JP2003032814A - Transmission system of motor-operated transportation device - Google Patents

Transmission system of motor-operated transportation device

Info

Publication number
JP2003032814A
JP2003032814A JP2001197786A JP2001197786A JP2003032814A JP 2003032814 A JP2003032814 A JP 2003032814A JP 2001197786 A JP2001197786 A JP 2001197786A JP 2001197786 A JP2001197786 A JP 2001197786A JP 2003032814 A JP2003032814 A JP 2003032814A
Authority
JP
Japan
Prior art keywords
transmission
gear
motor
sprocket
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001197786A
Other languages
Japanese (ja)
Inventor
Soyo Ryo
聰▲よう▼ 廖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONSEI KIGYO KOFUN YUGENKOSHI
Original Assignee
ONSEI KIGYO KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONSEI KIGYO KOFUN YUGENKOSHI filed Critical ONSEI KIGYO KOFUN YUGENKOSHI
Priority to JP2001197786A priority Critical patent/JP2003032814A/en
Publication of JP2003032814A publication Critical patent/JP2003032814A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/06Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with spur gear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/70Rider propelled cycles with auxiliary electric motor power-driven at single endless flexible member, e.g. chain, between cycle crankshaft and wheel axle, the motor engaging the endless flexible member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/22Microcars, e.g. golf cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/34Wheel chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Retarders (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Handcart (AREA)
  • Gear Transmission (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission system for a motor-operated transportation device. SOLUTION: This transmission system is provided with a power source in which a set of reduction gears is arranged, two parallel transmission shafts, two transmission sets driven by the power source and installed so as to be perpendicular to the transmission shafts, unidirectional bearings for joining the transmission shafts and the transmission sets, and power output wheels joined to wheels and driven by the transmission sets. By combining forward and reverse rotation of the power source with a shift by changeover control of transmission paths of the unidirectional bearings, the manufacturing cost of the device is reduced, its operation is simplified, and the function of saving energy resources is achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一種の電動運搬具の
伝動システムに係り、特に、製造コストが低く、操作が
簡単で、エネルギー資源を節約する伝動システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission system for an electric carrier, and more particularly to a power transmission system which is low in manufacturing cost, easy to operate, and saves energy resources.

【0002】[0002]

【従来の技術】いわゆる電動運搬具は、電動ゴルフボー
ルカー、電動橇、電動車椅子、電動オートバイ、電動自
転車がある。周知の電動運搬具の伝動システムは、ほと
んどが、モータを固定減速比の伝動システムに組み合わ
せることにより、車輪駆動の目的を達成し、その速度制
御は、直接モータ回転速度を制御し、これにより車輪の
回転速度を制御する。この簡単な電動運搬具の伝動方式
は、低製造コストの長所を有するが、路面の起伏に合わ
せてモータが効率的な動力出力をすることができず、電
池の急速な消耗を形成するほか、乗車の楽しさを喪失さ
せる。なぜなら、固定減速比の伝動システムは、坂道と
高速の二種類の異なるトルクの出力が行えないためであ
る。即ち、この減速機構が平地で高速走行する低減速比
に設定されると、坂道を上るときには、傾斜に対応する
トルク出力を行うことができなかった。反対もまたしか
りであり、高減速比の伝動機構は、速度上、良好な表現
ができず、このため自動車、オートバイ更には自転車な
どの交通工具にはいずれも変速システムが組み合わされ
て各種の路面状況に対応しエネルギー資源を節約してい
る。
2. Description of the Related Art So-called electric carriers include electric golf ball cars, electric sleds, electric wheelchairs, electric motorcycles, and electric bicycles. Most known electric vehicle transmission systems achieve the purpose of wheel drive by combining a motor with a fixed reduction ratio transmission system, the speed control of which directly controls the motor rotation speed, which allows the wheel to rotate. Control the rotation speed of. This simple electric vehicle transmission system has the advantage of low manufacturing cost, but the motor cannot output power efficiently in accordance with the undulations of the road surface, which causes rapid battery exhaustion. Make the ride less enjoyable. This is because the fixed reduction ratio transmission system cannot output two different torques, a slope and a high speed. That is, when the speed reduction mechanism is set to a reduction speed ratio that allows high speed traveling on level ground, it is not possible to output torque corresponding to the inclination when going up a slope. The opposite is also the case, because the transmission mechanism with a high reduction ratio does not give a good representation in terms of speed, and therefore various transmission tools such as automobiles, motorcycles, and even bicycles are combined with a speed change system for various road surfaces. Energy resources are saved in response to the situation.

【0003】一般に直流モータは低回転速度高トルク、
高回転速度低トルクの特性を有するが、モータの効率曲
線からみると、最高回転速度と最低回転速度の効率はい
ずれもよくなく、モータの最良の効率区間は無積載回転
速度の60%〜85%程度であり、このため、節電の目
的を達成するため、モータの回転速度は最良の効率区間
内に制御され、固定減速比の伝動システムは往々にして
外在環境因子により、モータの回転速度範囲が最良効率
区より非常に多く超過し、エネルギー資源節約の表現
上、理想的でなかった。
Generally, a DC motor has a low rotation speed and high torque,
It has the characteristics of high rotation speed and low torque, but from the efficiency curve of the motor, the efficiency of the maximum rotation speed and the minimum rotation speed is not good, and the best efficiency section of the motor is 60% to 85% of the unloaded rotation speed. %, Therefore, in order to achieve the purpose of power saving, the rotation speed of the motor is controlled within the best efficiency section, and the transmission system of fixed reduction ratio often has the rotation speed of the motor due to external environmental factors. The range was much more than the best efficiency zone, which was not ideal in terms of energy resource conservation.

【0004】このため、高級な電動運搬具では、以上の
固定減速伝動システムの欠点を改善するため、いずれも
変速システムを搭載している。現在の電動オートバイ、
電動自転車はいずれも変速装置を具えている。しかし、
現在ある変速装置の機構は複雑で精密であり、比較的高
い製造コストがかかり、即ち、これが一般の低価格の電
動運搬具がいずれも固定減速システムを採用する主な原
因となっている。もし現在ある電動自転車を例とする
と、その価格は電動オートバイより低く、ゆえにその変
速システムも電動オートバイよりも簡単である。電動自
転車の変速システムはチェーンを利用して大きさの異な
るスプロケットを駆動することにより、変速の目的を達
成し、この変速機構は、外観体積が膨大で、軽便な電動
運搬具(例えば電動橇車)に適合しないほか、操作上、
不便である。乗車速度をゆっくりから速めるとき、減速
比は大から小に変化する。ブレーキ停止後、チェーンは
最小減速比のスプロケット上に留まり、このため再度起
動する時には人力で起動補助せねばならず、このような
伝動方式は電動橇車或いは電動車椅子、電動ゴルフボー
ルカーには不適用であった。
For this reason, high-grade electric vehicles are equipped with a speed change system in order to improve the above drawbacks of the fixed reduction transmission system. Current electric motorcycles,
All electric bicycles have a transmission. But,
The existing transmission mechanisms are complex and precise, and relatively expensive to manufacture, which is the main reason why all common low cost electric carriers employ fixed reduction gear systems. If an existing electric bicycle is taken as an example, its price is lower than that of an electric motorcycle, and therefore its speed change system is also simpler than that of an electric motorcycle. The speed change system of an electric bicycle achieves the purpose of speed change by driving different sized sprockets using a chain, and this speed change mechanism has an enormous external volume and is a convenient electric carrier (for example, an electric sled). ) Is not suitable for operation,
It's inconvenient. When the boarding speed is slowly increased, the reduction ratio changes from large to small. After the brakes are stopped, the chain remains on the sprocket with the minimum reduction ratio, so that when it is restarted, it must be assisted by human power, and such a transmission system is not suitable for electric sleds or electric wheelchairs or electric golf ball cars. It was an application.

【0005】[0005]

【発明が解決しようとする課題】ゆえに、本発明では、
上述の現行の電動運搬具の伝動システムの欠点を鑑み、
四組の単方向軸受にモータの正反転を組み合わせ、作動
力流路切り換えによる変速と動力を合併させた電動運搬
具の伝動システムにより、低い製造コスト、簡単操作、
且つエネルギー資源節約を達成する。
Therefore, according to the present invention,
In view of the above-mentioned drawbacks of the electric transmission system of the current electric carrier,
Low manufacturing cost, easy operation, by combining four sets of unidirectional bearings with forward / reverse rotation of the motor, the transmission system of the electric carrier that combines speed and power by switching the operating force flow path.
And achieve energy resource savings.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、動力
源と、二つの平行な伝動軸とされ、該動力源に駆動さ
れ、その上に伝動セットが設けられて、該伝動セットが
該伝動軸と垂直状を呈するように設置された、上記二つ
の平行な伝動軸と、該伝動軸と伝動セットを接合する単
方向軸受と、車輪に接合されて該伝動セットの駆動を受
ける動力出力輪と、を具え、動力源の正反転に、単方向
軸受の伝動経路の切り換え制御による変速が組み合わさ
れることにより、製造コストが低く、操作が簡単で、エ
ネルギー資源を節約する機能を達成することを特徴とす
る、電動運搬具の伝動システムとしている。請求項2の
発明は、前記動力源が単一のモータとされ、モータの正
反転を利用し二段変速機能を有することを特徴とする、
請求項1に記載の電動運搬具の伝動システムとしてい
る。請求項3の発明は、前記動力源が二つのモータとさ
れ、モータの正反転或いはそのうち一つのモータの不回
転を利用して五段変速機能を有することを特徴とする、
請求項1に記載の電動運搬具の伝動システムとしてい
る。請求項4の発明は、前記電動運搬具が坂に置かれ、
且つモータが停止した時、下滑を防止するセルフロック
機能を具えたことを特徴とする、請求項1に記載の電動
運搬具の伝動システムとしている。請求項5の発明は、
前記伝動セットが二つ以上の伝動ユニットで組成された
ことを特徴とする、請求項1に記載の電動運搬具の伝動
システムとしている。請求項6の発明は、前記伝動セッ
トがスプロケットとチェーンであることを特徴とする、
請求項1又は請求項5に記載の電動運搬具の伝動システ
ムとしている。請求項7の発明は、前記伝動セットがプ
ーリとベルトであることを特徴とする、請求項1又は請
求項5に記載の電動運搬具の伝動システムとしている。
請求項8の発明は、前記伝動セットが歯車であることを
特徴とする、請求項1又は請求項5に記載の電動運搬具
の伝動システムとしている。請求項9の発明は、前記動
力出力輪と車輪の間にクラッチ装置が設けられたことを
特徴とする、請求項1に記載の電動運搬具の伝動システ
ムとしている。請求項10の発明は、前記二つの平行な
伝動軸の間に一つの差速器が設けられたことを特徴とす
る、請求項1に記載の電動運搬具の伝動システムとして
いる。
According to a first aspect of the present invention, there is provided a power source and two parallel transmission shafts, driven by the power source, and provided with a transmission set. The two parallel transmission shafts that are installed so as to be perpendicular to the transmission shaft, the unidirectional bearing that joins the transmission shaft and the transmission set, and the power that is joined to the wheel and is driven by the transmission set. With output wheel, forward / reverse of power source is combined with speed change by switching control of transmission path of unidirectional bearing to achieve low manufacturing cost, easy operation and energy resource saving function. The transmission system of the electric carrier is characterized by the following. The invention of claim 2 is characterized in that the power source is a single motor and has a two-stage gear shifting function by utilizing forward and reverse rotation of the motor.
A transmission system for an electric carrier according to claim 1. The invention of claim 3 is characterized in that the power source is two motors, and has a five-speed shifting function by utilizing forward / reverse rotation of the motor or non-rotation of one of the motors.
A transmission system for an electric carrier according to claim 1. In the invention of claim 4, the electric carrier is placed on a slope,
The transmission system for an electric carrier according to claim 1, further comprising a self-locking function for preventing downward slip when the motor is stopped. The invention of claim 5 is
The transmission system of the electric carrier according to claim 1, wherein the transmission set is composed of two or more transmission units. The invention of claim 6 is characterized in that the transmission set is a sprocket and a chain.
A transmission system for an electric carrier according to claim 1 or claim 5. The invention according to claim 7 is the transmission system for an electric carrier according to claim 1 or 5, wherein the transmission set is a pulley and a belt.
The invention of claim 8 provides the transmission system for an electric carrier according to claim 1 or 5, wherein the transmission set is a gear. The invention of claim 9 provides a transmission system for an electric carrier according to claim 1, wherein a clutch device is provided between the power output wheel and the wheel. The invention of claim 10 provides the transmission system of the electric carrier according to claim 1, wherein one differential speed gear is provided between the two parallel transmission shafts.

【0007】[0007]

【発明の実施の形態】図1、2に示されるように、本発
明は、モータM1と減速歯車セットG1:G2を具える
ほか、二つの平行な伝動軸S1、S2を具えている。そ
のうち、伝動軸S1と減速歯車セットG2の歯車が固定
されている。別に二組の伝動スプロケットセットA、B
が伝動軸S1、S2に取り付けられ、伝動軸S1、S2
と垂直を呈する。そのうちスプロケットセットAは、同
じモジュラスの小スプロケットA1、大スプロケットA
2と小スプロケットA1と大スプロケットA2を連接す
るチェーンH1を含む。小スプロケットA1は伝動軸S
1と接合され、且つ接合部分に一組の単方向軸受A11
が取り付けられている(モータM1の出力軸方向からモ
ータ方向に向けて見て、軸はスプロケットに対して順時
計回りに伝動可能で、スプロケットは軸に対して逆時計
回りに伝動可能である)。大スプロケットA2と伝動軸
S2と接合され、且つ接合部分に一組の単方向軸受A2
1が設けられている(軸はスプロケットに対して逆時計
回りに伝動可能で、スプロケットは軸に対して順時計回
りに伝動可能である)。スプロケットセットB内に同じ
モジュラスのスプロケットB1、スプロケットB2、動
力出力スプロケットB3と、三つのスプロケットB1、
B2、B3を連接するチェーンH2が設けられ、且つス
プロケットB1がチェーンH2の外側に置かれ、スプロ
ケットB1と二つのスプロケットB2、B3の回転方向
が反対である。スプロケットB1と伝動軸S1が接合
し、且つ接合部分に一組の単方向軸受B11が設けられ
ている(軸はスプロケットに対して逆時計回りに伝動可
能で、スプロケットは軸に対して順時計回りに伝動可能
である)。スプロケットB2と伝動軸S2が接合し、且
つ接合部分に一組の単方向軸受B21が設けられ(軸は
スプロケットに対して順時計回りに伝動可能で、スプロ
ケットは軸に対して逆時計回りに伝動可能である)、動
力出力スプロケットと電動運搬具の車輪Wが接合されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 1 and 2, the present invention comprises a motor M1 and reduction gear sets G1: G2, as well as two parallel transmission shafts S1, S2. Among them, the transmission shaft S1 and the gear of the reduction gear set G2 are fixed. Separately, two sets of transmission sprocket A and B
Is attached to the transmission shafts S1 and S2, and the transmission shafts S1 and S2
And vertical. Of these, sprocket set A consists of a small sprocket A1 and a large sprocket A with the same modulus.
2 includes a chain H1 connecting the small sprocket A1 and the large sprocket A2. Small sprocket A1 has transmission shaft S
1 and a pair of unidirectional bearings A11 at the joint part
Is attached (when viewed from the output shaft direction of the motor M1 toward the motor direction, the shaft can be transmitted clockwise with respect to the sprocket, and the sprocket can be transmitted counterclockwise with respect to the shaft). . The large sprocket A2 and the transmission shaft S2 are joined to each other, and a pair of unidirectional bearings A2 are attached to the joined portion.
1 is provided (the shaft can be transmitted counterclockwise with respect to the sprocket, and the sprocket can be transmitted clockwise with respect to the shaft). In the sprocket set B, a sprocket B1 having the same modulus, a sprocket B2, a power output sprocket B3, and three sprockets B1,
A chain H2 connecting B2 and B3 is provided, and a sprocket B1 is placed outside the chain H2, and the sprocket B1 and the two sprockets B2 and B3 rotate in opposite directions. The sprocket B1 and the transmission shaft S1 are joined, and a set of unidirectional bearings B11 is provided at the joint (the shaft can be transmitted in the counterclockwise direction with respect to the sprocket, and the sprocket is in the clockwise direction with respect to the shaft). Can be transmitted to). The sprocket B2 and the transmission shaft S2 are joined, and a set of unidirectional bearings B21 is provided at the joint portion (the shaft can be transmitted in the clockwise direction with respect to the sprocket, and the sprocket can be transmitted in the counterclockwise direction with respect to the shaft). (Possible), the power output sprocket and the wheels W of the electric carrier are joined.

