JP2003034865A - Hard carbon film, method and apparatus for manufacturing the same and application thereof - Google Patents

Hard carbon film, method and apparatus for manufacturing the same and application thereof

Info

Publication number
JP2003034865A
JP2003034865A JP2001222095A JP2001222095A JP2003034865A JP 2003034865 A JP2003034865 A JP 2003034865A JP 2001222095 A JP2001222095 A JP 2001222095A JP 2001222095 A JP2001222095 A JP 2001222095A JP 2003034865 A JP2003034865 A JP 2003034865A
Authority
JP
Japan
Prior art keywords
carbon
ion
ions
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001222095A
Other languages
Japanese (ja)
Other versions
JP4072614B2 (en
Inventor
Kazuhiro Yamamoto
和弘 山本
Yoshinori Koga
義紀 古賀
Sumio Iijima
澄男 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001222095A priority Critical patent/JP4072614B2/en
Publication of JP2003034865A publication Critical patent/JP2003034865A/en
Application granted granted Critical
Publication of JP4072614B2 publication Critical patent/JP4072614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard carbon film, a method and an apparatus for manu facturing the same and applications thereof. SOLUTION: The method for manufacturing the hard carbon film comprising, generating carbide ions, drawing them from an ion source, mass separating them, converging them, deflecting and decelerating them, and depositing them on a substrate, is characterized by the vacuum degree in a vacuum vessel for depositing carbide ions on the substrate of 1×10<-6> Pa or less, and the energy of carbide ions depositing on the substrate of 50-150 eV. The hard carbon film is characterized by being manufactured with the above method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は摺動部品、磁気記録媒
体、工具等の表面保護膜としてに使用される硬質材料に
係り、特に耐摺動性に優れた高硬度を有する硬質材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard material used as a surface protection film for sliding parts, magnetic recording media, tools and the like, and more particularly to a hard material having excellent sliding resistance and high hardness.

【0002】[0002]

【従来の技術】摺動部品、磁気記録媒体、工具等の表面
保護膜としてに使用される硬質材料においては、窒化チ
タン、窒化ジルコニウム、窒化ボロン、窒化シリコン等
の窒化物系薄膜や炭化シリコン、炭化ホウ素、炭化チタ
ン、炭化タングステン等の炭化物系薄膜が用いられてい
る。従来の表面保護膜作製技術が、セラミックコーティ
ング(竹田博光著、日刊工業新聞社、1988年)に記
載されている。また近年では炭素のsp3結合を多く含
有したダイヤモンド状炭素膜も表面保護膜として使用さ
れるようになった。ダイヤモンド状炭素膜に関する従来
技術がジャーナル・オブ・バキューム・サイエンス・テ
クノロジーA5巻3287ー3312(1987年)に記
載されている。
2. Description of the Related Art Hard materials used as surface protection films for sliding parts, magnetic recording media, tools, etc. include titanium nitride, zirconium nitride, boron nitride, nitride-based thin films such as silicon nitride, and silicon carbide, A carbide-based thin film such as boron carbide, titanium carbide, or tungsten carbide is used. A conventional technique for producing a surface protective film is described in Ceramic Coating (Hiromitsu Takeda, Nikkan Kogyo Shimbun, 1988). In recent years, a diamond-like carbon film containing a large amount of carbon sp3 bonds has also come to be used as a surface protective film. Prior art on diamond-like carbon film is described in Journal of Vacuum Science Technology, Volume A5, 3287-3312 (1987).

