JP2003035870A - Cata-dioptric imaging optical system for rear projection type monitor - Google Patents

Cata-dioptric imaging optical system for rear projection type monitor

Info

Publication number
JP2003035870A
JP2003035870A JP2001253617A JP2001253617A JP2003035870A JP 2003035870 A JP2003035870 A JP 2003035870A JP 2001253617 A JP2001253617 A JP 2001253617A JP 2001253617 A JP2001253617 A JP 2001253617A JP 2003035870 A JP2003035870 A JP 2003035870A
Authority
JP
Japan
Prior art keywords
lens
optical system
screen
imaging optical
catadioptric imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001253617A
Other languages
Japanese (ja)
Inventor
Norihisa Ito
徳久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI SYSTEM KENKYUSHO KK
Original Assignee
HIKARI SYSTEM KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI SYSTEM KENKYUSHO KK filed Critical HIKARI SYSTEM KENKYUSHO KK
Priority to JP2001253617A priority Critical patent/JP2003035870A/en
Publication of JP2003035870A publication Critical patent/JP2003035870A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0812Catadioptric systems using two curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0852Catadioptric systems having a field corrector only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a compact optical system having a bright f-number, and consisting of only one sheet of an aspherical mirror, and also inheriting technique for mitigating the angle of an incident light beam on a screen by compositing a dioptric lens system and a catoptric system in order to provide an optical system for a thinned large-screen rear projection type monitor. SOLUTION: In this cata-dioptric imaging optical system for a rear projection type monitor, one aspherical reflection mirror in addition to the dioptric lens system and further a spherical reflection mirror are installed just before the screen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明による光学系は、反射型画
像素子プロジェクターないしは液晶プロジェクター内蔵
の、リアプロジェクション式モニターの投写結像光学系
として使用される。
BACKGROUND OF THE INVENTION The optical system according to the present invention is used as a projection image forming optical system of a rear projection type monitor having a built-in reflection type image element projector or a liquid crystal projector.

【0002】[0002]

【従来の技術】本発明に先行する技術として、本発明者
による特願平2000−104095、およびそこに引
用した諸文献、すなわちレイシ G.クックの文献(前
願中参考文献−1)と、特開平10−111458(前
願中参考文献−2)と、インフォコムジャパン2000
展示会における三洋電機株式会社の配布資料(前願中参
考文献−3)の、4点を挙げる。前願中の参考文献につ
いては、すでに前願、特願平2000−104095に
おいて概略の歴史的ないし技術的な相関関係について述
べたので重複を避け、ここにおいては前願から本発明に
至る技術上の展開を述べる。前願は、それまでの技術課
題をかなりの程度解決した光学系を提供するもので反射
系のみで光学系を構成したものである。本発明はこれを
さらに発展させるために光学系を屈折系と反射系のハイ
ブリッド系とし、Fナンバーをより明るく、装置として
よりコンパクトにし、使用する非球面反射鏡の枚数を1
枚にまで減少した光学系を提案する。
2. Description of the Related Art As prior art to the present invention, Japanese Patent Application No. 2000-104095 filed by the present inventor, and various documents cited therein, namely Reishi G.I. Cook's reference (previous application reference-1), JP-A-10-111458 (previous application reference-2), and Infocom Japan 2000
I will list four points of the materials distributed by Sanyo Electric Co., Ltd. at the exhibition (Reference 3 in the previous application). Regarding the references in the previous application, the previous historical application and Japanese Patent Application No. 2000-104095 have already described the outline of the historical or technical correlation, and therefore duplication will be avoided. I will describe the development of. The previous application provides an optical system that solves the technical problems up to that point to a considerable extent, and constitutes the optical system only with a reflective system. In order to further develop this invention, the present invention uses a hybrid system of a refraction system and a reflection system to make the F-number brighter and make the device more compact, and use one aspherical reflecting mirror.
We propose an optical system reduced to a single sheet.