【0008】上述の単方向軸受の伝動方向は表1に示さ
れるとおりである。
The transmission direction of the above-mentioned unidirectional bearing is as shown in Table 1.

【表1】 [Table 1]

【0009】本発明の第1種の伝動経路は、モータM1
の出力軸方向よりモータ方向より見る。モータM1が時
計回りに小歯車G1を駆動して時計回りに回転させ、さ
らに大歯車G2と伝動軸S1が逆時計回転を呈し、A1
1が、軸がスプロケットに対して時計回りに伝動する単
方向軸受であるため、スプロケットA1は出力軸S1に
連動せず、このほか同軸のスプロケットB1に設けられ
た単方向軸受B11は軸がスプロケットに対して逆時計
まわりに伝動する単方向軸受であり、ゆえに、スプロケ
ットB1が逆時計回りに回転し、チェーンH2を駆動し
て時計回りに回転させ、また、スプロケットB3を時計
回りに回転させると同時に、車輪Wを前進させる。この
スプロケットB1はチェーンH2の時計回りの回転によ
りスプロケットB2に伝動するが、しかしスプロケット
B2と伝動軸S2間に取り付けられた単方向軸受B21
がスプロケットが軸に対して逆時計に伝動可能な単方向
軸受とされるため、伝動軸S2も連動回転せず、これに
より第1種の動力伝動経路は、伝動軸S2を経過しない
伝動方式で、簡単にその伝動経路を示すと、M1(順)
→G1(順)→G2(逆)→S1(逆)→B1(逆)→
H2(順)→B3(順)となり、その減速比は、歯車G
1、歯車G2、減速歯車セットとスプロケットB1、B
3の加総となり、数学式は、 (G2歯数/G1歯数)*(B3歯数/B1歯数)・・・・式1となる。 これは電動運搬具の高速運動の設計に用いられる。
The first type transmission path of the present invention is a motor M1.
Viewed from the motor direction rather than the output shaft direction. The motor M1 drives the small gear G1 clockwise to rotate it clockwise, and the large gear G2 and the transmission shaft S1 exhibit counterclockwise rotation, and A1
Since 1 is a unidirectional bearing in which the shaft transmits clockwise with respect to the sprocket, the sprocket A1 does not interlock with the output shaft S1, and in addition, the unidirectional bearing B11 provided on the coaxial sprocket B1 has a shaft with a sprocket. Is a unidirectional bearing that transmits in a counterclockwise direction, and therefore, when the sprocket B1 rotates counterclockwise, the chain H2 is driven to rotate clockwise, and the sprocket B3 rotates clockwise. At the same time, the wheels W are moved forward. This sprocket B1 is transmitted to the sprocket B2 by the clockwise rotation of the chain H2, but the unidirectional bearing B21 mounted between the sprocket B2 and the transmission shaft S2.
Since the sprocket is a unidirectional bearing that can be transmitted in a counterclockwise direction with respect to the shaft, the transmission shaft S2 also does not rotate in conjunction, so that the first type power transmission path is a transmission system that does not pass through the transmission shaft S2. , The transmission path is briefly shown, M1 (in order)
→ G1 (forward) → G2 (reverse) → S1 (reverse) → B1 (reverse) →
H2 (order) → B3 (order), and the reduction ratio is gear G
1, gear G2, reduction gear set and sprockets B1, B
The mathematical formula is as follows: (G2 number of teeth / G1 number of teeth) * (B3 number of teeth / B1 number of teeth) ... It is used in the design of high speed movement of electric carriers.

【0010】第2種の伝動経路もまた、モータM1の出
力軸方向よりモータ方向に向けて見る。モータM1は逆
時計回りに回転し、小歯車G1が逆時計回りに大歯車G
2と伝動軸S1を駆動して時計回りに回転させる。単方
向軸受A11が軸がスプアロケットに対して時計回りに
伝動する単方向軸受とされるため、小スプロケットA1
は伝動軸S1と同様に、時計回りに回転する。このほ
か、同軸のB11は軸がスプロケットに対して逆時計回
りに伝動する単方向軸受であるため、ゆえにスプロケッ
トB1は伝動軸S1に連動せず、小スプロケットA1が
チェーンH1を介して時計回りに大スプロケットA2に
伝動する。しかし、大スプロケットA2と伝動軸S2間
に取り付けられた単方向軸受A21は軸がスプロケット
に対して時計回りに伝動する単方向軸受であるため、伝
動軸S2も時計回りに連動回転し、且つスプロケットB
2と伝動軸S2間に取り付けられた単方向軸受B21が
軸がスプロケットに対して時計回りに伝動する単方向軸
受であるため、スプロケットB2も時計回りに回転し、
チェーンH2を介してスプロケットB3と車輪が時計回
りに回転する。
The second type transmission path is also viewed from the output shaft direction of the motor M1 toward the motor. The motor M1 rotates counterclockwise, and the small gear G1 rotates counterclockwise to the large gear G.
2 and the transmission shaft S1 are driven to rotate clockwise. Since the unidirectional bearing A11 is a unidirectional bearing whose shaft transmits clockwise to the spur rocket, the small sprocket A1
Rotates clockwise like the transmission shaft S1. In addition, the coaxial B11 is a unidirectional bearing whose shaft transmits in a counterclockwise direction with respect to the sprocket. Therefore, the sprocket B1 does not interlock with the transmission shaft S1, and the small sprocket A1 rotates clockwise through the chain H1. Drive to large sprocket A2. However, since the unidirectional bearing A21 mounted between the large sprocket A2 and the transmission shaft S2 is a unidirectional bearing in which the shaft transmits clockwise with respect to the sprocket, the transmission shaft S2 also rotates in the clockwise direction, and the sprocket also rotates. B
Since the unidirectional bearing B21 mounted between the shaft 2 and the transmission shaft S2 is a unidirectional bearing in which the shaft transmits clockwise with respect to the sprocket, the sprocket B2 also rotates clockwise,
The sprocket B3 and the wheels rotate clockwise through the chain H2.

【0011】この第2種類の動力伝動経路は、伝動軸S
2を介した伝動方式とされ、その伝動経路を簡単に示す
と、M1(逆)→G1(逆)→G2(順)→S1(順)
→A1(順)→H1(順)→A2(順)→S2(順)→
B2(順)→H2(順)→B3(順)であり、その減速
比は減速歯車セットG1、G2と減速スプロケットA
1、A2と減速スプロケットB2、B3の加総であり、
数学式は、 (G2歯数/G1歯数)*(A2歯数/A1歯数)*(B3歯数/B2歯数) ・・・・式2となる。
The second type of power transmission path is the transmission shaft S.
The transmission system is via 2, and the transmission path is simply shown: M1 (reverse) → G1 (reverse) → G2 (forward) → S1 (forward)
→ A1 (order) → H1 (order) → A2 (order) → S2 (order) →
B2 (sequential) → H2 (sequential) → B3 (sequential), and the reduction ratio thereof is reduction gear sets G1 and G2 and reduction sprocket A.
1 and A2 and deceleration sprockets B2 and B3
The mathematical formula is (G2 number of teeth / G1 number of teeth) * (A2 number of teeth / A1 number of teeth) * (B3 number of teeth / B2 number of teeth) ...

【0012】第1種の減速装置と較べてA1、A2の部
分の減速スプロケットが多く(A2歯数>A1歯数)、
且つもしスプロケットB2を歯数をB1の歯数より少な
くすれば、更に大きな減速比が得られ、これは電動運搬
具が高トルクを必要とする時の伝動方式に符合する。
Compared with the first type speed reducer, there are more speed reduction sprockets in the portions A1 and A2 (the number of A2 teeth> the number of A1 teeth),
And if the number of teeth of the sprocket B2 is smaller than that of B1, a larger reduction ratio can be obtained, which corresponds to the transmission system when the electric carrier requires high torque.

【0013】上述の本発明の伝動システムは、僅かにモ
ータの正反転と四組の単方向軸受の作動力経路の切り換
えを利用することにより、2段変速伝動システムの機構
を達成し、電動運搬具が静止から起動を必要とすると
き、最大静摩擦力を克服するため、比較的大きなトルク
出力を必要とし、ゆえに、このとき、本発明の伝動シス
テムは第2種の伝動方式を応用し、モータを逆時計回り
に回転させることにより、伝動システムに比較的大きな
減速比を以て車輪を駆動させ、比較的大きなトルク値を
発生し、電動運搬具起動に供する。電動運搬具が運動開
始後、速度がゆっくりと増加し、モータ回転速度がます
ます高くなる時、最良の効率区の高点を離れる前に、制
御システムがまずモータを停止させ、さらに時計回りに
回転させ、このとき、第1種の伝動方式を尾用し、本伝
動システムに比較的小さい減速比を持たせ、車輪を比較
的高い回転速度で前進させる。同様に、電動運搬具が上
り坂に至ると、速度がトルク不足により緩慢となり、電
動運搬具が停止する前に、同様に、モータが停止後に逆
時計回りに回転し、比較的高い減速比で車輪を駆動する
ことにより、上り坂を克服し、電動運搬具が順調に前進
する。ゆえに本発明の伝動システムは電動運搬具に運用
される時には、回路制御、電流量の出力値検出を組み合
わせることにより、モータの最良の効率区内で、適時に
モータの正反転を改変し、路面状況に合わせ及びエネル
ギー資源を節約する目的を達成する。
The above-described transmission system of the present invention achieves the mechanism of the two-speed transmission system by slightly utilizing the forward / reverse rotation of the motor and the switching of the operating force paths of the four sets of unidirectional bearings, thereby achieving the electric transportation. When the tool needs to start from rest, it requires a relatively large torque output to overcome the maximum static friction force, and thus the transmission system of the present invention applies the second type transmission method to the motor. Is rotated counterclockwise to drive the wheels with a relatively large reduction ratio in the transmission system, generate a relatively large torque value, and use the electric vehicle for starting. When the electric carrier starts to move slowly and the speed increases slowly and the motor rotation speed becomes higher and higher, the control system first stops the motor and then turns it further clockwise before leaving the high efficiency zone high point. It is rotated, and at this time, the transmission system of the first type is tailored, the transmission system has a relatively small reduction ratio, and the wheels are moved forward at a relatively high rotation speed. Similarly, when the electric carrier goes uphill, the speed slows down due to insufficient torque, and before the electric carrier stops, similarly, the motor rotates counterclockwise after the stop, at a relatively high reduction ratio. By driving the wheels, the uphill is overcome and the electric carrier smoothly advances. Therefore, when the transmission system of the present invention is applied to an electric carrier, by combining the circuit control and the output value detection of the current amount, the forward / reverse rotation of the motor is modified in a timely manner within the best efficiency zone of the motor, and the road surface is changed. Achieve the objectives of tailoring and saving energy resources.

【0014】本発明は四組の単方向軸受にモータの正反
転を組合せた巧妙な設計により、作動力経路の切り換え
により変速伝動の目的を達成し、これにより、極めて、
前進だけ必要で後退不要の電動運搬具、例えば電動オー
トバイ、電動自転車、電動アシスト自転車、電動ゴルフ
ボールカー及び電動橇車に適合し、今までにない重大な
発明である。
The present invention achieves the purpose of speed change transmission by switching the operating force path by a clever design in which four sets of unidirectional bearings are combined with forward and reverse rotations of the motor.
It is an unprecedented serious invention that is suitable for electric vehicles that require only forward movement and does not require backward movement, such as electric motorcycles, electric bicycles, electric assist bicycles, electric golf ball cars and electric sled cars.

【0015】このほか、本発明の電動運搬具は、もし坂
道に置かれ且つモータが停止した時、引力により後方に
滑動する力が発生して、車輪とスプロケットB3が逆時
計回りに回転するとき、チェーンH2を介してスプロケ
ットB1、B2がそれぞれ時計回りに回転させられ、こ
のとき、伝動軸S1、S2は、単方向軸受B11とB2
1がそれぞれスプロケットが軸に対して時計回りに伝動
する単方向軸受と、スプロケットが軸に対して逆時計回
りに伝動する単方向軸受であるため、伝動軸S1が時計
回りに伝動し、伝動軸S2が逆時計回りに伝動し、単方
向軸受A11は軸がスプロケットに対して時計回りに伝
動する単方向軸受であり、ゆえにスプロケットA1が時
計回りに伝動し、また単方向軸受A21は軸がスプロケ
ットに対して逆時計回りに伝動する単方向軸受であるた
め、スプロケットA2は逆時計回りに伝動する。スプロ
ケットA1、A2の回転方向が異なるため、スプロケッ
トセットAがセルフロック現象を発生し、回転不能とな
り、ゆえに電動運搬具が坂道に置かれ且つモータが静止
した時、本発明の伝動システムは電動運搬具の後方への
スライドを防止する作用を有する。
In addition, when the electric carrier of the present invention is placed on a slope and the motor is stopped, a force that slides backward due to attractive force is generated to rotate the wheels and the sprocket B3 counterclockwise. , The sprockets B1 and B2 are respectively rotated in the clockwise direction via the chain H2, and at this time, the transmission shafts S1 and S2 have the unidirectional bearings B11 and B2.
1 is a unidirectional bearing in which the sprocket transmits clockwise to the shaft and a unidirectional bearing in which the sprocket transmits counterclockwise to the shaft, so that the transmission shaft S1 transmits clockwise and the transmission shaft S1 S2 transmits in the counterclockwise direction, and the unidirectional bearing A11 is a unidirectional bearing in which the shaft transmits in the clockwise direction with respect to the sprocket. Therefore, the sprocket A1 transmits in the clockwise direction, and the unidirectional bearing A21 has the shaft in the sprocket. Since it is a unidirectional bearing that transmits in a counterclockwise direction, the sprocket A2 transmits in a counterclockwise direction. Since the rotation directions of the sprockets A1 and A2 are different, the sprocket set A causes a self-lock phenomenon and becomes unrotatable. Therefore, when the electric carrier is placed on a slope and the motor is stationary, the transmission system of the present invention uses the electric carrier. It has a function of preventing the tool from sliding backward.