【0003】[0003]

【発明が解決しようとする課題】従来技術の硬質材料を
摺動部品、磁気記録媒体、工具等の表面保護膜に用いる
場合、長時間の使用により保護膜が摩耗してやがて消失
するという問題がある。この問題を解決するためには従
来の硬質材料よりも大きな硬度を有して耐摺動性に優れ
た材料を用いればよい。最大の硬度を示す材料はダイヤ
モンドであるが、従来技術で表面保護膜に用いる場合、
ダイヤモンド膜は多結晶膜となり、表面の平坦性が悪
く、良好な摩耗特性を示さないという問題がある。そこ
で従来技術では、非晶質構造を有する炭素薄膜をスパッ
タリングや化学反応蒸着法等で形成して、硬質膜として
用いている。ところが従来技術で得られる炭素薄膜は、
炭素原子間にsp的結合の他にsp的結合やsp的
結合が存在するため、十分な硬度を示さないという問題
がある。そのため炭素原子間にダイヤモンド結合である
sp3的結合を多く形成し、高硬度を示す炭素薄膜を形
成する技術が望まれていた。
When the conventional hard material is used for the surface protection film of sliding parts, magnetic recording media, tools, etc., there is a problem that the protection film is worn out and disappears after a long period of use. is there. In order to solve this problem, a material having a hardness higher than that of a conventional hard material and excellent in sliding resistance may be used. The material showing the maximum hardness is diamond, but when used in the surface protection film in the conventional technology,
The diamond film becomes a polycrystalline film and has a problem that the surface flatness is poor and the diamond film does not show good wear characteristics. Therefore, in the prior art, a carbon thin film having an amorphous structure is formed as a hard film by sputtering or chemical reaction vapor deposition. However, the carbon thin film obtained by the conventional technology is
Since there are sp 2 bonds and sp bonds other than sp 3 bonds between carbon atoms, there is a problem that sufficient hardness is not exhibited. Therefore, there has been a demand for a technique for forming a carbon thin film having high hardness by forming many sp3 bonds, which are diamond bonds, between carbon atoms.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では炭素イオンのみを用いて任意のイオンエ
ネルギーに制御し、それを基板上に堆積させる製造装置
を用いた。10-6Pa以下好ましくは10-7Pa以下の真空度
で、50〜150eVのエネルギーで炭素薄膜を製造する。本
方法によれば、炭素原子間にsp3共有結合を安定に生
じさせて、従来技術を凌ぐ優れた硬質材料を実現するこ
とができる。
In order to solve the above problems, the present invention uses a manufacturing apparatus in which only carbon ions are used to control the ion energy to an arbitrary value and the carbon ions are deposited on a substrate. A carbon thin film is produced at a vacuum degree of 10 −6 Pa or less, preferably 10 −7 Pa or less, and energy of 50 to 150 eV. According to this method, sp3 covalent bonds can be stably generated between carbon atoms, and an excellent hard material that is superior to the conventional technique can be realized.

【0005】[0005]

【発明の実施の形態】本発明者らは炭素原子間にsp
的結合を有した高硬度の炭素材料を作製する検討を行っ
てきた。その結果、炭素イオンを生成するイオン源から
イオンを引き出し,質量分離装置により炭素イオンのみ
を選別し,イオン収束機構により空間電荷によるイオン
の発散を防ぎ,イオン偏向機構により電荷交換作用によ
り生じた高速の炭素中性粒子を除去した後に,真空容器
中でイオン減速機構により低エネルギーに制御して炭素
イオンを基材に堆積させる製造装置を考案した。本装置
によれば、0.2mA/cm2以上のイオン電通密度が得られ
た。真空容器中の真空度が10-7Pa以下とし、基板に堆
積する炭素イオンエネルギーが50〜150eVとした時に、
炭素原子間のsp的結合が安定に形成されることを見
出した。従来技術によれば炭素原子間にsp結合を効
率的に形成することは困難であり、sp結合やsp 結合を
多く含んだ炭素材料しか作製できなかった。しかし、本
発明によれば炭素原子間に強固なsp結合が形成さ
れ、sp結合の割合いが85%以上の炭素膜が得られる。
硬さは80GPa、摩擦係数は0.1以下、比摩耗量は10-8以下
の従来技術以上の機械的特性を示す炭素材料が実現され
る。
BEST MODE FOR CARRYING OUT THE INVENTIONThree
To make a high hardness carbon material with dynamic bonding
Came. As a result, from an ion source that produces carbon ions
Extraction of ions, only carbon ions by mass separation device
Ions by space charge are selected by the ion focusing mechanism.
Divergence of ions and the charge exchange action by the ion deflection mechanism.
After removing the high-speed carbon neutral particles generated by
In the inside of the carbon
We devised a manufacturing device that deposits ions on a substrate. This device
According to the results, an ion conduction density of 0.2 mA / cm2 or more was obtained.
It was Set the degree of vacuum in the vacuum container to 10-7 Pa or less and stack it on the substrate.
When the accumulated carbon ion energy is 50 to 150 eV,
Sp between carbon atomsThreeThat the stable bond is formed stably
I put it out. According to the prior art, sp between carbon atomsThreeJoin effect
Difficult to form efficiently, sp-joins and sp TwoJoin
Only carbon material containing a large amount could be produced. But the book
According to the invention, a strong sp between carbon atomsThreeBond formed
, SpThreeA carbon film with a bond ratio of 85% or more is obtained.
Hardness is 80 GPa, friction coefficient is 0.1 or less, specific wear amount is 10-8Less than
A carbon material with more mechanical properties than the conventional technology has been realized.
It