【0003】[0003]

【発明が解決しようとする課題】前発明からさらに発展
させるための残された課題を3つ上げておくと、Fナン
バーをより明るくすること、装置をよりコンパクトにす
ること、及び非球面(自由曲面)ミラーの枚数を減らす
ことである。
The three remaining problems to be further developed from the previous invention are to make the F-number brighter, to make the device more compact, and to make aspherical surfaces (freedom). Curved surface) to reduce the number of mirrors.

【0004】[0004]

【課題を解決するための手段】上記3点の課題を解決す
るため、光学系を純ミラー系からレンズとミラーのハイ
ブリッド系にする。これによって、より明るいFナンバ
ーを実現し、非球面ミラーの枚数を1枚とし、装置のコ
ンパクト化に成功した。
In order to solve the above three problems, the optical system is changed from a pure mirror system to a hybrid system of a lens and a mirror. As a result, a brighter F number was realized, the number of aspherical mirrors was reduced to one, and the device was successfully made compact.

【0005】純ミラー系に屈折レンズ系を導入してFナ
ンバーをより明るくする事について、少なくともその可
能性については専門家の間では異論のないところであろ
う。ただし光学設計の常としてそれが唯一解ではなく、
多様な解の一つの可能性としてである。本願の場合この
工夫によって、即ち屈折レンズを導入することによっ
て、上記3点の課題が解決された。
There is no dispute among experts regarding the possibility of introducing a refracting lens system into a pure mirror system to make the F number brighter, at least for its possibility. However, as always in optical design, it is not the only solution,
As one possibility of various solutions. In the case of the present application, the above three problems are solved by this device, that is, by introducing a refraction lens.

【0006】[0006]

【作用】まず、純ミラー系では当然ながらミラー系だけ
で結像系としての正のパワーを創出し、そのうえ光学系
の全ての収差を実用の範囲に納めなければならないが、
そこに屈折レンズ系を入れることによって正のパワーの
大半をレンズ系に負担させることが出来るので、あらゆ
る面で光学設計の自由度が増し、光学系の仕様向上に関
しゆとりが出る。光学系の場合、一般的に光学要素(パ
ラメータ空間)と補正すべき収差(収差空間)との相関
は1対1ではなくいろいろな要素が複雑に絡み合ってお
り本光学系に於いてもそうであるが、あえておおまかに
大胆にいえば、本願の光学系では、正のパワー創出と収
差補正の大半を屈折レンズ系で、ディストーション補正
を非球面ミラーで、スクリーンへの主光線を垂直に近づ
ける働き(スクリーン側テレセン化)を球面反射ミラー
で行う、という考え方を出発点にしている。このような
慮りの元に、より明るいFナンバー、装置のコンパクト
化、そしてかつ非球面ミラーが1枚だけ、という光学設
計が可能となった。
First of all, in the pure mirror system, of course, it is necessary to create positive power as an image-forming system only by the mirror system, and moreover, all aberrations of the optical system must be within the practical range.
By inserting a refracting lens system there, most of the positive power can be loaded into the lens system, which increases the degree of freedom in optical design in all aspects and leaves room for improvement in specifications of the optical system. In the case of an optical system, generally, the correlation between the optical element (parameter space) and the aberration to be corrected (aberration space) is not one-to-one, but various elements are intricately entangled with each other. However, roughly speaking boldly, in the optical system of the present application, most of the positive power creation and aberration correction are performed by the refraction lens system, and the distortion correction is performed by the aspherical mirror, which works to bring the principal ray to the screen close to vertical. The starting point is the idea of performing (screen side telecentricization) with a spherical reflection mirror. Based on these considerations, a brighter F number, a more compact device, and an optical design with only one aspherical mirror became possible.

