JP2003032901A - Warm-up device for battery - Google Patents

Warm-up device for battery

Info

Publication number
JP2003032901A
JP2003032901A JP2001213821A JP2001213821A JP2003032901A JP 2003032901 A JP2003032901 A JP 2003032901A JP 2001213821 A JP2001213821 A JP 2001213821A JP 2001213821 A JP2001213821 A JP 2001213821A JP 2003032901 A JP2003032901 A JP 2003032901A
Authority
JP
Japan
Prior art keywords
battery
connection state
switching
warm
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001213821A
Other languages
Japanese (ja)
Inventor
Yuji Tanjo
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001213821A priority Critical patent/JP2003032901A/en
Publication of JP2003032901A publication Critical patent/JP2003032901A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a warm-up device for batteries, capable of warming up the batteries, even in fully charged condition, and reducing the space and the weight of external load. SOLUTION: This warm-up device for batteries of hybrid vehicles equipped with a battery pack 1 has a plurality of parallel-connected battery modules M1-Mn and a generator 7 which is driven by an engine 12 and charges the battery pack 1. Further, the device includes a switch 2 for electrically separating the module M1 and the other modules M2-Mn, and a switch 3 for connecting the module M1 with the external load 4. By turning off the switch 2, the modules M2-Mn are charged by the generator 7. By turning on the switch 3, the module M1 is discharged using the external load 4. Then by turning on the switch 3 after turning off the switch 2, the modules M2-Mn are discharged with the module M1 as a load, and the battery pack 1 is warmed up by self- heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車(E
V)やハイブリッド自動車(HEV)等の電気車に搭載
される電池を暖機するための電池暖機装置に関する。
TECHNICAL FIELD The present invention relates to an electric vehicle (E
The present invention relates to a battery warm-up device for warming up a battery mounted in an electric vehicle such as V) or a hybrid vehicle (HEV).

【0002】[0002]

【従来の技術】電気自動車やハイブリッド自動車では、
走行用電動モータの電源としてリチウムイオン電池のよ
うな二次電池が用いられている。二次電池の充放電特性
は電池温度に依存しており、低温時には高温時に比べて
充放電特性が低下するという性質を有している。そのた
め、外気温が低下する冬季や寒冷地においては、車両を
長時間停止させた後に再び走行開始する際に、電池を暖
機するのが好ましい。
2. Description of the Related Art In electric vehicles and hybrid vehicles,
A secondary battery such as a lithium-ion battery is used as a power source for a traveling electric motor. The charge / discharge characteristics of the secondary battery depend on the battery temperature, and have the property of lowering the charge / discharge characteristics at low temperature as compared to at high temperature. Therefore, in winter or cold regions where the outside air temperature decreases, it is preferable to warm up the battery when the vehicle is stopped for a long time and then restarted.

【0003】従来、電池を暖機するための装置として
は、特開平7−79503号公報に開示されているよう
な電池暖機装置が知られている。その電池暖機装置で
は、車載の発電機により電池を充電し、そのときの充電
電流による電池の自己発熱により電池温度を上昇させる
ようにしている。また、特開2000−30719号公
報には、電池を外部負荷に接続し、放電電流による電池
の自己発熱によって電池温度を上昇させるものが開示さ
れている。
Conventionally, as a device for warming up a battery, a battery warming device as disclosed in JP-A-7-79503 is known. In the battery warm-up device, the battery is charged by a vehicle-mounted generator, and the battery temperature is raised by self-heating of the battery due to the charging current at that time. Further, Japanese Patent Application Laid-Open No. 2000-30719 discloses a device in which a battery is connected to an external load and the battery temperature is raised by self-heating of the battery due to a discharge current.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電池を
充電して暖機する装置では、電池が満充電状態にある場
合には充電ができないため、電池を暖機できないという
欠点があった。一方、電池を外部負荷に接続して放電時
の自己発熱により暖機する装置では、電池を放電した際
の大電流に耐える外部負荷を設ける必要がある。そのた
め、外部負荷に関係するスペースが大きくなったり、重
量が重くなるという問題があった。
However, the device for charging and warming up the battery has a drawback that the battery cannot be warmed up because the battery cannot be charged when the battery is fully charged. On the other hand, in a device in which a battery is connected to an external load to warm up by self-heating during discharge, it is necessary to provide an external load that can withstand a large current when the battery is discharged. Therefore, there are problems that the space related to the external load becomes large and the weight becomes heavy.

【0005】本発明の目的は、電池が満充電状態でも電
池暖機ができ、また、外部負荷のスペースや重量を低減
することができる電池暖機装置を提供することにある。
An object of the present invention is to provide a battery warming device capable of warming up the battery even when the battery is fully charged and reducing the space and weight of an external load.

【0006】[0006]