【0006】[0006]

【実施例】本発明を具体化した例について述べるが、本
発明はこれに拘束されるものでないことは言うに及ばな
い。
EXAMPLES Examples in which the present invention is embodied will be described, but it goes without saying that the present invention is not limited to these.

【0007】[0007]

【実施例1】炭素イオンを生成するイオン源、イオンを
イオン源から引き出す機構、イオンの質量分離機構、イ
オン収束機構、イオン偏向機構、イオン減速機構、及び
炭素イオンを基材に堆積させる真空容器からなる製造装
置を作製した。イオンの質量分離機構としてセクター型
の電磁石を、イオン収束機構として4重極電磁石3つか
らなる電磁レンズを用いた。イオン偏向機構としてセク
ター型の電磁石を、イオン減速機構としては静電場を形
成する電極を用いた。イオン源部分に2台、質量分離機
構とイオン収束機構の間に1台、イオン収束機構とイオ
ン偏向機構の間に1台、及び真空容器部分に1台クライ
オポンプを取り付け、さらにクライオポンプの前段ポン
プとしてロータリーポンプとターボ分子ポンプからなる
排気機構を取り付け、真空排気を行った。これらの真空
排気機構により、到達真空後は真空容器部分で3×10-8P
a、イオン偏向機構部分で8×10-7Pa、質量分離機構部分
で5×10-5Paとなった。
Example 1 Ion source for producing carbon ions, mechanism for extracting ions from the ion source, ion mass separation mechanism, ion focusing mechanism, ion deflection mechanism, ion deceleration mechanism, and vacuum container for depositing carbon ions on a substrate A manufacturing apparatus consisting of A sector type electromagnet was used as the ion mass separation mechanism, and an electromagnetic lens consisting of three quadrupole electromagnets was used as the ion focusing mechanism. A sector type electromagnet was used as the ion deflection mechanism, and an electrode forming an electrostatic field was used as the ion deceleration mechanism. Two cryopumps were attached to the ion source part, one between the mass separation mechanism and the ion focusing mechanism, one between the ion focusing mechanism and the ion deflection mechanism, and one in the vacuum container part. An exhaust mechanism consisting of a rotary pump and a turbo molecular pump was attached as a pump, and vacuum exhaust was performed. With these vacuum exhaust mechanisms, after the ultimate vacuum is reached, 3 × 10 -8 P in the vacuum container
a, 8 × 10 -7 Pa for the ion deflection mechanism and 5 × 10 -5 Pa for the mass separation mechanism.

