JP2003036896A - Photo energy-to-electrical energy transformation series using ito electrode chemically modified with porhyrin- fullerene-combined molecule - Google Patents

Photo energy-to-electrical energy transformation series using ito electrode chemically modified with porhyrin- fullerene-combined molecule

Info

Publication number
JP2003036896A
JP2003036896A JP2001220227A JP2001220227A JP2003036896A JP 2003036896 A JP2003036896 A JP 2003036896A JP 2001220227 A JP2001220227 A JP 2001220227A JP 2001220227 A JP2001220227 A JP 2001220227A JP 2003036896 A JP2003036896 A JP 2003036896A
Authority
JP
Japan
Prior art keywords
fullerene
ito
stands
electrode
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001220227A
Other languages
Japanese (ja)
Other versions
JP4326167B2 (en
Inventor
Hiroko Nakashima
容子 中島
Hiroshi Imahori
博 今堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001220227A priority Critical patent/JP4326167B2/en
Publication of JP2003036896A publication Critical patent/JP2003036896A/en
Application granted granted Critical
Publication of JP4326167B2 publication Critical patent/JP4326167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Abstract

PROBLEM TO BE SOLVED: To provide a photo energy-to-electrical energy transformation series, which remarkably improves the quantum efficiency upon generating photocurrents. SOLUTION: The photo energy-to-electrical energy transformation series includes a single molecule film, which is formed by self-organizing at least one compound selected among a compound group represented by the general formula (A) on the electrode surface of an indium-tin oxide(ITO) via a covalent bond symbolized by Bin. (Bin. Stands for O3 Si-, carboxylic acid ester, or phosphoric acid ester. Each of X<1> -X<3> stands for a group selected among single bond compounds -N-H-CO-,-CO-NH-,-Ph-,-O-, or -CO-O-. n stands for a natural numbers among 1 to 20. Ar stands for a phenyl group, which may include a substituent of a heavy molecular weight. M stands for 2H (hydrogen) or Zn (zinc). A fullerene derivative is selected among formulas (a) and (b), where the part consisting of fullerene is C60 to C90 ).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光透過型半導体電
極であるITO(インジウム−スズ−酸化物:Indium-ti
n-Oxide)電極上に、同一分子内に電子供与体(ドナーと
いう場合もある)−受容体(アクセプターという場合も
ある)構造、具体的にはポルフィリン−フラーレン構造
を有する化合物を、自己組織化により配列し、共有結合
により固定化した単分子膜(Self-Assembled Monolayer
s=SAM)を作製して、高効率の光エネルギー・電気
エネルギー変換系を提供する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light transmissive semiconductor electrode, ITO (indium-tin-oxide).
n-Oxide) Electrode donor (sometimes called donor) -acceptor (sometimes called acceptor) structure, specifically, a compound having a porphyrin-fullerene structure in the same molecule is self-assembled. Self-Assembled Monolayer
s = SAM) to provide a highly efficient light energy / electric energy conversion system.

【0002】[0002]

【従来の技術】植物やある種の光合成細菌は、太陽エネ
ルギーを化学エネルギーに代える働きを持つ系を持って
いる。該系では、希薄な密度の光子を効率よく集めるた
めに、アンテナのように多くの光受容体分子が集合体を
作っていることが生化学的・分光学的解析データから知
られていた。この系をアンテナ系といい、光合成ではク
ロロフィルやカロチノイドなどの有機色素がエネルギー
伝達のために反応中心タンパク質の周辺に配置されてい
る。そして、アンテナ系複合体で捕足された光エネルギ
ーは反応中心複合体に位置するクロロフィル2量体(ス
ペシャルペアーと呼ばれる)に集められ電荷分離反応が
行われる。電子供与体と電子受容体間の電子的相互作用
が大きい場合、電子移動速度は、電子移動の自由エネル
ギー変化(−ΔG)と電子移動に伴う再配列エネルギー
(λ)(電子移動による化学結合の変化および溶媒など
の近傍の分子との相互作用の変化のエネルギー)で決ま
るが、相互作用が小さくなると距離に依存して指数関数
的に電子移動速度は遅くなる。
2. Description of the Related Art Plants and certain photosynthetic bacteria have a system that functions to replace solar energy with chemical energy. It was known from the biochemical and spectroscopic analysis data that many photoreceptor molecules, like an antenna, form an aggregate in this system in order to efficiently collect dilute photons. This system is called the antenna system. In photosynthesis, organic pigments such as chlorophyll and carotenoids are arranged around the reaction center protein for energy transfer. Then, the light energy trapped by the antenna complex is collected by the chlorophyll dimer (called a special pair) located in the reaction center complex, and the charge separation reaction is performed. When the electronic interaction between the electron donor and the electron acceptor is large, the electron transfer rate depends on the change in the free energy of electron transfer (-ΔG) and the rearrangement energy (λ) associated with the electron transfer (of the chemical bond of electron transfer). Energy of change and interaction with nearby molecules such as solvent), but as the interaction becomes smaller, the electron transfer rate becomes exponentially slower depending on the distance.

【0003】最近生態系における集光複合体のX線結晶
学解析に基づくX線構造決定から、効率的なアンテナ系
の構築が盛んに試みられている。該アンテナ系の構築に
より、ここで効率よく集められたエネルギーを高速に電
荷分離を行う反応中心タンパク質に送り込むことでき、
より効率よく太陽光を吸収し、そのエネルギーを利用で
きるようにすることができる。
Recently, attempts have been actively made to construct an efficient antenna system based on the X-ray structure determination based on the X-ray crystallographic analysis of the light-harvesting complex in the ecosystem. By constructing the antenna system, it is possible to efficiently transfer the energy collected here to the reaction center protein that performs charge separation at high speed,
It is possible to absorb sunlight more efficiently and use the energy.