【0016】上述のセルフロック機能は、後方への止滑
作用を有する。しかし、人力で電動運搬具を移動させた
い時に、良好な移動効果を得るために車輪を後退させる
必要がある時は、車輪がセルフロックのために後退不能
となる。このとき、本発明の伝動システムのスプロケッ
トB3と車輪の接合部分に、簡単なクラッチ装置Eを取
り付けて、車輪と伝動システムを暫時離脱させて、自由
回転の状態を呈することができるようにすることによ
り、後退不能の問題を解決できる。
The self-locking function described above has a rear slipping action. However, when it is necessary to move the electric carrier by human power and it is necessary to move the wheels backward to obtain a good moving effect, the wheels cannot be moved backward due to self-locking. At this time, a simple clutch device E is attached to the joint portion between the sprocket B3 and the wheel of the transmission system of the present invention so that the wheel and the transmission system can be temporarily disengaged so that a free rotation state can be exhibited. Can solve the problem of being unable to move backward.

【0017】本発明は四組の単方向軸受にモータの正反
転を組み合わせた巧妙な設計と作動経路の切り換えによ
り、変速伝動の目的を達成するほか、動力ソース中に二
つのモータを取り付けることにより、動力合併と五段変
速の機能を有し、これは即ち本発明の第2実施例であ
る。
The present invention achieves the purpose of speed change transmission by the clever design of four sets of unidirectional bearings combined with the forward and reverse rotation of the motor and the switching of the working path, and by mounting the two motors in the power source. It has the functions of power merging and five-speed shifting, which is the second embodiment of the present invention.

【0018】図3、4に示されるのは、本発明の第2実
施例である。それは、モータM1と減速歯車G1、G2
と、もう一つのモータM2と減速歯車セットG3、G4
を含む。別に平行な伝動軸S1、S2を含む。そのう
ち、伝動軸S1と歯車G2は固定され、伝動軸S2と歯
車G4は固定されている。別に二組の伝動スプロケット
セットA、Bが軸が伝動軸S1、S2に取り付けられ、
伝動軸S1、S2と垂直を呈する。そのうち、スプロケ
ットセットA内に同じモジュラスの小スプロケットA
1、大スプロケットA2と小スプロケットA1と大スプ
ロケットA2を連接するチェーンH1を含む。小スプロ
ケットA1は伝動軸S1と接合され、且つ接合部分に一
組の単方向軸受A11が取り付けられている(モータM
1の出力軸方向からモータ方向に向けて見て、軸はスプ
ロケットに対して順時計回りに伝動可能で、スプロケッ
トは軸に対して逆時計回りに伝動可能である)。大スプ
ロケットA2と伝動軸S2と接合され、且つ接合部分に
一組の単方向軸受A21が設けられている(軸がスプロ
ケットに対して逆時計回りに伝動可能で、スプロケット
は軸に対して順時計回りに伝動可能である)。スプロケ
ットセットB内に同じモジュラスのスプロケットB1、
スプロケットB2、動力出力スプロケットB3と、三つ
のスプロケットB1、B2、B3を連接するチェーンH
2が設けられ、且つスプロケットB1がチェーンH2の
外側に置かれ、スプロケットB1と二つのスプロケット
B2、B3の回転方向が反対である。スプロケットB1
と伝動軸S1が接合し、且つ接合部分に一組の単方向軸
受B11が設けられている(軸はスプロケットに対して
逆時計回りに伝動可能で、スプロケットは軸に対して順
時計回りに伝動可能である)。スプロケットB2と伝動
軸S2が接合し、且つ接合部分に一組の単方向軸受B2
1が設けられ(軸はスプロケットに対して順時計回りに
伝動可能で、スプロケットは軸に対して逆時計回りに伝
動可能である)、動力出力スプロケットと電動運搬具の
車輪Wが接合されている。
A second embodiment of the present invention is shown in FIGS. It is a motor M1 and reduction gears G1, G2.
And another motor M2 and reduction gear sets G3, G4
including. Separately, parallel transmission axes S1 and S2 are included. Among them, the transmission shaft S1 and the gear G2 are fixed, and the transmission shaft S2 and the gear G4 are fixed. Separately, two sets of transmission sprocket sets A and B are attached to the transmission shafts S1 and S2,
It is perpendicular to the transmission shafts S1 and S2. Among them, small sprocket A with the same modulus in sprocket set A
1, including a chain H1 connecting the large sprocket A2, the small sprocket A1 and the large sprocket A2. The small sprocket A1 is joined to the transmission shaft S1 and a set of unidirectional bearings A11 is attached to the joint (motor M).
When viewed from the direction of the output shaft 1 toward the motor, the shaft can be transmitted in the clockwise direction with respect to the sprocket, and the sprocket can be transmitted in the counterclockwise direction with respect to the shaft). The large sprocket A2 and the transmission shaft S2 are joined to each other, and a set of unidirectional bearings A21 is provided at the joint portion (the shaft can be transmitted in a counterclockwise direction with respect to the sprocket, and the sprocket is in a clockwise direction with respect to the shaft). It can be transmitted around). Sprocket B1 of the same modulus in sprocket set B,
Chain H connecting sprocket B2, power output sprocket B3, and three sprockets B1, B2, B3
2 is provided and the sprocket B1 is placed outside the chain H2, and the rotation directions of the sprocket B1 and the two sprockets B2, B3 are opposite. Sprocket B1
And the transmission shaft S1 are joined together, and a set of unidirectional bearings B11 are provided at the joint portion (the shaft can be transmitted counterclockwise with respect to the sprocket, and the sprocket can be transmitted clockwise with respect to the shaft). Is possible). The sprocket B2 and the transmission shaft S2 are joined to each other, and a pair of unidirectional bearings B2 are attached to the joined portion.
1 is provided (the shaft can be transmitted clockwise with respect to the sprocket, and the sprocket can be transmitted counterclockwise with respect to the shaft), and the power output sprocket and the wheel W of the electric carrier are joined. .

【0019】上述の単方向軸受の伝動方向は表2に示さ
れるとおりである。
The transmission direction of the above-mentioned unidirectional bearing is as shown in Table 2.

【表2】 [Table 2]

【0020】本発明の第2種の実施例の伝動方式は、モ
ータM1の出力軸方向よりモータ方向より見て、モータ
M1とモータM2が同時に逆時計方向に回転し、モータ
M1の伝動経路は、モータM1の出力軸方向からモータ
方向を見て、モータM1が逆時計回りに回転し、小歯車
G1を駆動して逆時計回りに回転させて大歯車G2と伝
動軸S1に伝動してそれらを時計回りに回転させる。単
方向軸受A11が軸がスプロケットに対して時計回りに
伝動する単方向軸受であるため、スプロケットA1は出
力軸S1と同様に時計回りに回転する。このほか、同軸
の単方向軸受B11は軸がスプロケットに対して逆時計
回りに伝動する単方向軸受であるため、スプロケットB
1は伝動軸S1に連動しない。スプロケットA1はチェ
ーンH1を介して時計回りにスプロケットA2に伝動し
て時計回りに回転させるが、スプロケットA2と伝動軸
S2間に取付けられた単方向軸受A21はスプロケット
が軸に対して時計回りに伝動する単方向軸受であるた
め、伝動軸S2も時計回りに回転し、且つスプロケット
B2と伝動軸S2間に取り付けられた単方向軸受B21
もまた時計回りに回転し、チェーンH2がスプロケット
B3と車輪Wを駆動して時計回りに回転させる。
In the transmission system of the second embodiment of the present invention, when viewed from the output shaft direction of the motor M1 in the motor direction, the motors M1 and M2 rotate counterclockwise at the same time, and the transmission path of the motor M1 is Looking at the motor direction from the output shaft direction of the motor M1, the motor M1 rotates counterclockwise, drives the small gear G1 to rotate counterclockwise, and transmits it to the large gear G2 and the transmission shaft S1. Rotate clockwise. Since the unidirectional bearing A11 is a unidirectional bearing in which the shaft transmits clockwise to the sprocket, the sprocket A1 rotates clockwise like the output shaft S1. In addition, since the coaxial unidirectional bearing B11 is a unidirectional bearing in which the shaft transmits counterclockwise with respect to the sprocket, the sprocket B11
1 does not interlock with the transmission shaft S1. The sprocket A1 is transmitted clockwise to the sprocket A2 via the chain H1 to rotate clockwise, but the unidirectional bearing A21 mounted between the sprocket A2 and the transmission shaft S2 transmits the sprocket clockwise to the shaft. Since this is a unidirectional bearing, the transmission shaft S2 also rotates clockwise and the unidirectional bearing B21 mounted between the sprocket B2 and the transmission shaft S2.
Also rotates clockwise, and the chain H2 drives the sprocket B3 and the wheels W to rotate them clockwise.

【0021】このモータM1の動力伝動経路は、M1
(逆)→G1(逆)→G2(順)→S1(順)→A1
(順)→H1(順)→A2(順)→S2(順)→B2
(順)→H2(順)→B3(順)となり、その減速比
は、減速歯車セットG1、G2と、減速スプロケットA
1、A2とスプロケットB2、B3の加総となり、数学
式は、 (G2歯数/G1歯数)*(A2歯数/A1歯数)*(B3歯数/B2歯数) ・・・・式3となる。
The power transmission path of this motor M1 is M1.
(Reverse) → G1 (Reverse) → G2 (Forward) → S1 (Forward) → A1
(Order) → H1 (Order) → A2 (Order) → S2 (Order) → B2
(Sequential) → H2 (sequential) → B3 (sequential), and the reduction gear ratios are reduction gear sets G1 and G2 and reduction sprocket A
1 and A2 and sprockets B2 and B3 are added together, and the mathematical formula is (G2 number of teeth / G1 number of teeth) * (A2 number of teeth / A1 number of teeth) * (B3 number of teeth / B2 number of teeth) ... Equation 3 is obtained.

【0022】このほか、モータM2は逆時計回りに小歯
車G3を駆動して逆時計回りに回転させ、さらに大歯車
G4と伝動軸S2に伝動してそれらを時計回りに回転さ
せ、単方向軸受A21は軸がスプロケットに対して逆時
計回りに伝動する単方向軸受とされるため、ゆえにスプ
ロケットA2が伝動軸S2に連動しない。このほか、同
軸のスプロケットB2の単方向軸受B21軸がスプロケ
ットに対して時計回りに伝動する単方向軸受とされ、ゆ
えにスプロケットB2が時計回りに回転し、チェーンH
2を駆動して時計回りに回転させ、また、スプロケット
B3も時計回りに回転し、車輪を駆動して前進させる。
このスプロケットB2はチェーンH2を介してスプロケ
ットB1に伝動し、スプロケットB1を逆時計回りに回
転させるが、スプロケットB1と伝動軸S2間に取り付
けられた単方向軸受B11が、スプロケットが軸に対し
て時計回りに伝動する単方向軸受とされるため、伝動軸
S1も連動回転しない。これにより、モータM2の動力
伝動経路は、伝動軸S2を経由しない伝動方式とされ、
その伝動経路を簡単に示すと、M2(逆)→G3(逆)
→G4(順)→S2(順)→B2(順)→H2(順)→
B3(順)となり、その減速比は、減速歯車セットG
3、G4と、減速スプロケットB2、B3の加総とな
り、数学式は、 (G4歯数/G3歯数)*(B3歯数/B2歯数)・・・・式4となる。
In addition, the motor M2 drives the small gear G3 in the counterclockwise direction to rotate it in the counterclockwise direction, further transmits it to the large gear G4 and the transmission shaft S2 to rotate them in the clockwise direction, and the unidirectional bearing. Since A21 is a unidirectional bearing in which the shaft is transmitted counterclockwise with respect to the sprocket, therefore, the sprocket A2 does not interlock with the transmission shaft S2. In addition, the unidirectional bearing B21 of the coaxial sprocket B2 is a unidirectional bearing that transmits clockwise to the sprocket, so that the sprocket B2 rotates clockwise and the chain H
2 is driven to rotate clockwise, and the sprocket B3 also rotates clockwise to drive the wheels to move forward.
This sprocket B2 is transmitted to the sprocket B1 via the chain H2 to rotate the sprocket B1 counterclockwise. However, the unidirectional bearing B11 mounted between the sprocket B1 and the transmission shaft S2 causes the sprocket to rotate clockwise relative to the shaft. Since it is a unidirectional bearing that transmits around, the transmission shaft S1 also does not rotate in conjunction. As a result, the power transmission path of the motor M2 is a transmission system that does not pass through the transmission shaft S2.
The transmission path is simply shown as M2 (reverse) → G3 (reverse).
→ G4 (order) → S2 (order) → B2 (order) → H2 (order) →
B3 (in order), the reduction ratio is the reduction gear set G
3 and G4 and deceleration sprockets B2 and B3 are added together, and the mathematical formula is (G4 number of teeth / G3 number of teeth) * (B3 number of teeth / B2 number of teeth) ...

【0023】仮に、モータM2が毎分n21回転速度で逆
時計回りに回転するとすると、車輪とスプロケットB3
は時計回りに毎分nw2の回転速度で前進し、nw2とn21
の関係は以下の式5で表される。 nw2=n21{(G4歯数/G3歯数)*(B3歯数/B2歯数)}・・・・式 5
If the motor M2 rotates counterclockwise at a rotational speed of n 21 per minute, the wheels and the sprocket B3 will rotate.
Moves clockwise at a rotational speed of n w2 per minute, and n w2 and n 21
The relationship is expressed by the following equation 5. n w2 = n 21 {(number of G4 teeth / number of G3 teeth) * (number of B3 teeth / number of B2 teeth)} ... Equation 5

【0024】モータM1とモータM2が同時に車輪を駆
動し電動運搬具を前進させ、モータM1が毎分n11
転速度で逆時計回りに回転すれば、車輪とスプロケット
B3は時計回りに毎分nw1回転速度で前進し、ゆえにn
w1=nw2で、 n11{(G2歯数/G1歯数)*(A2歯数/A1歯数)*(B3歯数/B2 歯数)}=n21/{(G4歯数/G3歯数)*(B3歯数/B2歯数)}・・・ 式6 簡易化すると、 n11{(G2歯数/G1歯数)*(A2歯数/A1歯数)}=n21/{(G4歯 数/G3歯数)}・・・式7 もし、モータM1、M2が同様の特性のモータでn11
=n21であれば、式7より、 (G2歯数/G1歯数)*(A2歯数/A1歯数)=(G4歯数/G3歯数) ・・・式8となる。
If the motors M1 and M2 simultaneously drive the wheels to move the electric carrier forward, and the motor M1 rotates counterclockwise at a rotation speed of n 11 per minute, the wheels and the sprocket B3 rotate n times per minute in the clockwise direction. move forward at w1 rotation speed, therefore n
w1 = n w2 , n 11 {(number of G2 teeth / number of G1 teeth) * (number of A2 teeth / number of A1 teeth) * (number of B3 teeth / number of B2 teeth)} = n 21 / {(number of G4 teeth / G3 Number of teeth) * (number of B3 teeth / number of B2 teeth)} Equation 6 When simplified, n 11 {(number of G2 teeth / number of G1 teeth) * (number of A2 teeth / number of A1 teeth)} = n 21 / {(G4 number of teeth / G3 number of teeth)} Equation 7 If the motors M1 and M2 are motors having similar characteristics, n11
= N21, from Equation 7, (G2 number of teeth / G1 number of teeth) * (A2 number of teeth / A1 number of teeth) = (G4 number of teeth / G3 number of teeth) ...