【0008】上記装置を用いて炭素薄膜を作製した。装
置内にシリコン単結晶(100)基板を設置した後、装
置内を3×10-8Pa以下まで真空排気した。炭素の原料ガ
スとして二酸化炭素を用いた。イオン源内で原料ガスの
プラズマを生成した後、イオンを接地電位に対して-35k
Vで引き出した。この時、イオンをイオン源から引き出
す機構、イオンの質量分離機構、イオン収束機構、イオ
ン偏向機構は全て-35kVとなっている。イオン源は接地
電位に対して正電位にし、この電位により最終的に真空
容器内のシリコン基板に到達するイオンエネルギーを決
めている。引き出したイオン束から質量分離電磁石によ
り原子量12の炭素イオンのみを選別し、イオン収束機構
である4重極電磁石レンズによりイオン電流が最大とな
るように収束した。さらにイオン偏向電磁石により炭素
イオンを真空容器内曲げて真空容器内に導入し、イオン
を減速してシリコン基板に照射した。イオン照射中の真
空容器内の真空度は5×10-7Pa、イオン電流密度は0.2mA
/cm2であった。炭素イオンエネルギーを100eV に固定し
て、上記記載の5×10-7Paの真空中でシリコン基板に照
射して炭素薄膜を作製した。
A carbon thin film was produced using the above apparatus. After the silicon single crystal (100) substrate was placed in the apparatus, the inside of the apparatus was evacuated to 3 × 10 −8 Pa or less. Carbon dioxide was used as a carbon source gas. After generating the plasma of the source gas in the ion source, the ions are -35k to the ground potential.
I pulled it out with V. At this time, the mechanism for extracting ions from the ion source, the ion mass separation mechanism, the ion focusing mechanism, and the ion deflection mechanism are all at -35 kV. The ion source is set to a positive potential with respect to the ground potential, and this potential determines the ion energy that finally reaches the silicon substrate in the vacuum container. From the extracted ion flux, only carbon ions having an atomic weight of 12 were selected by the mass separation electromagnet, and the ion current was converged by the quadrupole electromagnet lens so as to maximize the ion current. Further, carbon ions were bent in the vacuum container by an ion deflection electromagnet and introduced into the vacuum container, and the ions were decelerated to irradiate the silicon substrate. The degree of vacuum in the vacuum container during ion irradiation is 5 × 10-7 Pa, and the ion current density is 0.2 mA.
It was / cm2. The carbon ion energy was fixed at 100 eV, and the silicon substrate was irradiated in the above-mentioned vacuum of 5 × 10 −7 Pa to form a carbon thin film.