【0004】前記自然におけるアンテナ複合体は、自己
組織化によって形成されており、その際タンパク質が自
己組織化複合体の形成を助けている。このような研究の
中で、人工的に組織化された分子集合体、特に単分子膜
の形成方法が研究されており、その手法として、ラング
ミュアー−ブロジェット膜(いわゆるLB膜)や脂質膜
などを用いたものがあるが、単分子膜を形成する方法と
しては均一性に欠け(ピンホールなどの欠陥部の発生が
ある)、更に、基板上に形成された単分子膜は、該膜を
構成する分子が基板表面に物理的に付着したものである
ため、膜の安定性にも欠けるという不都合があった。こ
のような中で、アルカンチオールが金表面において自己
組織化した単分子膜を形成することがわかって以来、こ
の単分子膜形成の原理、即ち自己組織化の機能を用いて
(共吸着)単分子膜を形成させる技術が研究されてき
た。また更に進んで、機能性を持った単分子膜を得るた
めに、前記機能性を発揮する基と前記自己組織化機能を
発揮する基とを結合し、また自己組織化により形成され
た単分子膜を電極表面に安定に固定する基を導入した化
合物を設計して、その化合物だけで自己組織化により種
々の機能を持った単分子膜を形成する研究へと発展して
きている(Hiroshi Imahori, et al., J. Phys. Chem.
B 2000, 104, 1253-1260)。本発明者は、前記アンテナ
系を更に改良したアンテナ系複合体も提案している(特
願2000−120511号、Hiroshi Imahori et. a
l., J. Am. Chem. Soc. 2001, 123, 100-110)。
The antenna complex in nature is formed by self-assembly, where the protein assists in the formation of the self-assembly complex. In such research, a method of forming an artificially organized molecular assembly, particularly a monomolecular film has been studied. As a method therefor, a Langmuir-Blodgett film (so-called LB film) or a lipid film is used. However, the method for forming a monomolecular film lacks uniformity (defects such as pinholes are generated), and the monomolecular film formed on the substrate is Since the molecules that constitute the film are physically attached to the surface of the substrate, there is a disadvantage that the stability of the film is poor. Under such circumstances, since it was found that alkanethiol formed a self-assembled monolayer on the gold surface, the principle of this monolayer formation, that is, the self-assembly function was used (coadsorption) monolayer. Techniques for forming molecular films have been studied. Further progressing further, in order to obtain a monolayer having functionality, a monomolecule formed by combining the group exhibiting the functionality and the group exhibiting the self-assembly function, and formed by self-assembly. A compound has been introduced into which a group that stably fixes the membrane to the electrode surface has been designed, and the compound has been self-assembled into monolayers with various functions. This has led to the development of research (Hiroshi Imahori, et al., J. Phys. Chem.
B 2000, 104, 1253-1260). The present inventor has also proposed an antenna system composite in which the above antenna system is further improved (Japanese Patent Application No. 2000-120511, Hiroshi Imahori et. A.
l., J. Am. Chem. Soc. 2001, 123, 100-110).

