JP2003035809A - Binary lens and its manufacturing method - Google Patents

Binary lens and its manufacturing method

Info

Publication number
JP2003035809A
JP2003035809A JP2001224862A JP2001224862A JP2003035809A JP 2003035809 A JP2003035809 A JP 2003035809A JP 2001224862 A JP2001224862 A JP 2001224862A JP 2001224862 A JP2001224862 A JP 2001224862A JP 2003035809 A JP2003035809 A JP 2003035809A
Authority
JP
Japan
Prior art keywords
refractive index
glass
ring
binary lens
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224862A
Other languages
Japanese (ja)
Inventor
Takayuki Nakatani
隆幸 中谷
Kenei Kyu
建栄 邱
Kazuyuki Hirao
一之 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001224862A priority Critical patent/JP2003035809A/en
Publication of JP2003035809A publication Critical patent/JP2003035809A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a required binary lens inside glass without any complicated process by utilizing an effect that a refractive index at an irradiated part on which a pulse laser beam is condensed is changed when the inside of the glass is irradiated with the pulse laser beam. SOLUTION: A glass base plate 11 is placed on a stage 10, and a light condensing point 16 is irradiated with the pulse laser beam 15 transmitted through a condenser 12 so as to be positioned in the inside of the base plate 11. On the irradiated base plate 11 on which the pulse laser beam 15 is condensed, the refractive index is locally increased at and near the condensing point 16 and is maintained at the initial one at the rest. The stage 10 is rotated on a plane, and a refractive index change area corresponding to the moving locus of the condensing point 16 is formed like a ring. By repeating the process, the binary lens is formed on the inside of the glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、所定のリングパターン
で屈折率変化領域がガラス内部に形成されたバイナリー
レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binary lens in which a refractive index changing region is formed inside glass in a predetermined ring pattern.

【0002】[0002]

【従来の技術】バイナリーレンズは、ガラスに周期構造
をしたリング状の屈折率変化領域を形成し、その屈折率
変化領域によって入射光に位相変化を生じさせ、ガラス
にレンズ機能を付与したものである。図1にその原理を
示す。通常の研磨型のレンズから、光波の性質を利用し
て一波長分の距離を取り除いたいわゆるフレネルレンズ
でも同等の機能を有することが知られている。フレネル
レンズはレンズの厚さが薄くなるため軽量化が可能とな
ることが特徴である。これをステップ状の断面で近似し
たものがバイナリーレンズである。リング状の溝のn番
目の半径rnはゾーン半径と呼ばれ、使用レーザ波長λ
とレンズ焦点距離fを用いて、次のように表される。
2. Description of the Related Art A binary lens is a lens in which a ring-shaped refractive index changing region having a periodic structure is formed in glass and a phase change is caused in the incident light by the refractive index changing region to impart a lens function to the glass. is there. The principle is shown in FIG. It is known that a so-called Fresnel lens obtained by removing a distance of one wavelength by utilizing the property of a light wave from an ordinary polishing type lens has an equivalent function. The Fresnel lens is characterized in that it can be made lighter because the lens is thinner. A binary lens is an approximation of this with a step-shaped cross section. The n-th radius r n of the ring-shaped groove is called the zone radius, and the used laser wavelength λ
And the lens focal length f, the following is expressed.

【0003】 [0003]