【0009】(比較例)さらに真空容器とクライオポン
プ間のバルブを半開にすることにより、イオン照射中の
真空度6×10-5Paとして炭素薄膜を作製した。後者は従
来技術の作製条件であり、本発明の優位点を明らかにす
るために、比較するために行ったものである。作製した
炭素膜の化学結合状態を調べるため、エネルギーフィル
ターを内蔵した透過型電子顕微鏡(TEM)を用いて電子線
エネルギー損失分光(EELS)を行った。炭素のK端のEELS
スペクトルを調べた結果、イオン照射時の真空度により
異なったEELSスペクトルを示した。284eVに内殻からπ
*への遷移によるエネルギー損失ピークが見られると、
炭素がπ結合を持つことが判る。この284eVのエネルギ
ー損失ピークの積分強度を比較することにより、膜中の
sp結合比を算出することができる。5×10-7Paの真空
中で作製した炭素薄膜中のsp結合比は85%であるのに
対して、6×10-5Paの真空中で作製した炭素薄膜中のsp
結合比は34%であった。これは6×10-5Paの真空中で
作製した場合、炭素イオンが基板までの輸送中に残留ガ
スと衝突して電荷交換効果により中性粒子となり、減速
されずに基板に照射されたために堆積した炭素膜への損
傷となり、より熱的平衡相であるsp結合になったため
である。従って、本発明により炭素イオン照射中の圧力
を1×10-6Pa以下とすることにより、損傷のないsp
合を多く含む炭素膜が作製できることが分かった。次
に、5×10-7Paの真空中で基板に照射する炭素イオンの
エネルギーを変化させて炭素薄膜を作製した。炭素イオ
ンエネルギーを30〜1000eVの範囲で変化させた。作製し
た炭素薄膜について炭素のK端のEELSスペクトルを調べ
た結果、EELSスペクトルには炭素エネルギーに強く依存
することが分かった。上記方法によって、EELSスペクト
ルから膜中のsp結合比を算出して、sp結合比のイオ
ンエネルギー依存性を図1に示す。炭素イオンエネルギ
ーが50〜150eVのとき、炭素膜中のsp結合比が80%
以上となることがわかる。
Comparative Example Further, a valve between the vacuum container and the cryopump was opened halfway to produce a carbon thin film with a vacuum degree of 6 × 10 −5 Pa during ion irradiation. The latter is a manufacturing condition of the prior art, and is for comparison in order to clarify the advantage of the present invention. Electron beam energy loss spectroscopy (EELS) was performed using a transmission electron microscope (TEM) with a built-in energy filter to investigate the chemical bonding state of the prepared carbon film. EELS at the K end of carbon
As a result of investigating the spectra, EELS spectra differed depending on the degree of vacuum during ion irradiation. Π from the inner shell to 284 eV
When the energy loss peak due to the transition to * is seen,
It turns out that carbon has a π bond. By comparing the integrated intensity of the energy loss peak at 284 eV,
The sp 3 binding ratio can be calculated. The sp 3 bond ratio in a carbon thin film prepared in a vacuum of 5 × 10 -7 Pa is 85%, whereas the sp 3 bond ratio in a carbon thin film prepared in a vacuum of 6 × 10 -5 Pa is 85%.
The 3- bond ratio was 34%. This is because when produced in a vacuum of 6 × 10 -5 Pa, the carbon ions collide with the residual gas during transport to the substrate, become neutral particles due to the charge exchange effect, and are irradiated onto the substrate without deceleration. This is because the deposited carbon film was damaged and sp 2 bonds, which are a more thermal equilibrium phase, were formed. Therefore, according to the present invention, it was found that by setting the pressure during carbon ion irradiation to 1 × 10 −6 Pa or less, a carbon film containing many sp 3 bonds without damage can be produced. Next, the energy of carbon ions with which the substrate was irradiated was changed in a vacuum of 5 × 10 −7 Pa to form a carbon thin film. The carbon ion energy was changed in the range of 30 to 1000 eV. As a result of investigating the K-edge EELS spectrum of the produced carbon thin film, it was found that the EELS spectrum strongly depends on carbon energy. The sp 3 binding ratio in the film was calculated from the EELS spectrum by the above method, and the ion energy dependence of the sp 3 binding ratio is shown in FIG. When the carbon ion energy is 50 to 150 eV, the sp 3 bond ratio in the carbon film is 80%
It turns out that it is above.

【0010】[0010]