【0005】このような中で、前記技術の新たな展開を
すべく、本発明者等は、基本に戻り、電極構成材料と該
電極上に形成された自己組織化膜の光電流の量子効率
(電極による光励起された色素の失活を押さえる)との
関係を確認すべく、金(Au)電極とITO電極上に自
己組織化膜(以下、SAMと表現する場合もある。)形
成方法を用いてポルフィリンの単分子膜を作製し、該各
膜の光電流特性をトリエタノールアミン(犠牲試薬)の
存在する系を用いて測定した。その結果、金板上のポル
フィリンSAMに比べて、ITO上のポルフィリンSA
Mを用いた場合は280倍の光電流の量子効率でアノー
ド光電流が流れることが明らかになり、電極材料として
は金に比べ、ITOの方が優れていることを明らかした
(Hiroko Yamada et. al., Chem. Commun. 2000, 1921-
1922)。電極材料と光電流変換系を結合する結合構造が
光電流変換効率にどのように影響するかについては系統
的には検討しなかったが、本発明においてITO電極表
面を「ITO」O3Si−(CH23−NH2(図1)で
処理した材料を用いたことにも前記光電流変換効率の向
上において何らかの技術的意味があることも予想され
る。
Under these circumstances, the inventors of the present invention returned to the basics in order to make a new development of the above-mentioned technique, and the quantum efficiency of photocurrent of the electrode constituent material and the self-assembled film formed on the electrode. A method of forming a self-assembled film (hereinafter, also referred to as SAM) on the gold (Au) electrode and the ITO electrode in order to confirm the relationship with (to suppress the deactivation of the photoexcited dye by the electrode). Porphyrin monomolecular films were prepared by using the films, and the photocurrent characteristics of each film were measured using a system containing triethanolamine (sacrificial reagent). As a result, compared to porphyrin SAM on the gold plate, porphyrin SA on ITO
When M was used, it was revealed that the anode photocurrent flows with a photocurrent quantum efficiency of 280 times, and it was revealed that ITO is superior to gold as an electrode material (Hiroko Yamada et. al., Chem. Commun. 2000, 1921-
1922). Although coupling structure for coupling the electrode material and the photoelectric current conversion system was not studied systematically about how it affects the photocurrent conversion efficiency, "ITO" an ITO electrode surface in the present invention O 3 Si- It is expected that the use of the material treated with (CH 2 ) 3 —NH 2 (FIG. 1) also has some technical meaning in improving the photocurrent conversion efficiency.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の課題
は、前記本発明者等の前記基本的な研究を更に進めて、
より実用に近い光エネルギー・電気エネルギー変換系を
提供することである。前記課題を解決するために、本発
明者等はITO電極上に同一分子にドナー−アクセプタ
ーを持つ二元系化合物、特にポルフィリン(P)−フラ
ーレン(P:メタルフリーまたはZn化)を持つ二元系
化合物の自己組織化単分子膜の形成、更にはO3Si−
の結合構造を介して前記二元系化合物の自己組織化単分
子膜の形成を試みた。そして、前記二元系化合物の自己
組織化単分子膜を作用極とし、白金線を対極、Ag/A
gCl(飽和KCl)電極を参照極として用い、電解質
として0.1モルNa2SO4を含む水溶液に、電子受容
体として酸素(O2)あるいはヘキシルビオローゲン(H
2+)を溶存させたものを電解液とし、これらにより光
電池系を構築し、Xeランプからの単色光を照射して光
電流を測定することにより、前記自己組織化単分子膜の
光電気化学特性を調べたところ、フラーレン部分を持た
ないものに比べて10倍または30倍という光電流発生
の量子効率が得られることを確認し、前記課題を解決で
きることを見出した。
Therefore, the object of the present invention is to further advance the basic researches by the present inventors,
It is to provide a light energy / electric energy conversion system that is more practical. In order to solve the above problems, the present inventors have found that a binary compound having a donor-acceptor in the same molecule on an ITO electrode, particularly a porphyrin (P) -fullerene (P: metal-free or Zn-ized) binary compound. Formation of self-assembled monolayer of system compounds, and further O 3 Si-
An attempt was made to form a self-assembled monolayer of the binary compound through the bonding structure of A self-assembled monolayer of the binary compound is used as a working electrode, a platinum wire is used as a counter electrode, and Ag / A
Using a gCl (saturated KCl) electrode as a reference electrode, an aqueous solution containing 0.1 mol Na 2 SO 4 as an electrolyte, oxygen (O 2 ) as an electron acceptor or hexyl viologen (H
V 2+ ) is used as an electrolytic solution, and a photovoltaic system is constructed by these, and the photocurrent of the self-assembled monolayer is measured by irradiating monochromatic light from an Xe lamp to measure the photocurrent. As a result of investigating chemical properties, it was confirmed that a quantum efficiency of photocurrent generation of 10 times or 30 times as high as that of a compound having no fullerene portion was obtained, and it was found that the above problems can be solved.

【0007】[0007]

【課題を解決するための手段】本発明は、インジウム−
スズ酸化物(ITO)電極表面に前記一般式(A)で表
される化合物の群から選択される少なくとも一種を、B
in.で表される共有結合を介して自己組織化すること
により単分子膜を形成したことを特徴とする光エネルギ
ー・電気エネルギー変換系である。好ましくは、前記形
式1で結合して自己組織化して単一膜を形成していたこ
とを特徴とする前記光エネルギー・電気エネルギー変換
系である。
SUMMARY OF THE INVENTION The present invention is directed to indium
On the surface of the tin oxide (ITO) electrode, at least one selected from the group of compounds represented by the general formula (A), B
in. A light energy / electric energy conversion system characterized in that a monomolecular film is formed by self-organization through a covalent bond represented by. Preferably, the light energy / electric energy conversion system is characterized in that the light energy / electric energy conversion system is characterized in that it is bonded in the form 1 and self-assembled to form a single film.

【0008】[0008]

【本発明の実施の態様】本発明をより詳細に説明する。 A.本発明の特徴を図面を参照しながら説明する。本発
明の光電池系の概略は図2のように表すことができる。
すなわち、外部から供給される光エネルギー(hv)は
ポルフィリン(M=2Hの場合はメタルフリー、M=Z
nの場合は亜鉛ポルフィリン)部分で吸収され、励起さ
れたポルフィリンから電子はまずフラーレンに移動し、
さらに電解液中の電子受容体として機能する酸素(O2)
あるいはヘキシルビオローゲン(HV2+)に移動する。還
元されたこれらの電子受容体は溶液中を拡散して、対極
である白金電極に電子を受け渡す。一方、電子移動によ
り生じたポルフィリンラジカルカチオンへは、ITO電
極から電子が供給される。結果として、修飾電極への光
照射によりカソード電流が回路に流れることになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. A. The features of the present invention will be described with reference to the drawings. The outline of the photovoltaic system of the present invention can be represented as shown in FIG.
That is, the light energy (hv) supplied from the outside is porphyrin (metal free when M = 2H, M = Z).
In the case of n, it is absorbed by the zinc porphyrin) part, and the electron first moves from the excited porphyrin to the fullerene,
Further, oxygen (O 2 ) which functions as an electron acceptor in the electrolyte solution
Alternatively, transfer to hexyl viologen (HV 2+ ). These reduced electron acceptors diffuse in the solution and transfer the electrons to the platinum electrode which is the counter electrode. On the other hand, electrons are supplied from the ITO electrode to the porphyrin radical cation generated by electron transfer. As a result, the cathode current flows in the circuit due to the light irradiation on the modified electrode.

【0009】B.本発明の光エネルギー・電気エネルギ
ー変換系の構築方法。式Bの化合物の合成。
B. The construction method of the light energy / electric energy conversion system of the present invention. Synthesis of compounds of formula B.