【0025】もし、伝動摩擦消耗を無視するなら、理論
上、モータM1とM2は一様の馬力を分担可能で、即ち
モータM1とM2の動力は相加の効果を達成し、ゆえに
本発明の第2実施例の二つのモータの装置は、動力合併
の機能を有する。
If the frictional wear is neglected, in theory the motors M1 and M2 can share a uniform horsepower, ie the powers of the motors M1 and M2 achieve the additive effect and therefore the invention. The two motor device of the second embodiment has a function of merging power.

【0026】この式7は、本実施例の伝動方式であり、
スプロケット歯数分配の設計基準とされる。
Equation 7 is the transmission system of this embodiment,
It is a design standard for sprocket tooth number distribution.

【0027】本発明の第2実施例の二つのモータの装置
は、電動運搬具使用前の一段(M1逆転M2逆転)に静
止より起動された後或いは坂道で使用後に、ゆっくりと
前進或いは坂道ですでに減速される。このとき車輪のト
ルク出力は減少することが必要であり、本システムは電
力節約の観念に基づき、制御システムを利用し、モータ
M1をオフとし、モータM2が続いて逆時計回りに回転
し(モータM2の出力軸方向からモータ方向を見て)、
第2段の変速効果を発生し、その伝動経路はモータM2
が逆時計回りに小歯車Gを駆動して逆時計回りに回転さ
せ、さらに大歯車G4と伝動軸S2を時計回りに回転さ
せ、単方向軸受A21が軸がスプロケットに対して逆時
計回りに伝動する単方向軸受であるため、スプロケット
A2が伝動軸S2に連動しない。このほか、同軸のスプ
ロケットB2の単方向軸受B21が軸がスプロケットに
対して時計回りに伝動する単方向軸受とされるため、ス
プロケットB2が時計回りに回転し、チェーンH2を駆
動して時計回りに回転させ、スプロケットB3を時計回
りに回転させると同時に、車輪を駆動して前進させる。
このスプロケットB2はチェーンH2を介してスプロケ
ットB1を駆動して逆時計回りに伝動するが、スプロケ
ットB1と伝動軸S2間に取り付けられた単方向軸受B
11がスプロケットが軸に対して時計回りに伝動する単
方向軸受であるため、伝動軸S1が連動回転しない。こ
れによりモータM2の伝動経路は、伝動軸S2を経由す
る伝動方式とされ、簡単に記載すると、M2(逆)→G
3(逆)→G4(順)→S2(順)→B2(順)→H2
(順)→B3(順)となり、その減速比は、減速歯車セ
ットG3、G4と、減速スプロケットB2、B3の加総
となり、数学式は、 (G4歯数/G3歯数)*(B3歯数/B2歯数)・・・・式4となる。
The two-motor device according to the second embodiment of the present invention is a forward movement or a sloping road after it is started from a stationary state (M1 reverse rotation M2 reverse rotation) before using the electric carrier or after being used on a slope. Will be decelerated to. At this time, the torque output of the wheels needs to be reduced, and the system uses the control system to turn off the motor M1 and the motor M2 continues to rotate counterclockwise (motor Looking at the motor direction from the output shaft direction of M2),
The second-stage gear shifting effect is generated, and its transmission path is the motor M2.
Drives the small gear G counterclockwise to rotate it counterclockwise, further rotates the large gear G4 and the transmission shaft S2 clockwise, and the unidirectional bearing A21 transmits the shaft counterclockwise to the sprocket. Since it is a unidirectional bearing, the sprocket A2 does not interlock with the transmission shaft S2. In addition, since the unidirectional bearing B21 of the coaxial sprocket B2 is a unidirectional bearing whose shaft transmits clockwise to the sprocket, the sprocket B2 rotates clockwise and drives the chain H2 to rotate clockwise. At the same time, the sprocket B3 is rotated clockwise, and at the same time, the wheels are driven to move forward.
The sprocket B2 drives the sprocket B1 via the chain H2 to transmit the sprocket B1 in the counterclockwise direction, but the unidirectional bearing B mounted between the sprocket B1 and the transmission shaft S2.
Since 11 is a unidirectional bearing in which the sprocket transmits clockwise with respect to the shaft, the transmission shaft S1 does not rotate in conjunction. As a result, the transmission path of the motor M2 is set to the transmission system that passes through the transmission shaft S2. Simply described, M2 (reverse) → G
3 (reverse) → G4 (forward) → S2 (forward) → B2 (forward) → H2
(Order) → B3 (order), the reduction ratio is the sum of reduction gear sets G3 and G4 and reduction sprockets B2 and B3, and the mathematical formula is (G4 number of teeth / G3 number of teeth) * (B3 tooth) Number / B2 number of teeth) ... Equation 4 is obtained.

【0028】もし、電動運搬具を操作者がさらに加速さ
せたい時は、モータM2を続けて逆時計回りに運転さ
せ、モータM1を静止より起動開始し、時計回りに切り
換えて回転させる。その伝動経路は、モータM1の出力
軸方向よりモータ方向を見る。モータM1は、時計回り
に回転し、小歯車G1を駆動して時計回りに大歯車G2
と伝動軸S2に伝動させ、それらを逆時計回りに回転さ
せる。単方向軸受A11が軸がスプロケットに対して時
計回りに伝動する単方向軸受とされるため、スプロケッ
トA1が伝動軸S1に連動回転しない。このほか、同軸
のスプロケットB1が軸がスプロケットに対して逆時計
回りに伝動する単方向軸受とされるため、スプロケット
B1が伝動軸S1と同様に逆時計回りに回転する。スプ
ロケットB1はチェーンH2の外側に置かれ、ゆえにチ
ェーンH2はスプロケットB3と車輪を駆動して時計回
りに回転させる。簡単にその伝動経路を記すと、M1
(順)→G1(順)→G2(逆)→S1(逆)→B1
(逆)→H2(順)→B3(順)となり、その減速比
は、減速歯車セットG1、G2と、減速スプロケットB
1、B3の加総となり、数学式は、 (G2歯数/G1歯数)*(B3歯数/B1歯数)・・・・式9となる。
If the operator wants to further accelerate the electric carrier, the motor M2 is continuously operated in the counterclockwise direction, the motor M1 is started from stationary, and the motor M1 is switched to rotate clockwise. As for the transmission path, the motor direction is seen from the output shaft direction of the motor M1. The motor M1 rotates clockwise to drive the small gear G1 and rotate clockwise to the large gear G2.
To the transmission shaft S2 and rotate them counterclockwise. Since the unidirectional bearing A11 is a unidirectional bearing in which the shaft transmits clockwise with respect to the sprocket, the sprocket A1 does not rotate in conjunction with the transmission shaft S1. In addition, since the coaxial sprocket B1 is a unidirectional bearing whose shaft transmits counterclockwise with respect to the sprocket, the sprocket B1 rotates counterclockwise like the transmission shaft S1. The sprocket B1 is placed outside the chain H2, so the chain H2 drives the sprocket B3 and the wheels to rotate them clockwise. To briefly describe the transmission path, M1
(Order) → G1 (Order) → G2 (Reverse) → S1 (Reverse) → B1
(Reverse) → H2 (forward) → B3 (forward), and the reduction ratios are reduction gear sets G1 and G2 and reduction sprocket B
The mathematical formula is (G2 number of teeth / G1 number of teeth) * (B3 number of teeth / B1 number of teeth) ...

【0029】この時、モータM2は比較的高い減速比を
有して車輪を駆動し前進させ、モータM1が比較的低い
減速比で車輪を駆動して前進させ、第3段の変速状況を
得る。
At this time, the motor M2 has a relatively high reduction ratio to drive the wheels to move forward, and the motor M1 drives the wheels to have a relatively low reduction ratio to move forward to obtain the third speed change condition. .

【0030】モータM1が比較的低い減速比を以て併合
駆動する時、速度がますます速くなり、モータM2の負
荷が軽減し効率的な出力に符合しなくなると時、モータ
M2が運転を停止し、残ったモータM1が続いて時計回
りに回転し、第4段の変速状態に変成し、続いて車輪を
駆動し前進させる。
When the motor M1 is combined and driven with a relatively low reduction ratio, the speed becomes higher and faster, and when the load of the motor M2 is reduced and the output cannot be met efficiently, the motor M2 stops operating, The remaining motor M1 subsequently rotates clockwise to change to the fourth speed change state, and then the wheels are driven to move forward.

【0031】電動運搬具をさらに高速度で前進させたい
時、モータM2は静止より起動開始し時計回りに回転
し、その伝動経路は、モータM2より時計回りに小歯車
G3を駆動して時計回りに回転させ、さらに大歯車G4
と伝動軸S2を駆動して逆時計回りに回転させ、単方向
軸受A21が軸がスプロケットに対して逆時計回りに伝
動する単方向軸受とされるため、ゆえにスプロケットA
2が伝動軸S2に連動せず、スプロケットA2がチェー
ンH1を駆動して逆時計回りに回転させ、またスプロケ
ットA1を逆時計回りに回転させ、スプロケットA1の
単方向軸受A11がスプロケットが軸に対して逆時計回
りに伝動する単方向軸受とされるため、ゆえにスプロケ
ットA1が伝動軸S1を駆動して逆時計回りに回転させ
る。このほか、同軸のスプロケットB1と伝動軸S1の
間に取り付けられた単方向軸受B11が軸がスプロケッ
トに対して逆時計回りに伝動する単方向軸受であるた
め、伝動軸S1が逆時計回りにスプロケットB1に伝動
して逆時計回りに回転させるが、スプロケットB1はチ
ェーンH2の外側に置かれるため、スプロケットB1は
逆時計回りに回転してチェーンH2とスプロケットB3
を時計回りに回転させる。これによりモータM2の時計
回りの伝動経路は、M2(順)→G3(順)→G4
(逆)→S2(逆)→A2(逆)→A1(逆)→S1
(逆)→B1(逆)→H2(順)→B3(順)となり、
その減速比は、減速歯車セットG3、G4と、増速スプ
ロケットA1、A2と、減速スプロケットB1、B3の
加総となり、数学式は、 (G4歯数/G3歯数)*(A1歯数/A2歯数)*(B3歯数/B1歯数) ・・・・式10となる。
When it is desired to move the electric carrier forward at a higher speed, the motor M2 starts to start from a stationary state and rotates clockwise, and its transmission path is clockwise from the motor M2 by driving the small gear G3. To the gear wheel G4
And the transmission shaft S2 is driven to rotate in a counterclockwise direction, and the unidirectional bearing A21 is a unidirectional bearing in which the shaft transmits in a counterclockwise direction with respect to the sprocket.
2 does not interlock with the transmission shaft S2, the sprocket A2 drives the chain H1 to rotate counterclockwise, and the sprocket A1 rotates counterclockwise, so that the unidirectional bearing A11 of the sprocket A1 is rotated relative to the shaft. Therefore, the sprocket A1 drives the transmission shaft S1 to rotate in the counterclockwise direction. Besides, since the unidirectional bearing B11 mounted between the coaxial sprocket B1 and the transmission shaft S1 is a unidirectional bearing in which the shaft transmits counterclockwise with respect to the sprocket, the transmission shaft S1 rotates counterclockwise. Although the sprocket B1 is placed on the outer side of the chain H2, the sprocket B1 rotates counterclockwise because it is transmitted to B1 and rotates counterclockwise. Therefore, the sprocket B1 rotates counterclockwise and the chain H2 and the sprocket B3 rotate.
Rotate clockwise. As a result, the clockwise transmission path of the motor M2 is M2 (forward) → G3 (forward) → G4.
(Reverse) → S2 (Reverse) → A2 (Reverse) → A1 (Reverse) → S1
(Reverse) → B1 (reverse) → H2 (forward) → B3 (forward),
The reduction ratio is the sum of the reduction gear sets G3 and G4, the speed increasing sprockets A1 and A2, and the reduction sprockets B1 and B3. The mathematical formula is (G4 number of teeth / G3 number of teeth) * (A1 number of teeth / A2 number of teeth) * (B3 number of teeth / B1 number of teeth) ... Equation 10 is obtained.

【0032】同時に、モータM1が時計回りに回転し、
このとき、モータM1の伝動経路は、モータM1の出力
軸方向よりモータ方向より見る。モータM1は時計回り
に回転を呈し、小歯車G1を駆動し時計回りに回転さ
せ、大歯車G2と伝動軸S1を駆動して逆時計回りに回
転させる。単方向軸受A11が軸がスプロケットに対し
て伝動する単方向軸受であるため、スプロケットA1は
伝動軸S1に連動しない。このほか、同軸のスプロケッ
トB1の単方向軸受B11は軸がスプロケットに対して
逆時計回りに伝動する単方向軸受であるため、スプロケ
ットB1と伝動軸S1が逆時計回りに回転する。スプロ
ケットB1はチェーンH2の外側に置かれるため、チェ
ーンH2がスプロケットB3と車輪を駆動して時計回り
に回転させる。簡単にその伝動経路を示すと、M1
(順)→G1(順)→G2(逆)→S1(逆)→B1
(逆)→H2(順)→B3(順)となり、その減速比
は、減速歯車セットG1、G2と、減速スプロケットB
1、B3の加総となり、数学式は、 (G2歯数/G1歯数)*(B3歯数/B1歯数)・・・・式9となる。
At the same time, the motor M1 rotates clockwise,
At this time, the transmission path of the motor M1 is seen from the motor direction rather than the output shaft direction of the motor M1. The motor M1 rotates clockwise, drives the small gear G1 to rotate clockwise, and drives the large gear G2 and the transmission shaft S1 to rotate counterclockwise. Since the unidirectional bearing A11 is a unidirectional bearing in which the shaft transmits to the sprocket, the sprocket A1 does not interlock with the transmission shaft S1. In addition, since the unidirectional bearing B11 of the coaxial sprocket B1 is a unidirectional bearing whose shaft transmits counterclockwise with respect to the sprocket, the sprocket B1 and the transmission shaft S1 rotate counterclockwise. Since the sprocket B1 is placed outside the chain H2, the chain H2 drives the sprocket B3 and the wheels to rotate them clockwise. The transmission route is briefly shown as M1
(Order) → G1 (Order) → G2 (Reverse) → S1 (Reverse) → B1
(Reverse) → H2 (forward) → B3 (forward), and the reduction ratios are reduction gear sets G1 and G2 and reduction sprocket B
The mathematical formula is (G2 number of teeth / G1 number of teeth) * (B3 number of teeth / B1 number of teeth) ...

【0033】このとき、モータM1、M2の動力流は、
いずれも集中して伝動軸S1を経由し、さらにB1
(逆)→H2(順)→B3(順)となり、車輪を駆動し
て前進させ、これが本発明の第2実施例の第5段変速と
される。
At this time, the power flow of the motors M1 and M2 is
All are concentrated and go through the transmission shaft S1, and further B1
(Reverse) → H2 (forward) → B3 (forward), the wheels are driven to move forward, and this is the fifth gear shift of the second embodiment of the present invention.

【0034】このため、電動運搬具の負荷が固定されて
不変であるとし、低減速比で快速に前進する電動運搬具
の負荷を各モータで平均して分担すると、各モータの負
荷が半減し、直流モータの特性から言って、同じ電圧下
で負荷が減少し、速度が速くなる。
Therefore, assuming that the load of the electric carrier is fixed and invariable, and if the load of the electric carrier that rapidly advances at a reduced speed ratio is shared by each motor on average, the load of each motor is halved. From the characteristics of the DC motor, the load decreases and the speed increases under the same voltage.