【0004】応用分野としては、CD/DVD用光ピッ
クアップ部品として実用化されており、小型軽量である
ことから、光集積回路への応用も期待されている。従来
の方法では、石英等のガラス表面にイオンエッチングす
ることにより周期的な溝を形成し、バイナリーレンズを
製造している。その一例を、図2に基づいて説明する。
まず電子ビームスキャン露光等でバイナリーレンズのマ
スクパターンを形成・準備する。フォトレジスト膜2を
設けた石英ガラス1を用意し、フォトレジスト膜2にフ
ォトマスク3を重ね合わせ、紫外光源4から紫外光を照
射する(a)。ポジ型レジストでは紫外光照射部分が溶
け、ネガ型レジストでは未照射部が可溶性になるため、
紫外光照射後のフォトレジスト膜2を薬剤で処理する
と、フォトレジスト膜2が所定形状にパターニングされ
る(b)。次いで、石英ガラス1をイオンエッチングす
ると、フォトレジスト膜2のない部分が溝部となり、フ
ォトレジスト膜2を除去するとバイナリーレンズが形成
される。
As an application field, it has been put to practical use as an optical pickup component for CD / DVD, and since it is small and lightweight, it is expected to be applied to an optical integrated circuit. In the conventional method, a binary lens is manufactured by forming periodic grooves by ion etching on the surface of glass such as quartz. One example thereof will be described based on FIG.
First, a mask pattern for a binary lens is formed and prepared by electron beam scanning exposure or the like. A quartz glass 1 provided with a photoresist film 2 is prepared, a photomask 3 is superposed on the photoresist film 2, and ultraviolet light is irradiated from an ultraviolet light source 4 (a). In the positive type resist, the UV light irradiation part melts, and in the negative type resist, the non-irradiation part becomes soluble.
When the photoresist film 2 after ultraviolet light irradiation is treated with a chemical, the photoresist film 2 is patterned into a predetermined shape (b). Next, when the quartz glass 1 is ion-etched, a portion without the photoresist film 2 becomes a groove portion, and when the photoresist film 2 is removed, a binary lens is formed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記方法は、
フォトレジスト膜の形成、露光、現像、転写等、複雑か
つ多岐にわたる工程を必要とするばかりでなく、バイナ
リーレンズを形成するために多種の原料を必要としてい
る。しかも形成されたバイナリーレンズは石英ガラスの
表面に限られるため、単一の機能しか得られない。表面
形成の場合、バイナリーレンズが露出しているため外部
からの衝撃に弱い。またバイナリーレンズと他の素子と
を組み合わせた集積回路も試みられているが、その場合
正確なアライメントや直接接合などが必要になる。その
結果、熟練した技術を要し、生産性の低い手作業による
ことから光関連部品のコストを上昇させる原因となる。
However, the above method is
Not only complicated and diversified steps such as photoresist film formation, exposure, development, and transfer are required, but also various raw materials are required to form a binary lens. Moreover, since the formed binary lens is limited to the surface of quartz glass, it has only a single function. In the case of surface formation, since the binary lens is exposed, it is vulnerable to external impact. Further, an integrated circuit in which a binary lens and another element are combined has been tried, but in that case, accurate alignment and direct bonding are required. As a result, skilled techniques are required, and this is a cause of increasing the cost of the optical-related parts due to manual work with low productivity.

【0006】本発明は、このような問題を解消すべく案
出されたものであり、ガラス内部にパルスレーザ光を照
射したとき、集光照射された部分の屈折率が変化するこ
とを利用し、複雑な工程を経ることなく、ガラス内部に
必要とする屈折率変化領域を形成し、バイナリーレンズ
を得ることを目的とする。
The present invention has been devised in order to solve such a problem, and utilizes the fact that when pulsed laser light is applied to the inside of glass, the refractive index of the focused and irradiated part changes. The purpose of the present invention is to form a required refractive index change region inside the glass and obtain a binary lens without going through complicated steps.

【0007】[0007]