【0010】[0010]

【化4】 [Chemical 4]

【0011】(但し、Pは、メタルフリーのポルフィリ
ン環である。)の化合物は、式Cの化合物を、
(Wherein P is a metal-free porphyrin ring) is a compound of formula C

【0012】[0012]

【化5】 [Chemical 5]

【0013】(Mは2Hである。)4−メトキシカルボ
ニルアニリン(4-methoxycarbonylaniline)および4−
(4,4’−ジメチル−2,6−ジオキサシクロヘキシ
ル)アニリン〔4-(4,4'-dimethyl-2,6-dioxacyclohexy
l)aniline〕と交差縮合させ、ついで酸およびアルカリ
で加水分解することにより得られる。
(M is 2H) 4-methoxycarbonylaniline and 4-methoxycarbonylaniline
(4,4'-Dimethyl-2,6-dioxacyclohexyl) aniline [4- (4,4'-dimethyl-2,6-dioxacyclohexy
l) aniline] and cross-condensation, followed by hydrolysis with acid and alkali.

【0014】式Dの化合物(但し、Pは、メタルフリー
のポルフィリン環である。)は前記式Bの化合物を、ペ
ンタフルオロフェノール(pentafluorophenol)と反応
させることによって得られる。
The compound of formula D (where P is a metal-free porphyrin ring) can be obtained by reacting the compound of formula B with pentafluorophenol.

【0015】[0015]

【化6】 [Chemical 6]

【0016】次いで、前記Dの化合物を、N−メチルグ
リシンの存在下でC60フラーレンと環化付加することに
よってポルフィリン−フラーレン構造を持つ式E(但
し、Pは、メタルフリーのポルフィリン環である。)の
二元化合物が得られる。
Then, the compound of the above D is cycloadded with C 60 fullerene in the presence of N-methylglycine to give a formula E having a porphyrin-fullerene structure (wherein P is a metal-free porphyrin ring). .) Binary compounds are obtained.

【0017】[0017]

【化7】 [Chemical 7]

【0018】3、前記Eの化合物を図1に示されるIT
O電極と反応させることにより前記形式1で表される、
本発明の光エネルギー・電気エネルギー変換系の一態様
系を構築することができる。
3. The compound of E is used as the IT shown in FIG.
Represented by the above-mentioned form 1 by reacting with an O electrode,
An aspect system of the light energy / electric energy conversion system of the present invention can be constructed.

【0019】[0019]

【実施例】実施例1 A,自己組織化膜の形成に用いられるポルフィリン−フ
ラーレンC60の二元化合物式Eの化合物の調製 1、式Cのポルフィリン化合物を6mLのCH2Cl2
解させ、これに4−ピロリジノピリジン(4-pyrrolidin
opyridine:3.3 mg,0.2ミリモル)およびペンタフルオ
ロフェノール(37 mg, 0.022ミリモル)を加える。該溶
液を0℃に冷却し、窒素雰囲気下でN,N’−ジシクロ
ヘキシルカルボジイミド(4.5 mg, 0.022ミリモル)加
える。次いで、ゆっくり室温にし、該溶液を18時間撹
拌する。溶媒を除去後、残留物をシリカゲルカラムクロ
マトグラフィーを用い(溶剤CHCl3)精製し所望の
前記式Dの化合物を収率60%(16 mg, 0.012ミリモ
ル)で得た。前記式Dの化合物の物性;融点>300
℃、1 H-NMR (270 MHz, CDCl3) d = 10.01 (s, 1H), 8.93
(d, J = 5 Hz, 4H), 8.78 (d, J = 5 Hz, 4H) 8.3 (m,
13H), 8.09 (m, 4H), 8.01 (s, 1H), 7.98 (s,4H), 7.8
3 (s, 2H), 1.53 (s, 36H), -2.70 (s, 2H) 質量分析:FAB(fast atom bombardment法)、13
15(M+H+
EXAMPLES Example 1A, Porphyrin-Fullerene C 60 Binary Compound Used to Form Self-Assembled Membrane Preparation of Formula E Compound 1, Formula C Porphyrin Compound Dissolved in 6 mL CH 2 Cl 2 To this, 4-pyrrolidinopyridine (4-pyrrolidin
Add opyridine: 3.3 mg, 0.2 mmol) and pentafluorophenol (37 mg, 0.022 mmol). The solution is cooled to 0 ° C. and N, N′-dicyclohexylcarbodiimide (4.5 mg, 0.022 mmol) is added under nitrogen atmosphere. Then slowly reach room temperature and stir the solution for 18 h. After removing the solvent, the residue was purified by silica gel column chromatography (solvent CHCl 3 ) to obtain the desired compound of the above formula D in a yield of 60% (16 mg, 0.012 mmol). Physical Properties of Compound of Formula D; Melting Point> 300
° C, 1 H-NMR (270 MHz, CDCl 3 ) d = 10.01 (s, 1H), 8.93
(d, J = 5 Hz, 4H), 8.78 (d, J = 5 Hz, 4H) 8.3 (m,
13H), 8.09 (m, 4H), 8.01 (s, 1H), 7.98 (s, 4H), 7.8
3 (s, 2H), 1.53 (s, 36H), -2.70 (s, 2H) mass spectrometry: FAB (fast atom bombardment method), 13
15 (M + H + )