【0035】以上から分かるように、本発明の第2実施
例は、簡単回路で二つのモータを制御し、それぞれ正反
転させるか或いはそのうちの一つのモータを停止させる
方式で駆動し、及び四組の単方向軸受を具えたスプロケ
ットにより、五段変速と動力合併の効果を達成し、伝統
的な変速箱内の複雑な減速機構よりも非常に簡単であ
る。以下に、この五段変速の状況を表3を参照して詳し
く説明する。
As can be seen from the above, in the second embodiment of the present invention, two motors are controlled by a simple circuit, and each motor is driven in a normal or reverse direction, or one of the motors is stopped, and four motors are used. The sprocket with unidirectional bearings achieves the effect of five-speed shifting and power merging, which is much simpler than the complex reduction mechanism in traditional transmission boxes. Hereinafter, the situation of the 5-speed shift will be described in detail with reference to Table 3.

【表3】 [Table 3]

【0036】電動運搬具が上り坂に置かれる時、モータ
が静止状態を呈し、且つブレーキがない時、電動運搬具
は伝動システムのセルフロック作用により、下滑りしな
い。その因子は以下に説明する。車輪が地球の引力によ
り、後ろ向きに滑動する力が、スプロケットB3を牽引
して逆時計回りに回転させ、チェーンH2がスプロケッ
トB1、B2を駆動してそれぞれ時計回りと逆時計回り
に回転させる。このとき、伝動軸S1、S2は単方向軸
受B11とB21がそれぞれスプロケットが軸に対して
時計回りに伝動する単方向軸受とスプロケットが軸に対
して逆時計回りに伝動する単方向軸受であるため、伝動
軸S1が時計回りに回転し、伝動軸S2が逆時計回りに
回転し、単方向軸受A11が軸がスプロケットに対して
時計回りに伝動する単方向軸受であるため、スプロケッ
トA1が時計回りに伝動し、また、単方向軸受A21が
軸がスプロケットに対して逆時計回りに伝動する単方向
軸受であるため、スプロケットA2が逆時計回りに回転
し、スプロケットA1とA2の回転方向の違いにより、
スプロケットセットAがセルフロック現象を発生し、回
転不能となり、ゆえに電動運搬具が坂に置かれ且つモー
タが停止した時、本発明は電動運搬具を後ろ向きに滑ら
せない作用を有する。
When the electric carrier is placed uphill and the motor is stationary and there is no brake, the electric carrier does not slip down due to the self-locking action of the transmission system. The factors are explained below. The force of the wheels sliding backwards due to the attractive force of the earth pulls the sprocket B3 to rotate it counterclockwise, and the chain H2 drives the sprockets B1 and B2 to rotate clockwise and counterclockwise, respectively. At this time, since the transmission shafts S1 and S2 are unidirectional bearings B11 and B21, respectively, which are a unidirectional bearing in which the sprocket transmits clockwise to the shaft and a unidirectional bearing in which the sprocket transmits counterclockwise to the shaft. , The transmission shaft S1 rotates clockwise, the transmission shaft S2 rotates counterclockwise, and the unidirectional bearing A11 is a unidirectional bearing in which the shaft transmits clockwise with respect to the sprocket, so the sprocket A1 rotates clockwise. In addition, since the unidirectional bearing A21 is a unidirectional bearing in which the shaft transmits in the counterclockwise direction with respect to the sprocket, the sprocket A2 rotates counterclockwise and the sprocket A1 and A2 rotate in different directions. ,
The present invention has the effect of preventing the electric carrier from sliding backward when the sprocket set A causes a self-locking phenomenon and becomes non-rotatable, and thus when the electric carrier is placed on a slope and the motor is stopped.

【0037】第1実施例の単一モータ駆動の伝動方式と
同じく、上述のセルフロック機能は、後方への止滑作用
を有する。しかし、人力で電動運搬具を移動させたい時
に、良好な移動効果を得るために車輪を後退させる必要
がある時は、車輪がセルフロックのために後退不能とな
る。このとき、本発明の伝動システムのスプロケットB
3と車輪の接合部分に、簡単なクラッチ装置Eを取り付
けて、車輪と伝動システムを暫時離脱させて、自由回転
の状態を呈することができるようにすることにより、後
退不能の問題を解決できる。
Similar to the single motor drive transmission system of the first embodiment, the self-locking function described above has a rear slipping action. However, when it is necessary to move the electric carrier by human power and it is necessary to move the wheels backward to obtain a good moving effect, the wheels cannot be moved backward due to self-locking. At this time, the sprocket B of the transmission system of the present invention
By attaching a simple clutch device E to the joint portion between the wheel 3 and the wheel so that the wheel and the transmission system can be temporarily disengaged so as to be in a free rotation state, it is possible to solve the problem of being unable to retreat.

【0038】本発明の第1実施例の単一モータ駆動の伝
動方式と、第2実施例の二つのモータで駆動する伝動方
式を較べると、両者の機構上の差異は、僅かに一つのモ
ータM2及び減速歯車セットG3、G4が多いだけであ
ることが分かる。即ち、第1実施例は比較的簡単な伝動
方式で、電動運搬具が比較的高い動力出力を必要とする
か或いは比較的多段の変速装置の伝動システムを必要と
する時、ただ第1実施例の単一モータ駆動の伝動方式
に、モータM2及び減速歯車セットG3、G4を加えれ
ば、第2実施例の二つのモータで駆動する伝動方式とな
すことができ、これは製造の規格と在庫の準備上、非常
に簡素化でき、これによっても本発明が市場で競争力を
有する。
Comparing the single motor drive transmission system of the first embodiment of the present invention and the two motor drive transmission system of the second embodiment, the difference between the two mechanisms is only one motor. It can be seen that there are only many M2 and reduction gear sets G3, G4. That is, the first embodiment is a relatively simple transmission system, and is only used when the electric carrier requires a relatively high power output or a transmission system of a transmission having a relatively multi-stage transmission. If the motor M2 and the reduction gear sets G3 and G4 are added to the single motor drive transmission system, the transmission system driven by the two motors of the second embodiment can be adopted. In terms of preparation, it can be greatly simplified, which also makes the invention competitive in the market.

【0039】本発明の第2実施例の二つのモータで駆動
する伝動方式は、スプロケットを伝動セットとして応用
するほか、歯車を伝動セットとして利用して、直接噛み
合わせ方式で伝動することができる。これは本発明の第
3実施例であり、図5、6、7に示されるように、本発
明の第3実施例は、モータM1が一段速歯車セットG
1、G2を介して動力を伝動軸S1に伝送し、もう一つ
のモータM2は二段減速歯車セットG3、G4及びG
5、G6により動力を伝動軸S2に送る。二つの平行な
伝動軸S1、S2が設けられ、そのうち伝動軸S1と歯
車G2は固定され、伝動軸S2と歯車G6が固定され
る。別の二組の伝動歯車セットC、Dが軸S1、S2に
取り付けられ、軸S1、S2が垂直を呈し、そのうち、
歯車セット内に同じモジュラスで、相互に噛み合わない
歯車C1、歯車C2がある。しかし、比較的大きな歯車
C3が同時に歯車C1、歯車C2と噛み合い、且つ歯車
C3に伝動軸S1、S2と相互に平行な動力出力軸S3
が連接されている。この動力出力軸S3と電動運搬具の
左右の車輪Wが連接され、即ち歯車C3と動力出力軸S
3の間に差速器Fが取り付けられている。動力流は、軸
S31と軸S32より左右の車輪に伝送される。歯車C
1と伝動軸S1は接合され、且つ接合部分に一組の単方
向軸受C11が取り付けられている(モータM1の出力
軸方向よりモータ方向を見て、軸は歯車に対して逆時計
回りに伝動し、歯車は軸に対して時計回りに伝動す
る)。歯車C2は軸S2と接合し、且つ接合部分に一組
の単方向軸受C21が取り付けられている(軸が歯車に
対して逆時計回りに伝動し、歯車が軸に対して時計回り
に伝動する)。歯車セットD内には同じモジュラスで且
つ相互に噛み合う歯車D1、歯車D2があり、且つ歯車
D1の歯数が歯車D2の歯数より少ない。歯車D1と伝
動軸S1は接合され、且つ接合部分に一組の単方向軸受
D11が設けられている(軸は歯車に対して時計回りに
伝動し、歯車は軸に対して逆時計回りに伝動する)。歯
車D2は伝動軸S2と接合され、且つ接合部分に一組の
単方向軸受D21が取り付けられている(軸は歯車に対
して時計回りに伝動し、歯車は軸に対して逆時計回りに
伝動する)。
The transmission system driven by the two motors of the second embodiment of the present invention can be directly transmitted by the meshing system by using the sprocket as a transmission set and also by using the gear as a transmission set. This is the third embodiment of the present invention, and as shown in FIGS. 5, 6 and 7, in the third embodiment of the present invention, the motor M1 is a single-speed gear set G.
1, the power is transmitted to the transmission shaft S1 via G2, and the other motor M2 is connected to the two-stage reduction gear set G3, G4 and G.
5, the power is sent to the transmission shaft S2 by G6. Two parallel transmission shafts S1 and S2 are provided, of which the transmission shaft S1 and the gear G2 are fixed, and the transmission shaft S2 and the gear G6 are fixed. Another two sets of transmission gear sets C and D are attached to the shafts S1 and S2, and the shafts S1 and S2 are vertical, of which
In the gear set, there are gears C1 and C2 that have the same modulus but do not mesh with each other. However, a relatively large gear C3 meshes with the gears C1 and C2 at the same time, and the power output shaft S3 that is parallel to the gears C3 and the transmission shafts S1 and S2.
Are connected. The power output shaft S3 and the left and right wheels W of the electric carrier are connected, that is, the gear C3 and the power output shaft S
The differential gear F is attached between the three. The power flow is transmitted to the left and right wheels from the shafts S31 and S32. Gear C
1 and the transmission shaft S1 are joined, and a set of unidirectional bearings C11 are attached to the joint portion (when viewed from the output shaft direction of the motor M1 in the motor direction, the shaft is transmitted counterclockwise to the gear). Then, the gear is transmitted clockwise with respect to the shaft). The gear C2 is joined to the shaft S2, and a set of unidirectional bearings C21 is attached to the joint (the shaft transmits counterclockwise to the gear and the gear transmits clockwise to the shaft). ). The gear set D includes gears D1 and D2 having the same modulus and meshing with each other, and the number of teeth of the gear D1 is smaller than that of the gear D2. The gear D1 and the transmission shaft S1 are joined, and a set of unidirectional bearings D11 are provided at the joint portion (the shaft transmits clockwise to the gear and the gear transmits counterclockwise to the shaft). To). The gear D2 is joined to the transmission shaft S2, and a set of unidirectional bearings D21 is attached to the joint (the shaft transmits clockwise to the gear, and the gear transmits counterclockwise to the shaft). To).

【0040】上述の単方向軸受の伝動方向は表4に示さ
れるとおりである。
The transmission directions of the above-mentioned unidirectional bearings are as shown in Table 4.

【表4】 [Table 4]

【0041】この第3実施例の伝動方式は、モータM1
の出力軸方向よりモータ方向を見る。モータM1とモー
タM2はは同時に逆時計回りに回転し、モータM1が逆
時計回りに歯車G1を駆動し逆時計回りに回転させさら
に大歯車G2と伝動軸S1を駆動し時計回りに回転させ
る。単方向軸受D11が軸が歯車に対して逆時計回りに
伝動する単方向軸受であるため、ゆえに歯車C1が伝動
軸S1に連動しない。このほか同軸の歯車D1の単方向
軸受D11が軸が歯車に対して時計回りに伝動する単方
向軸受であるため、歯車D1が伝動軸S1に連動し時計
回りに回転する。歯車D1が歯車D2を駆動し逆時計回
りに回転させ、歯車D2と伝動軸S2間に取り付けられ
た単方向軸受D21が、歯車が軸に対して逆時計回りに
伝動する単方向軸受であるため、伝動軸S2を駆動して
逆時計回りに回転させ、歯車C2と伝動軸S2間に取り
付けられた単方向軸受C21が、軸が歯車に対して逆時
計回りに伝動する単方向軸受であるため、歯車C2が伝
動軸S2に連動して逆時計回りに回転し、歯車C2さら
に逆時計方向に歯車C3を駆動して時計回りに回転さ
せ、車輪Wを駆動して前進させる。簡単にその伝動経路
を示すと、M1(逆)→G1(逆)→G2(順)→S1
(順)→D1(順)→D2(逆)→S2(逆)→C2
(逆)→C3(順)となり、その減速比は、減速歯車セ
ットG1、G2、減速歯車セットD1、D2、減速歯車
セットC2、C3の加総となり、数学式は、 (G2歯数/G1歯数)*(D2歯数/D1歯数)*(C3歯数/C2歯数) ・・・・式11となる。
The transmission system of the third embodiment is based on the motor M1.
View the motor direction from the output shaft direction of. The motors M1 and M2 rotate counterclockwise at the same time, and the motor M1 drives the gear G1 counterclockwise to rotate counterclockwise, and further drives the large gear G2 and the transmission shaft S1 to rotate clockwise. Since the unidirectional bearing D11 is a unidirectional bearing in which the shaft transmits counterclockwise with respect to the gear, the gear C1 does not interlock with the transmission shaft S1. In addition, since the unidirectional bearing D11 of the coaxial gear D1 is a unidirectional bearing whose shaft transmits clockwise to the gear, the gear D1 rotates clockwise in conjunction with the transmission shaft S1. The gear D1 drives the gear D2 to rotate counterclockwise, and the unidirectional bearing D21 mounted between the gear D2 and the transmission shaft S2 is a unidirectional bearing in which the gear transmits counterclockwise with respect to the shaft. Since the transmission shaft S2 is driven to rotate counterclockwise and the unidirectional bearing C21 mounted between the gear C2 and the transmission shaft S2 is a unidirectional bearing whose shaft transmits counterclockwise to the gear. , The gear C2 rotates counterclockwise in conjunction with the transmission shaft S2, drives the gear C2 and further counterclockwise to rotate the gear C3 clockwise, and drives the wheels W to move forward. The transmission path is briefly shown as follows: M1 (reverse) → G1 (reverse) → G2 (forward) → S1
(Order) → D1 (Order) → D2 (Reverse) → S2 (Reverse) → C2
(Reverse) → C3 (forward), the reduction ratio is the sum of reduction gear sets G1 and G2, reduction gear sets D1 and D2, reduction gear sets C2 and C3, and the mathematical formula is (G2 number of teeth / G1 Number of teeth) * (number of D2 teeth / number of D1 teeth) * (number of C3 teeth / number of C2 teeth) ... Equation 11 is obtained.