【課題を解決するための手段】本発明のバイナリーレン
ズは、その目的を達成するため、ガラス内部に所定ピッ
チでリング状に形成された同心円配置の複数の細線状屈
折率変化領域からなるリング状の屈折率変化領域と、該
リング状の屈折率変化領域の周囲に形成したリング状の
屈折率未変化領域とが交互に形成されているものであ
る。ガラス内部のリング状細線状屈折率変化領域は、パ
ルスレーザ光に対してガラスを相対的に円運動させなが
らガラス内部に集光点を調節したパルスレーザ光を照射
して形成し、このリング状細線状屈折率変化領域を、リ
ング径を変えて同心円状に繰り返すことによりリング状
の屈折率変化領域を形成するものである。
In order to achieve the object, the binary lens of the present invention has a ring-shaped structure formed of a plurality of fine linear refractive index changing regions arranged concentrically in a ring shape at a predetermined pitch inside the glass. The refractive index changing region and the ring-shaped refractive index changing region formed around the ring-shaped refractive index changing region are alternately formed. The ring-shaped thin linear refractive index change region inside the glass is formed by irradiating the inside of the glass with pulsed laser light whose focal point is adjusted while circularly moving the glass relative to the pulsed laser light. The ring-shaped refractive index changing region is formed by repeating the thin linear refractive index changing region concentrically while changing the ring diameter.

【0008】[0008]

【作用および実施の態様】集光レンズ等の集光装置で集
光したパルスレーザ光でガラスを照射すると、照射部の
屈折率が局部的に増加する。そこで、パルスレーザ光の
焦点をガラス内部に調節して照射すると、ガラス表面を
傷付けることなく、ガラス内部に屈折率変化領域を形成
することができる。本発明者等は、パルスレーザ光の集
光照射による屈折率変化を利用してガラス内部にグレー
ティングを付けた光導波路を特開2000−24985
9号公報で紹介したが、本発明では同様なパルスレーザ
光の集光照射による屈折率変化を、ガラス内部でのバイ
ナリーレンズの形成に応用したものである。
[Operation and Embodiment] When the glass is irradiated with the pulsed laser light condensed by a condenser such as a condenser lens, the refractive index of the irradiated portion locally increases. Therefore, when the focus of the pulsed laser light is adjusted and irradiated inside the glass, it is possible to form the refractive index change region inside the glass without damaging the glass surface. The inventors of the present invention have disclosed an optical waveguide in which a grating is attached inside the glass by utilizing the change in the refractive index due to the focused irradiation of pulsed laser light.
As introduced in Japanese Patent Publication No. 9, the change of the refractive index due to the focused irradiation of the same pulsed laser light is applied to the formation of the binary lens inside the glass in the present invention.

【0009】具体的には、図3に示すように、ステージ
10にガラス基板11を載置し、集光レンズ12を透過
したパルスレーザ光15でガラス基板11を照射する。
パルスレーザ光15は、集光点16がガラス基板11の
内部に位置するように集光レンズ12で集光される。パ
ルスレーザ光15で集光照射されたガラス基板11は、
集光点16およびその近傍で屈折率が局部的に増加し、
残りの部分は当初の屈折率に維持される。そこで、シャ
ッター13を開の状態でパルスレーザ光15を照射しな
がらステージ10を平面内で回転させると集光点16が
ガラス基板11の内部を移動し、集光点16の移動軌跡
に対応する屈折率変化領域がガラス基板11内にリング
状に形成される。
Specifically, as shown in FIG. 3, the glass substrate 11 is placed on the stage 10, and the glass substrate 11 is irradiated with the pulsed laser light 15 transmitted through the condenser lens 12.
The pulsed laser light 15 is condensed by the condenser lens 12 so that the condensing point 16 is located inside the glass substrate 11. The glass substrate 11 focused and irradiated with the pulsed laser light 15 is
The refractive index locally increases at the focal point 16 and its vicinity,
The remaining part is maintained at the original refractive index. Therefore, when the stage 10 is rotated in the plane while irradiating the pulsed laser light 15 with the shutter 13 open, the converging point 16 moves inside the glass substrate 11 and corresponds to the movement locus of the converging point 16. The refractive index change region is formed in the glass substrate 11 in a ring shape.