【0020】前記Dの化合物80mg、C60フラーレン
(220mg,0.305ミリモル)およびN−メチル
グリシン(272mg、3.01ミリモル)を乾燥トル
エン400mL中に溶かし、該溶液を一昼夜還流する。
有機溶媒を減圧下で除去し、残部をトルエン−CHCl
3溶液を用いたシリカゲルクロマトグラフィーで精製
し、ポルフィリン−C60フラーレンを含む上記二元化合
物Eを83%の収率(104mg、0.050ミリモ
ル)で得た。 化合物Eの物性:融点>300℃、1 H−NMR(270MHz、CDCl3) δ=8.9
1(m, 4H), 8.78 (m, 4H), 8.49 (s, 1H), 8.40 (d, J
= 8 Hz, 4H), 8.30 (d, J = 8 Hz, 4H), 8.26 (s, 4
H), 8.06 (s, 4H), 8.02 (d, J = 8 Hz, 2H), 7.94 (d,
J = 8 Hz, 2H), 7.82 (s, 2H), 7.78 (s, 1H), 4.79
(d, J = 9 Hz, 1H), 4.67 (s, 1H), 4.02 (d,J = 9 Hz,
2H), 2.77 (s, 3H), 1.55 (s, 36H), -2.77 (s, 2H)、 質量分析:(FAB)2063 (M+H+).
80 mg of the compound of D, C 60 fullerene (220 mg, 0.305 mmol) and N-methylglycine (272 mg, 3.01 mmol) are dissolved in 400 mL of dry toluene and the solution is refluxed overnight.
The organic solvent was removed under reduced pressure and the residue was toluene-CHCl.
Purification by silica gel chromatography using 3 solutions gave the above binary compound E containing porphyrin-C 60 fullerene in 83% yield (104 mg, 0.050 mmol). Physical properties of compound E: melting point> 300 ° C., 1 H-NMR (270 MHz, CDCl 3 ) δ = 8.9
1 (m, 4H), 8.78 (m, 4H), 8.49 (s, 1H), 8.40 (d, J
= 8 Hz, 4H), 8.30 (d, J = 8 Hz, 4H), 8.26 (s, 4
H), 8.06 (s, 4H), 8.02 (d, J = 8 Hz, 2H), 7.94 (d,
J = 8 Hz, 2H), 7.82 (s, 2H), 7.78 (s, 1H), 4.79
(d, J = 9 Hz, 1H), 4.67 (s, 1H), 4.02 (d, J = 9 Hz,
2H), 2.77 (s, 3H), 1.55 (s, 36H), -2.77 (s, 2H), mass spectrum: (FAB) 2063 (M + H +).

【0021】B,光エネルギー・電気エネルギー変換系
の形成 1、透明ガラススライド表面に190〜200nm厚のITO
を形成したITO電極(エバース社製(Evers, Inc. (J
apan))表面をトリメトキシシリルプロピルアミン
(((MeO)3Si(CH2)3NH2)(10%v/v)及びイソプロ
ピルアミン(2%v/v)を溶かしたトルエン溶液中に
入れ、還流下で20時間処理し、表面にシロキシ結合で
結合するアミノプロピルシリル化ITO電極(図1)を
調製する。2、該アミノプロピルシリル化ITO電極
を、前記式Eのポルフィリン(2H)−C60フラーレン
二元化合物を溶かしたトルエン溶液中に入れ、還流下で
20時間処理し、ITO表面にポルフィリン−C60フラ
ーレン2元化合物で修飾した1a/ITOを得た。
B, formation of light energy / electric energy conversion system 1, ITO of 190-200 nm thickness on transparent glass slide surface
ITO electrode formed with (Evers, Inc. (J
apan)) surface trimethoxysilyl propylamine (((MeO) 3 Si ( CH 2) 3 NH 2) (10% v / v) and placed in a toluene solution were dissolved isopropylamine (2% v / v) Then, it is treated under reflux for 20 hours to prepare an aminopropylsilylated ITO electrode (FIG. 1) that binds to the surface with a siloxy bond 2. The porphyrin (2H) -of the formula E is used as the aminopropylsilylated ITO electrode. It was placed in a toluene solution in which a binary compound of C 60 fullerene was dissolved and treated under reflux for 20 hours to obtain 1a / ITO whose ITO surface was modified with a binary compound of porphyrin-C 60 fullerene.

【0022】実施例2 前記調製された1a/ITOのポルフィリン環部分にZ
nを挿入するために酢酸亜鉛〔Zn(OAc)2〕を溶解させた
CHCl3溶液中に入れ、還流下で6時間、アルゴン雰
囲気下で処理しポルフィリン環に亜鉛を挿入したポルフ
ィリン(Zn)−C60フラーレン二元化合物修飾電極1
b/ITOを得た。.
Example 2 Z was added to the porphyrin ring portion of the 1a / ITO prepared above.
Porphyrin (Zn) -in which zinc was inserted into a porphyrin ring by placing it in a CHCl 3 solution in which zinc acetate [Zn (OAc) 2 ] was dissolved in order to insert n and treating it under reflux for 6 hours under an argon atmosphere. C 60 fullerene binary compounds modified electrode 1
b / ITO was obtained. .

【0023】比較例1,2 実施例1、2の二元化合物で修飾した1a/ITOおよ
び1b/ITOに代えて、一元のC60フラーレンを含む
結合基を除いた、換言すればポルフィリンのみを含む化
合物で修飾した2a/ITO(メタルフリーポルフィリ
ン環を含む)および2b/ITO(Znでメタル化した
ポルフィリン環を含む)を調製した。
Comparative Examples 1 and 2 Instead of 1a / ITO and 1b / ITO modified with the binary compounds of Examples 1 and 2, the univalent C 60 fullerene-containing linking group was removed, in other words, only porphyrin was used. 2a / ITO (containing a metal-free porphyrin ring) and 2b / ITO (containing a porphyrin ring metallized with Zn) modified with a containing compound were prepared.