【課題を解決するための手段】発明の実施の形態を示す
図1,2および5に対応付けて説明する。 (1)図1に対応付けて説明すると、請求項1の発明
は、複数の電池モジュールM1〜Mnが並列接続された
走行モータ用組電池1と、エンジン12により駆動され
て組電池1を充電する発電機7とを備えるハイブリッド
車の電気暖機装置に適用され、複数の電池モジュールM
1〜Mnが並列接続された第1の接続状態と、電池モジ
ュールM1が他の電池モジュールM2〜Mnから電気的
に切り離された第2の接続状態とを切り換える切換手段
2,3と、電池暖機動作時に、切換手段2,3により第
2の接続状態に切り換えて他の電池モジュールM2〜M
nを発電機7により充電させ、充電後に切換手段2,3
により第1の接続状態に切り換える制御手段10とを備
えて上述の目的を達成する。 (2)請求項2の発明は、複数の電池モジュールM1〜
Mnが並列接続された走行モータ用組電池1と、エンジ
ン12により駆動されて組電池1を充電する発電機7と
を備えるハイブリッド車の電気暖機装置に適用され、外
部負荷4と、複数の電池モジュールM1〜Mnが並列接
続された第1の接続状態と、電池モジュールM1が他の
電池モジュールM2〜Mnから電気的に切り離された第
2の接続状態とを切り換える切換手段2,3と、電池暖
機動作時に、切換手段2,3により第2の接続状態に切
り換えて発電機7による電池モジュールM2〜Mnの充
電および外部負荷4による切り離された電池モジュール
M1の放電の少なくとも一方を行わせた後に、切換手段
2,3により第1の接続状態に切り換える制御手段10
とを備えて上述の目的を達成する。 (3)図1および図2に対応付けて説明すると、請求項
3の発明は、請求項1または2に記載の電池暖機装置に
おいて、制御手段10は、他の電池モジュールM2〜M
nの充電状態SOCが所定充電状態Q2以上となったと
き、または、外部負荷4に接続された電池モジュールM
1の放電状態DODが所定放電状態Q1以下となったと
きに第2の接続状態から第1の接続状態へと切り換える
ようにしたものである。 (4)図1に対応付けて説明すると、請求項4の発明
は、複数の電池モジュールM1〜Mnが並列接続された
走行モータ用組電池1と、エンジン12により駆動され
て組電池1を充電する発電機7とを備えるハイブリッド
車の電気暖機装置に適用され、外部負荷4と、複数の電
池モジュールM1〜Mnが並列接続された第1の接続状
態と、電池モジュールM1が他の電池モジュールM2〜
Mnから電気的に切り離されて外部負荷4に接続された
第2の接続状態とを切り換える切換手段2,3と、エン
ジン停止時に切換手段2,3により第2の接続状態に切
り換え、エンジン始動時に第1の接続状態に切り換える
制御手段10とを備えて上述の目的を達成する。 (5)図5に対応付けて説明すると、請求項5の発明
は、走行用モータ11を複数の電池モジュールM1〜M
nが並列接続された組電池1で駆動する電気自動車の電
気暖機装置に適用され、複数の電池モジュールM1〜M
nが並列接続された第1の接続状態と、電池モジュール
M1が他の電池モジュールM2〜Mnから電気的に切り
離された第2の接続状態とを切り換える切換手段2と、
電池充電動作時に、切換手段2により第2の接続状態に
切り換えて他の電池モジュールM2〜Mnを充電させ、
充電後に切換手段2により第1の接続状態に切り換える
制御手段10とを備えて上述の目的を達成する。 (6)請求項6の発明は、請求項5に記載の電池暖機装
置において、切換手段2による第1の接続状態への切り
換えをエンジン始動時に行うようにしたものである。 (7)請求項7の発明は、請求項1〜6のいずれかに記
載の電池暖機装置において、組電池1の温度または外気
温度を検出する温度検出手段8,9を設け、温度検出手
段8,9により検出された温度が所定温度以下の場合に
制御手段10による切換制御を行うようにしたものであ
る。 (8)図1に対応付けて説明すると、請求項8の発明
は、請求項2または請求項4に記載の電池暖機装置にお
いて、外部負荷4を組電池1を加熱する加熱装置とした
ものである。
An embodiment of the present invention will be described in association with FIGS. (1) Explaining in association with FIG. 1, the invention of claim 1 charges a battery pack 1 driven by an engine 12 and a traveling motor battery pack 1 in which a plurality of battery modules M1 to Mn are connected in parallel. And a plurality of battery modules M applied to an electric warm-up device of a hybrid vehicle including a generator 7 for
Switching means 2 and 3 for switching between a first connection state in which 1 to Mn are connected in parallel and a second connection state in which the battery module M1 is electrically disconnected from the other battery modules M2 to Mn, and battery warming. During operation of the machine, the switching means 2 and 3 are switched to the second connection state to switch the other battery modules M2 to M2.
n is charged by the generator 7, and after charging, switching means 2, 3
With the control means 10 for switching to the first connection state, the above-mentioned object is achieved. (2) In the invention of claim 2, a plurality of battery modules M1 to
The present invention is applied to an electric warm-up device for a hybrid vehicle that includes a traveling motor assembled battery 1 in which Mn is connected in parallel and a generator 7 that is driven by an engine 12 to charge the assembled battery 1. Switching means 2 and 3 for switching between a first connection state in which the battery modules M1 to Mn are connected in parallel and a second connection state in which the battery module M1 is electrically disconnected from other battery modules M2 to Mn. During the battery warm-up operation, the switching means 2 and 3 switch to the second connection state to cause the generator 7 to charge at least one of the battery modules M2 to Mn and the external load 4 to discharge the disconnected battery module M1. After that, the control means 10 for switching to the first connection state by the switching means 2 and 3
The above object is achieved by providing (3) To explain in association with FIG. 1 and FIG. 2, the invention of claim 3 is the battery warm-up device according to claim 1 or 2, wherein the control means 10 controls other battery modules M2 to M.
n when the state of charge SOC becomes equal to or higher than the predetermined state of charge Q2, or the battery module M connected to the external load 4.
When the first discharge state DOD becomes equal to or lower than the predetermined discharge state Q1, the second connection state is switched to the first connection state. (4) Explaining in association with FIG. 1, the invention of claim 4 charges a battery pack 1 driven by an engine 12 and a traveling motor battery pack 1 in which a plurality of battery modules M1 to Mn are connected in parallel. The present invention is applied to an electric warm-up device for a hybrid vehicle including a power generator 7 that operates, the external load 4, a first connection state in which a plurality of battery modules M1 to Mn are connected in parallel, and the battery module M1 being another battery module. M2-
Switching means 2 and 3 for switching between a second connection state electrically disconnected from Mn and connected to the external load 4, and switching means 2 and 3 for switching to the second connection state when the engine is stopped, and when starting the engine. The control means 10 for switching to the first connection state is provided to achieve the above object. (5) Explaining in association with FIG. 5, the invention of claim 5 uses the traveling motor 11 as a plurality of battery modules M1 to M.
n is connected in parallel and is applied to an electric warming device of an electric vehicle driven by an assembled battery 1, and a plurality of battery modules M1 to M
switching means 2 for switching between a first connection state in which n is connected in parallel and a second connection state in which the battery module M1 is electrically disconnected from the other battery modules M2 to Mn;
During the battery charging operation, the switching unit 2 switches to the second connection state to charge the other battery modules M2 to Mn,
The control means 10 for switching to the first connection state by the switching means 2 after charging is provided to achieve the above-mentioned object. (6) According to the invention of claim 6, in the battery warm-up device according to claim 5, switching to the first connection state by the switching means 2 is performed at the time of engine start. (7) According to the invention of claim 7, in the battery warm-up device according to any one of claims 1 to 6, temperature detecting means 8 and 9 for detecting the temperature of the assembled battery 1 or the outside air temperature are provided, and the temperature detecting means is provided. When the temperature detected by 8 and 9 is below a predetermined temperature, the switching control by the control means 10 is performed. (8) Describing in association with FIG. 1, the invention of claim 8 is the battery warm-up device according to claim 2 or 4, wherein the external load 4 is a heating device for heating the assembled battery 1. Is.

【0007】なお、上記課題を解決するための手段の項
では、本発明を分かり易くするために発明の実施の形態
の図を用いたが、これにより本発明が発明の実施の形態
に限定されるものではない。
In the section of the means for solving the above problems, the drawings of the embodiments of the present invention are used to make the present invention easy to understand, but the present invention is limited to the embodiments of the present invention. Not something.

【0008】[0008]

【発明の効果】(1)請求項1の発明によれば、組電池
を構成する一部の電池モジュールを充電し、その電池モ
ジュールを充電されなかった電池モジュールを負荷とし
て放電させることにより、放電時の自己発熱によって電
池暖機が行われる。そのため、従来のような大電流に耐
え得る放電用負荷を設ける必要がない。 (2)請求項2の発明によれば、残された電池モジュー
ルの充電および切り離された電池モジュールの放電の少
なくとも一方を行った後に、第1の接続状態に切り換え
るようにしたので、切り換え後に電池モジュールを負荷
とした放電が行われ、その際の自己発熱によって電池暖
機が行われる。その結果、電池が満充電状態であっても
暖機を行うことができるとともに、切り離された電池モ
ジュールが外部負荷により放電されるので暖機動作を従
来よりも長時間行うことができる。 (3)請求項3の発明によれば、請求項1および2の発
明の効果に加えて、電池モジュールの過充電や過放電を
防止することができる。 (4)請求項4の発明によれば、エンジン停止時に組電
池の一部の電池モジュールを切り離して外部負荷により
放電させるので、外部負荷を従来より小さくすることが
できる。 (5)請求項5の発明によれば、電池充電の際に一部の
電池モジュールを切り離し、残りの電池モジュールを充
電する。そして、切り離された電池モジュールを負荷と
して充電された他の電池モジュールを放電させるので、
自己発熱により電池暖機が行えるとともに外部負荷を必
要としない。 (6)請求項6の発明によれば、エンジン始動時に電池
の暖機動作が行われる。 (7)請求項7の発明によれば、電池温度または外気温
度に応じて電池暖機が行われる。 (8)請求項8の発明によれば、切り離された電池モジ
ュールを放電するための外部負荷を組電池を加熱するた
めの加熱装置とすることにより、電池暖機をより効果的
に行わせることができる。
(1) According to the invention of claim 1, a part of the battery modules constituting the assembled battery is charged, and the battery module which has not been charged is discharged as a load to discharge the battery. The battery heats up due to self-heating at that time. Therefore, it is not necessary to provide a discharge load capable of withstanding a large current as in the conventional case. (2) According to the invention of claim 2, since the battery module is switched to the first connection state after at least one of charging the remaining battery module and discharging the disconnected battery module, the battery is switched after the switching. Discharge is performed using the module as a load, and the battery is warmed up by self-heating at that time. As a result, the battery module can be warmed up even when the battery is fully charged, and the disconnected battery module is discharged by an external load, so that the warming up operation can be performed for a longer time than before. (3) According to the invention of claim 3, in addition to the effects of the inventions of claims 1 and 2, it is possible to prevent overcharge and overdischarge of the battery module. (4) According to the invention of claim 4, when the engine is stopped, a part of the battery modules of the assembled battery is disconnected and discharged by an external load, so that the external load can be made smaller than before. (5) According to the invention of claim 5, at the time of battery charging, a part of the battery modules is disconnected and the remaining battery modules are charged. Then, since the separated battery module is used as a load to discharge the other charged battery module,
The battery can be warmed up by self-heating and no external load is required. (6) According to the invention of claim 6, the battery warm-up operation is performed when the engine is started. (7) According to the invention of claim 7, the battery is warmed up according to the battery temperature or the outside air temperature. (8) According to the invention of claim 8, the battery is warmed up more effectively by using an external load for discharging the separated battery module as a heating device for heating the assembled battery. You can