【0010】その後、シャッター13を閉にしてステー
ジ10を水平移動し、再びシャッター13を開にしてパ
ルスレーザ光15を照射しながらステージ10を平面内
で回転させ、上記リング状屈折率変化領域とは異なった
径のリング状屈折率変化領域を形成する。ステージ10
の移動およびシャッター13の開閉は、コンピュータ1
4からの制御信号で制御される。上記パルスレーザ光1
5の照射とステージ10の移動の操作を繰り返すことに
より、ガラス内部にリング状屈折率変化領域を周期的に
形成することができる。このリング状屈折率変化領域で
入射波の位相を変化させ、回折現象を引き起こしてレン
ズ効果を得ることができる。
After that, the shutter 13 is closed and the stage 10 is moved horizontally, and the shutter 13 is opened again and the stage 10 is rotated in the plane while irradiating the pulsed laser light 15 to form the ring-shaped refractive index changing region. Form ring-shaped refractive index changing regions having different diameters. Stage 10
Of the computer 1 and the opening and closing of the shutter 13
It is controlled by the control signal from 4. Pulse laser light 1
By repeating the operations of irradiating 5 and moving the stage 10, ring-shaped refractive index changing regions can be periodically formed inside the glass. It is possible to obtain the lens effect by changing the phase of the incident wave in this ring-shaped refractive index changing region and causing the diffraction phenomenon.

【0011】バイナリーレンズの形成において重要なの
は、屈折率変化量Δnと屈折率変化部の入射レーザ方向
長さLの制御、およびゾーン半径rの正確な制御であ
る。使用レーザ波長をλとすると、回折効率はΔnL=
λ/2が成り立つとき最大になる。したがって、レーザ
平均出力や集光レンズ、スキャン速度を調整して最適条
件を検討する必要がある。一般にレーザ出力を上げる
か、またはスキャン速度を遅くするとΔnとLは増加す
る傾向にある。実際のバイナリーレンズの形成では図4
に示すように、同心円状の複数の細線状屈折率変化領域
からなるリング状の屈折率変化領域からなるゾーンと、
屈折率が変化していない領域からなるゾーンを交互に繰
り返し形成する作業を行う。すなわち、レーザスキャン
によって1本の細線状屈折率変化領域を形成し、スキャ
ン半径を変えて同様の操作を繰り返し複数本の同心円状
の細線状屈折率変化領域を形成して一つのリング状の屈
折率変化領域(図4中の太い輪)を形成する。その外側
に屈折率未変化領域を形成する。この操作を次に詳述す
る。
What is important in forming a binary lens is the control of the refractive index change amount Δn, the length L of the refractive index change portion in the incident laser direction, and the accurate control of the zone radius r. The diffraction efficiency is ΔnL =
It becomes maximum when λ / 2 holds. Therefore, it is necessary to examine the optimum conditions by adjusting the laser average output, the condenser lens, and the scanning speed. Generally, when the laser output is increased or the scanning speed is decreased, Δn and L tend to increase. Figure 4 shows the actual binary lens formation.
As shown in FIG. 2, a zone composed of a ring-shaped refractive index changing region composed of a plurality of concentric thin linear refractive index changing regions,
The work of forming the zones consisting of the regions where the refractive index has not changed alternately and repeatedly is performed. That is, one thin linear refractive index changing region is formed by laser scanning, the scan radius is changed, and the same operation is repeated to form a plurality of concentric thin linear refractive index changing regions to form one ring-shaped refractive index changing region. A rate change region (thick ring in FIG. 4) is formed. A refractive index unchanged region is formed on the outside thereof. This operation will be described in detail below.