【0024】前記実施例1および2の修飾ITO電極、
ならびに比較例1および2の修飾ITO電極表面上の自
己組織化化合物の吸着量(Γ)を電気化学測定によるポ
ルフィリンのアノードピークから求め、表1にまとめ
た。1a/ITO(2.5×10-10molcm-2) お
よび2a/ITO(1.8×10-10mol cm-2)は
ITO表面上の類似のポルフィリンSAM (2.4×1
-10mol cm-2).と実質的に同じあった。
The modified ITO electrodes of Examples 1 and 2 above,
The adsorption amount (Γ) of the self-assembling compound on the surface of the modified ITO electrodes of Comparative Examples 1 and 2 was determined from the anode peak of porphyrin by electrochemical measurement, and summarized in Table 1. 1a / ITO (2.5 × 10 -10 molcm -2) and 2a / ITO (1.8 × 10 -10 mol cm -2) is analogous porphyrin SAM on the ITO surface (2.4 × 1
0 -10 mol cm -2 ).

【0025】光電流を、前記「0006」で説明するよ
うにITO/1a/HV2+/Pt電池系により測定し
た。波長λ=430±5nm、強度500μWcm-2
光を用いて、作用極電位を-0.2Vに設定して光照射
すると、カソード電流が観測された。作用極電位を正方
向に変化させるにつれ、光電流は小さくなり、作用極電
位が+0.8Vで光電流はゼロになった。同様の測定
を、ITO/1b、2a又は2b/HV2+/Pt電池系
についても行った。ITO上の化合物によって吸収され
た光子の数に対する流れた電子数の割合を表す量子収率
の結果を表1にまとめた。この結果から、本発明のC60
フラーレン(アクセプター部位)を含む二元系の光電流
発生特性がポルフィリンのみの参照系に比べて著しく改
善されたことがわかる。
Photocurrent was measured with an ITO / 1a / HV 2+ / Pt battery system as described in "0006" above. When light having a wavelength λ = 430 ± 5 nm and an intensity of 500 μWcm −2 was used and the working electrode potential was set to −0.2 V, light irradiation was performed, and a cathode current was observed. As the working electrode potential was changed in the positive direction, the photocurrent became smaller, and when the working electrode potential was +0.8 V, the photocurrent became zero. Similar measurements were performed on ITO / 1b, 2a or 2b / HV 2+ / Pt battery systems. The quantum yield results, which represent the ratio of the number of electrons flowed to the number of photons absorbed by the compound on ITO, are summarized in Table 1. From these results, the C 60 of the present invention
It can be seen that the photocurrent generation characteristics of the binary system containing fullerenes (acceptor moieties) were significantly improved compared to the reference system containing porphyrin alone.

【0026】1a、1b、2a、あるいは2b/ITO
のポルフィリン部位の蛍光寿命を、ピコ秒単−光子計数
法を用い、励起光453nmを用い、ITO表面の蛍光
寿命を測定することにより調べ、表1にまとめた。蛍光
の観測はポルフィリン部位の蛍光に相当する、655n
m(1a及び2a/ITO)あるいは605nm(1b
及び2b/ITO)で行った。2a/ITOの平均蛍光
寿命(3.2ナノ秒)は2b/ITOの平均蛍光寿命
(0.14ナノ秒)に対し25倍であり、1a/ITO
(0.12ナノ秒)は1b/ITO(0.031ナノ
秒)に対して5倍であった。前記平均蛍光寿命の値は、
光電流の量子収率に対応している。2a/ITOの平均
蛍光寿命(3.2ナノ秒)は、メルカプト基で金(A
u)表面に自己組織化した対応するポルフィリン部位の
みのを持つ化合物の蛍光寿命(40ピコ秒)の80倍で
あり、ITO電極を用いると、金電極によるポルフィリ
ン励起状態の消光が抑えられることが確認された。
1a, 1b, 2a, or 2b / ITO
The fluorescence lifetime of the porphyrin site of was investigated by measuring the fluorescence lifetime of the ITO surface using the picosecond single-photon counting method and excitation light of 453 nm, and is summarized in Table 1. Observation of fluorescence corresponds to fluorescence at the porphyrin site, 655n
m (1a and 2a / ITO) or 605nm (1b
And 2b / ITO). The average fluorescence lifetime of 2a / ITO (3.2 nanoseconds) is 25 times the average fluorescence lifetime of 2b / ITO (0.14 nanoseconds).
(0.12 nanoseconds) was 5 times that of 1b / ITO (0.031 nanoseconds). The value of the average fluorescence lifetime is
It corresponds to the quantum yield of photocurrent. 2a / ITO has an average fluorescence lifetime (3.2 nanoseconds) of mercapto group gold (A
u) It is 80 times as long as the fluorescence lifetime (40 picoseconds) of the compound having only the corresponding porphyrin site self-assembled on the surface, and when the ITO electrode is used, quenching of the porphyrin excited state by the gold electrode can be suppressed. confirmed.

【0027】[0027]

【表1】 [Table 1]

【0028】上記結果から、本発明において電極構成材
料としてITOを用いたこと、自己組織化による単分子
膜形成材料として前記二元化合物を用いたことにより、
光電流発生の量子効率を著しく向上できたことは明らか
である。
From the above results, the use of ITO as the electrode constituent material and the use of the binary compound as the self-assembled monomolecular film forming material in the present invention
It is clear that the quantum efficiency of photocurrent generation could be significantly improved.