【0009】[0009]

【発明の実施の形態】以下、図を参照して本発明の実施
の形態を説明する。 −第1の実施の形態− 図1は本発明による電池暖機装置の第1の実施の形態を
説明する図である。図1はハイブリッド電気自動車の電
動駆動系の概略構成を示す図であり、駆動源としてエン
ジン12および電動モータ11が搭載されている。図1
に示すハイブリッド車では、エンジン12および/また
は駆動用モータ11の駆動力により走行を行う。1はモ
ータ11の駆動に用いられる組電池であり、例えば、リ
チウムイオン電池等が用いられる。組電池1は複数の単
電池1aで構成されており、複数の単電池1aを複数直
列接続した複数のモジュールM1〜Mnが並列接続され
ている。組電池1はインバータ6に接続されるととも
に、スイッチ3を介して外部負荷4に接続されている。
外部負荷4には種々のものが用いられるが、例えば、組
電池1の全体を加熱する加熱装置が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. -First Embodiment- FIG. 1 is a diagram for explaining a first embodiment of a battery warm-up device according to the present invention. FIG. 1 is a diagram showing a schematic configuration of an electric drive system of a hybrid electric vehicle, in which an engine 12 and an electric motor 11 are mounted as drive sources. Figure 1
The hybrid vehicle shown in (1) travels by the driving force of the engine 12 and / or the driving motor 11. Reference numeral 1 denotes an assembled battery used to drive the motor 11, and for example, a lithium ion battery or the like is used. The assembled battery 1 is composed of a plurality of unit cells 1a, and a plurality of modules M1 to Mn in which a plurality of unit cells 1a are connected in series are connected in parallel. The assembled battery 1 is connected to the inverter 6 and also connected to the external load 4 via the switch 3.
Although various types of external loads 4 are used, for example, a heating device that heats the entire assembled battery 1 is used.

【0010】組電池1にはスイッチ2が設けられてお
り、スイッチ2を開いて上述のスイッチ3を閉じること
により、モジュールM1を組電池1から電気的に切り離
して外部負荷4に接続することができる。通常は、スイ
ッチ3はオフとされ、スイッチ2はオンとされている。
7はエンジン12により駆動される発電機であり、発電
機7の出力はモータ11の駆動、および組電池1の充電
に用いられる。インバータ6,発電機7およびスイッチ
2,3は、コントロールユニット10により制御され
る。コントロールユニット10には、電圧検出部5で検
出される組電池1の端子電圧,電池温度検出部8で検出
される電池温度および外気温度検出部9で検出される外
気温度がそれぞれ入力される。
The assembled battery 1 is provided with a switch 2. By opening the switch 2 and closing the switch 3 described above, the module M1 can be electrically disconnected from the assembled battery 1 and connected to the external load 4. it can. Normally, the switch 3 is off and the switch 2 is on.
Reference numeral 7 is a generator driven by the engine 12, and the output of the generator 7 is used to drive the motor 11 and charge the assembled battery 1. The inverter 6, the generator 7, and the switches 2 and 3 are controlled by the control unit 10. The terminal voltage of the assembled battery 1 detected by the voltage detection unit 5, the battery temperature detected by the battery temperature detection unit 8 and the outside air temperature detected by the outside air temperature detection unit 9 are input to the control unit 10, respectively.

【0011】図2は、コントロールユニット10によっ
て実行される電池暖機動作を示すフローチャートであ
る。運転者によりイグニッションキーのオン動作がなさ
れると、ステップS101においてイグニッションスイ
ッチがオンされる。ステップS102では、電池温度検
出部8で検出された電池温度Tが所定温度T1(例え
ば、T1=0℃)より高いか否かを判定する。ステップ
S102でT>T1と判定されるとステップS103〜
S112の暖機処理をスキップしてステップS115へ
進み、T≦T1と判定されるとステップS103へ進
む。
FIG. 2 is a flowchart showing the battery warm-up operation executed by the control unit 10. When the driver turns on the ignition key, the ignition switch is turned on in step S101. In step S102, it is determined whether the battery temperature T detected by the battery temperature detector 8 is higher than a predetermined temperature T1 (for example, T1 = 0 ° C.). When it is determined that T> T1 in step S102, steps S103 to
The warm-up process of S112 is skipped and the process proceeds to step S115. When it is determined that T ≦ T1, the process proceeds to step S103.

【0012】ステップS103では、図1のスイッチ2
をオフにしてモジュールM1を他のモジュールM2〜M
nから電気的に切り離す。続くステップS104では、
スイッチS3をオンにしてモジュールM1に外部負荷4
を接続する。ステップS105では、発電機7により残
されたモジュールM2〜Mnの充電を開始する。ステッ
プS106では、外部負荷4に接続されたモジュールM
1が過放電されないように、モジュールM1の放電状態
(DOD)が所定放電状態Q1に対してDOD>Q1か
否かを判定する。所定放電状態Q1としては、例えば7
0%とする。ステップS106においてDOD>Q1と
判定されると、すなわち過放電状態であると判定される
とステップS107へ進み、DOD≦Q1と判定される
とステップS113へ進む。
At step S103, the switch 2 of FIG.
Is turned off and the module M1 is replaced with other modules M2 to M
electrically separated from n. In the following step S104,
The switch S3 is turned on and the external load 4 is applied to the module M1.
Connect. In step S105, charging of the modules M2 to Mn left by the generator 7 is started. In step S106, the module M connected to the external load 4 is connected.
In order to prevent 1 from being over-discharged, it is determined whether the discharge state (DOD) of the module M1 is DOD> Q1 with respect to the predetermined discharge state Q1. The predetermined discharge state Q1 is, for example, 7
0% If it is determined in step S106 that DOD> Q1, that is, if it is determined to be in the overdischarge state, the process proceeds to step S107, and if it is determined that DOD ≦ Q1, the process proceeds to step S113.

【0013】ステップS106からステップS113に
進んだ場合には、充電されているモジュールM2〜Mn
が過充電されないように、モジュールM2〜Mnの充電
状態(SOC)が所定充電状態Q2より小さいか否かを
判定する。所定充電状態Q2としては、例えば、Q2=
80%が用いられる。ステップS113においてSOC
<Q2と判定されると、すなわち過充電状態ではないと
判定されるとステップS106に戻る。一方、ステップ
S113においてSOC≧Q2と判定されると、ステッ
プS114に進んで発電機7によるモジュールM2〜M
nの充電を停止した後、ステップS106へ戻る。
When the process proceeds from step S106 to step S113, the charged modules M2 to Mn are
Is not overcharged, it is determined whether the state of charge (SOC) of the modules M2 to Mn is smaller than the predetermined state of charge Q2. As the predetermined charge state Q2, for example, Q2 =
80% is used. SOC in step S113
<If it is determined to be Q2, that is, if it is determined not to be in the overcharge state, the process returns to step S106. On the other hand, if SOC ≧ Q2 is determined in step S113, the process proceeds to step S114 and the modules M2 to M by the generator 7 are performed.
After the charging of n is stopped, the process returns to step S106.