【実施例2】実施例1で作製した炭素薄膜について硬さ
試験機により硬さ試験を行った。硬さ試験機は日本ビー
コ(株)のNanoindenter XPを用いて行い、バーコビッ
チ型ダイヤモンド圧子を用いた。標準試料として二酸化
硅素ガラスにより校正した。作製した炭素薄膜の硬さの
イオンエネルギー依存性を図2に示す。硬さは炭素薄膜
中のsp結合比と非常に良い相関があり、sp結合比が
最大となる50〜150eVのとき硬さも最大値80GPaを示す。
次にピン/ディスク型摺動試験により摩耗試験を行っ
た。試験は相対湿度が10%以下の乾燥空気中で行った。
相手側試験片としては直径が1mmの炭化硅素ボールを
用いた。試験は1Nの荷重のもとに毎分5cmの相対速度で
摺動試験を行った。求めた摩擦係数の炭素イオンエネル
ギー依存性を図3に示す。sp結合比が85%であり硬
さが80GPaの最大値を示す、イオンエネルギーが50〜150
eVで作製した炭素薄膜は、摩擦係数が0.07〜0.08と最も
低い値を示し良好であった。また試験後の摩耗跡から比
摩耗量を算出した。求めた比摩耗量の炭素イオンエネル
ギー依存性を図4に示す。イオンエネルギーが50〜150e
Vで作製した炭素薄膜は、比摩耗量が10-9乗台の良好な
値を示し、摩擦により削られにくいことがわかった。以
上から、sp結合比が85%となるイオンエネルギーが
50〜150eVで作製した炭素薄膜は、硬くて、摩擦特性が
良好で削られにくいことが明らかになった。本発明によ
る炭素薄膜を用いた摺動材、磁気記録媒体、切削加工工
具は、従来技術により作製した炭素膜を用いた場合より
も良好な耐摺動性と耐久性を示した。
[Example 2] The carbon thin film produced in Example 1 was subjected to a hardness test with a hardness tester. As a hardness tester, Nanoindenter XP manufactured by Nippon Biko Co., Ltd. was used, and a Berkovich type diamond indenter was used. It was calibrated with silicon dioxide glass as a standard sample. FIG. 2 shows the dependence of the hardness of the prepared carbon thin film on the ion energy. The hardness has a very good correlation with the sp 3 bond ratio in the carbon thin film, and the hardness shows a maximum value of 80 GPa when the sp 3 bond ratio is 50 to 150 eV, which is the maximum.
Next, a wear test was performed by a pin / disk type sliding test. The test was performed in dry air with a relative humidity of 10% or less.
A silicon carbide ball having a diameter of 1 mm was used as the mating test piece. The test was a sliding test at a relative speed of 5 cm / min under a load of 1N. FIG. 3 shows the dependence of the obtained friction coefficient on carbon ion energy. The sp 3 bond ratio is 85%, the hardness shows the maximum value of 80 GPa, and the ion energy is 50 to 150
The carbon thin film prepared by eV had a friction coefficient of 0.07 to 0.08, which was the lowest value and was good. Further, the specific wear amount was calculated from the wear mark after the test. The carbon ion energy dependence of the calculated specific wear amount is shown in FIG. Ion energy is 50 to 150e
It was found that the carbon thin film prepared by V showed a good specific wear amount in the order of 10 -9 , and was difficult to be abraded by friction. From the above, the ion energy at which the sp 3 bond ratio becomes 85% is
It was revealed that the carbon thin film prepared at 50-150 eV is hard, has good friction characteristics, and is not easily scraped. The sliding material using the carbon thin film, the magnetic recording medium, and the cutting tool according to the present invention showed better sliding resistance and durability than those using the carbon film produced by the conventional technique.

【0011】[0011]

【発明の効果】本発明によれば、炭素薄膜中の炭素原子
間にsp結合を安定に形成できるため、きわめて高硬
度の炭素薄膜を得ることができる。特に摺動部品、磁気
記録媒体、工具等の表面保護膜として用いれば耐摩耗性
に優れた効果を示す。
According to the present invention, since sp 3 bonds can be stably formed between carbon atoms in a carbon thin film, a carbon thin film having an extremely high hardness can be obtained. In particular, when it is used as a surface protective film for sliding parts, magnetic recording media, tools, etc., it exhibits an excellent effect of abrasion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 炭素イオンエネルギーとsp結合の生成比
FIG. 1 Carbon ion energy and sp 3 bond formation ratio

【図2】 炭素イオンエネルギーと硬さの関係図Figure 2: Relationship between carbon ion energy and hardness

【図3】 炭素イオンエネルギーと摩擦係数の関係図[Fig. 3] Relationship between carbon ion energy and friction coefficient

【図4】 炭素イオンエネルギーと摩耗量の関係図[Fig. 4] Relationship between carbon ion energy and wear amount