【0007】[0007]

【実施例−1】実施例−1の R、D、n データを次
に示す。 但し、上記に於いてCoordinate Break
とした面は偏芯(光軸の角度変化または平行移動)があ
るところでRは∞、EvAsとしたところは回転対称非
球面、ExPoly としたところは左右対称型自由曲
面をしめす。上記の25面(ExPoly)は左右対称
型自由曲面であり、その方程式を下記する: 上式の第1項は通常の非球面式の第1項であり、第2項
以降のAiはi番目の項の係数であり、Ei(x,y)
はxとyの単純なベキ級数である。また上記レンズデー
タの第6面と第8面は回転対称型非球面であり、その方
程式は下記の通り: スクリーンの大きさは50インチ(16:9)、光学系
の最大厚みは28.8cm、Fナンバーは3.0であ
る。またスクリーンから下に出る部分の厚みは光路有効
径で、163mmである。また、最終反射面が球面であ
るのは、前願(参照文献−1)に詳述したようにスクリ
ーンに入射する光束の主光線を可能な限り垂直に近づけ
るためであり、この方針を本願でも踏襲している。
Example-1 R, D, and n data of Example-1 are shown below. However, in the above, Coordinate Break
The surface R is ∞ where there is eccentricity (angle change or parallel movement of the optical axis), the rotationally symmetric aspherical surface is where EvAs is used, and the bilaterally symmetrical free-form surface is used where ExPoly is used. The above 25 surface (ExPoly) is a symmetrical free-form surface, and its equation is as follows: The first term of the above equation is the first term of the usual aspherical expression, Ai after the second term is the coefficient of the i-th term, and Ei (x, y)
Is a simple power series of x and y. The sixth and eighth surfaces of the above lens data are rotationally symmetric aspherical surfaces, the equations of which are as follows: The size of the screen is 50 inches (16: 9), the maximum thickness of the optical system is 28.8 cm, and the F number is 3.0. The thickness of the portion projecting from the screen is the optical path effective diameter, which is 163 mm. Further, the reason why the final reflection surface is a spherical surface is to make the chief ray of the light beam incident on the screen as vertical as possible, as described in detail in the previous application (Reference Document-1). I am following it.

【0008】[0008]

【発明の効果】極めて薄型の大画面モニター用光学系に
おいて、屈折レンズ系と反射系の合成系によってFナン
バーが明るい方向に改善され、スクリーン下部の厚みが
減少し、非球面反射ミラーの枚数1枚、かつスクリーン
への入射主光線角度が緩和されている、という反射屈折
結像光学系が実現された。
EFFECT OF THE INVENTION In an extremely thin optical system for a large-screen monitor, the f-number is improved in the bright direction by the combined system of the refracting lens system and the reflecting system, the thickness of the lower part of the screen is reduced, and the number of aspherical reflecting mirrors is 1 A catadioptric imaging optical system has been realized in which the angle of the chief ray incident on the screen is relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願実施例の光学系断面図。光線はConfi
guration=1から6までの全てを描画; 図3
を参照。入射瞳を右方遠方に設置しているため右枠外ま
で光線が描かれている。
FIG. 1 is a sectional view of an optical system according to an example of the present application. Ray is Config
drawing all from 1 to 6;
See. Since the entrance pupil is installed far to the right, the rays are drawn to the outside of the right frame.

【図2】本願実施例の屈折レンズ部の光学系断面図。FIG. 2 is a sectional view of an optical system of a refracting lens unit according to the embodiment of the present application.

【図3】本願実施例の光学系サンプリング位置を説明す
るための光学系透視図。
FIG. 3 is a perspective view of an optical system for explaining an optical system sampling position of an example of the present application.

【図4】本願実施例の波動光学的MTF図。 スクリー
ン上で空間周波数max値は、0.7〔line−pa
res/mm〕
FIG. 4 is a wave optical MTF diagram of an example of the present application. The spatial frequency max value on the screen is 0.7 [line-pa
res / mm]

【図5】本願実施例のディストーションのシミュレーシ
ョン図。
FIG. 5 is a distortion simulation diagram of the embodiment of the present application.