【0014】ステップS106においてモジュールM1
が過放電状態であると判定されてステップS107へ進
んだ場合には、ステップS107においてスイッチ3を
オフしてモジュールM1を外部負荷4から切り離す。続
くステップS108では、充電されているモジュールM
1〜MnのSOCが所定充電状態Q2より小さいか否か
を判定する。ステップS108においてSOC<Q2と
判定されている間はステップS108が繰り返し実行さ
れ、SOC≧Q2と判定されるとステップS109へ進
んで発電機7によるモジュールM2〜Mnの充電を停止
する。
In step S106, the module M1
Is determined to be an over-discharged state and the process proceeds to step S107, the switch 3 is turned off in step S107 to disconnect the module M1 from the external load 4. In the following step S108, the charged module M
It is determined whether the SOC of 1 to Mn is smaller than the predetermined state of charge Q2. Step S108 is repeatedly executed while SOC <Q2 is determined in step S108, and if SOC ≧ Q2 is determined, the process proceeds to step S109 to stop the charging of the modules M2 to Mn by the generator 7.

【0015】ステップS110では、スイッチS2がオ
ンされてモジュールM1が他のモジュールM2〜Mnと
接続される。このとき、モジュールM2〜Mnの方が充
電状態(SOC)が高いので、モジュールM2〜Mnか
らモジュールM1へと電流が流れる。各単電池1aは内
部抵抗を有しているため、この電流により組電池1が自
己発熱して電池温度が上昇する。ステップS111で
は、モジュールM1のSOCが他のモジュールM2〜M
nのSOCと同じになっていることを確認して次のステ
ップS112へ進む。
In step S110, the switch S2 is turned on and the module M1 is connected to the other modules M2 to Mn. At this time, since the state of charge (SOC) of the modules M2 to Mn is higher, the current flows from the modules M2 to Mn to the module M1. Since each unit cell 1a has an internal resistance, the assembled battery 1 self-heats due to this current and the battery temperature rises. In step S111, the SOC of the module M1 is the other modules M2 to M.
After confirming that it is the same as the SOC of n, the process proceeds to the next step S112.

【0016】例えば、切り離されていたモジュールM1
に流れ込む電流値をモニタし、流れ込む電流がゼロにな
ったか否かを判断することにより、SOCが同じか否か
を確認することができる。なお、モジュールM1のSO
CとモジュールM2〜MnのSOCとが同一になること
は必須の事項ではなく、モジュールM1とモジュールM
2〜MnとのSOCのバランスがある程度取れれば良
い。すなわち、ステップS111の処理に代えて、次の
ステップS112へ進むまで所定の時間(例えば1分以
内)だけ待つ処理を行っても良い。
For example, the separated module M1
It is possible to confirm whether or not the SOCs are the same by monitoring the value of the current flowing in and determining whether or not the current flowing in has become zero. The SO of the module M1
It is not essential that C and the SOC of the modules M2 to Mn be the same, and the modules M1 and M
It suffices if the SOC of 2 to Mn is balanced to some extent. That is, instead of the process of step S111, a process of waiting for a predetermined time (for example, within 1 minute) may be performed before proceeding to the next step S112.

【0017】続くステップS112では、電池温度Tが
所定温度T1より高いか否かを判定し、T>T1と判定
されるとステップS115へ進み、T≦T1と判定され
るとステップS103へ戻る。ステップS115では通
常制御が実行される。
In a succeeding step S112, it is determined whether or not the battery temperature T is higher than a predetermined temperature T1, and if T> T1, the process proceeds to step S115, and if T ≦ T1, the process returns to step S103. In step S115, normal control is executed.

【0018】上述したように、本実施の形態では組電池
1の一部であるモジュールM1を切り離し、外部負荷4
に接続して放電させる。そして、外部負荷4により放電
されたモジュールM1を再接続し、そのときの自己発熱
により組電池1を暖機するようにした。そのため、組電
池1が満充電状態であっても暖機を行うことができる。
さらに、組電池1の一部(モジュールM1)のみが外部
負荷4に接続されるので、従来に比べて外部負荷4を小
型化することができる。また、外部負荷4として加熱装
置を用いれば、モジュールM1の放電電力を暖機に用い
ることができるので、暖機効果をさらに向上させること
ができる。
As described above, in this embodiment, the module M1 which is a part of the assembled battery 1 is disconnected and the external load 4 is removed.
Connect to and discharge. Then, the module M1 discharged by the external load 4 is reconnected, and the assembled battery 1 is warmed up by self-heating at that time. Therefore, warm-up can be performed even when the assembled battery 1 is fully charged.
Furthermore, since only part (module M1) of the assembled battery 1 is connected to the external load 4, the external load 4 can be made smaller than in the conventional case. Further, if a heating device is used as the external load 4, the discharge power of the module M1 can be used for warming up, so that the warming up effect can be further improved.

【0019】図3は暖機性能を示す図であり、本実施の
形態により暖機する場合と、従来のように組電池1を発
電機7で充電して暖機する場合とを比較して示した。暖
機開始時の組電池1の充電状態はSOC=50%とし
た。図3の縦軸は電池温度Tを表しており、横軸は暖機
時間を表している。図3に示す例は外部負荷4を加熱装
置とした場合であり、加熱装置を用いてモジュールM1
を放電しているため温度上昇が大きいことが分かる。ま
た、本実施の形態では組電池1の一部の電池(モジュー
ルM1)を放電させながら充電しているので、電池暖機
を従来よりも長時間行うことができる。
FIG. 3 is a diagram showing the warm-up performance, comparing the case of warm-up according to the present embodiment and the case of warming up by charging the assembled battery 1 with the generator 7 as in the conventional case. Indicated. The state of charge of the assembled battery 1 at the start of warm-up was SOC = 50%. The vertical axis of FIG. 3 represents the battery temperature T, and the horizontal axis represents the warm-up time. The example shown in FIG. 3 is a case where the external load 4 is a heating device, and the module M1 is used by using the heating device.
It can be seen that the temperature rise is large due to the discharge of. Further, in the present embodiment, since a part of the battery (module M1) of the assembled battery 1 is charged while being discharged, it is possible to warm up the battery for a longer time than before.

【0020】《電池暖機動作の変形》図4は電池暖機動
作の他の例を示すフローチャートであり、外気温度T
に応じて暖機動作が制御される。ステップS201で
は、運転者によるイグニッションキーのオフ動作により
イグニッションスイッチがオフされる。ステップS20
2では、外気温度検出部9で検出された外気温度T
所定温度T2(例えば、T2=0℃)より高いか否かを
判定する。ステップS202でT>T2と判定される
とステップS203〜ステップS208の暖機処理をス
キップしてステップS209へ進み、T≦T2と判定
されるとステップS203へ進む。
[0020] "deformation of the battery warm-up operation" FIG. 4 is a flowchart showing another example of a battery warm-up operation, the outside air temperature T O
The warm-up operation is controlled according to. In step S201, the ignition switch is turned off when the driver turns off the ignition key. Step S20
At 2, it is determined whether the outside air temperature T O detected by the outside air temperature detecting unit 9 is higher than a predetermined temperature T2 (for example, T2 = 0 ° C.). When it is determined that T O > T2 in step S202, the warm-up process of steps S203 to S208 is skipped and the process proceeds to step S209. When it is determined that T O ≦ T2, the process proceeds to step S203.