【0042】このほか、モータM2の伝動経路はモータ
M2の出力軸方向よりモータ方向を見て、モータM2が
逆時計回りに回転し、小歯車G3を駆動して逆時計回り
に回転させて大歯車G4を駆動して時計回りに回転さ
せ、歯車G4と歯車G5は共軸で同時に動作し、ゆえに
歯車G5が時計回りに回転し、歯車G5がさらに歯車G
6を駆動して逆時計回りに回転させる。歯車G6がさら
に伝動軸S2を駆動して逆時計回りに回転させ、単方向
軸受C21が軸が歯車に対して逆時計回りに伝動する単
方向軸受であるため、歯車C2が伝動軸S2に連動して
逆時計回りに回転する。このほか、同軸の歯車D2が軸
が歯車に対して時計回りに伝動する単方向軸受であるた
め、歯車D2が伝動軸S2と連動せず、歯車C2が逆時
計回りに回転するとき、歯車C3と伝動軸S3が時計回
りに回転し、車輪Wを駆動し前進させる。
In addition, the transmission path of the motor M2, when viewed in the motor direction from the output shaft direction of the motor M2, rotates the motor M2 counterclockwise, drives the pinion gear G3 and rotates it counterclockwise to a large degree. The gear G4 is driven to rotate in the clockwise direction, the gear G4 and the gear G5 operate coaxially at the same time, and therefore the gear G5 rotates in the clockwise direction, and the gear G5 further rotates.
Drive 6 to rotate counterclockwise. Since the gear G6 further drives the transmission shaft S2 to rotate it counterclockwise, and the unidirectional bearing C21 is a unidirectional bearing in which the shaft transmits counterclockwise to the gear, the gear C2 is interlocked with the transmission shaft S2. Then rotate counterclockwise. In addition, since the coaxial gear D2 is a unidirectional bearing in which the shaft transmits clockwise with respect to the gear, the gear D2 does not interlock with the transmission shaft S2 and the gear C3 rotates counterclockwise when the gear C2 rotates counterclockwise. And the transmission shaft S3 rotates clockwise to drive the wheels W to move forward.

【0043】このモータM2の動力伝動経路は、M2
(逆)→G3(逆)→G4(順)→G5(順)→G6
(逆)→S2(逆)→C2(逆)→C3(順)となり、
その減速比は、減速歯車セットG3、G4、減速歯車セ
ットG5、G6、減速歯車セットC2、C3の加総とな
り、数学式は、 (G4歯数/G3歯数)*(G6歯数/G5歯数)*(C3歯数/C2歯数) ・・・・式12となる。
The power transmission path of this motor M2 is M2.
(Reverse) → G3 (Reverse) → G4 (Forward) → G5 (Forward) → G6
(Reverse) → S2 (reverse) → C2 (reverse) → C3 (forward),
The reduction ratio is the sum of reduction gear sets G3, G4, reduction gear sets G5, G6, reduction gear sets C2, C3, and the mathematical formula is (G4 number of teeth / G3 number of teeth) * (G6 number of teeth / G5 Number of teeth) * (number of C3 teeth / number of C2 teeth) ... Equation 12 is obtained.

【0044】仮にモータM2が毎分n21回転速度で逆時
計回りに回転するとすると、車輪と歯車C3時計回りに
毎分nw2の回転速度で前進し、nw2とn21の関係は以下
のようになる。 nw2=n21{(G4歯数/G3歯数)*(G6歯数/G5歯数)*(C3歯数 /C2歯数)}・・・・式13
If the motor M2 rotates counterclockwise at a rotation speed of n 21 per minute, the wheels and the gear C3 move forward clockwise at a rotation speed of n w2 per minute, and the relationship between n w2 and n 21 is as follows. Like n w2 = n 21 {(number of G4 teeth / number of G3 teeth) * (number of G6 teeth / number of G5 teeth) * (number of C3 teeth / number of C2 teeth)} ... Equation 13

【0045】モータM1とモータM2が同時に車輪を駆
動し電動運搬具を前進させ、モータM1が毎分n11
転速度で逆時計回りに回転すれば、車輪と歯車C3は時
計回りに毎分nw1回転速度で前進し、ゆえにnw1=nw2
で、 n11{(G2歯数/G1歯数)*(D2歯数/D1歯数)*(C3歯数/C2 歯数)}=n21/{(G4歯数/G3歯数)*(G6歯数/G5歯数)*(C3 歯数/C2歯数)}・・・式14 簡易化すると、 n11{(G2歯数/G1歯数)*(D2歯数/D1歯数)*(G4歯数/G3歯 数)*(G6歯数/G5歯数)}・・・式15 もし、モータM1、M2が同様の特性のモータでn11
=n21であれば、式7より、 (G2歯数/G1歯数)*(D2歯数/D1歯数)=(G4歯数/G3歯数) *(G6歯数/G5歯数)・・・式16となる。 この式16は本実施例の伝動方式の歯数分配の設計基準
とされる。
If the motor M1 and the motor M2 simultaneously drive the wheels to move the electric carrier forward and the motor M1 rotates counterclockwise at a rotation speed of n 11 per minute, the wheels and the gear C3 rotate n times per minute in the clockwise direction. It moves forward at w1 rotation speed, therefore n w1 = n w2
Then, n 11 {(number of G2 teeth / number of G1 teeth) * (number of D2 teeth / number of D1 teeth) * (number of C3 teeth / number of C2 teeth)} = n 21 / {(number of G4 teeth / number of G3 teeth) * (G6 number of teeth / G5 number of teeth) * (C3 number of teeth / C2 number of teeth)} Equation 14 When simplified, n 11 {(G2 number of teeth / G1 number of teeth) * (D2 number of teeth / D1 number of teeth) ) * (Number of G4 teeth / number of G3 teeth) * (number of G6 teeth / number of G5 teeth)} Equation 15 If motors M1 and M2 are motors having similar characteristics, n11
= N21, from Equation 7, (G2 number of teeth / G1 number of teeth) * (D2 number of teeth / D1 number of teeth) = (G4 number of teeth / G3 number of teeth) * (G6 number of teeth / G5 number of teeth) ..Becomes equation 16. This expression 16 is used as a design standard for the distribution of the number of teeth in the transmission system of this embodiment.

【0046】もし伝動摩擦消耗を無視するなら、理論
上、モータM1とM2は一様の馬力を分担可能で、即ち
モータM1とM2の動力は相加の効果を達成し、ゆえに
本発明の第3実施例の二つのモータの装置は、動力合併
の機能を有する。
If the transmission frictional wear is ignored, in theory the motors M1 and M2 can share a uniform horsepower, ie the power of the motors M1 and M2 achieves the additive effect and is therefore the first aspect of the invention. The two motor device of the third embodiment has the function of power merge.

【0047】本第3実施例の二つのモータの歯車伝動の
装置は、電動運搬具使用前の一段(M1逆転M2逆転)
に静止より起動された後或いは坂道で使用後に、ゆっく
りと前進或いは坂道ですでに減速され、このとき車輪の
トルク出力は減少することが必要であり、本システムは
電力節約の観念に基づき、制御システムを利用し、モー
タM1をオフとし、モータM2を続いて逆時計回りに回
転させ(モータM2の出力軸方向からモータ方向を見
て)、第2段の変速効果を発生する。その伝動経路は前
述の第1段変速と同じであり、モータM2の出力軸方向
からモータ方向を見て、モータM2が逆時計回りに回転
し、小歯車G3を駆動して逆時計回りに回転させ、さら
に大歯車G4を駆動して時計回りに回転させ、歯車G4
と歯車G5が共軸で同時に動作し、ゆえに歯車G5が時
計回りに回転し、歯車G5がさらに歯車G6を駆動して
逆時計回りに回転させる。歯車G6がさらに伝動軸S2
を駆動して逆時計回りに回転させ、単方向軸受C21が
軸が歯車に対して逆時計回りに伝動する単方向軸受であ
るため、歯車C2が伝動軸S2に連動して回転しない。
このほか、同軸の歯車D2に軸が歯車に対して時計回り
に伝動する単方向軸受D21が取り付けられ、故に歯車
D2が伝動軸S2に連動しない。歯車C2が逆時計回り
に回転する時、歯車C3と伝動軸S3を駆動して時計回
りに回転させ、車輪Wを駆動し前進させる。
The gear transmission device of the two motors of the third embodiment is a first stage (M1 reverse rotation M2 reverse rotation) before using the electric carrier.
After being started from a standstill or after being used on a slope, it is necessary to slowly advance or decelerate on a slope, at which time the torque output of the wheels needs to be reduced. Using the system, the motor M1 is turned off, and the motor M2 is subsequently rotated counterclockwise (when the motor direction is viewed from the output shaft direction of the motor M2) to generate the second speed shifting effect. The transmission path thereof is the same as that of the above-described first speed shift, and when the motor direction is viewed from the output shaft direction of the motor M2, the motor M2 rotates counterclockwise and drives the pinion G3 to rotate counterclockwise. Then, the gear G4 is driven to rotate clockwise, and the gear G4
And the gear G5 simultaneously operate coaxially, and therefore the gear G5 rotates clockwise, and the gear G5 further drives the gear G6 to rotate it counterclockwise. The gear G6 is further connected to the transmission shaft S2.
Since the unidirectional bearing C21 is a unidirectional bearing in which the shaft is transmitted counterclockwise with respect to the gear, the gear C2 does not rotate in association with the transmission shaft S2.
In addition, a unidirectional bearing D21 whose shaft is transmitted clockwise to the gear is attached to the coaxial gear D2, and therefore the gear D2 is not interlocked with the transmission shaft S2. When the gear C2 rotates counterclockwise, the gear C3 and the transmission shaft S3 are driven to rotate clockwise, and the wheels W are driven to move forward.

【0048】このモータM2の伝動経路は、M2(逆)
→G3(逆)→G4(順)→G5(順)→G6(逆)→
S2(逆)→C2(逆)→C3(順)となり、その減速
比は、減速歯車セットG3、G4と、減速歯車セットG
5、G6、及び減速歯車セットC2、C3の加総とな
り、数学式は、 (G4歯数/G3歯数)*(G6歯数/G5歯数)*(C3歯数/C2歯数) ・・・・式12となる。
The transmission path of this motor M2 is M2 (reverse).
→ G3 (reverse) → G4 (forward) → G5 (forward) → G6 (reverse) →
S2 (reverse) → C2 (reverse) → C3 (forward), and the reduction ratios thereof are reduction gear sets G3, G4 and reduction gear set G.
5, G6, and the reduction gear set C2, C3, the mathematical formula is (G4 number of teeth / G3 number of teeth) * (G6 number of teeth / G5 number of teeth) * (C3 number of teeth / C2 number of teeth). ... Formula 12 is obtained.

【0049】もし、電動運搬具を操作者がさらに加速さ
せたい時は、モータM2を続けて逆時計回りに運転さ
せ、モータM1を静止より起動開始し、時計回りに切り
換えて回転させ、第3段変速状態に進入させ、そのM1
の伝動経路は、モータM1が時計回りに回転して小歯車
G1を時計回りに駆動し、さらに大歯車G2と伝動軸S
1を駆動し逆時計回りに回転させ、単方向軸受C11
が、軸が歯車に対して逆時計回りに伝動する単方向軸受
であるため、歯車C1が伝動軸S1に連動し逆時計回り
に回転し、歯車C3と動力出力軸S3を駆動し時計回り
に回転させ、こうして車輪Wを駆動して前進させる。こ
のほか、同軸の歯車D1に、軸が歯車に対して時計回り
に伝動する単方向軸受D11が設けられ、ゆえに歯車D
1が伝動軸S1に連動しない。この歯車C1は歯車C3
を介して歯車C2に逆時計回りに伝動するが、歯車C2
と伝動軸S2の間に取り付けられた単方向軸受C21、
歯車が軸に対して時計回りに伝動する単方向軸受である
ため、ゆえに伝動軸S2が連動しない。このため、モー
タM1の動力伝動経路は、伝動軸S2を経由しない伝動
方式とされる。簡単にその伝動経路を示すと、M1
(順)→G1(順)→G2(逆)→S1(逆)→C1
(逆)→C3(順)→S3(順)となり、その減速比
は、減速歯車セットG1、G2と、減速歯車セットC
1、C3の加総となり、数学式は、 (G2歯数/G1歯数)*(C3歯数/C1歯数)・・・・式18となる。
If the operator wants to further accelerate the electric carrier, the motor M2 is continuously operated in the counterclockwise direction, the motor M1 is started from stationary, and the motor M1 is switched to rotate in the clockwise direction. Enter the gear shift state, and then M1
The motor M1 rotates clockwise to drive the small gear G1 clockwise, and the large gear G2 and the transmission shaft S
1 to rotate counterclockwise, unidirectional bearing C11
However, since the shaft is a unidirectional bearing that transmits in the counterclockwise direction to the gear, the gear C1 rotates in the counterclockwise direction in conjunction with the transmission shaft S1 and drives the gear C3 and the power output shaft S3 to rotate in the clockwise direction. Rotate and thus drive the wheel W forward. In addition to this, the coaxial gear D1 is provided with a unidirectional bearing D11 whose shaft transmits clockwise to the gear.
1 does not work with transmission shaft S1. This gear C1 is a gear C3
Is transmitted counterclockwise to the gear C2 via the gear C2.
And a unidirectional bearing C21 mounted between the transmission shaft S2 and
Since the gear is a unidirectional bearing that transmits clockwise with respect to the shaft, therefore, the transmission shaft S2 does not interlock. Therefore, the power transmission path of the motor M1 is a transmission system that does not pass through the transmission shaft S2. The transmission route is briefly shown as M1
(Order) → G1 (Order) → G2 (Reverse) → S1 (Reverse) → C1
(Reverse) → C3 (forward) → S3 (forward), and the reduction ratios thereof are reduction gear sets G1 and G2 and reduction gear set C.
1 and C3 are added together, and the mathematical formula is (G2 number of teeth / G1 number of teeth) * (C3 number of teeth / C1 number of teeth) ...

【0050】この時、第三段の変速状況は、モータM2
が比較的高い減速比で車輪Wを駆動して前進させ、モー
タM1は比較的低減速比で車輪Wを駆動して前進させ
る。
At this time, the speed change condition of the third stage is the motor M2.
Drives the wheel W at a relatively high reduction ratio to move forward, and the motor M1 drives the wheel W at a relatively low speed ratio to move forward.

【0051】モータM1が比較的低い減速比を以て併合
駆動する時、速度がますます速くなり、モータM2の負
荷が軽減し効率的な出力に符合しなくなる時、モータM
2が運転を停止し、残ったモータM1が続いて時計回り
に回転し、第4段の変速状態に変成し、続いて車輪を駆
動し前進させる。
When the motor M1 is combined and driven with a relatively low reduction ratio, the speed is further increased, and when the load on the motor M2 is reduced and the output cannot be matched efficiently, the motor M1 is
2 stops the operation, and the remaining motor M1 continues to rotate in the clockwise direction to shift to the fourth speed change state, and then the wheels are driven to move forward.