【符号の説明】[Explanation of symbols]

1 画像パネル(反射式または透過式) 2 クロスダイクロイックプリズム、または照明
光導入用プリズム 3 屈折レンズ部 4 非球面反射ミラー 5 球面ミラー 6 スクリーン 31 屈折レンズ系第1レンズ 32 同 第2レンズ 33 同 第3レンズ 34 同 第4レンズ 35 同 第5レンズ 36 同 第6レンズ 37 同 第7レンズ 38 同 第8レンズ 39 同 第9レンズ
1 image panel (reflection type or transmission type) 2 cross dichroic prism or prism for introducing illumination light 3 refraction lens part 4 aspherical reflection mirror 5 spherical surface mirror 6 screen 31 refraction lens system first lens 32 same second lens 33 same 3 lens 34 4th lens 35 5th lens 36 6th lens 37 7th lens 38 8th lens 39 9th lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03B 21/28 G03B 21/28 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) G03B 21/28 G03B 21/28

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 屈折レンズ系に加えて1枚の非球面反射
鏡さらにスクリーン直前の反射鏡として球面反射鏡を設
置したリアプロジェクション式モニター用反射屈折結像
光学系。
1. A catadioptric imaging system for a rear-projection type monitor, wherein in addition to a refracting lens system, one aspherical reflecting mirror and a spherical reflecting mirror as a reflecting mirror in front of the screen are installed.
【請求項2】 画像素子パネル側からスクリーン側に向
けて順に、まず必要な場合は画像素子パネルに近接して
クロスダイクロイックプリズムを置き、または照明光を
導くための照明用プリズムを置き、次に屈折レンズ系を
置き、やや距離をあけて非球面の第1反射面を置き、や
や距離をあけて球面の凹面を反射面とした第2反射面を
置き、つぎにスクリーン面に到達するように構成した反
射屈折結像光学系。
2. A cross dichroic prism is placed in the order from the image element panel side to the screen side, if necessary, in proximity to the image element panel, or an illumination prism for guiding illumination light is placed, and then Place the refracting lens system, place the first reflecting surface of the aspherical surface at a slight distance, place the second reflecting surface with the concave surface of the spherical surface as the reflecting surface at a slight distance, and then reach the screen surface. The constructed catadioptric imaging optics.
【請求項3】 上記請求項2の、第1反射面を左右対称
型自由曲面とし、その他は請求項2の構成とした反射屈
折結像光学系。
3. The catadioptric imaging optical system according to claim 2, wherein the first reflecting surface is a bilaterally symmetrical free-form surface, and the others are the construction of claim 2.
【請求項4】 上記請求項2の、屈折レンズ系において
回転対称型非球面を採用したレンズ系とし、その他は請
求項2の構成とした反射屈折結像光学系。
4. A catadioptric imaging optical system having the structure of claim 2 which is a lens system employing a rotationally symmetric aspherical surface in the refractive lens system of claim 2.
【請求項5】 上記請求項4の、屈折レンズ系の構成
を、画像素子パネル側からスクリーン側に向けて順に、
第1レンズは片面を回転対称型非球面としたレンズ、第
2レンズも片面を回転対称型非球面としたレンズ、第3
レンズは負レンズ、第4レンズは両凸レンズ、第5レン
ズは負レンズ、第6レンズは両凸レンズで、第5と第6
レンズは接合とし、第7レンズは凸面をパネル側に向け
たメニスカスレンズ、第8レンズは凹レンズ、第9レン
ズは凸レンズで第8と第9レンズは接合とした9枚構成
のレンズとし、その他は請求項2の構成とした反射屈折
結像光学系。
5. The refracting lens system according to claim 4, wherein the refracting lens system is arranged in order from the image element panel side to the screen side.
The first lens has a rotationally symmetric aspherical surface on one side, and the second lens has a rotationally symmetric aspherical surface on one side.
The lens is a negative lens, the fourth lens is a biconvex lens, the fifth lens is a negative lens, and the sixth lens is a biconvex lens.
The lens is cemented, the seventh lens is a meniscus lens with the convex surface facing the panel side, the eighth lens is a concave lens, the ninth lens is a convex lens, and the eighth and ninth lenses are cemented lenses with a nine-lens configuration, and the others are The catadioptric imaging optical system according to claim 2.
JP2001253617A 2001-07-23 2001-07-23 Cata-dioptric imaging optical system for rear projection type monitor Pending JP2003035870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253617A JP2003035870A (en) 2001-07-23 2001-07-23 Cata-dioptric imaging optical system for rear projection type monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253617A JP2003035870A (en) 2001-07-23 2001-07-23 Cata-dioptric imaging optical system for rear projection type monitor