【0021】ステップS203では、図1のスイッチ2
をオフにしてモジュールM1を他のモジュールM2〜M
nから電気的に切り離す。続くステップS204では、
スイッチS3をオンにしてモジュールM1と外部負荷4
とを接続する。ここでモジュールM1を切り離して外部
負荷4に接続するのは、モジュールM1を放電させて容
量を少なくするのが目的であるので、必ずしも外部負荷
4に大電流を流す必要はない。モジュールM1を外部負
荷4に接続して放電を開始すると、放電につれてモジュ
ールM1のDODが増加する。ステップS205では、
図2のステップS106の処理と同様に、モジュールM
1のDODが所定値Q1より大きいか否かを判定する。
そして、DOD≦Q1と判定されるとステップS205
の処理を繰り返し、DOD>Q1と判定されるとステッ
プS206へ進む。
In step S203, the switch 2 of FIG.
Is turned off and the module M1 is replaced with other modules M2 to M
electrically separated from n. In the following step S204,
Turn on switch S3 to turn on module M1 and external load 4
And connect. Here, the purpose of disconnecting the module M1 and connecting it to the external load 4 is to discharge the module M1 and reduce the capacity, so that it is not always necessary to supply a large current to the external load 4. When the module M1 is connected to the external load 4 to start discharging, the DOD of the module M1 increases as the discharging proceeds. In step S205,
Similar to the process of step S106 of FIG.
It is determined whether the DOD of 1 is larger than the predetermined value Q1.
When it is determined that DOD ≦ Q1, step S205
Processing is repeated, and if it is determined that DOD> Q1, the process proceeds to step S206.

【0022】ステップS206では、スイッチ3をオフ
にして外部負荷4をモジュールM1から切り離す。その
後、運転者によりイグニッションキーのオン動作がなさ
れると、ステップS207においてイグニッションスイ
ッチがオンされる。ステップS208では、スイッチS
2がオンされてモジュールM1が他のモジュールM2〜
Mnと接続される。その結果、並列接続されているモジ
ュールM2〜Mnの方が充電状態(SOC)が高いの
で、モジュールM2〜MnからモジュールM1へ電流が
流れる。各単電池1aは内部抵抗を有しているため、こ
の電流により組電池1が自己発熱して電池温度が上昇す
る。その後、ステップS209へ進んで通常制御を行
う。
In step S206, the switch 3 is turned off to disconnect the external load 4 from the module M1. After that, when the driver turns on the ignition key, the ignition switch is turned on in step S207. In step S208, the switch S
2 is turned on and the module M1 is switched to another module M2.
It is connected to Mn. As a result, since the state of charge (SOC) of the modules M2 to Mn connected in parallel is higher, current flows from the modules M2 to Mn to the module M1. Since each unit cell 1a has an internal resistance, the assembled battery 1 self-heats due to this current and the battery temperature rises. Then, it progresses to step S209 and performs normal control.

【0023】上述したように、図4に示す電池暖機動作
では、外気温度Tが所定温度T2以下となる場合、例
えば冬季の場合には、車両停止後のキーオフの後にモジ
ュールM1の放電が行われる。そして、再びキーオンさ
れた際に放電されたモジュールM1が他のモジュールM
2〜Mnと接続され、自己発熱による組電池1の暖機が
行われる。そのため、外気温度Tが低い場合であって
も、電池温度低下による電池容量の低下を防止すること
ができる。逆に、外気温度Tが所定温度T2より大き
な場合、例えば夏季の場合にはステップS202からス
テップS209へと進み、電池暖機動作は行われない。
As described above, in the battery warm-up operation shown in FIG. 4, when the outside air temperature T O becomes equal to or lower than the predetermined temperature T2, for example, in winter, the module M1 is discharged after the key-off after the vehicle is stopped. Done. Then, the module M1 discharged when the key is turned on again is replaced by another module M1.
2 to Mn, the assembled battery 1 is warmed up by self-heating. Therefore, even when the outside air temperature T O is low, it is possible to prevent a decrease in battery capacity due to a decrease in battery temperature. On the contrary, when the outside air temperature T O is higher than the predetermined temperature T2, for example, in summer, the process proceeds from step S202 to step S209, and the battery warm-up operation is not performed.

【0024】このように、図4に示した変形例ではモジ
ュールM1の放電のみを行い、モジュールM1をモジュ
ールM2〜Mnに再接続したときの自己発熱により暖機
を行うようにした。この場合も、外部負荷4に加熱装置
を用いることにより暖機効果をより高めることができ
る。
As described above, in the modification shown in FIG. 4, only the module M1 is discharged, and the module M1 is reconnected to the modules M2 to Mn to be warmed up by self-heating. Also in this case, the warm-up effect can be further enhanced by using the heating device for the external load 4.

【0025】−第2の実施の形態− 図5は本発明による電池暖機装置の第2の実施の形態を
説明する図であり、電動モータ11のみで走行する電気
自動車の概略構成を示す図である。なお、図5におい
て、図1と同様の部分には同一の符号を付した。組電池
1の充電を行う際には組電池1を充電器20に接続し、
この充電器20により充電が行われる。充電器20には
コントロールユニット10から電圧や電池温度等の制御
情報が送信され、その制御情報に基づいて充電電流の制
御が行われる。
-Second Embodiment- FIG. 5 is a view for explaining a second embodiment of the battery warm-up device according to the present invention, and is a view showing a schematic configuration of an electric vehicle that is driven only by the electric motor 11. Is. In FIG. 5, the same parts as those in FIG. 1 are designated by the same reference numerals. When charging the assembled battery 1, connect the assembled battery 1 to the charger 20,
Charging is performed by the charger 20. Control information such as voltage and battery temperature is transmitted from the control unit 10 to the charger 20, and the charging current is controlled based on the control information.

【0026】次に、図5の装置による暖機動作を、図6
のフローチャートを用いて説明する。電気自動車ではハ
イブリッド自動車のように車載発電機による充電が行わ
れないので、通常は走行前に充電器20を用いて組電池
1の充電が行われる。充電器20が組電池1に接続され
充電開始操作が行われると、ステップS301において
充電が開始される。ステップS302では、外気温度検
出部9で検出された外気温度Tが所定温度T2より高
いか否かが判定される。ステップS302でT >T2
と判定されるとステップS303〜ステップS308の
暖機処理をスキップしてステップS309へ進み、T
≦T2と判定されるとステップS303へ進む。
Next, the warm-up operation by the apparatus of FIG.
This will be described with reference to the flowchart of. For electric cars
Charging is carried out by an in-vehicle generator like an ibrid car
Therefore, normally, the battery pack is used by using the charger 20 before traveling.
1 is charged. The charger 20 is connected to the battery pack 1.
When the charging start operation is performed, in step S301
Charging starts. In step S302, the outside air temperature is detected.
Outside temperature T detected at the outlet 9OIs higher than the predetermined temperature T2
Whether or not it is determined. T in step S302 O> T2
If it is determined that steps S303 to S308
The warm-up process is skipped and the process proceeds to step S309, where TO
If it is determined that ≦ T2, the process proceeds to step S303.

