carrier and a chemical bond or a physical bond are possible. It has the effect that it can be used with both phase systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例19、20のクロマトグラムを、比較例
1で調製したカラムを用い、同様に、マンデル酸を分析
した従来技術のクロマトグラムと比較して示した三面図
であって、(A)は本発明の実施例19のクロマトグラ
ム、(B)は本発明の実施例20のクロマトグラム、
(C)は従来技術のクロマトグラムである。
FIG. 1 is a trihedral view showing chromatograms of Examples 19 and 20 in comparison with a chromatogram of a conventional technique in which mandelic acid was analyzed by using the column prepared in Comparative Example 1. (A) is a chromatogram of Example 19 of the present invention, (B) is a chromatogram of Example 20 of the present invention,
(C) is a conventional chromatogram.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 30/48 G01N 30/48 S W 30/88 30/88 W // G01N 27/447 27/26 315F Fターム(参考) 4D017 BA03 CA13 CA14 CB01 DA03 EA05 4J027 AA08 AJ01 AJ02 CD00 4J100 AM21P BA20 BC43 BD11 JA15 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 30/48 G01N 30/48 SW 30/88 30/88 W // G01N 27/447 27/26 315F F-term (reference) 4D017 BA03 CA13 CA14 CB01 DA03 EA05 4J027 AA08 AJ01 AJ02 CD00 4J100 AM21P BA20 BC43 BD11 JA15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表される光学活性ポ
リアクリルアミドマクロモノマー。 【化1】 (式中、R1は、メチル基、又はアルコキシカルボニル基
を、R2は、フェニル基、ナフチル基、又はベンジル基を
表し、mは2〜5000の範囲の数、*印は光学活性炭素を
表す。)
1. An optically active polyacrylamide macromonomer represented by the following general formula (1). [Chemical 1] (In the formula, R 1 represents a methyl group or an alkoxycarbonyl group, R 2 represents a phenyl group, a naphthyl group, or a benzyl group, m is a number in the range of 2 to 5000, and * represents an optically active carbon. Represents.)
【請求項2】 下記一般式(2)で表される光学活性ポ
リアクリルアミドマクロモノマーの重合体。 【化2】 (式中、R1は、メチル基、又はアルコキシカルボニル基
を、R2は、フェニル基、ナフチル基、又はベンジル基を
表し、mとnは2〜5000の範囲の数、*印は光学活性炭
素を表す。)
2. A polymer of an optically active polyacrylamide macromonomer represented by the following general formula (2). [Chemical 2] (In the formula, R 1 represents a methyl group or an alkoxycarbonyl group, R 2 represents a phenyl group, a naphthyl group, or a benzyl group, m and n are numbers in the range of 2 to 5000, and * indicates an optically active group. Represents carbon.)
【請求項3】 請求項2記載の光学活性ポリアクリルア
ミドマクロモノマーの重合体からなる分離剤。
3. A separating agent comprising the polymer of the optically active polyacrylamide macromonomer according to claim 2.
【請求項4】 請求項2記載の光学活性ポリアクリルア
ミドマクロモノマーの重合体を担体に担持してなる分離
4. A separating agent comprising the carrier of the polymer of the optically active polyacrylamide macromonomer according to claim 2.
【請求項5】 請求項3又は請求項4記載の分離剤を用
い光学活性物質を分離する方法。
5. A method for separating an optically active substance by using the separating agent according to claim 3 or 4.
【請求項6】 請求項3又は請求項4記載の分離剤を充
填した高速液体クロマトグラフィーカラム。
6. A high performance liquid chromatography column packed with the separating agent according to claim 3 or 4.
【請求項7】 請求項6記載の高速液体クロマトグラフ
ィーカラムを用い高速液体クロマトグラフィーにより光
学活性物質を分離する方法。
7. A method for separating an optically active substance by high performance liquid chromatography using the high performance liquid chromatography column according to claim 6.
JP2001229837A 2001-07-30 2001-07-30 Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method Pending JP2003040932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229837A JP2003040932A (en) 2001-07-30 2001-07-30 Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229837A JP2003040932A (en) 2001-07-30 2001-07-30 Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method

Publications (1)

Publication Number Publication Date
JP2003040932A true JP2003040932A (en) 2003-02-13

Family

ID=19062134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229837A Pending JP2003040932A (en) 2001-07-30 2001-07-30 Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method

Country Status (1)

Country Link
JP (1) JP2003040932A (en)

Similar Documents

Publication Publication Date Title
JP3896468B2 (en) Chiral stationary phases for chromatographic separation of enantiomers.
US6956077B1 (en) Temperature-responsive polymer compound and process for producing the same
US4882048A (en) Optically active adsorbents
Lewandowski et al. The design of chiral separation media using monodisperse functionalized macroporous beads: effects of polymer matrix, tether, and linkage chemistry
CN107430100B (en) Stationary phase for supercritical fluid chromatography
JP2812765B2 (en) Optically active (meth) acrylic acid derivatives, their production, polymerization to give their optically active polymers, and their use
JPH09176243A (en) Novel polymer of acetylene derivative
JP3659356B2 (en) Optically active sulfur-containing amino acid derivatives, their preparation, their polymerization to give optically active polymers and their use
CZ139895A3 (en) Optically active adsobent, processes of its preparation and use, cross-linked polymer, derivatives of tartaric acid and process of their preparation
EP3435079A1 (en) Chromatography stationary phase
JP2003040927A (en) Optically active polymethacrylate derivative, and separating agent and separation method
JP2965752B2 (en) Optically active N-α-fluoroacryloylamino acid derivatives, their production, optically active polymers produced therefrom and their use for resolving racemates
JP2003040932A (en) Optically active polyacrylamide macromonomer and polymer thereof, and separating agent and separation method
JP2003128727A (en) Optically active polymethacrylate derivative having urethane bond on side chain, separating agent and method for separation
JP5263478B2 (en) Optically active block copolymer, process for producing the same, and chromatographic filler using the block copolymer
JP2003064054A (en) Optically active maleimide derivative, optically active polymaleimide derivative, method for producing the same, separating agent comprising the same optically active polymaleimide derivative and method for separating optically active compound using the same
JP4422540B2 (en) Temperature responsive surface and its use
JP4524358B2 (en) Optically active polymer compound
JP2003073401A (en) Cellulose derivative having vinyl group, separating agent and separating method
EP1479669B1 (en) Optically active maleimide derivatives and polymaleimides for use as chiral adsorbent in chromatography
JP2008019351A (en) Method for separating optically active n-substituted homophenylalanine
JP2000128910A (en) Synthesis of optically active crosslinked gel
JP2002097227A (en) Resolution agent comprising optically active polymaleimide derivative and method for resolution of optically active compound using the same
JP2001106729A (en) Optically active polymaleimide derivative, method for producing the same, optical resolution agent consisting of the same and method for resolution of optically active compound using the same
JP4380367B2 (en) Optically active maleimide derivative, optically active polymaleimide derivative, production method thereof, separating agent comprising optically active polymaleimide derivative, and separation method of optically active compound using the same