【0029】[0029]

【発明の効果】以上述べたように、本発明により光電流
発生の量子効率を著しく向上させた光エネルギー・電気
エネルギー変換系の構築は、このような系を改善した実
用系の実現に向けての大きな示唆を与えたという優れた
効果がもたらされる。
As described above, the construction of a light energy / electric energy conversion system in which the quantum efficiency of photocurrent generation is remarkably improved by the present invention is aimed at the realization of a practical system improved from such a system. It has an excellent effect of giving a big suggestion of.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光エネルギー・電気エネルギー変換
系を構成するITOの結合基の一態様
FIG. 1 is an embodiment of a bonding group of ITO constituting a light energy / electric energy conversion system of the present invention

【図2】 本発明の光エネルギー・電気エネルギー変換
系のメカニズムの概要
FIG. 2 Outline of mechanism of light energy / electric energy conversion system of the present invention

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C050 PA02 4H048 AA01 AA03 AB78 VA32 VA66 VB40 5H032 AA06 AS19 BB04 BB07 CC11 EE07 EE16 EE20    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4C050 PA02                 4H048 AA01 AA03 AB78 VA32 VA66                       VB40                 5H032 AA06 AS19 BB04 BB07 CC11                       EE07 EE16 EE20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 インジウム−スズ酸化物(ITO)電極
表面に一般式(A)で表される化合物の群から選択され
る少なくとも一種を、Bin.で表される共有結合を介
して自己組織化することにより単分子膜を形成したこと
を特徴とする光エネルギー・電気エネルギー変換系。 【化1】 (但し、Bin.はO3Si−、カルボン酸エステルま
たはリン酸エステルから選択される。X1、X2およびX
3は、それぞれ、単結合、−NH−CO−、−CO−N
H−、−Ph−、−O−、または−CO−O−からなる
群から独立に選択される基、nは1〜20の整数、Ar
は嵩高の置換基を有していても良いフェニル基、Mは2
HまたはZn、フラーレン誘導体は式(a)または式
(b)から選択される。フラーレン部分は、C60、C70
C76、C78、C80、C82、C84、C86、C88、C90である〔式
(a)および(b)ではこれらのフラーレンをC60で代
表して表現している。〕。 【化2】
1. At least one selected from the group of compounds represented by general formula (A) on the surface of an indium-tin oxide (ITO) electrode is treated with Bin. A light energy / electric energy conversion system characterized in that a monomolecular film is formed by self-assembly via a covalent bond represented by. [Chemical 1] (However, Bin. Is selected from O 3 Si—, a carboxylic acid ester or a phosphoric acid ester. X 1 , X 2 and X
3 is a single bond, -NH-CO-, -CO-N, respectively.
A group independently selected from the group consisting of H-, -Ph-, -O-, or -CO-O-, n is an integer of 1 to 20, Ar
Is a phenyl group which may have a bulky substituent, and M is 2
The H or Zn, fullerene derivative is selected from the formula (a) or the formula (b). Fullerene part is C 60 , C 70 ,
C 76 , C 78 , C 80 , C 82 , C 84 , C 86 , C 88 , and C 90 [in formulas (a) and (b), these fullerenes are represented by C 60 . ]. [Chemical 2]
【請求項2】 ITO電極と一般式Aの化合物類から選
択される化合物が形式1で結合して自己組織化して単一
膜を形成していることを特徴とする請求項1に記載の光
エネルギー・電気エネルギー変換系。 【化3】 (ここで、Arは3,5−ジ(t−ブチル)−フェニル
基であり、MはZnあるいは2Hであり、フラーレンが
式(a)のR2がCH3のC60フラーレンである。)
2. The light according to claim 1, wherein the ITO electrode and the compound selected from the compounds of the general formula A are combined in the form 1 and self-assembled to form a single film. Energy / electric energy conversion system. [Chemical 3] (Here, Ar is a 3,5-di (t-butyl) -phenyl group, M is Zn or 2H, and the fullerene is a C 60 fullerene in which R 2 of the formula (a) is CH 3. )
JP2001220227A 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule Expired - Fee Related JP4326167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220227A JP4326167B2 (en) 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220227A JP4326167B2 (en) 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule

Publications (2)

Publication Number Publication Date
JP2003036896A true JP2003036896A (en) 2003-02-07
JP4326167B2 JP4326167B2 (en) 2009-09-02

Family

ID=19054084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220227A Expired - Fee Related JP4326167B2 (en) 2001-07-19 2001-07-19 Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule

Country Status (1)