【0027】ステップS303では、充電をいったん中
断し、図5のスイッチ2をオフにしてモジュールM1を
他のモジュールM2〜Mnから電気的に切り離す。続く
ステップ304では、モジュールM2〜Mnの充電を再
び開始する。ステップS305では、モジュールM2〜
Mnの充電状態がSOC<Q2か否かを判定する。ステ
ップS305においてSOC≧Q2と判定されるとステ
ップS306へ進み、充電器20を停止して充電を終了
する。一方、ステップS305においてSOC<Q2と
判定された場合には、所定充電状態Q2となるまでステ
ップS305の処理が繰り返し実行される。
In step S303, the charging is temporarily stopped, the switch 2 in FIG. 5 is turned off, and the module M1 is electrically disconnected from the other modules M2 to Mn. In the following step 304, the charging of the modules M2 to Mn is started again. In step S305, the modules M2 to
It is determined whether the state of charge of Mn is SOC <Q2. When SOC ≧ Q2 is determined in step S305, the process proceeds to step S306, the charger 20 is stopped, and the charging is completed. On the other hand, if SOC <Q2 is determined in step S305, the process of step S305 is repeatedly executed until the predetermined charge state Q2 is reached.

【0028】その後、車両のイグニッションキーがオン
されると、ステップS307においてイグニッションス
イッチがオンされる。ステップS308では、スイッチ
2がオンされてモジュールM1が他のモジュールM2〜
Mnと接続される。その結果、所定充電状態Q2のモジ
ュールM2〜Mnから充電を行わなかったモジュールM
1へと電流が流れる。モジュールM2〜Mnは充電動作
によっても電池温度は上昇するが、再接続時の放電によ
る自己発熱によって更に電池温度が上昇する。ステップ
S308までの電池暖機動作の処理が終了したならば、
ステップS309に進んで通常制御を行う。
Thereafter, when the ignition key of the vehicle is turned on, the ignition switch is turned on in step S307. In step S308, the switch 2 is turned on so that the module M1 is switched to another module M2.
It is connected to Mn. As a result, the module M2 to Mn in the predetermined charge state Q2 has not been charged.
The current flows to 1. The battery temperature of the modules M2 to Mn also rises due to the charging operation, but the battery temperature further rises due to self-heating due to discharge during reconnection. If the process of battery warm-up operation up to step S308 is completed,
In step S309, normal control is performed.

【0029】第2の実施の形態では、組電池1の一部
(モジュールM1)を充電前に切り離し、充電後に再び
接続することによって、再接続した際の組電池1の自己
発熱により電池温度の上昇を図っている。前述したよう
に、従来は、組電池1に外部負荷を接続して放電電流に
よる自己発熱を行わせていたので、大電流で放電できる
外部負荷を用いる必要があり、スペースや重量の点で問
題があった。しかし、第2の実施の形態では、モジュー
ルM1を負荷として使用することにより、このような問
題を解消することができる。
In the second embodiment, a part (module M1) of the assembled battery 1 is disconnected before charging and then reconnected, so that the assembled battery 1 self-heats when reconnected to reduce the battery temperature. We are trying to rise. As described above, conventionally, an external load is connected to the assembled battery 1 to cause self-heating due to the discharge current, so it is necessary to use an external load capable of discharging with a large current, which causes problems in space and weight. was there. However, in the second embodiment, such a problem can be solved by using the module M1 as a load.

【0030】また、モジュールM1を負荷としてモジュ
ールM2〜Mnを放電させたときの自己発熱により電池
暖機を行うようにしたので、従来の充電による暖機動作
のように満充電状態で暖機ができないという不都合は生
じない。なお、充電により電池温度が上昇するが、充電
からキーオン動作までに長時間経過すると再び外気温程
度となってしまう。しかし、上述した実施の形態では、
キーオン動作直後に再接続を行って自己発熱を生じさせ
るようにしているので、昇温効果が有効である。
Further, since the battery M is warmed up by self-heating when the modules M2 to Mn are discharged by using the module M1 as a load, it is possible to warm up the battery in a fully charged state as in the warm-up operation by conventional charging. The inconvenience of not being possible does not occur. It should be noted that the battery temperature rises due to charging, but when a long time elapses from the charging to the key-on operation, the ambient temperature again becomes about the outside temperature. However, in the embodiment described above,
Since the reconnection is performed immediately after the key-on operation to generate self-heating, the temperature raising effect is effective.

【0031】なお、上述した図4のステップS202お
よび図6のステップS302では外気温度を用いて判定
を行っているが、電池温度を用いて判定を行っても良
い。
Although the determination is made using the outside air temperature in step S202 of FIG. 4 and step S302 of FIG. 6 described above, the determination may be made using the battery temperature.

【0032】以上説明した実施の形態と特許請求の範囲
の要素との対応において、スイッチ2,3は切換手段
を、コントロールユニット10は制御手段を、電池温度
検出部8および外気温度検出部9は温度検出手段をそれ
ぞれ構成する。
In the correspondence between the embodiments described above and the elements of the claims, the switches 2 and 3 are switching means, the control unit 10 is control means, and the battery temperature detecting portion 8 and the outside air temperature detecting portion 9 are Each of the temperature detecting means is configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電池暖機装置の第1の実施の形態
を示す図である。
FIG. 1 is a diagram showing a first embodiment of a battery warm-up device according to the present invention.

【図2】コントロールユニット10によって実行される
電池暖機動作を示すフローチャートである。
FIG. 2 is a flowchart showing a battery warm-up operation executed by the control unit 10.

【図3】暖機性能を示す図である。FIG. 3 is a diagram showing warm-up performance.

【図4】電池暖機動作の他の例を示すフローチャートで
ある。
FIG. 4 is a flowchart showing another example of the battery warm-up operation.

【図5】本発明による電池暖機装置の第2の実施の形態
を示す図である。
FIG. 5 is a diagram showing a second embodiment of a battery warm-up device according to the present invention.

【図6】第2の実施の形態における電池暖機動作を示す
フローチャートである。
FIG. 6 is a flowchart showing a battery warm-up operation in the second embodiment.

【符号の説明】[Explanation of symbols]

1 組電池 2,3 スイッチ 4 外部負荷 5 電圧検出部 6 インバータ 7 発電機 8 電池温度検出部 9 外気温度検出部 10 コントロールユニット 11 モータ 12 エンジン M1〜Mn モジュール 1 set battery 2,3 switch 4 External load 5 Voltage detector 6 inverter 7 generator 8 Battery temperature detector 9 Outside temperature detector 10 control unit 11 motor 12 engine M1-Mn module

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/04 ZHV H02J 7/04 ZHVL 7/10 7/10 L Fターム(参考) 5G003 BA03 BA04 CB01 DA07 FA06 GB06 GC05 5H030 AA01 AS08 BB08 BB10 BB21 BB23 DD20 FF22 FF27 5H031 AA09 KK00 KK03 5H115 PA08 PA15 PG04 PI16 PI22 PO02 PO04 PU01 PU24 PV09 QE01 QE12 SE02 SE06 TI05 TO05 TR19 TU11 UI35 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H02J 7/04 ZHV H02J 7/04 ZHVL 7/10 7/10 LF term (reference) 5G003 BA03 BA04 CB01 DA07 FA06 GB06 GC05 5H030 AA01 AS08 BB08 BB10 BB21 BB23 DD20 FF22 FF27 5H031 AA09 KK00 KK03 5H115 PA08 PA15 PG04 PI16 PI22 PO02 PO04 PU01 PU24 PV09 QE01 QE12 SE02 SE06 TI05 TO05 TR19 TU11 UI35