【0012】まず、前記のゾーン半径rnで最内側リン
グをスキャンし、細線状屈折率変化領域を形成する。次
に半径を所定ピッチずつ増やして同心円状の複数本のリ
ングをスキャンし、リング状の屈折率変化領域を拡大し
ていく。その際、ピッチ間隔はゾーン内における屈折率
変化量の均一性を確保する上で、1回のスキャンで得ら
れる幅に等しくすることが望ましい。一方ピッチ間隔を
スキャンで得られる幅以下に設定することもでき、その
場合スキャンニングが重なり合った箇所では屈折率変化
量の増大が予想される。最後にゾーン半径rn+1でスキ
ャンすることにより、リング状の屈折率変化領域からな
るn番目のゾーンの形成が完了する。次のn+1番目の
ゾーンは屈折率を変化させない領域のゾーンであるの
で、ゾーン半径をrn+2に増やす。そして同様にリング
状の屈折率変化領域からなるn+2番目のゾーンを形成
していく。ゾーン半径と同心度は形成されるバイナリー
レンズの焦点距離に影響を及ぼすので、その正確な制御
が必要である。さらにゾーン数はレンズの開口数(N
A)を決定することになる。ちなみに、ゾーン数が多い
ほどNAは大きくなる。
First, the innermost ring is scanned with the zone radius r n to form a fine linear refractive index changing region. Next, the radius is increased by a predetermined pitch and a plurality of concentric rings are scanned to expand the ring-shaped refractive index change region. At this time, it is desirable that the pitch interval be equal to the width obtained by one scan in order to ensure the uniformity of the refractive index change amount within the zone. On the other hand, the pitch interval can be set to be equal to or smaller than the width obtained by scanning, and in that case, the amount of change in the refractive index is expected to increase at the portions where scanning overlaps. Finally, by scanning with the zone radius r n + 1 , the formation of the n-th zone consisting of the ring-shaped refractive index change region is completed. Since the next n + 1-th zone is a zone of a region where the refractive index is not changed, the zone radius is increased to r n + 2 . Then, similarly, the (n + 2) th zone consisting of a ring-shaped refractive index changing region is formed. Since the zone radius and the concentricity influence the focal length of the binary lens to be formed, its precise control is necessary. Furthermore, the number of zones is the numerical aperture of the lens (N
A) will be decided. Incidentally, the larger the number of zones, the larger the NA.

【0013】[0013]

【実施例】焦点距離30mm、使用波長633nm、ゾ
ーン数70のバイナリーレンズを得るために、図3に示
すようなスキャン装置を使用して、以下の操作を行っ
た。両面研磨された合成石英ガラスをガラス基板11と
して使用し、ステージ10に載置した。ガラス表面から
深さ1mmの位置に集光点16を調整し、波長800n
m、パルス幅1.3×10-13秒、繰り返し周期200
kHzのパルスレーザ光15を照射しながらステージ1
0を回転させて、ガラス内部にリング状のラインを書き
込んだ。適切な屈折率変化を誘起するために、レーザの
平均出力は300mW、スキャン速度は50μm/秒、
集光装置として対物レンズ20×(NA=0.4)の条
件を採用した。なお、ステージ10の移動およびシャッ
ター13の開閉はコンピュータ14によって制御されて
おり、プログラムされたスキャン半径に基づいて自動的
に書き込んだ。
EXAMPLES In order to obtain a binary lens having a focal length of 30 mm, a wavelength of 633 nm and a number of zones of 70, the following operation was performed using a scanning device as shown in FIG. A synthetic quartz glass having both sides polished was used as a glass substrate 11 and placed on the stage 10. Adjust the condensing point 16 to a position 1 mm deep from the glass surface, and
m, pulse width 1.3 × 10 -13 seconds, repetition period 200
Stage 1 while irradiating a pulse laser beam 15 of kHz
By rotating 0, a ring-shaped line was written inside the glass. The average power of the laser is 300 mW, the scan speed is 50 μm / sec, in order to induce the appropriate refractive index change,
The condition of the objective lens 20 × (NA = 0.4) was adopted as the light collecting device. The movement of the stage 10 and the opening / closing of the shutter 13 are controlled by the computer 14, and writing is automatically performed based on the programmed scan radius.