Publications (1)

Publication Number Publication Date
JP2003035870A true JP2003035870A (en) 2003-02-07

Family

ID=19081910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253617A Pending JP2003035870A (en) 2001-07-23 2001-07-23 Cata-dioptric imaging optical system for rear projection type monitor

Country Status (1)

Country Link
JP (1) JP2003035870A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301074A (en) * 2004-04-14 2005-10-27 Konica Minolta Opto Inc Projection optical system
JP2006039032A (en) * 2004-07-23 2006-02-09 Sharp Corp Projection display device
US6999247B2 (en) 2003-11-28 2006-02-14 Samsung Techwin Co., Ltd. Wide-angle projection lens
JP2006178406A (en) * 2004-11-25 2006-07-06 Konica Minolta Opto Inc Projection optical system
JP2006343526A (en) * 2005-06-09 2006-12-21 Nec Engineering Ltd Rear projection display apparatus
WO2023145112A1 (en) * 2022-01-27 2023-08-03 ソニーグループ株式会社 Image display device, image display system, and projection optical system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999247B2 (en) 2003-11-28 2006-02-14 Samsung Techwin Co., Ltd. Wide-angle projection lens
JP2005301074A (en) * 2004-04-14 2005-10-27 Konica Minolta Opto Inc Projection optical system
US7239452B2 (en) 2004-04-14 2007-07-03 Konica Minolta Opto, Inc. Projection optical system
JP2006039032A (en) * 2004-07-23 2006-02-09 Sharp Corp Projection display device
JP2006178406A (en) * 2004-11-25 2006-07-06 Konica Minolta Opto Inc Projection optical system
JP2006343526A (en) * 2005-06-09 2006-12-21 Nec Engineering Ltd Rear projection display apparatus
WO2023145112A1 (en) * 2022-01-27 2023-08-03 ソニーグループ株式会社 Image display device, image display system, and projection optical system

Similar Documents

Publication Publication Date Title
EP0585651B1 (en) Zoom projection lens systems
CN110832377B (en) Image display device and projection optical system
US8901473B2 (en) Projection optical system having an aperture to limit quantity of light to a refractive optical system, and image display device using the same
JP3588283B2 (en) Projection lens and projector using it
TW201523026A (en) Wide-angel projection optical system
JP2019109497A (en) Display unit
CN104698574B (en) Wide-angle projection optical system
WO2023070811A1 (en) Optical system and projection device
JP2019109496A (en) Optical lens
CN109270668A (en) Telecentricity projection lens and image output device
US6984044B2 (en) Projection optical system, projection type image display apparatus, and image display system
JP2011150030A (en) Projection optical system and projection type display device using the same
CN207636837U (en) Zoom lens, projection type image display apparatus and photographic device
CN215264203U (en) Projection lens and projection equipment
CN109491060B (en) Ultrashort-focus objective lens for desktop projection
JP2003035870A (en) Cata-dioptric imaging optical system for rear projection type monitor
EP1387207A2 (en) Projection optical system, projection type image display apparatus, and image display system
JP2003004910A (en) Optical element and optical device using the same
CN102043310B (en) Projection system, projector and imaging module
CN207301489U (en) A kind of wearable optical system and device
JP5411720B2 (en) Projection optical system and projection display device using the same
JP2004077825A (en) Projection optical system and projection type picture display device using the same
JP2001242381A (en) Reflection image optical system for rear projection type monitor
CN114509860B (en) Projection lens and projection equipment
CN112578610B (en) Projection lens and laser projection equipment