【0052】この第4段変速状態下で、モータM1は時
計回りに回転し、小歯車G1を駆動し時計回りに回転さ
せ、さらに大歯車G2と伝動軸S1に伝動し逆時計回り
に回転させ、単方向軸受C11が軸が歯車に対して逆時
計回りに伝動する単方向軸受であるため、歯車C1が伝
動軸S1と共に逆時計回りに回転し、歯車C3と動力出
力軸S3を駆動し時計回りに回転させ、車輪を駆動し前
進させる。このほか、同じ軸の歯車D1に設けられた単
方向軸受D11は軸が歯車に対して時計回りに伝動する
単方向軸受であるため、歯車D1は伝動軸S1に連動し
ない。この歯車C1は歯車C3を介して逆時計回りに歯
車C2に伝動するが、歯車C2と伝動軸S2間に取り付
けられた単方向軸受C21が歯車が軸に対して時計回り
に伝動する単方向軸受であるため、伝動軸S2も連動回
転しない。このためモータM1の動力伝送経路は、伝動
軸S2を経由しない伝動方式とされる。簡単にその伝動
経路を示すと、M1(順)→G3(順)→G2(逆)→
S1(逆)→C1(逆)→C3(順)→S3(順)とな
り、その減速比は、減速歯車セットG1、G2と、減速
歯車セットC1、C3の加総となり、数学式は、 (G2歯数/G1歯数)*(C3歯数/C1歯数)・・・・式18となる。
Under the fourth speed change state, the motor M1 rotates clockwise to drive the small gear G1 to rotate clockwise, and further to the large gear G2 and the transmission shaft S1 to rotate counterclockwise. Since the unidirectional bearing C11 is a unidirectional bearing in which the shaft transmits counterclockwise with respect to the gear, the gear C1 rotates counterclockwise together with the transmission shaft S1 and drives the gear C3 and the power output shaft S3 to rotate the clock. Rotate around and drive the wheels to move forward. In addition, since the unidirectional bearing D11 provided on the gear D1 of the same shaft is a unidirectional bearing in which the shaft transmits clockwise to the gear, the gear D1 does not interlock with the transmission shaft S1. The gear C1 is transmitted to the gear C2 counterclockwise via the gear C3, but the unidirectional bearing C21 mounted between the gear C2 and the transmission shaft S2 is a unidirectional bearing in which the gear transmits clockwise with respect to the shaft. Therefore, the transmission shaft S2 also does not rotate together. Therefore, the power transmission path of the motor M1 is a transmission system that does not pass through the transmission shaft S2. The transmission path is simply shown: M1 (forward) → G3 (forward) → G2 (reverse) →
S1 (reverse) → C1 (reverse) → C3 (forward) → S3 (forward), and the reduction ratio is the sum of the reduction gear sets G1 and G2 and the reduction gear sets C1 and C3, and the mathematical formula is ( G2 number of teeth / G1 number of teeth) * (C3 number of teeth / C1 number of teeth) ...

【0053】電動運搬具をさらに高速で前進させる時
は、モータM1が時計回りに回転し、モータM2がこの
とき静止から起動開始して時計回りに回転し、第5段変
速状態に進入する。そのモータM2の伝動経路は、モー
タM2が時計回りに回転し、小歯車G3を駆動して時計
回りに回転させ、大歯車G4を駆動して逆時計回りに回
転させ、歯車G4が歯車G5を駆動して逆時計回りに回
転させ、歯車G5がさらに歯車G6を駆動して時計回り
に回転させる。歯車G6がさらに伝動軸S2を駆動して
時計回りに回転させ、単方向軸受C21が軸が歯車に対
して逆時計回りに伝動する単方向軸受であることによ
り、歯車C2が伝動軸S2に連動しない。このほか、同
軸の歯車D2が伝動軸S2に連動し時計回りに回転す
る。歯車D2が時計回りに伝動して歯車D1を駆動し逆
時計回りに回転させるが、歯車D1と伝動軸S1間の単
方向軸受D11が歯車が軸に対して時計回りに伝動する
単方向軸受であるため、伝動軸S1も逆時計回りに連動
回転し、且つ歯車C1と伝動軸S1間に取り付けられた
単方向軸受C11が軸が歯車に対して逆時計回りに伝動
する単方向軸受であるため、歯車C1も逆時計回りに回
転し、歯車C3と車輪を駆動して時計回りに回転させ
る。
When the electric carrier is further advanced at a higher speed, the motor M1 rotates clockwise, and at this time the motor M2 starts stationary and starts to rotate clockwise to enter the fifth speed change state. In the transmission path of the motor M2, the motor M2 rotates clockwise, drives the small gear G3 to rotate clockwise, drives the large gear G4 to rotate counterclockwise, and the gear G4 rotates the gear G5. The gear G5 further drives and rotates counterclockwise, and the gear G5 further drives the gear G6 to rotate clockwise. Since the gear G6 further drives the transmission shaft S2 to rotate it clockwise, and the unidirectional bearing C21 is a unidirectional bearing in which the shaft transmits counterclockwise to the gear, the gear C2 is linked to the transmission shaft S2. do not do. In addition, the coaxial gear D2 rotates in the clockwise direction in conjunction with the transmission shaft S2. The gear D2 transmits clockwise to drive the gear D1 to rotate counterclockwise, but the unidirectional bearing D11 between the gear D1 and the transmission shaft S1 is a unidirectional bearing in which the gear transmits clockwise to the shaft. Therefore, the transmission shaft S1 also rotates in a counterclockwise direction, and the unidirectional bearing C11 mounted between the gear C1 and the transmission shaft S1 is a unidirectional bearing in which the shaft transmits counterclockwise to the gear. The gear C1 also rotates counterclockwise and drives the gear C3 and the wheels to rotate clockwise.

【0054】このモータM2の動力伝動経路は、M2
(順)→G3(順)→G4(逆)→G5(逆)→G6
(順)→S2(順)→D2(順)→D1(逆)→S1
(逆)→C1(逆)→C3(順)となり、その減速比
は、減速歯車セットG3、G4と、減速歯車セットG
5、G6と、増速歯車セットD1、D3、減速歯車セッ
トC1、C3の加総となり、数学式は、 (G4歯数/G3歯数)*(G6歯数/G5歯数)*(D1歯数/D2歯数) *(C3歯数/C1歯数)・・・・式17となる。
The power transmission path of the motor M2 is M2.
(Order) → G3 (Order) → G4 (Reverse) → G5 (Reverse) → G6
(Order) → S2 (Order) → D2 (Order) → D1 (Reverse) → S1
(Reverse) → C1 (reverse) → C3 (forward), and the reduction ratios thereof are reduction gear sets G3 and G4 and reduction gear set G.
5, G6, speed increasing gear sets D1 and D3, reduction gear sets C1 and C3, and the mathematical formula is (G4 number of teeth / G3 number of teeth) * (G6 number of teeth / G5 number of teeth) * (D1 Number of teeth / number of D2 teeth) * (number of C3 teeth / number of C1 teeth) ... Equation 17 is obtained.

【0055】このとき、第5段変速下で、モータM1、
M2の動力流はいずれも伝動軸S1に集まりさらにC1
(逆)→C3(順)となり、車輪を駆動し前進させる。
仮に電動運搬具の負荷が固定されて不変であるとして、
二つのモータを起動し、低減速比で快速に前進させる
と、電動運搬具の負荷が各モータに平均して分担され、
各モータの負荷が半減し、直流モータの特性から言っ
て、同じ電圧下で負荷が減少し、速度が速くなる。
At this time, the motor M1,
All the power flow of M2 gathers on the transmission shaft S1 and further C1
(Reverse) → C3 (forward), and the wheels are driven to move forward.
Assuming that the load of the electric carrier is fixed and unchanged,
If you start two motors and move forward quickly at a reduced speed ratio, the load of the electric carrier will be shared on average by each motor,
The load of each motor is halved, and from the characteristics of the DC motor, the load decreases under the same voltage and the speed increases.

【0056】以上から分かるように、本発明の第3実施
例の伝動方式は、簡単回路で二つのモータを制御し、そ
れぞれ正反転させるか或いはそのうちの一つのモータを
停止させる方式で駆動し、及び四組の単方向軸受を具え
た歯車により、五段変速と動力合併の効果を達成し、伝
統的な変速箱内の複雑な減速機構よりも非常に簡単であ
る。以下に、この五段変速の状況を表5を参照して詳し
く説明する。
As can be seen from the above, in the transmission system of the third embodiment of the present invention, two motors are controlled by a simple circuit, and each of them is driven in a normal or reverse direction or one of the motors is stopped. And the gear with four sets of unidirectional bearings achieves the effect of five-speed shifting and power merging, which is much simpler than the complex reduction mechanism in traditional transmission box. Hereinafter, the situation of the 5-speed shift will be described in detail with reference to Table 5.

【表5】 [Table 5]

【0057】本第3実施例の二つのモータの歯車伝動方
式によると、電動運搬具が上り坂に置かれる時、モータ
が静止状態を呈し、且つブレーキがない時、電動運搬具
は伝動システムのセルフロック作用により、下滑りしな
い。その因子は以下に説明する。車輪が地球の引力を受
けて、後ろ向きに滑動する力が、歯車C3を牽引して逆
時計回りに回転させ、歯車C1、C2を駆動して時計回
りに伝動させ、この時、伝動軸S1、S2が、単方向軸
受C11、C21がいずれも歯車が軸に対して時計回り
に伝動する単方向軸受であることから、伝動軸S1、S
2が時計回りに伝動し、単方向軸受D11が軸が歯車に
対して時計回りに伝動する単方向軸受であるため、歯車
D1が時計回りに回転する。また単方向軸受D21が軸
が歯車に対して時計回りに伝動する単方向軸受であるた
め、歯車D2もまた時計回りに回転する。歯車D1、D
2の回転方向が同じであり、二つの歯車もまた相互に噛
み合うため、歯車セットDにセルフロック現象が発生
し、双方が回転不能となる。ゆえに電動運搬具が坂に置
かれ且つモータが静止する時、電動運搬具の後方への滑
動を防止する作用を有する。
According to the two-motor gear transmission system of the third embodiment, when the electric carrier is placed on an uphill, the motor is in a stationary state and there is no brake, the electric carrier is of the transmission system. Self-locking action prevents slipping down. The factors are explained below. When the wheel receives the earth's attractive force, the force of sliding backward pulls the gear C3 to rotate it counterclockwise, and drives the gears C1 and C2 to transmit clockwise, at which time the transmission shaft S1, Since S2 is a unidirectional bearing in which the unidirectional bearings C11 and C21 both transmit gears clockwise with respect to the shaft, the transmission shafts S1 and S2
2 transmits clockwise, and the unidirectional bearing D11 is a unidirectional bearing in which the shaft transmits clockwise to the gear, so the gear D1 rotates clockwise. Since the unidirectional bearing D21 is a unidirectional bearing in which the shaft transmits clockwise to the gear, the gear D2 also rotates clockwise. Gears D1 and D
Since the rotation directions of 2 are the same and the two gears also mesh with each other, a self-lock phenomenon occurs in the gear set D, and both of them cannot rotate. Therefore, when the electric carrier is placed on a slope and the motor is stationary, it has a function of preventing the electric carrier from sliding backward.

【0058】第1、第2実施例の伝動方式と同様、上述
のセルフロック機能は、後方への止滑作用を有する。し
かし、人力で電動運搬具を移動させたい時に、良好な移
動効果を得るために車輪を後退させる必要がある時は、
車輪がセルフロックのために後退不能となる。このと
き、動力出力軸S31或いはS32と車輪の接合部分
に、簡単なクラッチ装置Eを取り付けて、車輪と伝動軸
S31、S32を暫く離脱させて、自由回転の状態とす
ることにより、後退不能の問題を解決できる。
Similar to the transmission systems of the first and second embodiments, the self-locking function described above has a slipping action to the rear. However, when you want to move the electric carrier manually, and when you need to retract the wheels to obtain a good movement effect,
The wheels cannot be moved backward due to self-locking. At this time, a simple clutch device E is attached to the joint between the power output shaft S31 or S32 and the wheel, and the wheel and the transmission shafts S31 and S32 are disengaged from each other for a while to allow the wheel to freely rotate. Can solve problems.

【0059】本第3実施例の二つのモータの歯車伝動方
式は、第1実施例の方式の単一モータ伝動システムに類
似であるように改装できる。モータM2と減速歯車セッ
トG3、G4、G5、G6を取り外すと、本システムの
第4実施例の単一モータ歯車駆動の伝動方式に改変で
き、即ちこの第4実施例は比較的簡単な伝動方式(図
8、9、10参照)である。電動運搬具を比較的低レベ
ルの伝動システムに設定し、比較的高い伝動力の出力或
いは比較的多段の変速装置の伝動システムを必要としな
い時は、ただ第3実施例の二つのモータの歯車伝動方式
よりモータM2と減速歯車セットG3、G4、G5、G
6を取り外すと、第4実施例の単一モータ歯車駆動の伝
動方式に変えることができ、ただ二段の変速装置を有す
るものとされ、これは本発明の製造の規格とストックの
準備上、非常に簡素化でき、これによっても本発明は市
場で良好な競争力を有する。
The two motor gear transmission scheme of the third embodiment can be retrofitted to be similar to the single motor transmission system of the first embodiment scheme. By removing the motor M2 and the reduction gear sets G3, G4, G5, G6, it is possible to modify the transmission system of the single motor gear drive of the fourth embodiment of the present system, that is, this fourth embodiment is a relatively simple transmission system. (See FIGS. 8, 9, and 10). When the electric carrier is set to a relatively low level transmission system and a relatively high power output or a relatively multi-speed transmission transmission system is not required, only the two motor gears of the third embodiment are used. Motor M2 and reduction gear set G3, G4, G5, G
When 6 is removed, it can be changed to the transmission system of the single motor gear drive of the fourth embodiment, and it is supposed to have only a two-stage transmission, which is due to the standard of manufacture of the present invention and preparation of stock, It can be greatly simplified, which also makes the present invention have a good competitive advantage in the market.

【0060】以上の四種類の実施例を眺めると、その共
同の特徴は以下のようである。二つの平行な伝動軸を有
し、その上に二組の伝動セットが設けられて伝動軸と垂
直状を呈し、各伝動セットが二つ以上の伝動ユニットで
組成され、それぞれ単方向軸受を利用して二つの伝動軸
と接合され、そのうち一つの伝動セットがさらに一つの
動力出力軸と接合されて、車輪を駆動し、二つの伝動軸
の後端の動力ソースのモータが、システムの実際の必要
に応じて、二つのモータ或いは一つのモータとされる。
全体の伝動システムの主要な伝動方式は、モータの正反
転或いは停止の制御に、単方向軸受による動力経路切り
換えと動力合併を組合せる。そのうち、伝動セットは前
述のスプロケット、チェーン或いは歯車方式の組合せの
ほか、タイミングベルトとプーリを利用して組成可能
で、これは、本発明の第5、6、7、8、9、10実施
例であり、図11から図26の図及び表6に説明され
る。
Looking at the above four types of embodiments, the joint features are as follows. It has two parallel transmission shafts, on which two sets of transmission sets are installed to be perpendicular to the transmission shafts, and each transmission set is composed of two or more transmission units, each using a unidirectional bearing. And two transmission shafts, one of which is further connected to one power output shaft to drive the wheels, and the motor of the power source at the rear end of the two transmission shafts is the actual system. Two motors or one motor may be used as required.
The main transmission method of the whole transmission system combines the control of forward / reverse rotation or stop of the motor with the combination of power path switching by unidirectional bearing and power combination. Among them, the transmission set can be formed by using a combination of the sprocket, the chain or the gear system described above, as well as a timing belt and a pulley, which are the fifth, sixth, seventh, eighth, ninth and tenth embodiments of the present invention. 11 and 26 and Table 6.

【0061】上述の第1、2、5、6、7、8の各実施
例は、伝動セットがいずれもスプロケットとチェーンの
スプロケットセットで組成され、スプロケットとチェー
ン間の包角角度を増加するため、本発明ではスプロケッ
トセットのスプロケットB1とB3或いはB1とB2の
間に、慣性輪B4を増設し、図27から図32に示され
るように、スプロケットとチェーン間の伝動安定性を増
加し、これは即ち本発明の第11、12、13、14、
15、16実施例である。そのうち、該慣性輪B4HA
伝動システム変速箱の外側或いは内側に取り付けられる
か、電動運搬具のフレーム等の適当な位置に取り付けら
れる。
In each of the first, second, fifth, sixth, seventh and eighth embodiments described above, since the transmission set is composed of the sprocket set of the sprocket and the chain, the wrap angle between the sprocket and the chain is increased. In the present invention, an inertia wheel B4 is added between the sprockets B1 and B3 or B1 and B2 of the sprocket set to increase the transmission stability between the sprocket and the chain as shown in FIGS. 27 to 32. That is, the eleventh, twelfth, thirteenth, fourteenth,
15 and 16 Examples. Among them, the inertia wheel B4HA
The transmission system may be mounted on the outside or inside of the transmission box, or at a suitable location such as the frame of an electric carrier.