【0014】まず、最内側ゾーン半径r1=137.8
μmに基づき、線幅分を考慮した半径140.3μmの
リングをスキャンし細線状屈折率変化領域を形成した。
次に半径を5μmずつ増やしてリングをスキャンし10
本目の半径190.3μmになるまで継続することによ
って、リング状の屈折率変化領域を拡大していった。最
後に2番目のゾーン半径r2=194.9μmに基づ
き、線幅分を考慮した半径192.4μmのリングをス
キャンしてリング状の屈折率変化領域からなる1番目の
ゾーンを形成した。次に2番目のゾーンは屈折率を変化
させない領域であるのでレーザを照射せず、3番目のゾ
ーン半径r3=238.7μmに移動し、線幅分を考慮
した半径241.2μmのリングをスキャンし細線状屈
折率変化領域を形成した。次に半径を5μmずつ増やし
てリングをスキャンし6本目の半径271.2μmにな
るまで継続することによって、リング状の屈折率変化領
域を拡大していった。最後に4番目のゾーン半径r4
275.6μmに基づき、線幅分を考慮した半径27
3.1μmのリングをスキャンしてリング状の屈折率変
化領域からなる3番目のゾーンを形成した。
First, the innermost zone radius r 1 = 137.8
Based on μm, a ring having a radius of 140.3 μm in consideration of the line width was scanned to form a thin linear refractive index changing region.
Then scan the ring by increasing the radius by 5 μm and
The ring-shaped refractive index change region was expanded by continuing the operation until the actual radius became 190.3 μm. Finally, based on the second zone radius r 2 = 194.9 μm, a ring having a radius of 192.4 μm in consideration of the line width was scanned to form the first zone consisting of a ring-shaped refractive index changing region. Next, since the second zone is a region where the refractive index is not changed, the laser is not irradiated and the third zone is moved to the radius r 3 = 238.7 μm. Scanning was performed to form a fine linear refractive index change region. Next, the radius was increased by 5 μm and the ring was scanned and continued until the sixth radius became 271.2 μm, whereby the ring-shaped refractive index change region was expanded. Finally the fourth zone radius r 4 =
Radius 27 considering line width based on 275.6 μm
A 3.1 μm ring was scanned to form a third zone consisting of a ring-shaped refractive index changing region.

【0015】本実施例では、上記手法を繰り返し、70
のゾーンを形成して、バイナリーレンズを作製した。作
製したバイナリーレンズの顕微鏡写真を図5に示す。ま
た波長633nmのHe−Neレーザを当てた際の出射
像を図6に示す。焦点距離を測定したところ30mmで
あり、設計通りのものが得られていることを確認した。
In the present embodiment, the above method is repeated to obtain 70
A zone was formed to make a binary lens. A photomicrograph of the prepared binary lens is shown in FIG. Further, FIG. 6 shows an emission image when a He—Ne laser having a wavelength of 633 nm is applied. The focal length was measured and found to be 30 mm, confirming that the product as designed was obtained.

【0016】[0016]

【発明の効果】以上に説明したように、本発明において
は、パルスレーザ光照射によってガラス内部にリング状
の屈折率変化領域を形成し、バイナリーレンズを製造す
ることができた。これにより、マスクパターンを用いた
従来のフォトエッチング法に比較して工程数および材料
を大幅に減少させることができる。さらに、従来はガラ
ス表面にしか形成できなかったバイナリーレンズと同じ
レンズ効果を、ガラス内部に形成することができるの
で、同じガラス内部に形成した他の素子との組み合わせ
が可能となり、3次元的に集積させた3次元光集積回路
への発展も期待できる。
As described above, in the present invention, a binary lens can be manufactured by forming a ring-shaped refractive index changing region inside the glass by irradiation with pulsed laser light. As a result, the number of steps and materials can be significantly reduced as compared with the conventional photoetching method using a mask pattern. Furthermore, since the same lens effect as that of a binary lens that can be formed only on the glass surface in the past can be formed inside the glass, it is possible to combine with other elements formed inside the same glass, and three-dimensionally. The development of integrated 3D optical integrated circuits can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 バイナリーレンズの原理を説明する図FIG. 1 is a diagram illustrating the principle of a binary lens.