フロントページの続き Fターム(参考) 3C046 FF02 FF12 FF23 4K029 AA06 BA34 BC02 BD05 BD11 CA10 EA03 5D006 AA02 FA02 5D112 AA07 BC05 FA06 Continued front page    F-term (reference) 3C046 FF02 FF12 FF23                 4K029 AA06 BA34 BC02 BD05 BD11                       CA10 EA03                 5D006 AA02 FA02                 5D112 AA07 BC05 FA06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 炭素イオンを生成させ、炭素イオンをイ
オン源から引き出し、炭素イオンを質量分離し、炭素イ
オンを収束させ、炭素イオンを偏向させ、炭素イオン減
速し、そして炭素イオンを基材に堆積させ硬質炭素膜を
得る方法において、炭素イオンを基材に堆積させる真空
容器の真空度が1×10-6Pa以下であり、かつ基材に堆積
させる炭素イオンのエネルギーが50〜150eVである製造
方法により得られた硬質炭素膜。
1. A carbon ion is generated, the carbon ion is extracted from an ion source, the carbon ion is mass-separated, the carbon ion is converged, the carbon ion is deflected, the carbon ion is decelerated, and the carbon ion is used as a base material. In the method for obtaining a hard carbon film by depositing, the vacuum degree of a vacuum container for depositing carbon ions on a substrate is 1 × 10 −6 Pa or less, and the energy of carbon ions deposited on the substrate is 50 to 150 eV. Hard carbon film obtained by the method.
【請求項2】 炭素原子間にsp3共有結合を40%以上
有していることを特徴とする硬質炭素膜材料。
2. A hard carbon film material having 40% or more of sp 3 covalent bonds between carbon atoms.
【請求項3】 炭素イオンを生成させ、炭素イオンをイ
オン源から引き出し、炭素イオンを質量分離し、炭素イ
オンを収束させ、炭素イオンを偏向させ、炭素イオン減
速し、そして炭素イオンを基材に堆積させ硬質炭素膜を
得る方法において、炭素イオンを基材に堆積させる真空
容器の真空度が1×10-6Pa以下であり、かつ基材に堆積
させる炭素イオンのエネルギーが50〜150eVである硬質
炭素膜の製造方法。
3. Carbon ions are generated, the carbon ions are extracted from an ion source, the carbon ions are mass separated, the carbon ions are converged, the carbon ions are deflected, the carbon ions are decelerated, and the carbon ions are used as a base material. In the method for obtaining a hard carbon film by depositing, the vacuum degree of the vacuum container for depositing carbon ions on the substrate is 1 × 10 -6 Pa or less, and the energy of the carbon ions deposited on the substrate is 50 to 150 eV. Method for manufacturing hard carbon film.
【請求項4】 炭素イオンを生成するイオン源、イオン
をイオン源から引き出す機構、イオンの質量分離機構、
イオン収束機構、イオン偏向機構、イオン減速機構、及
び炭素イオンを基材に堆積させる真空容器からなること
を特徴とする硬質炭素膜製造装置。
4. An ion source for producing carbon ions, a mechanism for extracting ions from the ion source, a mass separation mechanism for ions,
A hard carbon film manufacturing apparatus comprising an ion focusing mechanism, an ion deflection mechanism, an ion deceleration mechanism, and a vacuum container for depositing carbon ions on a substrate.
【請求項5】 炭素イオンを基材に堆積させる真空容器
の真空度が1×10-6Pa以下であることを特徴とする請求
項4に記載した硬質炭素膜製造装置。
5. The apparatus for producing a hard carbon film according to claim 4, wherein the degree of vacuum of the vacuum container for depositing carbon ions on the substrate is 1 × 10 −6 Pa or less.
【請求項6】 硬質炭素膜製造装置において、イオン源
部分、質量分離機構とイオン収束機構の間、イオン収束
機構とイオン偏向機構の間、及び炭素イオンを基材に堆
積させる真空容器部分に真空排気機構を有することを特
徴とする請求項5に記載した硬質炭素膜製造装置。
6. In a hard carbon film manufacturing apparatus, a vacuum is applied to an ion source portion, a mass separation mechanism and an ion focusing mechanism, an ion focusing mechanism and an ion deflection mechanism, and a vacuum container portion for depositing carbon ions on a substrate. The hard carbon film manufacturing apparatus according to claim 5, further comprising an exhaust mechanism.
【請求項7】 請求項1又は2に記載した硬質炭素膜
を、表面保護膜として用いたことを特徴とする磁気記録
媒体。
7. A magnetic recording medium comprising the hard carbon film according to claim 1 or 2 as a surface protective film.
【請求項8】 請求項1又は2に記載した硬質炭素膜
を、表面保護膜として用いたことを特徴とする摺動材。
8. A sliding material, wherein the hard carbon film according to claim 1 or 2 is used as a surface protective film.
【請求項9】 請求項1又は2に記載した硬質炭素膜
を、表面保護膜として用いたことを特徴とする切削加工
工具。
9. A cutting tool, wherein the hard carbon film according to claim 1 or 2 is used as a surface protective film.
JP2001222095A 2001-07-23 2001-07-23 Manufacturing method of hard carbon film, manufacturing apparatus thereof, and use thereof Expired - Lifetime JP4072614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222095A JP4072614B2 (en) 2001-07-23 2001-07-23 Manufacturing method of hard carbon film, manufacturing apparatus thereof, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222095A JP4072614B2 (en) 2001-07-23 2001-07-23 Manufacturing method of hard carbon film, manufacturing apparatus thereof, and use thereof