【0062】以下の表6は、本発明を応用した伝動方式
の例の説明表である。
Table 6 below is an explanatory table of an example of a transmission system to which the present invention is applied.

【表6】 [Table 6]

【0063】[0063]

【発明の効果】総合すると、本発明の実施例に記載の技
術特徴は、確実にその出願以前にはないものであり、並
びに製造コストを下げ、操作が簡単で、エネルギー資源
を節約する特殊効果を有し、産業上の利用性を有し、特
許の要件を満たしている。
In summary, the technical features described in the embodiments of the present invention are certainly not present before the application, and the special effect of reducing the manufacturing cost, easy to operate and saving energy resources. And has industrial applicability and meets the requirements of the patent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の平面図である。FIG. 1 is a plan view of a first embodiment of the present invention.

【図2】本発明の第1実施例の正面図である。FIG. 2 is a front view of the first embodiment of the present invention.

【図3】本発明の第2実施例の平面図である。FIG. 3 is a plan view of a second embodiment of the present invention.

【図4】本発明の第2実施例の正面図である。FIG. 4 is a front view of the second embodiment of the present invention.

【図5】本発明の第3実施例の平面図である。FIG. 5 is a plan view of a third embodiment of the present invention.

【図6】図5のA−A断面図である。6 is a cross-sectional view taken along the line AA of FIG.

【図7】図5のB−B断面図である。7 is a sectional view taken along line BB of FIG.

【図8】本発明の第4実施例の平面図である。FIG. 8 is a plan view of a fourth embodiment of the present invention.

【図9】図8のA−A断面図である。9 is a cross-sectional view taken along the line AA of FIG.

【図10】図8のB−B断面図である。10 is a sectional view taken along line BB of FIG.

【図11】本発明の第5実施例の平面図である。FIG. 11 is a plan view of a fifth embodiment of the present invention.

【図12】本発明の第5実施例の正面図である。FIG. 12 is a front view of the fifth embodiment of the present invention.

【図13】本発明の第6実施例の平面図である。FIG. 13 is a plan view of a sixth embodiment of the present invention.

【図14】本発明の第6実施例の正面図である。FIG. 14 is a front view of a sixth embodiment of the present invention.

【図15】本発明の第7実施例の平面図である。FIG. 15 is a plan view of a seventh embodiment of the present invention.

【図16】本発明の第7実施例の正面図である。FIG. 16 is a front view of a seventh embodiment of the present invention.

【図17】図15のA−A断面図である。17 is a cross-sectional view taken along the line AA of FIG.

【図18】本発明の第8実施例の平面図である。FIG. 18 is a plan view of an eighth embodiment of the present invention.

【図19】本発明の第8実施例の正面図である。FIG. 19 is a front view of an eighth embodiment of the present invention.

【図20】図18のA−A断面図である。20 is a cross-sectional view taken along the line AA of FIG.

【図21】本発明の第9実施例の平面図である。FIG. 21 is a plan view of the ninth embodiment of the present invention.

【図22】図21のA−A断面図である。22 is a cross-sectional view taken along the line AA of FIG.

【図23】図21のB−B断面図である。23 is a cross-sectional view taken along the line BB of FIG.

【図24】本発明の第10実施例の平面図である。FIG. 24 is a plan view of a tenth embodiment of the present invention.

【図25】図24のA−A断面図である。25 is a cross-sectional view taken along the line AA of FIG.

【図26】図24のB−B断面図である。FIG. 26 is a sectional view taken along line BB of FIG. 24.

【図27】本発明の第11実施例の正面図である。FIG. 27 is a front view of the eleventh embodiment of the present invention.

【図28】本発明の第12実施例の正面図である。FIG. 28 is a front view of the twelfth embodiment of the present invention.

【図29】本発明の第13実施例の正面図である。FIG. 29 is a front view of a thirteenth embodiment of the present invention.

【図30】本発明の第14実施例の正面図である。FIG. 30 is a front view of a fourteenth embodiment of the present invention.

【図31】本発明の第15実施例の正面図である。FIG. 31 is a front view of a fifteenth embodiment of the present invention.

【図32】本発明の第16実施例の正面図である。FIG. 32 is a front view of the sixteenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

M モータ G 減速歯車セット S 伝動軸 A,B スプロケットセット W 車輪 F 差速
器 C,D 歯車セット E クラッチ装置
H チェーン
M Motor G Reduction gear set S Transmission shafts A, B Sprocket set W Wheels F Differential gear C, D Gear set E Clutch device
H chain

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16H 7/02 F16H 7/06 5H607 7/06 H02K 7/116 48/08 B62B 3/00 B H02K 7/116 F16H 1/40 Fターム(参考) 3D050 AA16 AA17 KK13 3J009 DA18 EA04 EA11 EA32 EA42 FA03 3J027 FA17 FB01 HA10 HB07 3J049 AA01 AA08 CA06 5H115 PA11 PG04 PG06 PG07 PI16 PU01 RB08 SE07 SE09 UI40 5H607 AA14 BB01 CC03 DD03 EE22 FF01 FF31 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F16H 7/02 F16H 7/06 5H607 7/06 H02K 7/116 48/08 B62B 3/00 B H02K 7 / 116 F16H 1/40 F term (reference) 3D050 AA16 AA17 KK13 3J009 DA18 EA04 EA11 EA32 EA42 FA03 3J027 FA17 FB01 HA10 HB07 3J049 AA01 AA08 CA06 5H115 PA11 PG01 AFF14BB01 SE01 RB01 SE01 RB01 SE01 RB08 SE07 RB08 SE07

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 動力源と、 二つの平行な伝動軸とされ、該動力源に駆動され、その
上に伝動セットが設けられて、該伝動セットが該伝動軸
と垂直状を呈するように設置された、上記二つの平行な
伝動軸と、 該伝動軸と伝動セットを接合する単方向軸受と、 車輪に接合されて該伝動セットの駆動を受ける動力出力
輪と、 を具え、動力源の正反転に、単方向軸受の伝動経路の切
り換え制御による変速が組み合わされることにより、製
造コストが低く、操作が簡単で、エネルギー資源を節約
する機能を達成することを特徴とする、電動運搬具の伝
動システム。
1. A power source and two parallel transmission shafts, driven by the power source, and provided with a transmission set thereon, the transmission set being installed perpendicular to the transmission shaft. The two parallel transmission shafts, a unidirectional bearing that joins the transmission shaft and the transmission set, and a power output wheel that is joined to a wheel and receives the drive of the transmission set. The combination of reversing and speed change by switching control of the transmission path of the unidirectional bearing, the production cost is low, the operation is simple, and the function of saving energy resources is achieved. system.
【請求項2】 前記動力源が単一のモータとされ、モー
タの正反転を利用し二段変速機能を有することを特徴と
する、請求項1に記載の電動運搬具の伝動システム。
2. The transmission system for an electric carrier according to claim 1, wherein the power source is a single motor and has a two-speed shifting function by utilizing forward / reverse rotation of the motor.
【請求項3】 前記動力源が二つのモータとされ、モー
タの正反転或いはそのうち一つのモータの不回転を利用
して五段変速機能を有することを特徴とする、請求項1
に記載の電動運搬具の伝動システム。
3. The power source is composed of two motors, and has a five-speed shifting function by utilizing forward / reverse rotation of the motor or non-rotation of one of the motors.
A transmission system for an electric carrier according to.
【請求項4】 前記電動運搬具が坂に置かれ、且つモー
タが停止した時、下滑を防止するセルフロック機能を具
えたことを特徴とする、請求項1に記載の電動運搬具の
伝動システム。
4. The transmission system for an electric carrier according to claim 1, wherein the electric carrier has a self-lock function for preventing downward slip when the electric carrier is placed on a slope and the motor is stopped. .
【請求項5】 前記伝動セットが二つ以上の伝動ユニッ
トで組成されたことを特徴とする、請求項1に記載の電
動運搬具の伝動システム。
5. The transmission system of an electric carrier according to claim 1, wherein the transmission set is composed of two or more transmission units.
【請求項6】 前記伝動セットがスプロケットとチェー
ンであることを特徴とする、請求項1又は請求項5に記
載の電動運搬具の伝動システム。
6. The transmission system for an electric carrier according to claim 1, wherein the transmission set is a sprocket and a chain.
【請求項7】 前記伝動セットがプーリとベルトである
ことを特徴とする、請求項1又は請求項5に記載の電動
運搬具の伝動システム。
7. The transmission system for an electric carrier according to claim 1, wherein the transmission set is a pulley and a belt.
【請求項8】 前記伝動セットが歯車であることを特徴
とする、請求項1又は請求項5に記載の電動運搬具の伝
動システム。
8. The transmission system for an electric carrier according to claim 1, wherein the transmission set is a gear.
【請求項9】 前記動力出力輪と車輪の間にクラッチ装
置が設けられたことを特徴とする、請求項1に記載の電
動運搬具の伝動システム。
9. The transmission system for an electric carrier according to claim 1, further comprising a clutch device provided between the power output wheels and the wheels.
【請求項10】 前記二つの平行な伝動軸の間に一つの
差速器が設けられたことを特徴とする、請求項1に記載
の電動運搬具の伝動システム。
10. The transmission system for an electric carrier according to claim 1, wherein one differential gear is provided between the two parallel transmission shafts.
JP2001197786A 2001-06-29 2001-06-29 Transmission system of motor-operated transportation device Pending JP2003032814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197786A JP2003032814A (en) 2001-06-29 2001-06-29 Transmission system of motor-operated transportation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197786A JP2003032814A (en) 2001-06-29 2001-06-29 Transmission system of motor-operated transportation device

Publications (1)

Publication Number Publication Date
JP2003032814A true JP2003032814A (en) 2003-01-31

Family

ID=19035335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197786A Pending JP2003032814A (en) 2001-06-29 2001-06-29 Transmission system of motor-operated transportation device

Country Status (1)

Country Link
JP (1) JP2003032814A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218148A (en) * 2004-01-27 2005-08-11 Kyoeisha Co Ltd Electric working vehicle for conducting course management work of golf course
EP2204316A1 (en) * 2009-01-05 2010-07-07 Sram, Llc. Drive system for driving a vehicle wheel
WO2013141428A1 (en) * 2012-03-20 2013-09-26 지앤씨 유한회사 Method for controlling a two-stage speed-changing gear system by a submotor
CN107625589A (en) * 2017-08-28 2018-01-26 天津大学 A kind of ectoskeleton wheelchair integrated multi-functional movement auxiliary robot of telescopic
CN110027406A (en) * 2019-06-03 2019-07-19 电子科技大学中山学院 Speed change mechanism of integrated electric drive system of passenger car
JPWO2021171418A1 (en) * 2020-02-26 2021-09-02
CN113581731A (en) * 2021-08-05 2021-11-02 建科机械(天津)股份有限公司 Straight steel bar feeding device and feeding method
CN114051472A (en) * 2019-07-11 2022-02-15 住友重机械工业株式会社 Wheel drive device and maintenance method for wheel drive device
CN115234061A (en) * 2021-01-30 2022-10-25 武汉智象机器人有限公司 Use method of single-motor gear-driven external-clamping type carrier for large pneumatic tires
WO2023136026A1 (en) * 2022-01-11 2023-07-20 株式会社デンソー Electric drive device
WO2024149236A1 (en) * 2023-01-10 2024-07-18 杨广鸿 Power unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218148A (en) * 2004-01-27 2005-08-11 Kyoeisha Co Ltd Electric working vehicle for conducting course management work of golf course
EP2204316A1 (en) * 2009-01-05 2010-07-07 Sram, Llc. Drive system for driving a vehicle wheel
US8100208B2 (en) 2009-01-05 2012-01-24 Sram, Llc Drive system for driving a vehicle wheel
TWI391263B (en) * 2009-01-05 2013-04-01 Sram Llc Drive system for driving a vehicle wheel
WO2013141428A1 (en) * 2012-03-20 2013-09-26 지앤씨 유한회사 Method for controlling a two-stage speed-changing gear system by a submotor
CN107625589A (en) * 2017-08-28 2018-01-26 天津大学 A kind of ectoskeleton wheelchair integrated multi-functional movement auxiliary robot of telescopic
CN107625589B (en) * 2017-08-28 2023-10-27 天津大学 Foldable exoskeleton wheelchair integrated multifunctional mobile auxiliary robot
CN110027406A (en) * 2019-06-03 2019-07-19 电子科技大学中山学院 Speed change mechanism of integrated electric drive system of passenger car
CN114051472A (en) * 2019-07-11 2022-02-15 住友重机械工业株式会社 Wheel drive device and maintenance method for wheel drive device
WO2021171418A1 (en) * 2020-02-26 2021-09-02 株式会社ユニバンス Power transmission device
JPWO2021171418A1 (en) * 2020-02-26 2021-09-02
CN115234061A (en) * 2021-01-30 2022-10-25 武汉智象机器人有限公司 Use method of single-motor gear-driven external-clamping type carrier for large pneumatic tires
CN115234061B (en) * 2021-01-30 2024-04-23 武汉智象机器人有限公司 Using method of single-motor gear-driven pneumatic large tire outer clamping type carrier
CN113581731A (en) * 2021-08-05 2021-11-02 建科机械(天津)股份有限公司 Straight steel bar feeding device and feeding method
WO2023136026A1 (en) * 2022-01-11 2023-07-20 株式会社デンソー Electric drive device
WO2024149236A1 (en) * 2023-01-10 2024-07-18 杨广鸿 Power unit

Similar Documents

Publication Publication Date Title
JP3197740U (en) Planetary gear system using two input characteristics, gear module and control method
US6427797B1 (en) Transmission structure of gearbox of electrically actuated car
JP2003032814A (en) Transmission system of motor-operated transportation device
JP6526147B2 (en) Power transmission device and vehicle including the same
CN103486217A (en) Continuous-power-shifting two-gear speed changing box
CN209943463U (en) Multi-gear speed change device of electric vehicle
CN105882394A (en) Planetary gear train electric drive system for light vehicle and working method of planetary gear train electric drive system
CN114851842A (en) Electric drive bridge and automobile
US11674567B2 (en) Electric vehicle transmission system
CN209870082U (en) Electric vehicle power system and mine car
CN114393982A (en) A dual-motor electric drive bridge
JP2003254396A (en) Power transmission device and driving device for model car using it
CN112128323B (en) Two-gear reduction gearbox with Simpson type planetary gear structure and power transmission logic
CN216867431U (en) Transmission system and drive assembly
CN211195862U (en) Two grades of integrated bridge assemblies and car
CN217145626U (en) Planet gear-shifting double-motor electric drive axle
CN217145627U (en) Double-motor electric drive axle
JP2007253736A (en) Hybrid drive device
CN106828065B (en) Dual-motor coupling two-stage nutation speed change device and working method thereof
CN104455242B (en) transmission
CN222080534U (en) Dual-motor electric drive assembly
CN200995766Y (en) Gearshift of electric tricycle
CN119682534A (en) Coaxial multi-gear electric drive bridge system and vehicle
CN114132167A (en) Hybrid continuously variable transmission, power assembly and vehicle
CN2213681Y (en) Front and back transmission case of motor tricycle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914