【図2】 従来のフォトエッチング法による、ガラス表
面でのバイナリーレンズ作製過程を示すフロー
FIG. 2 is a flow showing a process of producing a binary lens on a glass surface by a conventional photoetching method.

【図3】 本発明法に従ってパルスレーザ光の集光照射
でガラス基板の内部にリング状の屈折率変化領域を形成
する方法の説明図
FIG. 3 is an explanatory view of a method of forming a ring-shaped refractive index changing region inside a glass substrate by converging irradiation of pulsed laser light according to the method of the present invention.

【図4】 ゾーンの書き込み手順を説明する図FIG. 4 is a diagram illustrating a zone writing procedure.

【図5】 バイナリーレンズを顕微鏡観察した際の観察
面概略図
FIG. 5 is a schematic view of an observation surface when observing the binary lens with a microscope.

【図6】 出射像FIG. 6 Output image

【符号の説明】[Explanation of symbols]

10:ステージ、 11:ガラス基板、 1
2:集光レンズ、13:シャッター、 14:コン
ピュータ、 15:パルスレーザ光、16:集光点
10: Stage, 11: Glass Substrate, 1
2: Condensing lens, 13: Shutter, 14: Computer, 15: Pulsed laser light, 16: Focusing point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 一之 京都府相楽郡木津町木津川台3−5−8 Fターム(参考) 2H049 AA04 AA33 AA45 AA57 AA69 4G059 AA11 AB05 AC09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuyuki Hirao             3-5-8 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto Prefecture F-term (reference) 2H049 AA04 AA33 AA45 AA57 AA69                 4G059 AA11 AB05 AC09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス内部に所定ピッチでリング状に形
成された同心円配置の複数の細線状屈折率変化領域から
なるリング状の屈折率変化領域と、該リング状の屈折率
変化領域の周囲に形成したリング状の屈折率未変化領域
とが交互に形成されていることを特徴とするバイナリー
レンズ。
1. A ring-shaped refractive index changing region composed of a plurality of concentrically arranged fine linear refractive index changing regions formed in a ring shape at a predetermined pitch inside glass, and around the ring-shaped refractive index changing region. A binary lens characterized in that the formed ring-shaped refractive index unchanged regions are formed alternately.
【請求項2】 前記細線状屈折率変化領域は集光点をガ
ラス内部に設定したパルスレーザ光の集光照射によって
形成したものである請求項1に記載のバイナリーレン
ズ。
2. The binary lens according to claim 1, wherein the thin linear refractive index changing region is formed by converging irradiation of pulsed laser light with a condensing point set inside the glass.
【請求項3】 パルスレーザ光に対してガラスを相対的
に円運動させながらガラス内部に集光点を調節したパル
スレーザ光を照射し、ガラス内部に細線状屈折率変化領
域をリング状に形成する工程を、所定ピッチでリング径
を変えて繰り返すことを特徴とする請求項1に記載のバ
イナリーレンズの製造方法。
3. A fine linear refractive index change region is formed in the glass in a ring shape by irradiating the inside of the glass with a pulsed laser light whose focal point is adjusted while circularly moving the glass relative to the pulsed laser light. The method of manufacturing a binary lens according to claim 1, wherein the step of repeating is repeated by changing the ring diameter at a predetermined pitch.
JP2001224862A 2001-07-25 2001-07-25 Binary lens and its manufacturing method Pending JP2003035809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224862A JP2003035809A (en) 2001-07-25 2001-07-25 Binary lens and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224862A JP2003035809A (en) 2001-07-25 2001-07-25 Binary lens and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003035809A true JP2003035809A (en) 2003-02-07