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の電池モジュールが並列接続された
走行モータ用組電池と、エンジンにより駆動されて前記
組電池を充電する発電機とを備えるハイブリッド車の電
気暖機装置において、 前記複数の電池モジュールが並列接続された第1の接続
状態と、前記複数の電池モジュールの少なくとも一つが
他の電池モジュールから電気的に切り離された第2の接
続状態とを切り換える切換手段と、 電池暖機動作時に、前記切換手段により前記第2の接続
状態に切り換えて前記他の電池モジュールを前記発電機
により充電させ、充電後に前記切換手段により前記第1
の接続状態に切り換える制御手段とを備えることを特徴
とする電池暖機装置。
1. An electric warm-up device for a hybrid vehicle, comprising: a traveling motor assembled battery in which a plurality of battery modules are connected in parallel; and a generator driven by an engine to charge the assembled battery. Switching means for switching between a first connection state in which the modules are connected in parallel and a second connection state in which at least one of the plurality of battery modules is electrically disconnected from other battery modules; , The second connection state is switched by the switching means to charge the other battery module by the generator, and the first battery is charged by the switching means after charging.
And a control means for switching the connection state to the connection state.
【請求項2】 複数の電池モジュールが並列接続された
走行モータ用組電池と、エンジンにより駆動されて前記
組電池を充電する発電機とを備えるハイブリッド車の電
気暖機装置において、 外部負荷と、 前記複数の電池モジュールが並列接続された第1の接続
状態と、前記複数の電池モジュールの少なくとも一つが
他の電池モジュールから電気的に切り離された第2の接
続状態とを切り換える切換手段と、 電池暖機動作時に、前記切換手段により前記第2の接続
状態に切り換えて前記発電機による前記他の電池モジュ
ールの充電および前記外部負荷による前記切り離された
電池モジュールの放電の少なくとも一方を行わせた後
に、前記切換手段により前記第1の接続状態に切り換え
る制御手段とを備えることを特徴とする電池暖機装置。
2. An electric warm-up device for a hybrid vehicle, comprising: a traveling motor assembled battery in which a plurality of battery modules are connected in parallel; and a generator driven by an engine to charge the assembled battery; Switching means for switching between a first connection state in which the plurality of battery modules are connected in parallel and a second connection state in which at least one of the plurality of battery modules is electrically disconnected from another battery module; After warming up, after switching to the second connection state by the switching means and at least one of charging the other battery module by the generator and discharging the disconnected battery module by the external load And a control means for switching to the first connection state by the switching means.
【請求項3】 請求項1または2に記載の電池暖機装置
において、 前記制御手段は、前記他の電池モジュールの充電状態が
所定充電状態以上となったとき、または、前記外部負荷
に接続された電池モジュールの放電状態が所定放電状態
以下となったときに前記第2の接続状態から前記第1の
接続状態へと切り換えることを特徴とする電池暖機装
置。
3. The battery warm-up device according to claim 1, wherein the control unit is connected to the external load when the state of charge of the other battery module is equal to or higher than a predetermined state of charge. A battery warm-up device for switching from the second connection state to the first connection state when the discharge state of the battery module becomes equal to or lower than a predetermined discharge state.
【請求項4】 複数の電池モジュールが並列接続された
走行モータ用組電池と、エンジンにより駆動されて前記
組電池を充電する発電機とを備えるハイブリッド車の電
気暖機装置において、 外部負荷と、 前記複数の電池モジュールが並列接続された第1の接続
状態と、前記複数の電池モジュールの少なくとも一つが
他の電池モジュールから電気的に切り離されて前記外部
負荷に接続された第2の接続状態とを切り換える切換手
段と、 エンジン停止時に前記切換手段により前記第2の接続状
態に切り換え、エンジン始動時に前記第1の接続状態に
切り換える制御手段とを備えることを特徴とする電池暖
機装置。
4. An electric warm-up device for a hybrid vehicle, comprising: a traveling motor assembled battery in which a plurality of battery modules are connected in parallel; and a generator driven by an engine to charge the assembled battery; A first connection state in which the plurality of battery modules are connected in parallel, and a second connection state in which at least one of the plurality of battery modules is electrically disconnected from another battery module and connected to the external load A battery warm-up device comprising: switching means for switching between the two states, and a control means for switching to the second connection state by the switching means when the engine is stopped and switching to the first connection state when the engine is started.
【請求項5】 走行用モータを複数の電池モジュールが
並列接続された組電池で駆動する電気自動車の電気暖機
装置において、 前記複数の電池モジュールが並列接続された第1の接続
状態と、前記複数の電池モジュールの少なくとも一つが
他の電池モジュールから電気的に切り離された第2の接
続状態とを切り換える切換手段と、 電池充電動作時に、前記切換手段により前記第2の接続
状態に切り換えて前記他の電池モジュールを充電させ、
充電後に前記切換手段により前記第1の接続状態に切り
換える制御手段とを備えることを特徴とする電池暖機装
置。
5. An electric warm-up device for an electric vehicle, comprising: a traveling motor driven by an assembled battery in which a plurality of battery modules are connected in parallel; a first connection state in which the plurality of battery modules are connected in parallel; Switching means for switching between at least one of the plurality of battery modules and a second connection state in which the battery module is electrically disconnected from other battery modules; and a switching means for switching to the second connection state during the battery charging operation, Charge other battery modules,
A battery warm-up device comprising: a control unit that switches to the first connection state by the switching unit after charging.
【請求項6】 請求項5に記載の電池暖機装置におい
て、 前記制御手段は、前記切換手段による前記第1の接続状
態への切り換えをエンジン始動時に行うことを特徴とす
る電池暖機装置。
6. The battery warm-up device according to claim 5, wherein the control unit causes the switching unit to switch to the first connection state at the time of engine startup.
【請求項7】 請求項1〜6のいずれかに記載の電池暖
機装置において、 前記組電池の温度または外気温度を検出する温度検出手
段を設け、前記温度検出手段により検出された温度が所
定温度以下の場合に前記制御手段による切換制御を行う
ようにしたことを特徴とする電池暖機装置。
7. The battery warm-up device according to claim 1, further comprising temperature detecting means for detecting the temperature of the battery pack or the outside air temperature, and the temperature detected by the temperature detecting means is predetermined. A battery warm-up device characterized in that switching control is performed by the control means when the temperature is equal to or lower than a temperature.
【請求項8】 請求項2または請求項4に記載の電池暖
機装置において、 前記外部負荷が前記組電池を加熱する加熱装置であるこ
とを特徴とする電池暖機装置。
8. The battery warm-up device according to claim 2 or 4, wherein the external load is a heating device that heats the assembled battery.
JP2001213821A 2001-07-13 2001-07-13 Warm-up device for battery Pending JP2003032901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213821A JP2003032901A (en) 2001-07-13 2001-07-13 Warm-up device for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213821A JP2003032901A (en) 2001-07-13 2001-07-13 Warm-up device for battery

Publications (1)

Publication Number Publication Date
JP2003032901A true JP2003032901A (en) 2003-01-31

Family

ID=19048740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213821A Pending JP2003032901A (en) 2001-07-13 2001-07-13 Warm-up device for battery

Country Status (1)