Publications (2)

Publication Number Publication Date
JP2003034865A true JP2003034865A (en) 2003-02-07
JP4072614B2 JP4072614B2 (en) 2008-04-09

Family

ID=19055646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222095A Expired - Lifetime JP4072614B2 (en) 2001-07-23 2001-07-23 Manufacturing method of hard carbon film, manufacturing apparatus thereof, and use thereof

Country Status (1)

Country Link
JP (1) JP4072614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082177A (en) * 2004-09-16 2006-03-30 Hitachi Tool Engineering Ltd Amorphous carbon covering tool and covering method for amorphous carbon coating
JP2009256749A (en) * 2008-04-18 2009-11-05 Osaka Univ Manufacturing method of carbon film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082177A (en) * 2004-09-16 2006-03-30 Hitachi Tool Engineering Ltd Amorphous carbon covering tool and covering method for amorphous carbon coating
JP2009256749A (en) * 2008-04-18 2009-11-05 Osaka Univ Manufacturing method of carbon film

Also Published As

Publication number Publication date
JP4072614B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US5476691A (en) Surface treatment of magnetic recording heads
Vetter 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications
Sanders et al. Review of cathodic arc deposition technology at the start of the new millennium
Haberland et al. Energetic cluster impact (ECI): A new method for thin-film formation.
US20160208378A1 (en) Methods of forming layers
US5858477A (en) Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon
JP2008077833A (en) Recording medium having protective overcoat of highly tetrahedral amorphous carbon, and its manufacturing method
WO1997045834A9 (en) Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
Lu et al. Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering
JP3026425B2 (en) Method for producing hard thin film and hard thin film
US5851475A (en) Surface treatment of ceramic articles
KR101888557B1 (en) ta-C composite coating layer, apparatus for manufacturing ta-C composite coating layer and method for manufacturing using the same
Chhowalla et al. Deposition of smooth tetrahedral amorphous carbon thin films using a cathodic arc without a macroparticle filter
JP2003034865A (en) Hard carbon film, method and apparatus for manufacturing the same and application thereof
KR100436565B1 (en) Silicon incorporated tetrahedral amorphous carbon film and preparation method thereof
Broitman et al. Structural and mechanical properties of diamond-like carbon films deposited by direct current magnetron sputtering
Wang et al. Atomic force microscopy study on topography of films produced by ion‐based techniques
Anders et al. Low energy ion implantation/deposition as a film synthesis and bonding tool
JP3557455B2 (en) Nitrogen carbon silicon-based hard material, method for producing the same, and use thereof
JP2791977B2 (en) Rotating anode for X-ray tube and method for producing the same
Feng et al. Characteristics of (Ti, Ta) N thin films prepared by using pulsed high energy density plasma
EP1146138B1 (en) Tungsten super fine particle and method for producing the same
JP4378022B2 (en) Amorphous carbon film forming apparatus and film forming method
Fujiwara et al. Characteristics of a cluster‐ion beam of Os3 (CO) n+ (n= 7 or 8) for low‐damage sputtering
Christiansen et al. Hydrogen-free deposition of diamond-like coatings from a graphite source

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Ref document number: 4072614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term