Family

ID=19057952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224862A Pending JP2003035809A (en) 2001-07-25 2001-07-25 Binary lens and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003035809A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137355A1 (en) * 2005-06-20 2006-12-28 Riverbell Co., Ltd. Multifocal lens and imaging system
JP2007025177A (en) * 2005-07-15 2007-02-01 Namiki Precision Jewel Co Ltd Refractive index control type of diffractive optical element, and method for producing same
JP2007248062A (en) * 2006-03-13 2007-09-27 Namiki Precision Jewel Co Ltd Short wavelength ultraviolet detector and its manufacturing method
US8547008B2 (en) 2006-01-12 2013-10-01 Ppg Industries Ohio, Inc. Material having laser induced light redirecting features
US8629610B2 (en) 2006-01-12 2014-01-14 Ppg Industries Ohio, Inc. Display panel
WO2020063446A1 (en) * 2018-09-30 2020-04-02 京东方科技集团股份有限公司 Optical lens module and virtual reality device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137355A1 (en) * 2005-06-20 2006-12-28 Riverbell Co., Ltd. Multifocal lens and imaging system
JP2007025177A (en) * 2005-07-15 2007-02-01 Namiki Precision Jewel Co Ltd Refractive index control type of diffractive optical element, and method for producing same
US7672050B2 (en) 2005-07-15 2010-03-02 Namiki Semitsu Houseki Kabushiki Kaisha Refractive index controlled diffractive optical element and its manufacturing method
US8547008B2 (en) 2006-01-12 2013-10-01 Ppg Industries Ohio, Inc. Material having laser induced light redirecting features
US8629610B2 (en) 2006-01-12 2014-01-14 Ppg Industries Ohio, Inc. Display panel
JP2007248062A (en) * 2006-03-13 2007-09-27 Namiki Precision Jewel Co Ltd Short wavelength ultraviolet detector and its manufacturing method
WO2020063446A1 (en) * 2018-09-30 2020-04-02 京东方科技集团股份有限公司 Optical lens module and virtual reality device
US11543657B2 (en) 2018-09-30 2023-01-03 Beijing Boe Optoelectronics Technology Co., Ltd. Optical lens module and virtual reality device

Similar Documents

Publication Publication Date Title
US7482052B2 (en) Method for processing by laser, apparatus for processing by laser, and three-dimensional structure
KR100946009B1 (en) Resist Material and Microfabrication Method
JP4006994B2 (en) Three-dimensional structure processing method, three-dimensional product manufacturing method, and three-dimensional structure
Lim et al. Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning
JP2007128115A (en) Embedded etch stop for phase shift mask and planar phase shift mask to reduce topography induced and waveguide effect
Poleshchuk et al. Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile
CN1259171C (en) Flash second multiple frequency laser direct writing system and microprocessing method
JP2003035809A (en) Binary lens and its manufacturing method
JP3205241B2 (en) Method of manufacturing phase-shift photomask for use in optical lithography and phase-shift photomask
JP2010537258A (en) Lithographic method for continuous direct writing of images
US20050287445A1 (en) Method of making grayscale mask for grayscale doe production by using an absorber layer
JP5026967B2 (en) Manufacturing method of three-dimensional photonic crystal
JP2003014915A (en) Optical element with dammann grating
JP3859991B2 (en) Pattern forming method and apparatus using near-field light
JP3635701B2 (en) Processing equipment
JP3282418B2 (en) Processing method and processing apparatus for diffractive optical element
JP2003043698A (en) Method of manufacturing fine structure, laser lithography system, method of manufacturing electro- optic device and apparatus for manufacturing electro- optic device
JP2005224841A (en) Method and apparatus for laser beam machining, and method for manufacturing structure by using method for laser beam machining
JP6054698B2 (en) Manufacturing method of fine structure
Poleshchuk et al. Laser Technologies in Micro-Optics. Part 2. Fabrication of Elements with Three-Dimensional Microrelief
Kuts et al. Thermochemical laser writing of chromium grayscale masks and their application for fabrication of multilevel diffractive optical elements
JP2003036570A (en) Method for manufacturing recording medium master disk and exposure system for recording medium master disk
JP2014500523A (en) Laser direct writing system to mesa structure with side wall with reverse slope
JP2002090980A (en) Distributed density mask and method for producing the same
JPH1082905A (en) Manufacture of zone plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119