Country Link
JP (1) JP2003032901A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340211A (en) * 2004-05-26 2005-12-08 Ford Global Technologies Llc Vehicular battery temperature control method and system
WO2008010382A1 (en) * 2006-07-18 2008-01-24 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, accumulator temperature increase control method, and computer-readable recording medium containing a program for causing a computer to execute the accumulator temperature increase control
JP2009239989A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Charger
WO2010038682A1 (en) * 2008-09-30 2010-04-08 日産自動車株式会社 Electrically-driven vehicle battery charge control
US8182936B2 (en) 2007-09-24 2012-05-22 Denso Corporation Temperature control device for on-board battery pack
US8297391B2 (en) 2006-07-07 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
JP2012252907A (en) * 2011-06-03 2012-12-20 Toyota Motor Corp Electric vehicle charging system and charging control method
JP2013502899A (en) * 2009-08-28 2013-01-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Parallel circuit of accumulator branch
JP2013089296A (en) * 2011-10-13 2013-05-13 Nippon Soken Inc Temperature rise controller of battery pack
JP2013109859A (en) * 2011-11-17 2013-06-06 Denso Corp Battery control device
JP2013200966A (en) * 2012-03-23 2013-10-03 Jm Energy Corp Power storage cell temperature regulation circuit, and power storage device having the same
WO2013143853A1 (en) * 2012-03-29 2013-10-03 Robert Bosch Gmbh Method for heating energy storage cells of an energy storage system, and heatable energy storage system
US8692506B2 (en) 2006-03-15 2014-04-08 Nec Corporation Charging apparatus and charging/discharging apparatus including temperature adjusting element of secondary battery for buffering
CN104577257A (en) * 2015-01-19 2015-04-29 哈尔滨理工大学 Low-temperature preheating system for battery pack of electric car and method for preheating battery pack
JP2016524786A (en) * 2013-05-08 2016-08-18 エルジー・ケム・リミテッド Battery preheating system and battery preheating method using the same
CN106876816A (en) * 2017-03-17 2017-06-20 奇酷互联网络科技(深圳)有限公司 Charging method and charging system
CN107317067A (en) * 2017-07-31 2017-11-03 厦门金龙旅行车有限公司 The control method that a kind of electrokinetic cell applied to hybrid vehicle is heated
JP2018085282A (en) * 2016-11-25 2018-05-31 マツダ株式会社 On-vehicle battery control device and on-vehicle battery control method
JP2018085283A (en) * 2016-11-25 2018-05-31 マツダ株式会社 On-vehicle battery control device and on-vehicle battery control method
EP3246195A4 (en) * 2015-01-15 2018-08-29 Mitsubishi Electric Corporation Charge/discharge control device
JP2019032975A (en) * 2017-08-07 2019-02-28 三菱重工業株式会社 Charging and discharging control device, charging and discharging control system, charging and discharging control method, and charging and discharging control program
WO2020135481A1 (en) * 2018-12-27 2020-07-02 华为技术有限公司 Battery charging method and device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340211A (en) * 2004-05-26 2005-12-08 Ford Global Technologies Llc Vehicular battery temperature control method and system
US8692506B2 (en) 2006-03-15 2014-04-08 Nec Corporation Charging apparatus and charging/discharging apparatus including temperature adjusting element of secondary battery for buffering
US8297391B2 (en) 2006-07-07 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
WO2008010382A1 (en) * 2006-07-18 2008-01-24 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, accumulator temperature increase control method, and computer-readable recording medium containing a program for causing a computer to execute the accumulator temperature increase control
KR101012432B1 (en) * 2006-07-18 2011-02-08 도요타 지도샤(주) Power supply system, vehicle using the same, accumulator temperature increase control method, and computer-readable recording medium containing a program for causing a computer to execute the accumulator temperature increase control
US7939969B2 (en) 2006-07-18 2011-05-10 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program causing computer to execute temperature increase control of power storage device
US8182936B2 (en) 2007-09-24 2012-05-22 Denso Corporation Temperature control device for on-board battery pack
JP2009239989A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Charger
JP2010110196A (en) * 2008-09-30 2010-05-13 Nissan Motor Co Ltd Device and method for controlling battery charge
WO2010038682A1 (en) * 2008-09-30 2010-04-08 日産自動車株式会社 Electrically-driven vehicle battery charge control
JP2013502899A (en) * 2009-08-28 2013-01-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Parallel circuit of accumulator branch
US9035613B2 (en) 2009-08-28 2015-05-19 Robert Bosch Gmbh Parallel circuit of accumulator lines
JP2012252907A (en) * 2011-06-03 2012-12-20 Toyota Motor Corp Electric vehicle charging system and charging control method
JP2013089296A (en) * 2011-10-13 2013-05-13 Nippon Soken Inc Temperature rise controller of battery pack
JP2013109859A (en) * 2011-11-17 2013-06-06 Denso Corp Battery control device
JP2013200966A (en) * 2012-03-23 2013-10-03 Jm Energy Corp Power storage cell temperature regulation circuit, and power storage device having the same
WO2013143853A1 (en) * 2012-03-29 2013-10-03 Robert Bosch Gmbh Method for heating energy storage cells of an energy storage system, and heatable energy storage system
CN104205476A (en) * 2012-03-29 2014-12-10 罗伯特·博世有限公司 Method for heating energy storage cells of an energy storage system, and heatable energy storage system
JP2015518629A (en) * 2012-03-29 2015-07-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for heating energy storage cell of energy storage device and heatable energy storage device
US9413046B2 (en) 2012-03-29 2016-08-09 Robert Bosch Gmbh Method for heating energy storage cells of an energy storage system, and heatable energy storage system
JP2016524786A (en) * 2013-05-08 2016-08-18 エルジー・ケム・リミテッド Battery preheating system and battery preheating method using the same
EP3246195A4 (en) * 2015-01-15 2018-08-29 Mitsubishi Electric Corporation Charge/discharge control device
US10279688B2 (en) 2015-01-15 2019-05-07 Mitsubishi Electric Corporation Charge-discharge control device for controlling temperature of a power storage device
CN104577257A (en) * 2015-01-19 2015-04-29 哈尔滨理工大学 Low-temperature preheating system for battery pack of electric car and method for preheating battery pack
JP2018085282A (en) * 2016-11-25 2018-05-31 マツダ株式会社 On-vehicle battery control device and on-vehicle battery control method
JP2018085283A (en) * 2016-11-25 2018-05-31 マツダ株式会社 On-vehicle battery control device and on-vehicle battery control method
CN106876816A (en) * 2017-03-17 2017-06-20 奇酷互联网络科技(深圳)有限公司 Charging method and charging system
CN106876816B (en) * 2017-03-17 2020-03-27 奇酷互联网络科技(深圳)有限公司 Charging method and charging system
CN107317067A (en) * 2017-07-31 2017-11-03 厦门金龙旅行车有限公司 The control method that a kind of electrokinetic cell applied to hybrid vehicle is heated
JP2019032975A (en) * 2017-08-07 2019-02-28 三菱重工業株式会社 Charging and discharging control device, charging and discharging control system, charging and discharging control method, and charging and discharging control program
WO2020135481A1 (en) * 2018-12-27 2020-07-02 华为技术有限公司 Battery charging method and device

Similar Documents

Publication Publication Date Title
JP2003032901A (en) Warm-up device for battery
US11190026B2 (en) Battery system to be deployed in a vehicle having a first battery and a second battery, battery control unit to be deployed in a battery system of a vehicle, and method related to the same
US10766368B2 (en) Dual function battery system and method
JP4049959B2 (en) Battery charging method
JP3615445B2 (en) Hybrid car power supply
US9987932B2 (en) Battery system
US9431688B2 (en) Method for heating a high voltage vehicle battery
EP2272722B1 (en) Power source apparatus for vehicle
EP0913292B1 (en) Method for equalizing the voltage of traction battery modules of a hybrid electric vehicle
US7830126B2 (en) Hybrid vehicle control system and method
JP6128491B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
JP4003170B2 (en) Auxiliary function device for automobile and driving method thereof
US20020003417A1 (en) Device and method for controlling input/output of secondary battery
CN108656968B (en) Power supply device for vehicle
JPH08140206A (en) Battery managing method for electric motor vehicle
JP2004032871A (en) Power supply system for traveling vehicle
EP3232049B1 (en) Automobile starting control system and automobile
US20130249496A1 (en) Battery pack
CN108352714B (en) Power supply device and battery unit
CN111546938B (en) Vehicle hybrid storage battery management system and method
KR102575558B1 (en) Method and device for controlling the charge level of a traction battery of an electric vehicle
JP2003203679A (en) Power source device for automobile
JP2004015924A (en) Battery pack controller and control system
KR20180008976A (en) System for protecting battery from over-charge for vehicle and the controlling method
JP2008131772A (en) Power supply unit