Country Link
JP (1) JP4326167B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236278A (en) * 2004-01-23 2005-09-02 Kyoto Univ Organic photoelectric conversion device and organic solar cell
JP2005230665A (en) * 2004-02-19 2005-09-02 National Institute Of Advanced Industrial & Technology Method for forming monomolecular film
WO2005087741A1 (en) * 2004-03-10 2005-09-22 Japan Science And Technology Agency PHOTOCHARGE SEPARATION USING SUPRAMOLECULAR COMPLEX OF π-ELECTRON TYPE EXTENDED VIOLOGEN DERIVATIVE AND PORPHYRIN
JP2007214057A (en) * 2006-02-10 2007-08-23 Seiko Epson Corp Photoelectric conversion element and photoelectric conversion element, its manufacturing method, and electronic apparatus
CN100424084C (en) * 2004-05-27 2008-10-08 中国科学院化学研究所 (Zinc) porphyrin - perylene diimide ( PDI) - C60 ternary system and its synthesis method
JP2010195918A (en) * 2009-02-25 2010-09-09 National Institute For Materials Science New diblock copolymer and high mobility/photoconductivity anisotropic nanowire formed by self-assembling of the diblock copolymer
JP2010287577A (en) * 2010-07-16 2010-12-24 Seiko Epson Corp Photoelectric conversion element, method of manufacturing the same, and electronic equipment
WO2011017111A2 (en) * 2009-07-27 2011-02-10 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
CN103193786A (en) * 2013-05-07 2013-07-10 中国工程物理研究院核物理与化学研究所 Water-soluble fullerene-tetra(p-hydroxy phenyl) porphyrin as well as preparation method and application thereof
CN103724356A (en) * 2013-12-18 2014-04-16 中国科学院化学研究所 Fullereneporphyrin derivate photosensitizer as well as preparation method and application thereof
CN113651825A (en) * 2021-08-17 2021-11-16 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236278A (en) * 2004-01-23 2005-09-02 Kyoto Univ Organic photoelectric conversion device and organic solar cell
JP4548779B2 (en) * 2004-01-23 2010-09-22 日本電信電話株式会社 Organic photoelectric conversion device and organic solar cell
JP2005230665A (en) * 2004-02-19 2005-09-02 National Institute Of Advanced Industrial & Technology Method for forming monomolecular film
WO2005087741A1 (en) * 2004-03-10 2005-09-22 Japan Science And Technology Agency PHOTOCHARGE SEPARATION USING SUPRAMOLECULAR COMPLEX OF π-ELECTRON TYPE EXTENDED VIOLOGEN DERIVATIVE AND PORPHYRIN
US8436242B2 (en) 2004-03-10 2013-05-07 Japan Science And Technology Agency Photocharge separation using supramolecular complex of π-electron type extended viologen derivative and porphyrin
CN100424084C (en) * 2004-05-27 2008-10-08 中国科学院化学研究所 (Zinc) porphyrin - perylene diimide ( PDI) - C60 ternary system and its synthesis method
JP2007214057A (en) * 2006-02-10 2007-08-23 Seiko Epson Corp Photoelectric conversion element and photoelectric conversion element, its manufacturing method, and electronic apparatus
JP2010195918A (en) * 2009-02-25 2010-09-09 National Institute For Materials Science New diblock copolymer and high mobility/photoconductivity anisotropic nanowire formed by self-assembling of the diblock copolymer
WO2011017111A2 (en) * 2009-07-27 2011-02-10 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
WO2011017111A3 (en) * 2009-07-27 2011-06-16 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
US8723026B2 (en) 2009-07-27 2014-05-13 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
JP2010287577A (en) * 2010-07-16 2010-12-24 Seiko Epson Corp Photoelectric conversion element, method of manufacturing the same, and electronic equipment
CN103193786A (en) * 2013-05-07 2013-07-10 中国工程物理研究院核物理与化学研究所 Water-soluble fullerene-tetra(p-hydroxy phenyl) porphyrin as well as preparation method and application thereof
CN103724356A (en) * 2013-12-18 2014-04-16 中国科学院化学研究所 Fullereneporphyrin derivate photosensitizer as well as preparation method and application thereof
CN113651825A (en) * 2021-08-17 2021-11-16 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell
CN113651825B (en) * 2021-08-17 2022-07-26 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell

Also Published As

Publication number Publication date
JP4326167B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
Vos et al. Ruthenium polypyridyl chemistry; from basic research to applications and back again
Nazeeruddin et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell
Odobel et al. Porphyrin dyes for TiO 2 sensitization
Long et al. Promising anodic electrochemiluminescence of nontoxic core/shell CuInS2/ZnS nanocrystals in aqueous medium and its biosensing potential
Yan et al. Independent tuning of the band gap and redox potential of graphene quantum dots
Pace et al. Dynamics of singlet fission and electron injection in self-assembled acene monolayers on titanium dioxide
JP5062766B2 (en) Photoelectric conversion material containing fullerene derivative
Nazeeruddin et al. Separation of linkage isomers of trithiocyanato (4, 4′, 4 ″-tricarboxy-2, 2′, 6, 2 ″-terpyridine) ruthenium (II) by pH-titration method and their application in nanocrystalline TiO2-based solar cells
Lagref et al. Artificial photosynthesis based on dye-sensitized nanocrystalline TiO2 solar cells
JP4312353B2 (en) Optical energy / electric energy conversion element in which antenna compound and charge separation type compound are integrated on electrode as mixed self-assembled monolayer
US7408058B2 (en) Regioisomerically pure oxochlorins and methods of synthesis
JP4326167B2 (en) Light energy / electric energy conversion element using ITO electrode chemically modified with porphyrin / fullerene linking molecule
JP4183402B2 (en) Materials for photoelectric conversion elements comprising thin films containing fullerenes
Tran et al. Photoinduced electron transfer and energy transfer processes in a flexible BODIPY-C60 dyad
Lee et al. [60] Fullerene–porphyrin–ferrocene triad self-assembled monolayers (SAMs) for photovoltaic applications
JP5062765B2 (en) Photoelectric conversion material containing fullerene derivative
Nickita et al. Ruthenium (II) Complexes Incorporating 2-(2′-Pyridyl) pyrimidine-4-carboxylic Acid
JP4088711B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, OPTICAL SENSOR AND SOLAR CELL
JP2002063949A (en) Dye sensitized solar battery
JP4445641B2 (en) Optical energy transfer device with mixed self-assembled monolayer of energy donor compound and energy acceptor compound formed on substrate surface
Ramachandra et al. Luminescent acetylthiol derivative tripodal osmium (II) and iridium (III) complexes: Spectroscopy in solution and on surfaces
Rajapaksha et al. Colloidal CuZnInS3 nanocrystals as the sensitizer in photovoltaic solar cells
JP2003123863A (en) Material used for photoelectric conversion element, photoelectric conversion element, and phthalocyanine compound
Zhang et al. Photoelectric response of a gold electrode modified with self-assembled monolayers of pyrrolidinofullerenes
Li et al. Long-lived photoinduced charge separation in carbazole–pyrene–viologen system incorporated in Langmuir–Blodgett films of substituted diazacrown ethers

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees