JP2003031869A - Magnetoresistive effect element, magnetic head, and magnetic memory - Google Patents
Magnetoresistive effect element, magnetic head, and magnetic memoryInfo
- Publication number
- JP2003031869A JP2003031869A JP2001216346A JP2001216346A JP2003031869A JP 2003031869 A JP2003031869 A JP 2003031869A JP 2001216346 A JP2001216346 A JP 2001216346A JP 2001216346 A JP2001216346 A JP 2001216346A JP 2003031869 A JP2003031869 A JP 2003031869A
- Authority
- JP
- Japan
- Prior art keywords
- underlayer
- layer
- magnetic
- magnetoresistive effect
- magnetic layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 328
- 230000000694 effects Effects 0.000 title claims abstract description 73
- 230000015654 memory Effects 0.000 title claims abstract description 23
- 229910003271 Ni-Fe Inorganic materials 0.000 claims abstract description 90
- 230000005415 magnetization Effects 0.000 claims abstract description 53
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 42
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 39
- 229910020598 Co Fe Inorganic materials 0.000 claims description 51
- 229910002519 Co-Fe Inorganic materials 0.000 claims description 51
- 239000000758 substrate Substances 0.000 claims description 40
- 238000010168 coupling process Methods 0.000 claims description 35
- 238000005859 coupling reaction Methods 0.000 claims description 35
- 230000008878 coupling Effects 0.000 claims description 32
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 229910052804 chromium Inorganic materials 0.000 claims description 17
- 229910052707 ruthenium Inorganic materials 0.000 claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 229910052703 rhodium Inorganic materials 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- 229910052741 iridium Inorganic materials 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 229910000914 Mn alloy Inorganic materials 0.000 claims description 8
- 229910052702 rhenium Inorganic materials 0.000 claims description 8
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000002885 antiferromagnetic material Substances 0.000 abstract description 6
- 239000000696 magnetic material Substances 0.000 abstract description 6
- 239000003302 ferromagnetic material Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 247
- 239000010408 film Substances 0.000 description 106
- 238000000034 method Methods 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 20
- 230000008859 change Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 229910052748 manganese Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 229910018499 Ni—F Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910018516 Al—O Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 229910020707 Co—Pt Inorganic materials 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910003286 Ni-Mn Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical group [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000007737 ion beam deposition Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 230000005330 Barkhausen effect Effects 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- 101100283445 Homo sapiens GNA11 gene Proteins 0.000 description 1
- 101000831940 Homo sapiens Stathmin Proteins 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910020018 Nb Zr Inorganic materials 0.000 description 1
- 102100024237 Stathmin Human genes 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Measuring Magnetic Variables (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Semiconductor Memories (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高密度磁気記録再
生ヘッド(磁気ディスク、光磁気ディスク、磁気テープ
等)や自動車等に用いられる磁気センサー、また、磁気
ランダムアクセスメモリ(MRAM)等に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density magnetic recording / reproducing head (magnetic disk, magneto-optical disk, magnetic tape, etc.), a magnetic sensor used in automobiles, and a magnetic random access memory (MRAM). Is.
【0002】[0002]
【従来の技術】近年、Fe/Cr人工格子多層膜(Physical
Review Letters Vol. 61, p2472 (1998))において巨大
磁気抵抗効果(GMR:Giant Magnet Resistance)が発見
されて以来、電子のスピンに依存する伝導現象に基づい
た磁気抵抗効果(MR)を利用して、ハードディスク装置
等の高密度に記録された媒体の磁化を読み出す再生磁気
ヘッドや不揮発性磁気ランダムアクセスメモリ(MRAM:
Magnetic Random AccessMemory)への応用開発が盛んで
ある。GMRは[磁性層/非磁性層/磁性層]といった多
層膜において非磁性層を介して隣り合う磁性層の磁化方
向が平行、反平行の場合に電気伝導度が電子スピンに依
存した散乱により異なるために起こる現象である。磁化
が平行の場合は磁気散乱確率が小さいので抵抗値が小さ
く、反平行の場合は磁気散乱確率が高いので抵抗値は大
きくなる。非磁性層にはCu等の導電性非磁性層を用いる
ものがGMRであるが、非磁性層にAl2O3等の絶縁層を用
い、素子の膜上下に電極を配置してスピンに依存するト
ンネル効果で得られる磁気抵抗効果をトンネル磁気抵抗
(TMR:Tunneling Magnet Resistance)といい、其の基
本原理はJulliere(Physics Letters, vol1. 54A(197
5). No.3, p225)が報告している。TMRはJulliereの報
告当初は低温での現象であり磁気抵抗変化率(MR比)も
小さかったことからあまり注目されなかった。近年、宮
崎(Journal Magnetism and Magnetic Materials 139 p
231 (1995))が室温でMR比20%近くのTMR現象の発見以
来、現在盛んに研究されている。2. Description of the Related Art In recent years, Fe / Cr artificial lattice multilayer films (Physical
Since the discovery of the giant magnetoresistance effect (GMR: Giant Magnet Resistance) in Review Letters Vol. 61, p2472 (1998)), we have used the magnetoresistance effect (MR) based on the conduction phenomenon depending on the spin of electrons. , A reproducing magnetic head that reads out the magnetization of a medium recorded at high density such as a hard disk device or a non-volatile magnetic random access memory (MRAM:
Application development to Magnetic Random AccessMemory) is active. GMR depends on the scattering depending on the electron spin when the magnetization directions of the magnetic layers adjacent to each other through the nonmagnetic layer in the multilayer film such as [magnetic layer / nonmagnetic layer / magnetic layer] are parallel or antiparallel. This is a phenomenon that occurs. When the magnetizations are parallel, the magnetic scattering probability is small and the resistance value is small. When the magnetizations are antiparallel, the magnetic scattering probability is high and the resistance value is large. GMR uses a conductive non-magnetic layer such as Cu for the non-magnetic layer, but uses an insulating layer such as Al 2 O 3 for the non-magnetic layer and arranges electrodes on the top and bottom of the device film to depend on spin. The magnetoresistive effect obtained by the tunneling effect is called Tunneling Magnet Resistance (TMR), and its basic principle is Julliere (Physics Letters, vol1. 54A (197).
5). No.3, p225). TMR was a phenomenon at a low temperature at the beginning of Julliere's report, and the magnetoresistance change rate (MR ratio) was also small, so it was not paid much attention. In recent years, Miyazaki (Journal Magnetism and Magnetic Materials 139 p
231 (1995)) has been actively studied since the discovery of the TMR phenomenon with an MR ratio of nearly 20% at room temperature.
【0003】このGMRやTMRを微小磁界で動作するデバイ
スとして利用するには、スピンバルブと呼ばれる磁気抵
抗効果素子(MR素子)が提案された(Physical Review
B Vol.43, p1297 (1991))。スピンバルブとは非磁性層
を介して2つの強磁性層が積層されており、一方の磁性
層(固定磁性層)の磁化方向をFe-Mn、Ir-Mn、Pt-Mn等
の反強磁性層により交換バイアス磁界で磁化方向を固定
し、もう一方の磁性層(自由磁性層)の磁化方向を外部
磁界に対して自由に動かすことにより、固定磁性層と自
由磁性層の磁化方向の相対角度を変化させて電気抵抗の
変化を生じさせるものである。A magnetoresistive effect element (MR element) called a spin valve has been proposed in order to use the GMR or TMR as a device which operates in a minute magnetic field (Physical Review).
B Vol.43, p1297 (1991)). A spin valve is a stack of two ferromagnetic layers with a non-magnetic layer interposed between them. The magnetization direction of one magnetic layer (fixed magnetic layer) is antiferromagnetic such as Fe-Mn, Ir-Mn, or Pt-Mn. The magnetization direction of the fixed magnetic layer is fixed by the exchange bias magnetic field by the layer, and the magnetization direction of the other magnetic layer (free magnetic layer) is freely moved with respect to the external magnetic field. To change the electric resistance.
【0004】スピンバルブ膜に用いられる反強磁性層と
しては様々な材料が検討されており詳しくは神保(日本
応用磁気学会誌、Vol.22, No.1, p12 (1998))が報告し
ている。特にGMRやTMRを磁気ヘッドや不揮発性磁気メモ
リに実用化しようとする場合はMn系反強磁性体が優れて
いる。Mn系反強磁性体としてはAs-depo状態で強磁性膜
と交換結合するγ型Mn合金のfcc(面心立方)構造の不
規則系(Ir-Mn、Rh-Mn、Ru-Mn、Rh-Ru-Mn等)反強磁性
体と、200℃以上の高温熱処理により交換結合が生じるC
uAu-I型のfct(面心正方)構造の規則系(Ni-Mn、Pt-M
n、Pd-Pt-Mn等)反強磁性体がある。反強磁性層を図2
に示すように基板側から順に、反強磁性層、固定磁性
層、非磁性層、自由磁性層と積層したスピンバルブ構造
において、反強磁性層が固定磁性層と交換結合を生じる
ようにするためには反強磁性層の構造を制御するための
下地層が重要な役割を果たす。図2に示すようなスピン
バルブ構造の反強磁性層に不規則系反強磁性体を用いた
場合、fcc-γ相を得るために構造制御用の下地層として
Ta、Nb、Ti、Hf、Zr等が用いられ、更にfcc構造を持つN
i-Feのバッファ層により、即ち基板/Ta下地層/Ni-Fe
下地層/不規則反強磁性層/固定磁性層/非磁性層/自
由磁性層の膜構成とすることで良好な反強磁性特性を示
すようになる。規則型反強磁性層の場合では下地層とし
て主にTa、Nb、Ti、Hf、Zr等が用いられておりこれら下
地層として反強磁性特性を示すが、不規則系反強磁性体
と同様に更にTa下地層/Ni-Fe下地層といった構造を用
いても良好な反強磁性特性を示すことが報告されている
(Applied Physics Letters 65(9),p1183, (1994)、 I
EEE Transaction Magnetism 33, p3592, (1997))。Various materials have been studied for the antiferromagnetic layer used in the spin valve film, and details have been reported by Jinbo (Journal of Applied Magnetics, Vol.22, No.1, p12 (1998)). There is. Especially when trying to put GMR and TMR into practical use for magnetic heads and nonvolatile magnetic memories, Mn antiferromagnetic materials are superior. As an Mn antiferromagnet, a disordered system (Ir-Mn, Rh-Mn, Ru-Mn, Rh) of the fcc (face centered cubic) structure of a γ-type Mn alloy that exchange-couples with a ferromagnetic film in the As-depo state -Ru-Mn, etc.) Antiferromagnetic material and C that causes exchange coupling by high temperature heat treatment at 200 ℃ or higher
uAu-I type fct (face centered square) ordered system (Ni-Mn, Pt-M
n, Pd-Pt-Mn, etc.) antiferromagnets. Figure 2 shows the antiferromagnetic layer
In order to make the antiferromagnetic layer exchange-couple with the pinned magnetic layer in the spin valve structure in which the antiferromagnetic layer, the pinned magnetic layer, the nonmagnetic layer, and the free magnetic layer are stacked in this order from the substrate side as shown in FIG. For this, an underlayer for controlling the structure of the antiferromagnetic layer plays an important role. When a disordered antiferromagnetic material is used for the antiferromagnetic layer of the spin valve structure as shown in FIG. 2, it is used as an underlayer for structure control in order to obtain the fcc-γ phase.
Ta, Nb, Ti, Hf, Zr, etc. are used, and N with fcc structure
i-Fe buffer layer, ie substrate / Ta underlayer / Ni-Fe
Good antiferromagnetic properties are exhibited by the film structure of the underlayer / irregular antiferromagnetic layer / fixed magnetic layer / nonmagnetic layer / free magnetic layer. In the case of an ordered antiferromagnetic layer, Ta, Nb, Ti, Hf, Zr, etc. are mainly used as the underlayer, and these underlayers show antiferromagnetic properties, but similar to the disordered antiferromagnetic material. In addition, it has been reported that good antiferromagnetic properties are exhibited even when using a structure such as Ta underlayer / Ni-Fe underlayer (Applied Physics Letters 65 (9), p1183, (1994), I
EEE Transaction Magnetism 33, p3592, (1997)).
【0005】[0005]
【発明が解決しようとする課題】しかしながらスピンバ
ルブを構成する反強磁性層の下地層としてNi-Feを用い
た場合、図3(b)に示すように固定磁性層からの漏洩
磁界のみならずNi-Fe下地層からの漏洩磁界により、本
来定められた自由磁性層1の磁化方向(図において点線
で示している方向)が回転してしまい、固定磁性層1と
自由磁性層1の磁化が望ましい磁化配置とならず出力の
磁界応答性が悪化してしまうという課題が生じる。特に
磁気ヘッドや不揮発磁気メモリの高密度化に伴いMR素子
の微細化が進行し、特に上記課題が問題となってくる。However, when Ni-Fe is used as the underlayer of the antiferromagnetic layer constituting the spin valve, not only the leakage magnetic field from the pinned magnetic layer but also the leakage magnetic field as shown in FIG. Due to the leakage magnetic field from the Ni-Fe underlayer, the originally determined magnetization direction of the free magnetic layer 1 (the direction indicated by the dotted line in the figure) is rotated, and the magnetizations of the pinned magnetic layer 1 and the free magnetic layer 1 are changed. There is a problem that the desired magnetic arrangement is not obtained and the magnetic field response of the output is deteriorated. In particular, as the density of magnetic heads and non-volatile magnetic memories has increased, the miniaturization of MR elements has progressed, and the above-mentioned problems become a problem.
【0006】GMR素子の場合では、Ni-Fe下地層は抵抗率
が小さいため磁気抵抗効果に寄与しないシャント電流損
により大きなMR比を得られないという問題がある。In the case of a GMR element, there is a problem that a large MR ratio cannot be obtained due to a shunt current loss that does not contribute to the magnetoresistive effect because the Ni-Fe underlayer has a low resistivity.
【0007】また図3(b)で示したようにNi-Fe下地
層からの漏洩磁界(点線矢印)は固定磁性層1の磁化方
向にも影響を及ぼすが、固定磁性層1の磁化は反強磁性
層1との交換結合により固定されている為、室温の動作
範囲においては磁化方向を変化させる程の影響は少な
い。しかしながら、反強磁性層1による固定磁性層1へ
の交換結合の強さは温度の上昇とともに弱くなる。つま
り高温においてはNi-Fe下地層からの漏洩磁界により交
換結合が弱くなった固定磁性層1の磁化方向をさらに弱
めてしまい出力低下の問題となる。特に高記録密度化に
伴う狭ギャップ化に対応するために反強磁性層1の膜厚
は薄いことが要求されるが、この場合は特にその影響が
大きくなる。しかもMR素子を用いた磁気ヘッドを製造す
る場合では250℃〜300℃での熱処理行程を行うため製造
プロセスに耐える耐熱性・耐食性が必要となる。さらに
HDDに搭載される場合には、その動作環境温度(例えば1
50℃程度)において長時間安定に特性動作する為の熱安
定性が要求される。また、TMR素子をCMOS上に作成してM
RAMデバイスとして応用する研究が進んでいるが、CMOS
プロセスでは400℃〜450℃の非常に高温の熱処理行程を
行うことが不可避である。従って、スピンバルブを磁気
ヘッドやMRAMへの応用を考慮した場合、これら高温の熱
処理による出力特性低下の問題があり、これらの課題を
解決することが必須である。As shown in FIG. 3B, the leakage magnetic field (dotted line arrow) from the Ni-Fe underlayer affects the magnetization direction of the pinned magnetic layer 1, but the magnetization of the pinned magnetic layer 1 is opposite. Since it is fixed by exchange coupling with the ferromagnetic layer 1, it has little effect in changing the magnetization direction in the operating range at room temperature. However, the strength of exchange coupling of the antiferromagnetic layer 1 to the pinned magnetic layer 1 becomes weaker as the temperature rises. That is, at a high temperature, the leakage magnetic field from the Ni—Fe underlayer further weakens the magnetization direction of the pinned magnetic layer 1 whose exchange coupling is weakened, which causes a problem of output reduction. In particular, the antiferromagnetic layer 1 is required to have a small film thickness in order to cope with the narrowing of the gap accompanying the increase in recording density. In this case, the influence is particularly large. Moreover, when manufacturing a magnetic head using an MR element, a heat treatment process at 250 ° C to 300 ° C is performed, so heat resistance and corrosion resistance that can withstand the manufacturing process are required. further
If it is installed in the HDD, the operating environment temperature (for example, 1
Thermal stability is required for stable characteristic operation for a long time at about 50 ° C. In addition, a TMR element is created on CMOS and M
Although research on application as a RAM device is progressing, CMOS
In the process, it is unavoidable to perform a very high temperature heat treatment process at 400 ° C to 450 ° C. Therefore, in consideration of application of the spin valve to a magnetic head or MRAM, there is a problem of output characteristic deterioration due to the high temperature heat treatment, and it is essential to solve these problems.
【0008】[0008]
【課題を解決するための手段】本発明の磁気抵抗効果素
子は、基板上に基板側から順に少なくとも反強磁性層、
固定磁性層、第1非磁性層、自由磁性層が積層された構
成を持ち、前記固定磁性層は前記反強磁性層と磁気的に
結合しており外部磁界に対して容易には磁化回転せず、
前記自由磁性層は外部磁界により容易に磁化回転し、前
記固定層と前記自由磁性層の磁化方向の相対角度の違い
により抵抗値が異なる磁気抵抗効果素子であって、前記
反強磁性層と前記基板との間に少なくとも1つ以上の下
地非磁性層と少なくとも2つ以上の下地強磁性層を含む
下地層があり、前記下地層は第1下地非磁性層を介して
積層された第1および第2下地強磁性層から構成された
多層膜を少なくとも1つ含み、前記下地層と前記反強磁
性層が接することを特徴とする磁気抵抗効果素子である
ことで上記目的は達成される。A magnetoresistive element according to the present invention comprises a substrate, on which at least an antiferromagnetic layer is formed in order from the substrate side.
The pinned magnetic layer, the first non-magnetic layer, and the free magnetic layer are laminated, and the pinned magnetic layer is magnetically coupled to the antiferromagnetic layer so that the magnetization can be easily rotated by an external magnetic field. No
The free magnetic layer is a magnetoresistive effect element whose magnetization is easily rotated by an external magnetic field and whose resistance value is different due to a difference in relative angle between magnetization directions of the fixed layer and the free magnetic layer. An underlayer including at least one underlayer nonmagnetic layer and at least two underlayer ferromagnetic layers is provided between the substrate and the first underlayer, and the underlayer includes a first underlayer nonmagnetic layer and a first underlayer nonmagnetic layer. The above object is achieved by a magnetoresistive effect element including at least one multi-layered film composed of a second underlying ferromagnetic layer, wherein the underlying layer and the antiferromagnetic layer are in contact with each other.
【0009】前記第1下地強磁性層が前記反強磁性層と
接していてもよい。The first underlayer ferromagnetic layer may be in contact with the antiferromagnetic layer.
【0010】前記第1下地非磁性層を介して積層された
前記第1および第2下地強磁性層が反強磁性的に交換結
合しており、前記第1下地非磁性層はRu、Ir、Rh、Re、
Cu、Crのいずれかを含んでいることが望ましい。The first and second underlayer ferromagnetic layers stacked via the first underlayer nonmagnetic layer are antiferromagnetically exchange-coupled, and the first underlayer nonmagnetic layer is Ru, Ir, Rh, Re,
It is desirable to contain either Cu or Cr.
【0011】更に前記第1および第2下地磁性層の飽和
磁化をそれぞれM1、M2、膜厚をそれぞれt1、t2とす
る場合、それぞれの積M1×t1とM2×t2は概略同じで
あることが望ましい。Further, when the saturation magnetizations of the first and second underlayer magnetic layers are M 1 and M 2 and the film thicknesses are t 1 and t 2 , respectively, the products M 1 × t 1 and M 2 × t, respectively. It is desirable that 2 are approximately the same.
【0012】前記下地層を構成する下地磁性層はNiまた
はNi-Fe合金またはCo-Fe合金を含んでいることが望まし
い。The underlayer magnetic layer forming the underlayer preferably contains Ni, Ni—Fe alloy or Co—Fe alloy.
【0013】更に前記下地層を構成する下地磁性層は前
記固定磁性層あるいは前記自由磁性層を構成する同じ材
料から構成されてもよい。Further, the underlayer magnetic layer forming the underlayer may be made of the same material as the pinned magnetic layer or the free magnetic layer.
【0014】前記下地層は基板側から順に、第2下地非
磁性層、第2下地磁性層、第1下地非磁性層、第1下地
磁性層が積層された構成であり、前記第2下地非磁性層
はTa、Hf、Zr、Ti、W、Nb、Pt、Cr、Au、Cuから選ばれ
た少なくとも一種からなっても良い。The underlayer has a structure in which a second underlayer nonmagnetic layer, a second underlayer magnetic layer, a first underlayer nonmagnetic layer, and a first underlayer magnetic layer are laminated in this order from the substrate side. The magnetic layer may be made of at least one selected from Ta, Hf, Zr, Ti, W, Nb, Pt, Cr, Au and Cu.
【0015】前記反強磁性層がA-Mn系合金(ただしAはP
t、Ni、Pd、Cr、Rh、Re、Ir、Ruから選ばれる少なくと
も一種以上の元素)からなるものが望ましい。The antiferromagnetic layer is an A-Mn alloy (where A is P
It is preferable that at least one element selected from t, Ni, Pd, Cr, Rh, Re, Ir, and Ru) is included.
【0016】特にスピンバルブを構成する前記固定磁性
層は更に交換結合用非磁性層と、前記交換結合用非磁性
層を介して反強磁性的に交換結合した第1磁性層と第2
磁性層を含み、前記交換結合用非磁性層はRu、Ir、Rh、
Re、Cu、Crのいずれかを含んでもよい。更に前記非磁性
はCu、Ag、Au、CrまたはRuの少なくとも一種からなって
もよい。更に前記非磁性層が、Alの酸化物、窒化物また
は酸窒化物からなってもよい。In particular, the pinned magnetic layer constituting the spin valve further comprises a non-magnetic layer for exchange coupling, and a first magnetic layer and a second magnetic layer which are antiferromagnetically exchange-coupled via the non-magnetic layer for exchange coupling.
The exchange coupling non-magnetic layer includes a magnetic layer, Ru, Ir, Rh,
It may contain any one of Re, Cu and Cr. Further, the non-magnetic material may be made of at least one of Cu, Ag, Au, Cr or Ru. Further, the non-magnetic layer may be made of Al oxide, nitride or oxynitride.
【0017】本発明の磁気抵抗効果素子を構成する磁気
抵抗効果素子の素子の膜面の上下に図10に一例として
示すように磁気抵抗効果素子の膜の上下に電極層を配置
し、電流を膜面に垂直に流す構成とすることを特徴とす
ることで、上記目的が達成される。Electrode layers are arranged above and below the film surface of the magnetoresistive element constituting the magnetoresistive element of the present invention, as shown in FIG. The above-mentioned object is achieved by the feature that the film is made to flow perpendicularly to the film surface.
【0018】図11に一例を示したように本発明の磁気
抵抗効果素子に更にシールド部を具備することにより、
高出力にしかも熱的安定性に優れた信号磁界を検知する
再生ヘッド部を有する磁気抵抗効果型ヘッドが可能とな
り、上記目的が達成される。By providing the magnetoresistive effect element of the present invention with a shield portion as shown in FIG.
A magnetoresistive head having a reproducing head section capable of detecting a signal magnetic field having high output and excellent thermal stability can be realized, and the above object can be achieved.
【0019】図12に一例を示したように本発明の磁気
抵抗効果素子に、検知すべき磁界を磁気抵抗効果素子に
導入すべく設けられた軟磁性体を用いて構成されるヨ−
クを具備することにより、信号磁界を検知する再生ヘッ
ド部を有する磁気抵抗効果型ヘッドが可能となり、上記
目的が達成される。As shown in FIG. 12, an example of the magnetoresistive element of the present invention is a yaw constructed by using a soft magnetic material provided to introduce a magnetic field to be detected into the magnetoresistive element.
The provision of the magnetic head enables a magnetoresistive head having a reproducing head section for detecting a signal magnetic field, thereby achieving the above object.
【0020】図11、12に一例を示したような本発明
のシールド型またはヨーク型再生ヘッドを有する磁気ヘ
ッドを用いることで高密度な磁気記録装置を提供するこ
とが可能となり、上記目的が達成される。By using the magnetic head having the shield type or yoke type reproducing head of the present invention as shown in FIGS. 11 and 12, it is possible to provide a high density magnetic recording device, and the above object is achieved. To be done.
【0021】本発明の磁気抵抗効果素子部に、更に情報
を読み出すためのセンス線(ビット線)部と、情報を記
録するためのワ−ド線部とを具備すれば図14に示すよ
うな磁気メモリ素子となり、これら磁気メモリ素子をマ
トリックス状に配列し駆動回路を設ければ、高密度で熱
的安定性に優れた特性を示す磁気ランダムアクセスメモ
リ(MRAM)素子が可能となり、上記目的が達成される。If the magnetoresistive effect element portion of the present invention further comprises a sense line (bit line) portion for reading information and a word line portion for recording information, as shown in FIG. It becomes a magnetic memory element, and by arranging these magnetic memory elements in a matrix and providing a drive circuit, a magnetic random access memory (MRAM) element exhibiting high density and excellent thermal stability characteristics becomes possible. To be achieved.
【0022】[0022]
【発明の実施の形態】以下本発明の磁気抵抗効果素子、
磁気抵抗効果型ヘッド、磁気抵抗メモリ素子を図面に基
づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION The magnetoresistive effect element of the present invention will be described below.
A magnetoresistive head and a magnetoresistive memory element will be described with reference to the drawings.
【0023】図1は本発明の磁気抵抗効果素子の構成を
示す断面図の一例である。図1では固定磁性層1と自由
磁性層1は非磁性層1により磁気的に分離されており、
自由磁性層1は外部の印加磁界により容易に磁化回転
し、固定磁性層1は反強磁性層1からの交換結合により
外部の印加磁界により容易には磁化回転しない。図1で
は下地層1は基板上(図示せず)に形成されており、こ
の下地層1上に反強磁性層1が積層されている。FIG. 1 is an example of a sectional view showing the structure of the magnetoresistive effect element of the present invention. In FIG. 1, the pinned magnetic layer 1 and the free magnetic layer 1 are magnetically separated by the non-magnetic layer 1,
The magnetization of the free magnetic layer 1 is easily rotated by an externally applied magnetic field, and the magnetization of the fixed magnetic layer 1 is not easily rotated by an externally applied magnetic field due to exchange coupling from the antiferromagnetic layer 1. In FIG. 1, the underlayer 1 is formed on a substrate (not shown), and the antiferromagnetic layer 1 is laminated on the underlayer 1.
【0024】図1において下地層1は第1下地非磁性層
を介して第1下地強磁性層と第2下地強磁性層が積層さ
れた構成を有している。本発明ではこの下地層1を構成
する第1下地強磁性層と第2下地強磁性層が第1下地非
磁性層を介して反強磁性的に交換結合していることを特
徴とする。In FIG. 1, the underlayer 1 has a structure in which a first underlayer ferromagnetic layer and a second underlayer ferromagnetic layer are laminated with a first underlayer nonmagnetic layer interposed therebetween. The present invention is characterized in that the first underlayer ferromagnetic layer and the second underlayer ferromagnetic layer forming the underlayer 1 are antiferromagnetically exchange-coupled via the first underlayer nonmagnetic layer.
【0025】第1下地非磁性層としてはRu、Ir、Rh、R
e、Cu、Crを用いることが望ましい。これら金属は適当
な膜厚を用いることにより第1下地強磁性層と第2下地
強磁性層とを反強磁性的に交換結合させる効果が大き
い。これら反強磁性的に交換結合した第1および第2下
地強磁性層のそれぞれの磁化方向は反平行に向いてい
る。Ru, Ir, Rh, R are used as the first underlayer nonmagnetic layer.
It is desirable to use e, Cu and Cr. These metals have a large effect of antiferromagnetically exchange-coupling the first underlayer ferromagnetic layer and the second underlayer ferromagnetic layer by using an appropriate film thickness. The magnetization directions of the first and second underlying ferromagnetic layers that are antiferromagnetically exchange-coupled are antiparallel.
【0026】図2は下地層にTa下地層/Ni-Fe下地層を
用いた従来の構成である。FIG. 2 shows a conventional structure in which a Ta underlayer / Ni-Fe underlayer is used as the underlayer.
【0027】図3(a)は図1に示した本発明のMR素子
の斜視図であり、図3(b)は図2に示した構成のMR素
子の斜視図である。図3(a)と(b)には下地層に強
磁性層を用いた場合の漏洩磁界の様子を図示している。
磁気ヘッドにスピンバルブを用いた例とした場合で説明
をすると、固定磁性層1と自由磁性層1の磁化方向を90
゜となるように配置する。図3では特にこの場合につい
て以下に本発明の有用性を説明する。3(b)のように
下地層としてTa下地層/Ni-Fe下地層を用いた場合で
は、Ni-Feからの漏洩磁界が自由磁性層に及ぶ為、本来
自由磁性層1が向かなければならない磁化方向(点線方
向)からはずれた方向に磁化が向かされてしまい外部磁
界応答の劣化が生じる。しかしながら、図3(a)に示
したように本発明のMR素子では、第1及び第2下地強磁
性層の磁化方向が反平行に向いているため図中の矢印で
示しているようにそれぞれの漏洩磁界を打ち消し合うた
めに自由磁性層1に到達する下地層からの漏洩磁界は図
3(b)よりも低減することが可能となり、自由磁性層
1の磁界応答は良好となる。特に第1及び第2下地強磁
性層の飽和磁化をそれぞれM1、M2、膜厚をそれぞれt
1、t2とする場合、それぞれの積がM1×t1≦M2×t2
の関係を満たすとき下地層からの漏洩磁界が自由磁性層
1に及ぼす影響を低減することが可能となる。特にM1
×t1とM2×t2が概略同じである場合はそれぞれの漏
洩磁界が相殺されるため特に優れている。FIG. 3A is a perspective view of the MR element of the present invention shown in FIG. 1, and FIG. 3B is a perspective view of the MR element having the configuration shown in FIG. FIGS. 3A and 3B show the state of the leakage magnetic field when a ferromagnetic layer is used as the underlayer.
In the case of using a spin valve as the magnetic head, the magnetization directions of the pinned magnetic layer 1 and the free magnetic layer 1 are 90
Place it so that it becomes °. Particularly in this case, the usefulness of the present invention will be described below with reference to FIG. In the case where the Ta underlayer / Ni-Fe underlayer is used as the underlayer as in 3 (b), the leakage magnetic field from Ni-Fe reaches the free magnetic layer, so that the free magnetic layer 1 should originally be oriented. The magnetization is directed in a direction deviating from the magnetization direction (dotted line direction) that does not occur, which deteriorates the external magnetic field response. However, in the MR element of the present invention as shown in FIG. 3A, the magnetization directions of the first and second underlayer ferromagnetic layers are antiparallel, and therefore, as shown by arrows in the figure, respectively. The leakage magnetic field from the underlayer reaching the free magnetic layer 1 due to the mutual cancellation of the leakage magnetic fields can be reduced as compared with FIG. 3B, and the magnetic field response of the free magnetic layer 1 is improved. In particular, the saturation magnetizations of the first and second underlayer ferromagnetic layers are M 1 and M 2 , respectively, and the film thickness is t
If 1 and t 2 , their respective products are M 1 × t 1 ≦ M 2 × t 2
When the relationship of is satisfied, it is possible to reduce the influence of the leakage magnetic field from the underlayer on the free magnetic layer 1. Especially M 1
When xt 1 and M 2 xt 2 are substantially the same, the respective leakage magnetic fields cancel each other out, which is particularly excellent.
【0028】図3(b)ではNi-Fe下地層からの漏洩磁
界は固定磁性層1の磁化方向にも影響を及ぼすが、固定
磁性層1の磁化は反強磁性層1との交換結合により固定
されている為、室温の動作範囲においては磁化方向を変
化させる程の影響は少ない。しかしながら、反強磁性層
1による固定磁性層1への交換結合の強さは温度の上昇
とともに弱くなる。つまり高温においてはNi-Fe下地層
からの漏洩磁界により交換結合が弱くなった固定磁性層
1の磁化方向をさらに弱めてしまい出力低下の問題とな
る。特に高記録密度化に伴う狭ギャップ化に対応するた
めに反強磁性層1の膜厚は薄いことが要求されるが、こ
の場合は特に影響が大きくなる。In FIG. 3B, the leakage magnetic field from the Ni-Fe underlayer also affects the magnetization direction of the pinned magnetic layer 1, but the magnetization of the pinned magnetic layer 1 is exchange-coupled with the antiferromagnetic layer 1. Since it is fixed, there is little effect in changing the magnetization direction in the operating range at room temperature. However, the strength of exchange coupling of the antiferromagnetic layer 1 to the pinned magnetic layer 1 becomes weaker as the temperature rises. That is, at a high temperature, the leakage magnetic field from the Ni—Fe underlayer further weakens the magnetization direction of the pinned magnetic layer 1 whose exchange coupling is weakened, which causes a problem of output reduction. In particular, the antiferromagnetic layer 1 is required to have a small thickness in order to cope with the narrowing of the gap accompanying the increase in recording density, but in this case, the influence becomes particularly large.
【0029】そこで図3(a)に示すように本発明のMR
素子の構造とすることで下地層からの漏洩磁界を低減す
ることが可能となるため、高温の製造プロセスや素子の
動作温度上昇にともなう固定磁性層1の磁化方向が変化
することによる出力の低下を防ぐことが可能となる。さ
らに反強磁性層1の薄膜化による下地層からの漏洩磁界
による出力低下を防ぐことができる。従って素子のMR特
性の耐熱性が向上することが可能となる。Therefore, as shown in FIG. 3A, the MR of the present invention is used.
Since the leakage magnetic field from the underlayer can be reduced by adopting the element structure, the output decreases due to the change in the magnetization direction of the pinned magnetic layer 1 due to the high temperature manufacturing process and the operating temperature rise of the element. Can be prevented. Further, it is possible to prevent a decrease in output due to a leakage magnetic field from the underlayer due to the thinning of the antiferromagnetic layer 1. Therefore, the heat resistance of the MR characteristics of the device can be improved.
【0030】更に本発明の下地層の構造では、第1及び
第2下地強磁性層の磁化方向は反平行を向いているた
め、平行の磁化配置と比べて抵抗が大きい(GMR出現の
原理)。従って図2(又は図3(b))のNi-Fe下地層
の場合と比較して抵抗が大きくなるため、GMRに寄与し
ない電流分流(シャント電流)を小さくし、より大きな
磁気抵抗変化率を得ることが可能となる。Further, in the structure of the underlayer of the present invention, since the magnetization directions of the first and second underlayer ferromagnetic layers are antiparallel, the resistance is larger than the parallel magnetization arrangement (the principle of appearance of GMR). . Therefore, the resistance becomes larger than that in the case of the Ni-Fe underlayer of FIG. 2 (or FIG. 3B), so that the current shunt (shunt current) that does not contribute to GMR is reduced, and a larger magnetoresistance change rate is obtained. It becomes possible to obtain.
【0031】図1に示した本発明のMR素子の第2下地強
磁性層の基板側に図4に示すように第2下地非磁性層を
設けても良い。この場合の第2下地非磁性層はTa、Hf、
Zr、Ti、W、Nb、Pt、Cr、Au、Cuから選ばれた少なくと
も一種からなるのが良い。これらは基板との密着制御層
や第2下地強磁性層の配向性制御層としての役割があ
る。As shown in FIG. 4, a second underlayer nonmagnetic layer may be provided on the substrate side of the second underlayer ferromagnetic layer of the MR element of the present invention shown in FIG. In this case, the second underlayer non-magnetic layer is Ta, Hf,
It is preferable to be composed of at least one selected from Zr, Ti, W, Nb, Pt, Cr, Au and Cu. These play a role as an adhesion control layer with the substrate and an orientation control layer of the second underlying ferromagnetic layer.
【0032】また図5に示すように図1に示した下地層
の構成において更に第2下地非磁性層を介して第3下地
強磁性層を設けても良い。この場合、第1、第2、第3
下地強磁性層の磁化方向はそれぞれ反平行を向いており
下地層からの漏洩磁界を低減することが可能である。従
って、同様に第4、第5、…下地強磁性層を第4、第
5、…下地非磁性層を介して積層して、それぞれの下地
強磁性層が隣接する下地非磁性層を介して反強磁性的に
交換結合しており反平行を向いている構造をとっても良
い。Further, as shown in FIG. 5, in the structure of the underlayer shown in FIG. 1, a third underlayer ferromagnetic layer may be further provided via a second underlayer nonmagnetic layer. In this case, the first, second and third
The magnetization directions of the underlying ferromagnetic layers are antiparallel to each other, and it is possible to reduce the leakage magnetic field from the underlying layer. Therefore, similarly, the fourth, fifth, ... Underlayer ferromagnetic layers are laminated via the fourth, fifth, ... Underlayer nonmagnetic layers, and each of the underlayer ferromagnetic layers is overlaid via the adjacent underlayer nonmagnetic layer. An antiferromagnetically exchange-coupled structure may be adopted, which is antiparallel.
【0033】本発明のMR素子において下地層を構成する
下地強磁性層はfcc(面心立方)構造を有するNi-Co-Fe
合金膜が適している。具体的にはNi-Co-Fe膜の原子組成
比としては、NixCoyFez(0.6≦x≦0.9、0≦y≦0.4、0≦
z≦0.3)もしくはNix'Coy'Fe z'(0≦x'≦0.4、0.2≦y'
≦0.95、0≦z'≦0.5)が望ましい。この中でも特にNixF
e1-x(0.6≦x≦1)もしくはCoyFe1-y(0.7≦y≦0.95)
が特に望ましい。各下地強磁性層はこれら合金膜の積層
膜としてもよい。Forming a base layer in the MR element of the present invention
The underlying ferromagnetic layer is Ni-Co-Fe with fcc (face centered cubic) structure
Alloy film is suitable. Specifically, the atomic composition of the Ni-Co-Fe film
The ratio is NixCoyFez(0.6 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.4, 0 ≦
z ≦ 0.3) or Nix 'Coy 'Fe z '(0≤x'≤0.4, 0.2≤y '
≤0.95, 0≤z'≤0.5) is desirable. Among these, especially NixF
e1-x(0.6 ≦ x ≦ 1) or CoyFe1-y(0.7 ≦ y ≦ 0.95)
Is especially desirable. Each underlying ferromagnetic layer is a stack of these alloy films
It may be a film.
【0034】本発明のMR素子を構成する下地層は反強磁
性層の構造制御層としての役割があるため、その膜厚は
下地層を構成する下地強磁性層の全膜厚(図1において
第1及び第2下地強磁性層の膜厚を足したもの)とは少
なくとも1nm以上必要である。この膜厚未満であると下
地層上に形成した半挙磁性層の結晶配向性を向上して優
れた反強磁性特性、即ち反強磁性層と固定磁性層との間
の大きな交換結合磁界を得ることができなくなるという
問題が生じる。より望ましくは下地強磁性層の全膜厚は
2nm以上が良い。Since the underlayer constituting the MR element of the present invention plays a role as a structure control layer of the antiferromagnetic layer, its thickness is the total thickness of the underlayer ferromagnetic layer constituting the underlayer (see FIG. 1). The sum of the film thicknesses of the first and second underlayer ferromagnetic layers) must be at least 1 nm or more. If the thickness is less than this value, the semi-elevated magnetic layer formed on the underlayer is improved in crystal orientation and excellent antiferromagnetic properties, that is, a large exchange coupling magnetic field between the antiferromagnetic layer and the pinned magnetic layer is obtained. The problem arises that you will not be able to obtain it. More desirably, the total thickness of the underlying ferromagnetic layer is
2nm or more is good.
【0035】反強磁性層1としてA-Mn系合金(ただしA
はPt、Ni、Pd、Cr、Rh、Re、Ir、Ruから選ばれる少なく
とも一種以上の元素)が望ましい。具体例ではPt-Mn、P
d-Mn、Pd-Pt-Mn、Ni-Mn、Ir-Mn、Cr-Pt-Mn、Ru-Rh-Mn等
が上げられる。As the antiferromagnetic layer 1, an A-Mn alloy (however, A
Is preferably at least one element selected from Pt, Ni, Pd, Cr, Rh, Re, Ir and Ru). In the example, Pt-Mn, P
Examples include d-Mn, Pd-Pt-Mn, Ni-Mn, Ir-Mn, Cr-Pt-Mn, Ru-Rh-Mn.
【0036】更に図1に示した固定磁性層1を図6に示
したように固定磁性層1が固定非磁性層10を介して反
強磁性的に交換結合している2つの固定磁性層10及び
11からなる構成としても良い。このような構成とする
ことで外部磁界に対してより磁化回転しなくなり、即ち
固定磁性層1の交換結合磁界が増大するという効果と、
熱的に安定な磁気抵抗効果素子とすることが可能とな
る。この場合、本発明の下地層を構成する下地非磁性層
と同様に固定非磁性層10としてRu、Ir、Rh、Re、Cu、
Crを用いることが望ましい。Further, as shown in FIG. 6, the pinned magnetic layer 1 shown in FIG. 1 has two pinned magnetic layers 10 in which the pinned magnetic layer 1 is antiferromagnetically exchange-coupled via the pinned nonmagnetic layer 10. It may be configured by 11 and 11. With such a structure, the magnetization rotation is less likely to occur with respect to the external magnetic field, that is, the exchange coupling magnetic field of the pinned magnetic layer 1 is increased.
It is possible to obtain a magnetoresistive effect element that is thermally stable. In this case, Ru, Ir, Rh, Re, Cu, as the fixed nonmagnetic layer 10 are formed in the same manner as the underlayer nonmagnetic layer constituting the underlayer of the present invention.
It is desirable to use Cr.
【0037】自由磁性層1及び固定磁性層1及び固定磁
性層10、11に用いる磁性体としてCo、Fe、Co-Fe、N
i-Fe、Ni-Co-Fe等の合金膜あるいはこれらの積層膜とす
ることが望ましい。特に自由磁性層1としては軟磁気特
性に優れた材料を用いることが望ましく、これは前述の
下地強磁性層に用いるのに示したNixCoyFez(0.6≦x≦
0.9、0≦y≦0.4、0≦z≦0.3)もしくはNix'Coy'Fez'(0
≦x'≦0.4、0.2≦y'≦0.95、0≦z'≦0.5)もしくはNixF
e1-x(0.6≦x≦1)もしくはCoyFe1-y(0.7≦y≦0.95)
合金が望ましい。このように下地強磁性層と同じ材料を
自由磁性層1または固定磁性層1に用いることにより薄
膜形成時のターゲット個数を増加させることはないため
製造プロセスの簡略化とコスト削減という付加的な効果
も期待できる。Co, Fe, Co--Fe, N are used as magnetic materials for the free magnetic layer 1, the pinned magnetic layer 1, and the pinned magnetic layers 10 and 11.
It is desirable to use an alloy film of i-Fe, Ni-Co-Fe, or the like, or a laminated film thereof. In particular, it is desirable to use a material having excellent soft magnetic characteristics for the free magnetic layer 1. This is because Ni x Co y Fe z (0.6 ≦ x ≦
0.9,0 ≦ y ≦ 0.4,0 ≦ z ≦ 0.3) or Ni x 'Co y' Fe z '(0
≦ x '≦ 0.4, 0.2 ≦ y' ≦ 0.95, 0 ≦ z '≦ 0.5) or Ni x F
e 1-x (0.6 ≦ x ≦ 1) or Co y Fe 1-y (0.7 ≦ y ≦ 0.95)
Alloys are preferred. By using the same material as the underlying ferromagnetic layer for the free magnetic layer 1 or the fixed magnetic layer 1 in this way, the number of targets during thin film formation is not increased, and therefore the additional effects of simplifying the manufacturing process and reducing costs are achieved. Can be expected.
【0038】自由磁性層1と固定磁性層1を磁気的に分
離するための非磁性層1としては導電性材料の場合は、
Cu、Au、Ag、Ru、Cr、及びそれらの合金を用いるのが望
ましい。非磁性絶縁体(すなわちトンネル絶縁層)の場
合は、絶縁体、もしくは半導体であれば何れでも良い
が、特にMg, Ti, Zr, Hf, V, Nb,Ta,Crを含む IIa〜VI
a、La , Ceを含む ランタノイド、Zn, B, Al, Ga, Siを
含む IIb〜IVbから選ばれた元素と、F、O、C、N、Bから
選ばれた少なくとも元素との化合物であることが好まし
い。Alの酸化物、窒化物または酸窒化物は他の材料に比
べて絶縁特性に優れ、薄膜化が可能であり再現性にも優
れているため特に良い。非磁性層1にCu等の導電性膜を
用いた場合はGMR素子であり例えば図1の素子の左右に
電極を設けてMR素子を構成する。非磁性層1にAlの酸化
膜等を用いる場合はTMR素子となり例えば図1の膜の上
下に電極を設けて図7に示したようなMR素子を構成する
(詳細は後述)。When the nonmagnetic layer 1 for magnetically separating the free magnetic layer 1 and the pinned magnetic layer 1 is a conductive material,
It is desirable to use Cu, Au, Ag, Ru, Cr, and alloys thereof. In the case of a non-magnetic insulator (that is, a tunnel insulating layer), any insulator or semiconductor may be used, but in particular, IIa to VI containing Mg, Ti, Zr, Hf, V, Nb, Ta, Cr.
It is a compound of an element selected from lanthanoids containing a, La and Ce and IIb to IVb containing Zn, B, Al, Ga and Si and at least an element selected from F, O, C, N and B. It is preferable. Oxides, nitrides, or oxynitrides of Al are particularly preferable because they have excellent insulating properties, can be thinned, and have excellent reproducibility as compared with other materials. When a conductive film such as Cu is used for the non-magnetic layer 1, it is a GMR element and, for example, electrodes are provided on the left and right of the element of FIG. 1 to form an MR element. When an Al oxide film or the like is used for the non-magnetic layer 1, it becomes a TMR element and, for example, electrodes are provided above and below the film of FIG. 1 to form an MR element as shown in FIG. 7 (details will be described later).
【0039】本発明のMR素子の形成には、パルスレ−ザ
デポジション(PLD)、イオンビ−ムデポジション(IB
D)、クラスタ−イオンビ−ムまたはRF、DC、ECR、ヘ
リコン、ICPまたは対向タ−ゲットなどのスパッタリン
グ法、MBE、イオンプレ−ティング法等のPVD法や、その
他CVD、メッキ法あるいはゾルゲル法で作製することが
できる。To form the MR element of the present invention, pulse laser deposition (PLD), ion beam deposition (IB)
D), cluster-ion beam or RF, DC, ECR, helicon, ICP or opposite target sputtering method, MBE, ion plating method or other PVD method, or other CVD, plating or sol-gel method can do.
【0040】また、特に非磁性層がトンネル層で絶縁体
であるとき、例えばMg、 Ti、Zr、Hf、 V、Nb、Ta、Cr
を含むIIa〜IVa、La、Ceを含む ランタノイド、Zn、
B、 Al、 Ga、 Siを含むIIb〜IVbから選ばれた元素、ま
たは合金または化合物の薄膜前駆体を作製し、これを
F、O、C、N、Bいずれかの元素、分子あるいはイオン、
ラジカルなどを含む適当な雰囲気、温度、時間で反応さ
せることで、ほぼ完全にフッ化、酸化、炭化、窒化、硼
化処理し作製できる。また、薄膜前駆体として、F、O、
C、N、Bを化学両論比以下含む、不定比化合物を作製
し、これをF、O、C、N、Bいずれかの元素、分子あるい
はイオン、ラジカルなどを含む適当な雰囲気、温度、時
間、反応性させてもよい。これらは、例えば、スパッタ
リング法を用いて、トンネル絶縁層としてAl2O3を作製
する場合、AlまたはAlOX(X≦1.5)をAr雰囲気中ある
いはAr+O2雰囲気中で成膜を行い、これらをO2またはO2
+不活性ガス中で反応することを繰り返すことで実現で
きる。なおプラズマや、ラジカル作製には、ECR放電、
グロ−放電、RF放電、ヘリコンあるいは誘導結合プラズ
マ(ICP)等の通常の手段により発生できる。In particular, when the non-magnetic layer is a tunnel layer and is an insulator, for example, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr.
IIa to IVa including, La, including Ce, lanthanoid, Zn,
A thin film precursor of an element or alloy or compound selected from IIb to IVb including B, Al, Ga and Si is prepared, and this is prepared.
F, O, C, N, B element, molecule or ion,
By reacting in an appropriate atmosphere containing radicals and the like at a temperature and for a time, almost complete fluorination, oxidation, carbonization, nitriding, and boride treatment can be performed. Further, as a thin film precursor, F, O,
A non-stoichiometric compound containing C, N, and B in a stoichiometric ratio or less is prepared, and an appropriate atmosphere, temperature, and time containing any element, molecule, ion, or radical of F, O, C, N, or B are prepared. , May be made reactive. For example, when Al 2 O 3 is formed as a tunnel insulating layer by using a sputtering method, Al or AlO X (X ≦ 1.5) is formed into a film in an Ar atmosphere or an Ar + O 2 atmosphere. O 2 or O 2
+ It can be realized by repeating the reaction in an inert gas. For plasma and radical production, ECR discharge,
It can be generated by conventional means such as glow discharge, RF discharge, helicon or inductively coupled plasma (ICP).
【0041】また、本発明のMR素子を膜面垂直方向に電
流を流す磁気デバイスを作成するには、半導体プロセス
や、GMRヘッド作製プロセス等で用いられるイオンミリ
ング、RIE、FIB等の物理的あるいは化学的エッチング法
や、微細パタ−ン形成のためにステッパ−、EB法等を用
いたフォトリソグラフィ−技術を組み合わせて微細加工
することで図15のような素子を作成することが可能で
ある。上部電極502と下部電極503に挟まれた磁気
抵抗効果素子部505に電流を流して電圧を読みとる。
層間絶縁膜501は上部電極と下部電極との電気的な短
絡を防ぐ働きがある。この図15の素子構成とすること
で磁気抵抗効果素子部505の膜面に対して垂直方向に
電流を流し出力を読み出すことが可能となる。また電極
等の表面平坦化のために、CMPや、クラスタ−イオンビ
−ムエッチングを用いることも効果的である。電極材料
として、Pt、Au、Cu、Ru、Alなどの低抵抗金属を用いれ
ばよい。層間絶縁膜501としては、Al2O3、SiO2等の
絶縁特性のすぐれているものを用いればよい。Further, in order to prepare a magnetic device in which the MR element of the present invention causes a current to flow in the direction perpendicular to the film surface, a physical process such as ion milling, RIE, FIB or the like used in a semiconductor process, a GMR head manufacturing process or the like is performed. It is possible to fabricate an element as shown in FIG. 15 by performing fine processing by combining a chemical etching method and a photolithography technique using a stepper, an EB method or the like for forming a fine pattern. A current is passed through the magnetoresistive effect element portion 505 sandwiched between the upper electrode 502 and the lower electrode 503 to read the voltage.
The interlayer insulating film 501 has a function of preventing an electrical short circuit between the upper electrode and the lower electrode. With the element configuration shown in FIG. 15, it becomes possible to pass a current in the direction perpendicular to the film surface of the magnetoresistive effect element section 505 and read the output. It is also effective to use CMP or cluster-ion beam etching for flattening the surface of electrodes and the like. A low resistance metal such as Pt, Au, Cu, Ru or Al may be used as the electrode material. As the interlayer insulating film 501, a film having excellent insulating characteristics such as Al 2 O 3 or SiO 2 may be used.
【0042】以上述べたような本発明の磁気抵抗効果素
子を用いて、磁気抵抗効果型ヘッドを構成することがで
きる。図7にヘッドの構成の一例を示す。図7を矢印A
の方向から見た図が、図8であり、点線Bで示した平面
で切った断面が図9に示してある。以下、図8を中心に
して説明する。A magnetoresistive head can be constructed by using the magnetoresistive element of the present invention as described above. FIG. 7 shows an example of the configuration of the head. Figure 7 arrow A
8 is a view as seen from the direction of FIG. 8 and a cross section taken along the plane indicated by the dotted line B is shown in FIG. Hereinafter, a description will be given mainly with reference to FIG.
【0043】図8ではMR素子部109は上部および下部
のシールドギャップ14、11に挟まれるように構成さ
れている。シールドギャップ材としては、Al2O3、AlN、
SiO2等の絶縁膜が使われる。シールドギャップ11、1
4の更に外側は上部および下部のシールド10、15が
あるがこれはNi-Fe、Fe-Al-Si、Co-Nb-Zr合金などの軟
磁性膜が使われる。MR素子の自由磁性層1の磁区制御の
ためにCo-Pt合金等のハードバイアス部12によるバイ
アス磁界を加える。In FIG. 8, the MR element portion 109 is constructed so as to be sandwiched between the upper and lower shield gaps 14 and 11. As the shield gap material, Al 2 O 3 , AlN,
An insulating film such as SiO 2 is used. Shield gap 11, 1
On the outer side of 4, there are upper and lower shields 10 and 15, which are made of a soft magnetic film of Ni-Fe, Fe-Al-Si, Co-Nb-Zr alloy or the like. A bias magnetic field is applied by the hard bias portion 12 such as a Co-Pt alloy for controlling the magnetic domains of the free magnetic layer 1 of the MR element.
【0044】ここでは、バイアスの印加方法としてはハ
ード膜を用いる場合について説明したが、Fe-Mn等の反
強磁性体を用いた場合も同様である。MR素子部109は
シールドギャップ11、14によってシールド10、1
5等と絶縁されており、リード部13を介して電流を流
すことにより、MR素子部109の抵抗変化を読みとる。Although the case where the hard film is used as the bias applying method has been described here, the same applies when the antiferromagnetic material such as Fe-Mn is used. The MR element portion 109 is shielded by the shield gaps 11 and 14,
5 and the like, the resistance change of the MR element section 109 is read by passing a current through the lead section 13.
【0045】またMRヘッドは読みとり専用ヘッドなの
で、通常書き込み用の誘導型ヘッドと組み合わせて用い
られる。図10には再生ヘッド部32だけでなく、書き
込みヘッド部31も併せて描かれている。図8にさらに
書き込みヘッド部を形成した場合の図が、図10であ
る。書き込みヘッド部としては、上部シールド15上に
記録ギャップ部40を介して形成された上部記録コア1
6がある。Since the MR head is a read-only head, it is usually used in combination with an inductive head for writing. In FIG. 10, not only the reproducing head portion 32 but also the writing head portion 31 is depicted. FIG. 10 shows a case where the write head portion is further formed in FIG. As the write head portion, the upper recording core 1 formed on the upper shield 15 via the recording gap portion 40.
There is 6.
【0046】なお、図8、10は従来のアバティッド接
合(abutted junction)によるMRヘッド構造について説
明したが、高密度化による狭トラック化に伴い、よりト
ラック幅41の規制が精密にできる、図11に示したオ
ーバーレイ(overlaid)構造を用いたものも有効であ
る。8 and 10 have described the conventional MR head structure using an abutted junction, the track width 41 can be regulated more precisely with the narrowing of the track due to the higher density. It is also effective to use the overlaid structure shown in FIG.
【0047】次に、MRヘッドの記録再生のメカニズムを
図9を用いて説明する。図9に示すように、記録する際
には、コイル17に流した電流により発生した磁束が、
上部コア16と上部シールド15の間より漏れ、磁気記
録媒体21に記録することができる。ヘッド部30は、
磁気記録媒体21に対して相対的に矢印cの方向に進む
ので、コイル17に流す電流を反転させることにより、
記録磁化の方向23を反転させることができる。また、
高密度化に伴い、記録長22が短くなるので、それにと
もない記録キャップ長19を小さくする必要がある。再
生する場合には、磁気記録媒体21の記録磁化部から漏
れた磁束24が、シールド10、15に挟まれたMR素
子部109に作用して、MR素子の抵抗を変化させる。M
R素子部109には、リード部13を介して電流が流さ
れているので、抵抗の変化を電圧の変化(出力)として
読みとることができる。Next, the recording / reproducing mechanism of the MR head will be described with reference to FIG. As shown in FIG. 9, when recording, the magnetic flux generated by the current flowing through the coil 17
Leakage from between the upper core 16 and the upper shield 15 allows recording on the magnetic recording medium 21. The head unit 30 is
Since the magnetic recording medium 21 moves in the direction of the arrow c relative to the magnetic recording medium 21, by inverting the current flowing through the coil 17,
The direction 23 of recording magnetization can be reversed. Also,
Since the recording length 22 becomes shorter as the recording density becomes higher, the recording cap length 19 needs to be made smaller accordingly. When reproducing, the magnetic flux 24 leaking from the recording magnetized portion of the magnetic recording medium 21 acts on the MR element portion 109 sandwiched between the shields 10 and 15 to change the resistance of the MR element. M
Since a current is applied to the R element portion 109 via the lead portion 13, a change in resistance can be read as a change in voltage (output).
【0048】将来の磁気記録装置の高密度化を考慮する
と、記録波長を短くする必要性があり、そのためには図
8に示したシールド間距離d(図9の距離18)を短く
する必要がある。そのためには図9から明らかな様に、
MR素子部109の総膜厚を薄くする必要があり、MR素子
部109の膜厚はなるべく薄いのが望ましく、50nm以
下、望ましくは30nm以下とするべきである。Considering the high density of the magnetic recording apparatus in the future, it is necessary to shorten the recording wavelength, and for that purpose, it is necessary to shorten the shield distance d (distance 18 in FIG. 9) shown in FIG. is there. For that purpose, as is clear from FIG.
It is necessary to reduce the total film thickness of the MR element portion 109, and it is desirable that the thickness of the MR element portion 109 is as thin as possible, and it should be 50 nm or less, preferably 30 nm or less.
【0049】またMR素子部109においては、軟磁性膜
の磁化反転時にバルクハウゼンノイズの発生を押さえる
ために、図1の自由磁性層1の磁化容易軸は、膜面内で
検知すべき信号磁界方向に概略垂直となるように構成さ
れているのがよい。この時直線的な出力変化を起こさせ
るためには固定磁性層1の磁化方向は膜面内で自由磁性
層1と垂直方向に固定しておく必要がある。Further, in the MR element section 109, the easy axis of magnetization of the free magnetic layer 1 in FIG. 1 is the signal magnetic field to be detected in the film plane in order to suppress the generation of Barkhausen noise at the time of reversing the magnetization of the soft magnetic film. It is preferable that the direction be substantially perpendicular to the direction. At this time, in order to cause a linear output change, it is necessary to fix the magnetization direction of the pinned magnetic layer 1 in the film surface in a direction perpendicular to the free magnetic layer 1.
【0050】本発明のMR素子を用いたシールド型磁気ヘ
ッドとして膜面に垂直に電流を流す構成の磁気ヘッドを
図12示す。磁性体よりなる上部シールド201と下部
シールド202を有し、この二つのシールド部の再生ギ
ャップ203内に本発明のMR素子204を設けて、MR素
子204の上下に電極部205、206を接続すること
によりMR素子204の膜面に垂直に電流を流す構成な
る。このときMR素子204の上下に設けられた電極部2
05、206を上部シールド201と下部シールド20
2とに接続して上下のシールド201、202も電極部
を兼用する構造としてもよい。この構造ではより狭ギャ
ップに対応した再生ヘッド部高出力に優れた信号磁界を
検知する再生ヘッド部を有する磁気ヘッドが可能とな
る。FIG. 12 shows a shield type magnetic head using the MR element of the present invention, in which a current flows perpendicularly to the film surface. It has an upper shield 201 and a lower shield 202 made of a magnetic material, and the MR element 204 of the present invention is provided in the reproducing gap 203 of these two shield portions, and the electrode portions 205 and 206 are connected above and below the MR element 204. As a result, a current flows vertically to the film surface of the MR element 204. At this time, the electrode portions 2 provided above and below the MR element 204
05 and 206 are the upper shield 201 and the lower shield 20.
The upper and lower shields 201 and 202 may also be used as the electrode portions by connecting to the electrode 2. With this structure, it is possible to provide a magnetic head having a reproducing head portion which detects a signal magnetic field excellent in high output of the reproducing head portion corresponding to a narrower gap.
【0051】このとき用いるのに適しているMR膜はTMR
素子が有効である。しかし、GMR膜を用いた場合では膜
抵抗そのものが小さいため素子サイズ(ここではトラッ
ク幅×MR高さ)が1μm2以上では出力は非常に小さくて
有効ではないが、高記録密度化による狭トラック化およ
びビット長の低減によって素子サイズが0.01μm2以下と
なると抵抗値そのものが増大するためこのように膜面に
垂直に電流を流す構成の磁気ヘッドにGMR膜を用いるに
は有効である。The MR film suitable for use at this time is TMR.
The element is effective. However, when the GMR film is used, the film resistance itself is small, so if the device size (here, track width × MR height) is 1 μm 2 or more, the output is very small and not effective, but the narrow track due to higher recording density Since the resistance value itself increases when the element size becomes 0.01 μm 2 or less due to the reduction of the bit length and the bit length, it is effective to use the GMR film in the magnetic head having the structure in which the current flows perpendicularly to the film surface.
【0052】図12では記録は巻線部207に電流を流
して記録ポール208と上部シールド201の間の記録
ギャップ209からの漏洩磁界により信号を記録媒体
(図示せず)に書き込み、再生は記録媒体(図示せず)
からの信号磁界を再生ギャップ203(シールドギャッ
プ)間に設けられたMR素子204により読みとることに
より行われる。In FIG. 12, for recording, a current is passed through the winding portion 207 to write a signal on a recording medium (not shown) by a leakage magnetic field from the recording gap 209 between the recording pole 208 and the upper shield 201, and recording is performed for reproduction. Medium (not shown)
This is performed by reading the signal magnetic field from the MR element 204 provided between the reproducing gap 203 (shield gap).
【0053】本発明の磁気ヘッドの一例として図9のシ
−ルド型とは別なヨ−ク型ヘッドを図13に示す。図1
3においてMR素子部302に検知すべき信号磁界をガイ
ドする軟磁性膜で構成されたヨーク部301を有してい
る。通常このヨーク部301ははMR素子部A9に検知
すべき信号磁界をガイドする軟磁性膜で構成されたヨ−
クで、通常このヨ−ク部は導電性の金属磁性膜を用いる
ため、MR素子部302とショ−トしないように絶縁膜3
03が設けられる。又このヨーク型ヘッドはヨ−クを用
いるため感度では図9のタイプのシールド型ヘッドより
劣るが、図9のようにシ−ルドギャップ中にMR素子を置
く必要がないため超狭ギャップ化では有利である。さら
にMR素子部302が記録媒体には露出した構造ではない
ため、不意に再生ヘッドが記録媒体と接触するような場
合や、例えば記録媒体として磁気テープを用い、テープ
と再生ヘッドを接触させて情報読み出しを行うような場
合ではシールド型ヘッドと比較してヘッドの破損や摩耗
による特性劣化といった信頼性という面で優れている。As an example of the magnetic head of the present invention, a yoke type head different from the shield type head shown in FIG. 9 is shown in FIG. Figure 1
3, the MR element portion 302 has a yoke portion 301 formed of a soft magnetic film that guides a signal magnetic field to be detected. Usually, the yoke portion 301 is a yaw composed of a soft magnetic film for guiding the signal magnetic field to be detected by the MR element portion A9.
In general, since the yoke part uses a conductive metal magnetic film, the insulating film 3 should not be shorted with the MR element part 302.
03 is provided. Also, this yoke type head is inferior in sensitivity to the shield type head of the type shown in FIG. 9 because it uses a yoke, but it is not necessary to place an MR element in the shield gap as shown in FIG. It is advantageous. Furthermore, since the MR element unit 302 is not exposed to the recording medium, when the reproducing head suddenly contacts the recording medium, or when a magnetic tape is used as the recording medium, for example, the tape and the reproducing head are brought into contact with each other, information is recorded. In the case of reading, it is superior to the shield type head in terms of reliability such as damage to the head and deterioration of characteristics due to wear.
【0054】これら本発明の再生ヘッドを有する磁気ヘ
ッドを用いてHDD等の磁気記録装置を構成することが可
能である。図14に示すように、本発明の磁気ヘッド4
01、その駆動部402、情報を記録する磁気記録媒体
403、及び信号処理部404を用いて高出力に優れた
磁気記録装置400を構成することが可能となる。It is possible to construct a magnetic recording device such as an HDD using the magnetic head having the reproducing head of the present invention. As shown in FIG. 14, the magnetic head 4 of the present invention.
01, the drive unit 402, the magnetic recording medium 403 for recording information, and the signal processing unit 404, it is possible to configure the magnetic recording device 400 excellent in high output.
【0055】次に、図16に本発明のMR素子をメモリ素
子として用いた磁気ランダムアクセスメモリ(MRAM)の
例を示す。メモリとして使用される素子としては、前記
構成の磁気デバイスの何れの構成でもよい。素子は例え
ば図16に示されたA1に代表されるように、CuやAlを
ベ−スに作られたセンス線601とワ−ド線602の交
点にマトリクス様に配置され、それぞれのラインに信号
電流を流した時に発生する合成磁界を用いた2電流一致
方式により信号情報が記録される。Next, FIG. 16 shows an example of a magnetic random access memory (MRAM) using the MR element of the present invention as a memory element. The element used as the memory may have any configuration of the magnetic device having the above configuration. For example, as represented by A1 shown in FIG. 16, the elements are arranged in a matrix at the intersections of the sense lines 601 and the word lines 602 made of Cu or Al based on each line. Signal information is recorded by a two-current coincidence method using a synthetic magnetic field generated when a signal current is passed.
【0056】図17〜図19における磁気メモリデバイ
スの電流による書き込み動作と、読み込み動作の基本例
につい説明する。尚、それぞれの図では例として図1に
示した磁気抵抗効果素子をメモリ素子として用いてい
る。特に図17〜19においては図1の自由磁性層1、
非磁性層1、固定磁性層1を代表して磁気抵抗効果素子
として示している。A basic example of the write operation and the read operation by the current of the magnetic memory device in FIGS. 17 to 19 will be described. In each figure, the magnetoresistive effect element shown in FIG. 1 is used as a memory element as an example. 17 to 19, the free magnetic layer 1 of FIG.
The nonmagnetic layer 1 and the pinned magnetic layer 1 are shown as a magnetoresistive effect element as a representative.
【0057】図17では、素子の磁化状態を個別に読み
とるために、素子毎にFETに代表されるスイッチ素子7
03を設けた構成を示している。このランダムアクセス
メモリは、CMOS基板上に容易に構成できる。また図18
では、素子毎に非線形素子704(あるいは整流素子)
を用いた構成を示している。ここで、非線形素子704
は、バリスタや、トンネル素子、あるいは前記構成の3
端子素子を用いても良い。このランダムアクセスメモリ
は、ダイオ−ドの成膜プロセスなどを増やすだけで、安
価なガラス基板上にも作製可能である。また図19で
は、図17や図18のような素子分離のためのスイッチ
素子703、あるいは非線形素子704などを用いず、
直接ワ−ド線702とセンス線兼ワード線701の交点
に素子が配置される構成としている。従って、図19で
は、読み出し時に複数の素子にまたがって電流が流れる
ために、読み出しの精度から、10000素子以下であるこ
とが望ましい。10000素子以上では、出力が十分得られ
なくなる。In FIG. 17, in order to read the magnetization state of each element individually, a switching element 7 represented by a FET is provided for each element.
A configuration in which 03 is provided is shown. This random access memory can be easily constructed on a CMOS substrate. Also in FIG.
Then, a non-linear element 704 (or rectifying element) for each element
A configuration using is shown. Here, the nonlinear element 704
Is a varistor, a tunnel element, or 3 of the above configuration.
You may use a terminal element. This random access memory can be manufactured on an inexpensive glass substrate only by increasing the film forming process of the diode. Further, in FIG. 19, the switch element 703 for element isolation as shown in FIGS. 17 and 18 or the non-linear element 704 is not used,
The element is arranged at the intersection of the direct word line 702 and the sense line / word line 701. Therefore, in FIG. 19, since a current flows across a plurality of elements at the time of reading, it is desirable that the number of elements is 10,000 or less in terms of reading accuracy. With 10,000 elements or more, sufficient output cannot be obtained.
【0058】図17〜図19では、それぞれ、ビット線
は素子に電流を流して抵抗変化を読みとるセンス線と併
用する場合について示しているが、ビット電流による誤
動作や素子破壊を防ぐため、センス線とビット線を別途
設けてもよい。このときビット線は、素子と電気的に絶
縁された位置で且つ、センス線と平行に配置することが
好ましい。また、電流書き込みの場合、ワ−ド線、ビッ
ト線とメモリセル間の距離は消費電力の点から500nm程
度以下であることが望ましい。In each of FIGS. 17 to 19, the bit line is used in combination with a sense line for reading a resistance change by passing a current through the element. However, in order to prevent malfunction due to the bit current and destruction of the element, the sense line is used. And the bit line may be separately provided. At this time, it is preferable that the bit line is arranged at a position electrically insulated from the element and parallel to the sense line. Further, in the case of current writing, it is desirable that the distance between the word line and the bit line and the memory cell is about 500 nm or less in terms of power consumption.
【0059】(実施例1)基板には熱酸化膜付Si基板
を、ターゲットにはCu、Ta、Ni-Fe、Co-Fe、Ru、Ir-Mn
の6ターゲットを用いて多元マグネトロンスパッタ法に
より図4に示した膜構成の磁気抵抗効果素子を作製し
た。(Example 1) A Si substrate with a thermal oxide film was used as a substrate, and Cu, Ta, Ni-Fe, Co-Fe, Ru, Ir-Mn were used as targets.
A magnetoresistive effect element having the film structure shown in FIG. 4 was manufactured by the multi-source magnetron sputtering method using the 6 targets.
【0060】実施例試料a01:Si基板/Ta(3)/Ni-Fe(t1)/
Ru(0.7)/Ni-Fe(t1)/Ir-Mn(12)/Co-Fe(3)/Cu(2.8)/Co-Fe
(1)/Ni-Fe(5)/Ta(3)
比較のために従来の下地層の構成である図2に示した試
料を作製した。Example Sample a01: Si substrate / Ta (3) / Ni-Fe (t 1 ) /
Ru (0.7) / Ni-Fe (t 1 ) / Ir-Mn (12) / Co-Fe (3) / Cu (2.8) / Co-Fe
(1) / Ni-Fe (5) / Ta (3) For comparison, a sample shown in FIG. 2 having a conventional underlayer structure was prepared.
【0061】従来例試料a02:Si基板/Ta(3)Ni-Fe(t)/Pt
-Mn(15)/Co-Fe(3)/Cu(2.8)/Co-Fe(1)/Ni-Fe(5)/Ta(3)
ここで括弧内の数値は膜厚を表し単位はnmである。Ni-F
e、Co-Fe、Ir-Mn合金の膜組成はそれぞれNi80Fe20、Co
90Fe10、Ir20Mn80(at%)である。試料a01、a02の下地
層には自由磁性層で用いた組成と同じNi-Feを用いた。
各試料は膜の上部に保護層としてTaを3nm積層してい
る。上記試料は真空チャンバー内を1×10-8Torr(1Torr=
133.322Pa)以下まで排気した後、Arガスを約0.8mTorrに
なるように流しながら、基板面内に平行に約100Oeの磁
界を印加して成膜を行った。Conventional sample a02: Si substrate / Ta (3) Ni-Fe (t) / Pt
-Mn (15) / Co-Fe (3) / Cu (2.8) / Co-Fe (1) / Ni-Fe (5) / Ta (3) where the value in parentheses indicates the film thickness and the unit is nm. Is. Ni-F
The film compositions of e, Co-Fe and Ir-Mn alloys are Ni 80 Fe 20 and Co, respectively.
90 Fe 10 and Ir 20 Mn 80 (at%). For the underlayer of Samples a01 and a02, Ni-Fe having the same composition as that used in the free magnetic layer was used.
In each sample, Ta is stacked to a thickness of 3 nm on the film as a protective layer. The above sample is 1 × 10-8 Torr (1 Torr =
After evacuating to 133.322 Pa) or less, a film was formed by applying a magnetic field of about 100 Oe parallel to the substrate surface while flowing Ar gas at about 0.8 mTorr.
【0062】実施例試料a01及び従来例試料a02の下地層
のNi-Fe層の厚みを変化させてMR比及び固定磁性層の交
換結合磁界(Hex)のMR特性を調べた。MR特性は成膜時
の印加磁界方向と同じ方向で最大5kOeの磁界により直流
4端子法により磁気抵抗を測定した。The MR characteristics of the MR ratio and the exchange coupling magnetic field (Hex) of the pinned magnetic layer were investigated by changing the thickness of the Ni—Fe layer of the underlayer of the sample a01 of the example and the sample a02 of the conventional example. For MR characteristics, the magnetic resistance was measured by the DC 4-terminal method with a maximum magnetic field of 5 kOe in the same direction as the applied magnetic field during film formation.
【0063】実施例試料a01および従来例試料a02の膜構
成のMR比及び交換結合磁界(Hex)のNi-Fe下地層厚依存
性をそれぞれ図20に示す。ここで、実施例試料a01の
場合は、下地層を構成する2つのNi-Fe層の膜厚を足し
た値を横軸としている。なお、実施例試料a01の下地層
を構成する2つのNi-Fe層の膜厚は同じである。FIG. 20 shows the dependence of the MR ratio and the exchange coupling magnetic field (Hex) on the Ni—Fe underlayer thickness of the film configurations of the example sample a01 and the conventional example sample a02, respectively. Here, in the case of the example sample a01, the horizontal axis represents the value obtained by adding the film thicknesses of the two Ni—Fe layers forming the underlayer. The two Ni-Fe layers forming the underlayer of the example sample a01 have the same film thickness.
【0064】図20から分かるように、実施例試料a01
及び従来例試料a02の下地層のNiFeの膜厚が増大するに
従って交換結合磁界(Hex)は増大している。これはIr-
Mnの結晶配向性がNi-Fe下地層により向上しており、そ
のためにIr-Mn/Co-FeのHexが両方の試料において増大し
ていることと対応していると考えられる。一方、MR比の
Ni-Fe下地層厚依存を比較すると、従来例試料a02の場合
ではNi-Fe下地層が3nmあたりで極大を示し、Ni-Fe下地
層が厚くなると減少している。このMR比の減少はGMRに
寄与しないNi-Fe下地層への電流分流損によるものであ
る。一方、実施例試料a01の場合では、Ni-Fe下地層厚が
厚くなってもMR比の減少は見られなかった。これは下地
層を構成する2つのNi-Fe層が反平行に向いているため
従来例試料a02のように下地層への電流分流が抑制され
たためにGMR比が大きいと考えられる。しかも実施例試
料a01と従来例試料a02の下地層を構成するNi-Fe層厚が
同じである場合は本発明のMR素子はMR比及び交換結合磁
界(Hex)は従来の下地層の構成よりも大きくて優れたM
R特性を有していることが分かった。As can be seen from FIG. 20, Example sample a01
Also, the exchange coupling magnetic field (Hex) increases as the film thickness of NiFe of the underlayer of the conventional sample a02 increases. This is Ir-
It is considered that the crystal orientation of Mn is improved by the Ni-Fe underlayer, which corresponds to the increase in Hex of Ir-Mn / Co-Fe in both samples. On the other hand, the MR ratio
Comparing the dependence of the Ni-Fe underlayer thickness, in the case of the conventional sample a02, the Ni-Fe underlayer shows a maximum around 3 nm, and it decreases as the Ni-Fe underlayer becomes thicker. This decrease in MR ratio is due to current diversion loss to the Ni-Fe underlayer that does not contribute to GMR. On the other hand, in the case of the example sample a01, the MR ratio did not decrease even if the thickness of the Ni—Fe underlayer increased. It is considered that the GMR ratio is large because the two Ni-Fe layers forming the underlayer are oriented antiparallel to each other and the current shunt to the underlayer is suppressed as in the conventional sample a02. Moreover, when the Ni-Fe layer thicknesses of the underlayers of the example sample a01 and the conventional example sample a02 are the same, the MR element of the present invention has an MR ratio and an exchange coupling magnetic field (Hex) higher than those of the conventional underlayer structure. Also large and excellent M
It was found to have R characteristics.
【0065】(実施例2)基板には熱酸化膜付Si基板
を、ターゲットにはCu、Ta、Ni-Fe、Co-Fe、Ru、Pt-Mn
の6ターゲットを用いて多元マグネトロンスパッタ法に
より図4に示した膜構成の磁気抵抗効果素子を作製し
た。(Example 2) A Si substrate with a thermal oxide film was used as a substrate, and Cu, Ta, Ni-Fe, Co-Fe, Ru, Pt-Mn were used as targets.
A magnetoresistive effect element having the film structure shown in FIG. 4 was manufactured by the multi-source magnetron sputtering method using the 6 targets.
【0066】実施例試料b01:Si基板/Ta(3)/Ni-Fe(2)/R
u(0.7)/Ni-Fe(2)/Pt-Mn(15)/Co-Fe(3)/Cu(3)/Co-Fe(1)/
Ni-Fe(5)/Ta(3)
比較のために下地層がTa下地層及びTa下地層/Ni-Fe下
地層の下記試料を作製した。Example sample b01: Si substrate / Ta (3) / Ni-Fe (2) / R
u (0.7) / Ni-Fe (2) / Pt-Mn (15) / Co-Fe (3) / Cu (3) / Co-Fe (1) /
Ni-Fe (5) / Ta (3) For comparison, the following samples having Ta underlayer and Ta underlayer / Ni-Fe underlayer were prepared.
【0067】従来例試料b02:Si基板/Ta(3)/Pt-Mn(15)/
Co-Fe(3)/Cu(3)/Co-Fe(1)/Ni-Fe(5)/Ta(3)
従来例試料b03:Si基板/Ta(3)/Ni-Fe(3)/Pt-Mn(15)/Co-
Fe(3)/Cu(3)/Co-Fe(1)/Ni-Fe(5)/Ta(3)
ここで括弧内の数値は膜厚を表し単位はnmである。Ni-F
e、Co-Fe、Pt-Mn合金の膜組成はそれぞれNi80Fe20、Co
90Fe10、Pt48Mn58(at%)である。試料b01、b03の下地
層には自由磁性層で用いた組成と同じNi-Feを用いた。
各試料は膜の上部に保護層としてTaを3nm積層してい
る。上記試料は真空チャンバー内を1×10-8Torr以下ま
で排気した後、Arガスを約0.8mTorrになるように流しな
がら、基板面内に平行に約100Oeの磁界を印加して成膜
を行った。Conventional sample b02: Si substrate / Ta (3) / Pt-Mn (15) /
Co-Fe (3) / Cu (3) / Co-Fe (1) / Ni-Fe (5) / Ta (3) Conventional sample b03: Si substrate / Ta (3) / Ni-Fe (3) / Pt-Mn (15) / Co-
Fe (3) / Cu (3) / Co-Fe (1) / Ni-Fe (5) / Ta (3) Here, the numerical value in parentheses represents the film thickness and the unit is nm. Ni-F
The film compositions of e, Co-Fe and Pt-Mn alloys are Ni 80 Fe 20 and Co, respectively.
90 Fe 10 , Pt 48 Mn 58 (at%). For the underlayer of Samples b01 and b03, Ni-Fe having the same composition as that used in the free magnetic layer was used.
In each sample, Ta is stacked to a thickness of 3 nm on the film as a protective layer. After evacuation of the vacuum chamber to 1 × 10-8 Torr or less, the sample was formed by applying a magnetic field of about 100 Oe parallel to the substrate surface while flowing Ar gas to about 0.8 mTorr. .
【0068】Pt-Mn反強磁性層とCo-Fe固定磁性層とが交
換結合磁界を生じるようにこれら試料を280℃で3時間の
5kOeの磁界中真空熱処理を実施した。These samples were stored at 280 ° C. for 3 hours so that the Pt-Mn antiferromagnetic layer and the Co-Fe pinned magnetic layer generate an exchange coupling magnetic field.
Vacuum heat treatment was performed in a magnetic field of 5 kOe.
【0069】このようにして作成した磁気抵抗効果素子
を室温で最大5kOeの磁界を印加して直流4端子法により
磁気抵抗を測定し、MR比及び交換結合磁界(Hex)を調
べた。表1に結果を示す。The magnetoresistive effect element thus produced was subjected to a magnetic field of maximum 5 kOe at room temperature to measure the magnetic resistance by the direct current 4-terminal method, and the MR ratio and the exchange coupling magnetic field (Hex) were investigated. The results are shown in Table 1.
【0070】[0070]
【表1】 [Table 1]
【0071】このように本発明の磁気抵抗効果素子は従
来の素子と比較してMR特性が優れていることが分かっ
た。As described above, it was found that the magnetoresistive effect element of the present invention has excellent MR characteristics as compared with the conventional element.
【0072】次に上記磁気抵抗効果膜の下地層の相違に
よる結晶構造を調べるためX線回折を実施した。図21
は試料b01(Ta/Ni-Fe/Ru/Ni-Fe下地層)、b02(Ta下地
層)、b03(Ta/Ni-Fe下地層)のX線回折プロファイル
である。Pt-Mn反強磁性層の面心立方構造の(111)
面に対応する回折角度は約40゜近傍に現れるが、Ta下地
層の試料b02では、ほとんど回折強度は得られない。Ta/
Ni-Fe下地層の試料b03及びTa/Ni-Fe/Ru/Ni-Fe下地層の
試料b01では回折強度は非常に大きくPt-Mnの結晶配向性
が向上していることが分かる。さらにこれら試料b01とb
03では回折角度44゜近傍にも強い回折強度を持つが、こ
れはCu、Ni-Fe、Co-Fe膜の面心立方(111)面に対応
するピークでありこれら下地層を有することによりPt-M
nスピンバルブ膜は非常に結晶配向性の良好な膜が得ら
れることが分かった。更に試料b01と試料b03の回折強度
を比較すると試料b01の方が回折強度が大きいことから
本発明の試料b01は結晶性にも優れていることが分か
り、膜の結晶性の優位性が上述の優れたMR特性の一要因
であることが考えられる。Next, X-ray diffraction was carried out to examine the crystal structure of the magnetoresistive film due to the difference in the underlying layers. Figure 21
Are X-ray diffraction profiles of samples b01 (Ta / Ni-Fe / Ru / Ni-Fe underlayer), b02 (Ta underlayer), and b03 (Ta / Ni-Fe underlayer). (111) of face-centered cubic structure of Pt-Mn antiferromagnetic layer
The diffraction angle corresponding to the surface appears in the vicinity of about 40 °, but almost no diffraction intensity can be obtained in the Ta underlayer sample b02. Ta /
It can be seen that in the sample b03 of the Ni-Fe underlayer and the sample b01 of the Ta / Ni-Fe / Ru / Ni-Fe underlayer, the diffraction intensity is very large and the crystal orientation of Pt-Mn is improved. Furthermore, these samples b01 and b
In 03, a strong diffraction intensity is also present near the diffraction angle of 44 °, but this is the peak corresponding to the face-centered cubic (111) plane of Cu, Ni-Fe, and Co-Fe films. -M
It was found that the n-spin valve film can obtain a film with a very good crystal orientation. Further, comparing the diffraction intensities of the sample b01 and the sample b03, it is found that the sample b01 of the present invention has excellent crystallinity because the diffraction intensity of the sample b01 is larger, and the superiority of the crystallinity of the film is as described above. It is considered to be one of the factors contributing to excellent MR characteristics.
【0073】次に表1の特性を示す試料b01からb03の耐
熱性を調べるために300℃に加熱した炉の中に100時間維
持した後、室温でMR比を調べた。表2に結果を示す。Next, in order to examine the heat resistance of the samples b01 to b03 having the characteristics shown in Table 1, the samples were kept in a furnace heated to 300 ° C. for 100 hours, and then the MR ratio was examined at room temperature. The results are shown in Table 2.
【0074】[0074]
【表2】 [Table 2]
【0075】このように本発明の磁気抵抗効果素子は従
来素子と比較して熱的に安定したMR特性を示すことが分
かった。As described above, it was found that the magnetoresistive effect element of the present invention exhibits thermally stable MR characteristics as compared with the conventional element.
【0076】(実施例3)基板には熱酸化膜付Si基板
を、ターゲットにはCu、Ta、Ni-Fe、Co-Fe、Ru、Pt-Mn
の6ターゲットを用いて多元マグネトロンスパッタ法に
より固定磁性層が積層フェリ構造を持つ図6に示した膜
構成の磁気抵抗効果素子を作製した。(Example 3) A Si substrate with a thermal oxide film was used as a substrate, and Cu, Ta, Ni-Fe, Co-Fe, Ru and Pt-Mn were used as targets.
A magnetoresistive effect element having the film structure shown in FIG. 6 in which the pinned magnetic layer has a laminated ferri structure was manufactured by the multi-source magnetron sputtering method using the 6 targets of No.
【0077】実施例試料c01:Si基板/Ta(3) /Ni-Fe(2)
/Ru(0.7) /Ni-Fe(2) /Pt-Mn(15) /Co-Fe(3) /Ru(0.8) /
Co-Fe(3) /Cu(2.5) /Co-Fe(1) /Ni-Fe(3)/Cu(1) /Ta(3)
実施例試料c02:Si基板/Ta(3) /Ni-Fe(1) /Ru(0.7) /Ni
-Fe(1) /Pt-Mn(15) /Co-Fe(3) /Ru(0.8) /Co-Fe(3) /Cu
(2.5) /Co-Fe(1) /Ni-Fe(3) /Cu(1) /Ta(3)
図6に示した第2下地強磁性層の基板側に更にTaの下地
層を形成した。Example sample c01: Si substrate / Ta (3) / Ni-Fe (2)
/Ru(0.7) / Ni-Fe (2) / Pt-Mn (15) / Co-Fe (3) /Ru(0.8) /
Co-Fe (3) /Cu(2.5) / Co-Fe (1) / Ni-Fe (3) / Cu (1) / Ta (3) Example sample c02: Si substrate / Ta (3) / Ni- Fe (1) /Ru(0.7) / Ni
-Fe (1) / Pt-Mn (15) / Co-Fe (3) /Ru(0.8) / Co-Fe (3) / Cu
(2.5) / Co-Fe (1) / Ni-Fe (3) / Cu (1) / Ta (3) An underlayer of Ta was further formed on the substrate side of the second underlayer ferromagnetic layer shown in FIG. .
【0078】比較のために下地層がTa下地層及びTa下地
層/Ni-Fe下地層の下記試料を作製した。For comparison, the following samples having Ta underlayer and Ta underlayer / Ni-Fe underlayer were prepared.
【0079】従来例試料c03:Si基板/Ta(3) /Pt-Mn(15)
/Co-Fe(3) /Ru(0.8) /Co-Fe(3) /Cu(2.5) /Co-Fe(1) /
Ni-Fe(3) /Cu(1) /Ta(3)
従来例試料c04:Si基板/Ta(3) /Ni-Fe(4) /Pt-Mn(15) /
Co-Fe(3) /Ru(0.8) /Co-Fe(3) /Cu(2.5) /Co-Fe(1) /Ni
-Fe(3) /Cu(1) /Ta(3)
ここで括弧内の数値は膜厚を表し単位はnmである。Ni-F
e、Co-Fe、Pt-Mn合金の膜組成はそれぞれNi80Fe20、Co
90Fe10、Pt48Mn58(at%)である。試料c01、c02、c04の
下地層には自由磁性層で用いた組成と同じNi-Feを用い
た。各試料は膜の上部に保護層としてCuを1nmおよびTa
を3nm積層している。上記試料は真空チャンバー内を1×
10-8Torr以下まで排気した後、Arガスを約0.8mTorrにな
るように流しながら、基板面内に平行に約100Oeの磁界
を印加して成膜を行った。Conventional sample c03: Si substrate / Ta (3) / Pt-Mn (15)
/ Co-Fe (3) /Ru(0.8) / Co-Fe (3) /Cu(2.5) / Co-Fe (1) /
Ni-Fe (3) / Cu (1) / Ta (3) Conventional sample c04: Si substrate / Ta (3) / Ni-Fe (4) / Pt-Mn (15) /
Co-Fe (3) /Ru(0.8) / Co-Fe (3) /Cu(2.5) / Co-Fe (1) / Ni
-Fe (3) / Cu (1) / Ta (3) Here, the numerical value in parentheses represents the film thickness and the unit is nm. Ni-F
The film compositions of e, Co-Fe and Pt-Mn alloys are Ni 80 Fe 20 and Co, respectively.
90 Fe 10 , Pt 48 Mn 58 (at%). For the underlayer of Samples c01, c02, and c04, Ni-Fe having the same composition as that used in the free magnetic layer was used. Each sample had Cu of 1 nm and Ta as a protective layer on the top of the film.
Is stacked to 3 nm. The above sample is 1 × in the vacuum chamber
After evacuation to 10 -8 Torr or less, a magnetic field of about 100 Oe was applied parallel to the surface of the substrate while flowing Ar gas at about 0.8 mTorr to form a film.
【0080】Pt-Mn反強磁性層とCo-Fe固定磁性層とが交
換結合磁界を生じるようにこれら試料を280℃で5時間の
5kOeの磁界中真空熱処理を実施した。These samples were kept at 280 ° C. for 5 hours so that the Pt-Mn antiferromagnetic layer and the Co-Fe pinned magnetic layer would generate an exchange coupling magnetic field.
Vacuum heat treatment was performed in a magnetic field of 5 kOe.
【0081】このようにして作成した磁気抵抗効果素子
を室温で最大5kOeの磁界を印加して直流4端子法により
磁気抵抗を測定し、MR比及び交換結合磁界(Hex)を調
べた。表3に結果を示す。The MR element and the exchange coupling magnetic field (Hex) were examined by applying a magnetic field of 5 kOe at maximum at room temperature to the magnetoresistive element thus manufactured and measuring the magnetic resistance by the direct current 4-terminal method. The results are shown in Table 3.
【0082】[0082]
【表3】 [Table 3]
【0083】各試料とも、固定磁性層をCo-Fe/Ru/Co-Fe
の積層フェリ構造としてRuを介して積層された2つのCo
-Fe層が反強磁性的に結合していることにより交換結合
磁界は実施例2で示した試料のHexよりも増大している
ことが分かる。下地層がTaのみの従来例試料c03と比較
して下地層にNi-Feを含んだ従来例試料c04はMR比及び固
定磁性層の交換結合磁界(Hex)は大きく、更に実施例
試料b01、b02ではMR比とHexは向上しMR特性に優れてい
ることが分かった。これは実施例2の結果で示したよう
に、Ni-Feを下地層に用いることによりPt-Mn及びその上
に積層されたCo-Fe、Cu、Ni-Fe等のGMR効果に寄与する
層の結晶配向性が向上していることに起因していると考
えられる。In each sample, the pinned magnetic layer was made of Co-Fe / Ru / Co-Fe.
Of two Co laminated via Ru as a laminated ferri structure of
It can be seen that the exchange coupling magnetic field is higher than the Hex of the sample shown in Example 2 because the -Fe layer is antiferromagnetically coupled. Compared with the conventional sample c03 in which the underlayer is only Ta, the conventional sample c04 containing Ni-Fe in the underlayer has a large MR ratio and a large exchange coupling magnetic field (Hex) of the pinned magnetic layer. It was found that in b02, the MR ratio and Hex were improved and the MR characteristics were excellent. As shown in the results of Example 2, this is a layer that contributes to the GMR effect of Pt-Mn and Co-Fe, Cu, Ni-Fe, etc. laminated thereon by using Ni-Fe for the underlayer. It is considered that this is due to the improved crystal orientation of
【0084】自由磁性層(本実施例ではCo-Fe/Ni-Fe自
由磁性層)の軟磁気特性を調べるために、固定磁性層の
磁化方向が動かない磁界、具体的には100Oeの磁界を印
加して磁気抵抗のマイナーループを測定した。図22に
上記試料c01からc04の磁気抵抗のマイナーループを示
す。各磁気抵抗効果曲線(マイナーループ)では固定磁
性層の磁化方向は測定磁界において固定されており、自
由磁性層の磁化反転に対応した抵抗変化(図22では縦
軸をMR比で表している)を示している。従って図22よ
り各試料の自由磁性層の軟磁気特性、特に保磁力の大き
さとその磁界応答の対称性が分かる。Ta下地層である従
来例試料c03の自由磁性層の保磁力は約4Oeと非常に大き
いが、Ni-Feを下地層に含む実施例試料c01、c02及び従
来例試料c04の保磁力は1Oe以下で非常に軟磁気特性に優
れていることが分かる。しかしながら、従来例試料c04
のMR曲線の形状から磁界応答が非対称である。一方、実
施例試料c01、c02の場合ではMR曲線の形状は対称性が優
れており、自由磁性層の外部磁界に対する応答性がよ
い。また従来例試料c04のMR曲線の零磁界からのずれは
実施例試料c01、c02および従来例試料c03よりも大きく
マイナス側へずれていることが分かる。この相違は下地
層にNi-Feを2層含んでいる実施例試料c01、c02はRuを
介して反平行に向いており、この下地層からの漏洩磁界
がほとんどないか、もしくは非常に少ないことに起因し
ているものと考えられる。従って本発明の下地層をスピ
ンバルブ膜に用いることにより優れたMR特性を示す素子
を得ることが可能であることが分かった。In order to investigate the soft magnetic characteristics of the free magnetic layer (Co-Fe / Ni-Fe free magnetic layer in this embodiment), a magnetic field in which the magnetization direction of the pinned magnetic layer does not move, specifically, a magnetic field of 100 Oe is applied. A minor loop of magnetoresistance was measured by applying. FIG. 22 shows the minor loop of the magnetoresistance of the samples c01 to c04. In each magnetoresistance effect curve (minor loop), the magnetization direction of the pinned magnetic layer is fixed in the measurement magnetic field, and the resistance change corresponding to the magnetization reversal of the free magnetic layer (in FIG. 22, the vertical axis is represented by the MR ratio). Is shown. Therefore, from FIG. 22, the soft magnetic characteristics of the free magnetic layer of each sample, in particular, the magnitude of the coercive force and the symmetry of the magnetic field response thereof can be seen. Although the coercive force of the free magnetic layer of the conventional sample c03, which is the Ta underlayer, is as large as about 4 Oe, the coercive force of the example samples c01 and c02 containing Ni-Fe in the underlayer and the conventional sample c04 is 1 Oe or less. It can be seen that is extremely excellent in soft magnetic characteristics. However, the conventional sample c04
The magnetic field response is asymmetric due to the shape of the MR curve. On the other hand, in the case of the example samples c01 and c02, the shape of the MR curve is excellent in symmetry, and the response of the free magnetic layer to the external magnetic field is good. Further, it can be seen that the MR curve of the conventional sample c04 deviates from the zero magnetic field to the negative side more than that of the example samples c01 and c02 and the conventional sample c03. This difference is that the sample samples c01 and c02 containing two layers of Ni-Fe in the underlayer are antiparallel to each other via Ru, and there is almost no leakage magnetic field from the underlayer or very little. It is thought to be due to. Therefore, it was found that it is possible to obtain an element exhibiting excellent MR characteristics by using the underlayer of the present invention for the spin valve film.
【0085】上記試料(280℃の磁界中真空熱処理後)
の耐熱性を調べるために、400℃まで熱処理を行った。
熱処理プロセスは各目的とする温度まで室温から約3時
間かけて温度を上昇させて、その目的とする温度で1時
間維持した後、5時間以上かけて室温まで温度が下がっ
た後に、室温でMR比を測定した。表4にその結果を示
す。The above sample (after vacuum heat treatment in a magnetic field of 280 ° C.)
In order to investigate the heat resistance of the, heat treatment was performed up to 400 ° C.
In the heat treatment process, the temperature is raised from room temperature to each target temperature over about 3 hours, maintained at the target temperature for 1 hour, then cooled down to room temperature over 5 hours, and then MR The ratio was measured. Table 4 shows the result.
【0086】[0086]
【表4】 [Table 4]
【0087】以上のように本発明の磁気抵抗効果素子は
従来の素子と比較して熱的安定性に非常に優れているこ
とが分かった。特に従来例試料試料c03およびc04のMR比
の減少は固定磁性層の交換結合磁界(Hex)の熱処理温
度の上昇とともに減少していることと対応していること
が原因の1つではないかと考えられる。一方本実施例試
料c01、c02の交換結合磁界は熱処理温度が上がってもそ
の大きさはほとんど変化することがなく、本発明の磁気
抵抗効果素子は固定磁性層の磁気的構造に対しても熱的
安定性に優れていることが分かった。As described above, it was found that the magnetoresistive effect element of the present invention is very excellent in thermal stability as compared with the conventional element. In particular, it is considered that one of the causes is that the decrease in the MR ratio of the conventional sample samples c03 and c04 corresponds to the decrease in the heat treatment temperature of the exchange coupling magnetic field (Hex) of the pinned magnetic layer. To be On the other hand, the magnitudes of the exchange-coupling magnetic fields of the samples c01 and c02 of the present embodiment hardly change even when the heat treatment temperature rises, and the magnetoresistive effect element of the present invention has a thermal effect on the magnetic structure of the pinned magnetic layer. It was found that the stability was excellent.
【0088】(実施例4)基板には熱酸化膜付Si基板
を、ターゲットにはCu、Ta、Ni-Fe、Co-Fe、Ru、Al、Pt
-Mnを用いて多元マグネトロンスパッタ法により固定磁
性層が積層フェリ構造を持つ図6に示した膜構成の磁気
抵抗効果素子を作製した。まず下部電極用にTa(3nm)/Cu
(50nm)膜を成膜し、この上に以下の膜構成の磁気抵抗効
果膜を作製した。(Example 4) A Si substrate with a thermal oxide film was used as a substrate, and Cu, Ta, Ni-Fe, Co-Fe, Ru, Al and Pt were used as targets.
A magnetoresistive element having the film structure shown in FIG. 6 in which the pinned magnetic layer has a laminated ferri structure was manufactured by a multi-source magnetron sputtering method using -Mn. First, Ta (3nm) / Cu for the lower electrode
A (50 nm) film was formed, and a magnetoresistive film having the following film structure was formed on the film.
【0089】実施例試料d01: Ta(3) /Ni-Fe(2.5) /Ru
(0.8) /Ni-Fe(2.5) /Pt-Mn(15) /Co-Fe(3) /Ru(0.8) /C
o-Fe(3) /Al-O(1.0) /Co-Fe(1) /Ni-Fe(3) /Ta(15)
比較のためTa下地層およびTa下地層/Ni-Fe下地層の下
記膜構成の磁気抵抗効果素子を作製した。Example Sample d01: Ta (3) / Ni-Fe (2.5) / Ru
(0.8) /Ni-Fe(2.5) / Pt-Mn (15) / Co-Fe (3) /Ru(0.8) / C
o-Fe (3) /Al-O(1.0) / Co-Fe (1) / Ni-Fe (3) / Ta (15) For comparison, the Ta underlayer and Ta underlayer / Ni-Fe underlayer below A magnetoresistive element having a film structure was produced.
【0090】従来例試料d02: Ta(3) /Pt-Mn(15) /Co-F
e(3) /Ru(0.8) /Co-Fe(3) /Al-O(1.0) /Co-Fe(1) /Ni-F
e(3) /Ta(15)
従来例試料d03: Ta(3) /Ni-Fe(3)/Pt-Mn(15) /Co-Fe
(3) /Ru(0.8) /Co-Fe(3)/Al-O(1.0) /Co-Fe(1) /Ni-Fe
(3) /Ta(15)
ここで括弧内の数値は膜厚を表し単位はnmである。Ni-F
e、Co-Fe、Pt-Mn合金の膜組成はそれぞれNi80Fe20、Co
75Fe25、Pt48Mn58(at%)である。試料d01の下地層には
自由磁性層で用いた組成と同じNi-Feを用いた。各試料
の膜の保護層としてTa(15nm)を積層している。各試料の
膜上に上部電極としてTa(15nm) /Cu(50nm) /Ta(3nm)を
成膜した。上記試料は真空チャンバー内を1×10-8Torr
以下まで排気した後、Arガスを約0.8mTorrになるように
流しながら成膜を行った。なおAl-Oのかっこ内の値は、
酸化処理前のAlの設計膜厚の合計値を示し、実際にはAl
を0.3〜0.7nm成膜後に200Torrの酸素含有雰囲気中で1
分間酸化することを繰り返して行った。上記磁気抵抗効
果素子をフォトリソグラフィーを用いて図15に示すメ
サ型に微細加工を行い、層間絶縁膜としてAl2O3を用い
て周囲を絶縁した後、スルーホールを開けて、この上に
Cu(50nm) /Ta(3nm)の上部電極を形成して磁気抵抗効果
素子を作製した。素子はサンプル面積が1μm×1.5μmの
形状とした。Conventional sample d02: Ta (3) / Pt-Mn (15) / Co-F
e (3) /Ru(0.8) / Co-Fe (3) /Al-O(1.0) / Co-Fe (1) / Ni-F
e (3) / Ta (15) Conventional sample d03: Ta (3) / Ni-Fe (3) / Pt-Mn (15) / Co-Fe
(3) /Ru(0.8) /Co-Fe(3)/Al-O(1.0) / Co-Fe (1) / Ni-Fe
(3) / Ta (15) Here, the numerical value in parentheses represents the film thickness, and the unit is nm. Ni-F
The film compositions of e, Co-Fe and Pt-Mn alloys are Ni 80 Fe 20 and Co, respectively.
75 Fe 25 , Pt 48 Mn 58 (at%). For the underlayer of sample d01, Ni-Fe having the same composition as that used for the free magnetic layer was used. Ta (15 nm) is laminated as a protective layer for the film of each sample. Ta (15 nm) / Cu (50 nm) / Ta (3 nm) was formed as an upper electrode on the film of each sample. The sample above is 1 × 10 -8 Torr in a vacuum chamber.
After evacuation to the following, film formation was performed while Ar gas was caused to flow at about 0.8 mTorr. The value in brackets of Al-O is
Shows the total value of the design film thickness of Al before oxidation treatment.
After forming 0.3-0.7nm of film in an atmosphere containing oxygen of 200 Torr 1
Oxidation for minutes was repeated. The above magnetoresistive effect element is subjected to fine processing into a mesa type shown in FIG. 15 by using photolithography, and the periphery is insulated by using Al 2 O 3 as an interlayer insulating film, and then a through hole is opened, and a through hole is formed on this.
An upper electrode of Cu (50 nm) / Ta (3 nm) was formed to fabricate a magnetoresistive effect element. The element had a sample area of 1 μm × 1.5 μm.
【0091】これら試料をPt-Mn反強磁性層とCo-Fe固定
磁性層とが交換結合磁界を生じるようにこれら試料を28
0℃で5時間の5kOeの磁界中真空熱処理を実施した。These samples were prepared so that the Pt-Mn antiferromagnetic layer and the Co-Fe pinned magnetic layer generate an exchange coupling magnetic field.
Vacuum heat treatment was performed in a magnetic field of 5 kOe at 0 ° C for 5 hours.
【0092】このようにして作成した磁気抵抗効果素子
を室温で最大1kOeの磁界を印加して直流4端子法により
磁気抵抗を測定して、MR比を調べた。更にこれら磁気抵
抗効果素子を400℃まで熱処理を行い、各熱処理温度後
に磁気抵抗測定を室温で実施した。結果を表5に結果を
示す。なお、300℃以降の熱処理は目的とする温度まで
室温から約3時間かけて温度を上昇させて、その目的と
する温度で1時間維持した後、5時間以上かけて室温ま
で温度が下がった後に、室温でMR比を測定した。The MR ratio of the magnetoresistive element thus produced was measured by applying a magnetic field of 1 kOe at maximum at room temperature and measuring the magnetoresistance by the direct current 4-terminal method. Further, these magnetoresistive effect elements were heat-treated up to 400 ° C., and after each heat-treatment temperature, magnetoresistive measurement was performed at room temperature. The results are shown in Table 5. For heat treatment at 300 ° C or higher, raise the temperature from room temperature to the target temperature over about 3 hours, maintain the temperature at the target temperature for 1 hour, and then lower the temperature to room temperature over 5 hours. The MR ratio was measured at room temperature.
【0093】[0093]
【表5】 [Table 5]
【0094】このように本発明の磁気抵抗効果素子(実
施例d01)は従来の素子と比較して熱的安定性に優れて
いることが分かった。従来例試料試料d02及びd03の熱処
理温度の上昇によるMR比の減少は、実施例3で示したよ
うに固定磁性層の交換結合磁界(Hex)の熱処理温度の
上昇とともに減少していることと対応していることが原
因であると考えられる。一方本実施例試料d01の交換結
合磁界は熱処理温度が上がってもその大きさはほとんど
変化することがなく、本発明の磁気抵抗効果素子は固定
磁性層の磁気的構造に対しても熱的安定性に優れている
ことが分かった。As described above, it was found that the magnetoresistive effect element (Example d01) of the present invention was excellent in thermal stability as compared with the conventional element. Conventional Example Samples Samples d02 and d03 correspond to the decrease in the MR ratio due to the increase in the heat treatment temperature as the heat treatment temperature of the exchange coupling magnetic field (Hex) of the pinned magnetic layer decreases as shown in Example 3. It is thought that the cause is that On the other hand, the magnitude of the exchange-coupling magnetic field of the sample d01 of this example hardly changes even when the heat treatment temperature rises, and the magnetoresistive effect element of the present invention is thermally stable against the magnetic structure of the pinned magnetic layer. It turned out that it is excellent in sex.
【0095】(実施例5)前記の実施例試料b01と従来
例試料b03をMR素子109として用いて、図10に示す
ようなMRヘッドを構成して、特性を評価した。この場
合、基板としてはAl2O 3-TiC基板を用い、上部記録コア
16、シールド10、15材にはNi0.8Fe0.2合金をメッ
キで作製し、シールドギャップ11、14にはAl2O3を
用いた。またハードバイアス部12にはCo-Pt合金を用
い、リード部13をAuで構成した。(Embodiment 5) The above-mentioned embodiment sample b01 and conventional
An example sample b03 is used as the MR element 109 and shown in FIG.
Such an MR head was constructed and the characteristics were evaluated. This place
If the substrate is Al2O 3-TiC substrate used, upper recording core
16, shield 10, 15 material is Ni0.8Fe0.2Alloy
Made with Al, and the shield gaps 11 and 14 are made of Al2O3To
Using. The hard bias portion 12 is made of Co-Pt alloy.
The lead portion 13 was made of Au.
【0096】また、自由磁性層の磁化容易方向が検知す
べき信号磁界方向と垂直になるように(トラック幅方
向)、固定層の磁化容易軸の方向が検知すべき信号磁界
方向と平行になるように磁性膜に異方性を付与した。こ
の方法は、磁気抵抗効果素子を作成後、まず、磁界中28
0℃で熱処理して、固定磁性層の容易方向を規定した
後、更に、200℃で熱処理して、自由層の容易軸を規定
して行った。Further, the direction of the easy magnetization axis of the fixed layer is parallel to the signal magnetic field direction to be detected so that the easy magnetization direction of the free magnetic layer is perpendicular to the signal magnetic field direction to be detected (track width direction). Thus, the magnetic film was provided with anisotropy. After making a magnetoresistive element, this method
After heat treatment at 0 ° C. to define the easy direction of the pinned magnetic layer, heat treatment was further performed at 200 ° C. to specify the easy axis of the free layer.
【0097】再生ヘッド部32の磁気抵抗効果素子のト
ラック幅は0.5μm、MR高さも0.5μmとした。作製した
ヘッドを150℃の恒温槽に入れて10mAの直流電流を流し
た状態で10日間保持するという試験を実施した。この試
験の前と後の出力の比較をした。その結果、本発明の実
施例試料b01を用いたヘッドでは出力の低下が約1.3%で
あり非常に安定した出力特性を示したのに対して、従来
例試料b03を用いたヘッドの出力低下は約43%と非常に大
きな出力低下が見られた。The track width of the magnetoresistive effect element of the reproducing head portion 32 was 0.5 μm, and the MR height was 0.5 μm. A test was conducted in which the manufactured head was placed in a constant temperature bath at 150 ° C. and kept for 10 days while a direct current of 10 mA was applied. The output before and after this test was compared. As a result, in the head using the example sample b01 of the present invention, the output decrease was about 1.3% and showed very stable output characteristics, whereas the output decrease of the head using the conventional example sample b03 A very large output reduction of about 43% was observed.
【0098】(実施例6)実施例3で作製した実施例試
料c01と従来例試料c03の膜構成のGMR膜を用いて、図1
3に示したヨーク構造の磁気ヘッドを作製した。絶縁膜
303にはプラズマ酸化法で作製したAl酸化物を作製し
た。ヨーク部301には高透磁率のCoNbZr系アモルファ
ス合金膜を用い、記録ポール部304にはNi-Feメッキ
膜を用いた。また、自由磁性層の磁化容易方向が検知す
べき信号磁界方向と垂直になるように(図13において
紙面に垂直方向)、固定層の磁化容易軸の方向が検知す
べき信号磁界方向と平行(図13に図示している2つの
ヨーク部301を結ぶ線に平行)になるように磁性膜に
異方性を付与した。この方法は、磁気抵抗効果素子を作
成後、まず、磁界中280℃で熱処理して、固定磁性層の
容易方向を規定した後、更に、200℃で熱処理して、自
由層の容易軸を規定して行った。(Example 6) Using the GMR film having the film structure of the example sample c01 produced in the example 3 and the conventional example sample c03, FIG.
The magnetic head having the yoke structure shown in FIG. As the insulating film 303, an Al oxide produced by a plasma oxidation method was produced. A high magnetic permeability CoNbZr-based amorphous alloy film was used for the yoke portion 301, and a Ni—Fe plated film was used for the recording pole portion 304. Further, the direction of the easy axis of magnetization of the fixed layer is parallel to the signal magnetic field direction to be detected so that the direction of easy magnetization of the free magnetic layer is perpendicular to the signal magnetic field direction to be detected (the direction perpendicular to the paper surface in FIG. 13). Anisotropy was imparted to the magnetic film so that it was parallel to the line connecting the two yoke portions 301 shown in FIG. In this method, after creating a magnetoresistive element, first heat-treat it in a magnetic field at 280 ° C to define the easy direction of the pinned magnetic layer, and then heat it at 200 ° C to define the easy axis of the free layer. I went.
【0099】このようにして作製したヘッドの出力特性
を調べるために磁気抵抗を測定した。図23に試料c0
1、c03の膜構成を用いた各ヘッドの規格化出力に対する
磁気抵抗曲線を示す。The magnetic resistance was measured in order to investigate the output characteristics of the head thus manufactured. Figure 23 shows sample c0
The magnetoresistive curve with respect to the standardized output of each head using the film structure of 1 and c03 is shown.
【0100】図23から分かるようにTa/Ni-Fe下地層の
従来例試料c03を用いたヘッドの動作点中心Hd(図23
参照)は、100Oe程度ずれているのに対して本発明のTa/
Ni-Fe/Ru/Ni-Fe下地層の実施例試料c01を用いたヘッド
の動作点中心は50Oeに減少することが分かった。これ
は、従来例試料c03の下地層Ni-Feからの漏洩磁界による
フリー層の動作点のずれを、本発明の下地層のように、
Ta/Ni-Fe/Ru/Ni-Feといった構造とすることで下地層か
らの漏洩磁界を低減できて、ヘッドの動作点を低減する
ことが可能であり非常に有効であることがわかった。こ
のように下地層にNi-Feといったfcc(111)配向性を持っ
た磁性層を有する場合、本発明のようにRuといった適当
な交換結合用非磁性層を用いて下地層の磁性層からの漏
洩磁界を低減して、ヘッド状態での動作点中心(バイア
ス磁界)を改善することが可能である。As can be seen from FIG. 23, the operating point center Hd of the head using the conventional sample c03 of the Ta / Ni—Fe underlayer (see FIG.
Is about 100 Oe, whereas Ta / of the present invention
It was found that the center of the operating point of the head using the example sample c01 of the Ni-Fe / Ru / Ni-Fe underlayer was reduced to 50 Oe. This is because the deviation of the operating point of the free layer due to the leakage magnetic field from the underlayer Ni-Fe of the conventional sample c03, as in the underlayer of the present invention,
It was found that the structure such as Ta / Ni-Fe / Ru / Ni-Fe can reduce the leakage magnetic field from the underlayer and reduce the operating point of the head, which is very effective. When the underlayer has a magnetic layer having an fcc (111) orientation such as Ni-Fe as described above, an appropriate non-magnetic layer for exchange coupling such as Ru is used as in the present invention to remove the magnetic layer from the underlayer. It is possible to reduce the leakage magnetic field and improve the operating point center (bias magnetic field) in the head state.
【0101】(実施例7)実施例4で作製した実施例試
料d01と従来例試料d02、d03を用いて磁気抵抗効果メモ
リ素子を作製した。まず3000Åの熱酸化SiO2膜がついて
いるSi基板上に図17に示したCuよりなるワード線70
2を形成し、Al2O3絶縁膜を成膜して形成した後、Cuか
らなるセンス線700を作製した。ここでいったんCMP
により表面の平滑化を行った後、TMR膜を作製した。ま
ずこの段階でPt-Mnと固定磁性層とが交換結合磁界を生
じさせるように5kOeの磁界中熱処理を280℃で5時間実
施した。次に実施例4で示した方法でTMR素子を作製し
た。最後にTMR素子の上部電極としてセンス線兼ワード
線701を形成して図17のようなスイッチ素子703
のない単一メモリ素子を作製した。ワード線702とセ
ンス線兼ワード線701に電流を流して磁界を発生させ
て磁気抵抗効果素子の自由磁性層1(本実施例ではCo-F
e(1nm)/Ni-Fe(3nm)膜)の磁化方向を反転させて情報
「0」を記録した。次にワード線702とセンス線兼ワ
ード線701に先ほどとは逆方向に電流を流して磁界を
発生させて自由磁性層1の磁化反転を起こして情報
「1」を記録した。センス線700とセンス線兼ワード
線701との間にバイアス電圧を印加してセンス電流を
流して情報「0」と情報「1」の状態の素子電圧を測定
したところ、実施例試料d01と従来例試料d02、d03を用
いた磁気メモリ素子は同程度の出力差が得られた。従っ
て、このように作製した3つの磁気メモリは自由磁性層
1を情報記録層としてのメモリ機能が有ることがわかっ
た。Example 7 A magnetoresistive effect memory element was produced using the example sample d01 produced in Example 4 and the conventional example samples d02 and d03. First, a word line 70 made of Cu shown in FIG. 17 is formed on a Si substrate having a 3000 Å thermally-oxidized SiO2 film.
2 was formed, and an Al2O3 insulating film was formed to form a sense line 700 made of Cu. Here once CMP
After smoothing the surface with, a TMR film was prepared. First, at this stage, heat treatment was carried out at 280 ° C. for 5 hours in a magnetic field of 5 kOe so that the Pt-Mn and the pinned magnetic layer generate an exchange coupling magnetic field. Next, a TMR element was manufactured by the method shown in Example 4. Finally, a sense line / word line 701 is formed as an upper electrode of the TMR element to form a switch element 703 as shown in FIG.
A single memory device without was fabricated. An electric current is applied to the word line 702 and the sense line / word line 701 to generate a magnetic field, and the free magnetic layer 1 (Co-F in this embodiment) of the magnetoresistive element is produced.
Information "0" was recorded by reversing the magnetization direction of the e (1 nm) / Ni-Fe (3 nm) film). Next, a current was applied to the word line 702 and the sense line / word line 701 in the opposite direction to the above to generate a magnetic field to cause magnetization reversal of the free magnetic layer 1 to record information "1". A bias voltage was applied between the sense line 700 and the sense line / word line 701 to flow a sense current, and the element voltages in the state of information "0" and information "1" were measured. The magnetic memory devices using the samples d02 and d03 obtained the same output difference. Therefore, it was found that the three magnetic memories thus manufactured have a memory function with the free magnetic layer 1 as an information recording layer.
【0102】次にこれらの素子をCMOS基板上に図17に
示すような基本構成のメモリ素子で集積メモリを作製し
た。素子配列は、16×16素子のメモリを1ブロック
とし合計8ブロックとした。まずFETをスウィッチング
トランジスター(SW-Tr)としてCMOSをマトリックス上
に配置し、CMPで表面を平坦化した後、実施例4で作製
した実施例試料d01と従来例試料d02のTMR素子をCMOSに
対応してマトリックス様に設けた。それぞれのサンプル
の素子断面積は0.1μm×0.15μmとした。また各ブロッ
クの残りの1素子は、配線抵抗や素子最低抵抗、FET抵
抗をキャンセルするためのダミー素子とした。なお、ワ
ード線及びビット線などは全てCuを用いた。図16、図
17に示すような磁気ランダムアクセスメモリを形成し
て、最後に400℃で水素シンター処理を行った。Next, an integrated memory was produced by using these elements on a CMOS substrate with a memory element having a basic structure as shown in FIG. The device array has a total of 8 blocks, with 16 × 16 device memory as one block. First, CMOS is arranged on a matrix by using FET as a switching transistor (SW-Tr), and the surface is flattened by CMP. Then, the TMR elements of the example sample d01 and the conventional example sample d02 produced in Example 4 are formed into the CMOS. Correspondingly, it was provided like a matrix. The element cross-sectional area of each sample was 0.1 μm × 0.15 μm. The remaining one element in each block was a dummy element for canceling the wiring resistance, the element minimum resistance, and the FET resistance. Note that Cu was used for all the word lines and bit lines. A magnetic random access memory as shown in FIGS. 16 and 17 was formed, and finally hydrogen sintering treatment was performed at 400 ° C.
【0103】ワード線とビット線の合成磁界により、8
つのブロックの、8素子にそれぞれの自由磁性層(この
場合はCo-Fe(1nm)/Ni-Fe(3nm)膜)の磁化反転を同時に
行い8ビットずつの信号を記録した。次にCMOSで作製さ
れたFETのゲートをそれぞれのブロックに付き1素子ず
つONし、センス電流を流した。このとき、各ブロック内
でのビット線、素子及びFETに発生する電圧と、ダミー
電圧をコンパレータにより比較し、それぞれの素子の出
力電圧から、同時に8ビットの情報を読みとった。その
結果、実施例試料d01を用いたMRAMでは単一磁気メモリ
素子の場合と同様に素子出力が得られたが、従来例試料
d02及びd03を用いたMRAMはほとんど全く出力が得られな
かった。これは本発明素子は400℃での水素シンター処
理に耐えられるものの、従来素子は耐えられないことに
起因していると考えられる。8 due to the combined magnetic field of the word line and the bit line
Magnetization reversal of each free magnetic layer (Co-Fe (1 nm) / Ni-Fe (3 nm) film in this case) was simultaneously performed on 8 elements of one block, and signals of 8 bits each were recorded. Next, the FET gate made of CMOS was turned on one by one for each block, and a sense current was passed. At this time, the voltage generated in the bit line, the element and the FET in each block was compared with the dummy voltage by the comparator, and 8-bit information was read simultaneously from the output voltage of each element. As a result, in the MRAM using the example sample d01, the element output was obtained as in the case of the single magnetic memory element.
The MRAM using d02 and d03 gave almost no output. It is considered that this is because the element of the present invention can withstand the hydrogen sintering treatment at 400 ° C., but the conventional element cannot.
【0104】なお、本実施例1から7で示した本発明の
磁気抵抗効果素子の下地層を構成する少なくとも2つの
下地強磁性層はNi80Fe20(at%)の組成膜を代表して開示
しているが、fcc(面心立方)構造を有するNixCoyFe
z(0.6≦x≦0.9、0≦y≦0.4、0≦z≦0.3)もしくはNix'
Coy'Fez'(0≦x'≦0.4、0.2≦y'≦0.95、0≦z'≦0.5)
もしくはNixFe1-x(0.6≦x≦1)もしくはCoyFe1-y(0.7
≦y≦0.95)の範囲の合金膜を用い、更に、少なくとも
2つの下地強磁性層の間に積層された下地非磁性層とし
てRu、Ir、Rh、Re、Cu、Crのいずれか一種を用いて下地
層を構成すれば、同様の効果が得られる。At least two underlayer ferromagnetic layers forming the underlayer of the magnetoresistive effect element of the present invention shown in Examples 1 to 7 are representative of Ni 80 Fe 20 (at%) composition films. As disclosed, Ni x Co y Fe having fcc (face centered cubic) structure
z (0.6≤x≤0.9, 0≤y≤0.4, 0≤z≤0.3) or Ni x '
Co y 'Fe z' (0 ≦ x '≦ 0.4,0.2 ≦ y' ≦ 0.95,0 ≦ z '≦ 0.5)
Or Ni x Fe 1-x (0.6 ≦ x ≦ 1) or Co y Fe 1-y (0.7
≤ y ≤ 0.95), and at least one of Ru, Ir, Rh, Re, Cu and Cr is used as the underlying non-magnetic layer laminated between at least two underlying ferromagnetic layers. The same effect can be obtained by forming the base layer by using.
【0105】[0105]
【発明の効果】以上のように本発明の磁気抵抗効果素子
は下地層に2つの磁性層を非磁性層を介して積層するこ
とにより、下地層を構成する磁性層からの漏洩磁界を低
減し、自由磁性層及び固定磁性層の磁界方向を安定し、
出力の安定性の向上と、高温熱プロセスに対して非常に
安定した特性を有する磁気抵抗効果素子を提供すること
が可能となる。さらにこのような下地層の構成とするこ
とで反強磁性層と固定磁性層との交換結合磁界特性を向
上することが可能となる。本発明のMR素子を磁気抵抗効
果型ヘッドを用いた場合、ヘッドのバイアス特性を従来
よりも改善向上することが可能となり、高密度磁気記録
が可能となる。また本発明のMR素子を用いて高出力で熱
的に安定した高密度磁気メモリ(MRAM)を提供すること
が可能となる。As described above, in the magnetoresistive effect element of the present invention, two magnetic layers are laminated on the underlayer via the nonmagnetic layer to reduce the leakage magnetic field from the magnetic layer forming the underlayer. , Stabilizes the magnetic field direction of the free magnetic layer and the pinned magnetic layer,
It is possible to provide a magnetoresistive effect element having improved output stability and very stable characteristics with respect to a high temperature thermal process. Further, with such a structure of the underlayer, the exchange coupling magnetic field characteristics between the antiferromagnetic layer and the pinned magnetic layer can be improved. When a magnetoresistive head is used for the MR element of the present invention, the bias characteristic of the head can be improved and improved as compared with the conventional case, and high density magnetic recording can be performed. Further, it becomes possible to provide a high output and thermally stable high density magnetic memory (MRAM) using the MR element of the present invention.
【図1】本発明の一実施例である磁気抵抗効果素子の断
面の模式図FIG. 1 is a schematic view of a cross section of a magnetoresistive effect element according to an embodiment of the present invention.
【図2】Ta/Ni-Fe下地層を用いた従来の磁気抵抗効果素
子の断面の模式図FIG. 2 is a schematic view of a cross section of a conventional magnetoresistive effect element using a Ta / Ni-Fe underlayer.
【図3】図1に示した本発明の磁気抵抗効果素子の斜視
図FIG. 3 is a perspective view of the magnetoresistive effect element of the present invention shown in FIG.
【図4】図2に示したTa/Ni-Fe下地層を用いた従来の磁
気抵抗効果素子の斜視図FIG. 4 is a perspective view of a conventional magnetoresistive effect element using the Ta / Ni—Fe underlayer shown in FIG.
【図5】本発明の磁気抵抗効果素子の断面の模式図FIG. 5 is a schematic sectional view of a magnetoresistive effect element of the present invention.
【図6】本発明の磁気抵抗効果素子の断面の模式図FIG. 6 is a schematic view of a cross section of a magnetoresistive effect element of the present invention.
【図7】本発明の一実施例のMRヘッドの斜視図FIG. 7 is a perspective view of an MR head according to an embodiment of the present invention.
【図8】本発明の一実施例の磁気抵抗効果型ヘッドの一
例を示す図FIG. 8 is a diagram showing an example of a magnetoresistive head according to an embodiment of the present invention.
【図9】本発明の一実施例のMRヘッドと磁気ディスクの
断面図FIG. 9 is a sectional view of an MR head and a magnetic disk according to an embodiment of the present invention.
【図10】本発明の一実施例の記録ヘッド一体型MRヘッ
ドの断面図FIG. 10 is a cross-sectional view of a recording head integrated MR head according to an embodiment of the present invention.
【図11】本発明の別の実施例のMRヘッドの断面図FIG. 11 is a sectional view of an MR head according to another embodiment of the present invention.
【図12】本発明のシールド型磁気抵抗効果型ヘッドの
一例を示す図FIG. 12 is a diagram showing an example of a shield type magnetoresistive head of the present invention.
【図13】本発明のヨーク型磁気抵抗効果型ヘッドの一
例を示す図FIG. 13 is a diagram showing an example of a yoke type magnetoresistive head of the present invention.
【図14】本発明の一実施例のハードディスク装置の平
面図FIG. 14 is a plan view of a hard disk device according to an embodiment of the present invention.
【図15】本発明の磁気抵抗効果素子の上下に電極を設
ける場合の素子の断面の模式図FIG. 15 is a schematic view of a cross section of the magnetoresistive effect element of the present invention in which electrodes are provided above and below the element.
【図16】本発明の磁気メモリ素子の一例を示す図FIG. 16 is a diagram showing an example of a magnetic memory element of the present invention.
【図17】本発明の磁気メモリ素子の書き込み動作と読
み込み動作の一基本例の図FIG. 17 is a diagram of a basic example of a write operation and a read operation of the magnetic memory element of the present invention.
【図18】本発明の磁気メモリ素子の書き込み動作と読
み込み動作の一基本例の図FIG. 18 is a diagram of a basic example of a writing operation and a reading operation of the magnetic memory element of the present invention.
【図19】本発明の磁気メモリ素子の書き込み動作と読
み込み動作の一基本例の図FIG. 19 is a diagram showing a basic example of a write operation and a read operation of the magnetic memory element of the present invention.
【図20】実施例1で示した磁気抵抗効果素子試料のNi
-Fe下地層およびNi-Fe/Ru/Ni-Fe下地層にしめるNi-Fe下
地層厚に対するMR比及び固定層の交換結合磁界(Hex)
の関係を示す図FIG. 20 is the Ni of the magnetoresistive effect element sample shown in Example 1;
-Fe underlayer and MR ratio to Ni-Fe underlayer thickness for Ni-Fe / Ru / Ni-Fe underlayer and exchange coupling magnetic field (Hex) of fixed layer
Diagram showing the relationship between
【図21】実施例2で示した磁気抵抗効果素子試料のX
線回折プロファイルを表す図FIG. 21: X of the magnetoresistive effect element sample shown in Example 2
Diagram showing line diffraction profile
【図22】実施例3で示した磁気抵抗効果素子試料の磁
気抵抗曲線(マイナー曲線)を表す図FIG. 22 is a diagram showing a magnetoresistance curve (minor curve) of the magnetoresistance effect element sample shown in Example 3;
【図23】実施例6で作製したヨーク型ヘッドの磁気抵
抗曲線を示す図FIG. 23 is a diagram showing a magnetoresistive curve of the yoke-type head manufactured in Example 6;
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/32 H01L 27/10 447 H01L 27/105 G01R 33/06 R Fターム(参考) 2G017 AA01 AD55 AD65 5D034 AA02 BA03 BB08 5E049 AA01 AA04 AA07 AA09 AC00 AC05 BA06 BA12 CB02 DB12 5F083 FZ10 GA11 GA12 JA36 JA37 JA38 JA56 PR03 PR21 PR22 PR23 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 10/32 H01L 27/10 447 H01L 27/105 G01R 33/06 RF term (reference) 2G017 AA01 AD55 AD65 5D034 AA02 BA03 BB08 5E049 AA01 AA04 AA07 AA09 AC00 AC05 BA06 BA12 CB02 DB12 5F083 FZ10 GA11 GA12 JA36 JA37 JA38 JA56 PR03 PR21 PR22 PR23
Claims (16)
磁性層、固定磁性層、第1非磁性層、自由磁性層が積層
された構成を持ち、前記固定磁性層は前記反強磁性層と
磁気的に結合しており外部磁界に対して容易には磁化回
転せず、前記自由磁性層は外部磁界により容易に磁化回
転し、前記固定層と前記自由磁性層の磁化方向の相対角
度の違いにより抵抗値が異なる磁気抵抗効果素子におい
て、前記反強磁性層と前記基板との間に少なくとも1つ
以上の下地非磁性層と少なくとも2つ以上の下地強磁性
層を含む下地層があり、前記下地層は第1下地非磁性層
を介して積層された第1および第2下地強磁性層から構
成された多層膜を少なくとも1つ含み、前記下地層と前
記反強磁性層が接することを特徴とする磁気抵抗効果素
子。1. A structure in which at least an antiferromagnetic layer, a pinned magnetic layer, a first nonmagnetic layer, and a free magnetic layer are laminated on a substrate in this order from the substrate side, and the pinned magnetic layer is the antiferromagnetic layer. Magnetically coupled and does not rotate easily with respect to an external magnetic field, the free magnetic layer easily rotates with an external magnetic field, and the difference in relative angle between the magnetization directions of the fixed layer and the free magnetic layer. In the magnetoresistive effect element having a different resistance value, there is an underlayer containing at least one underlayer nonmagnetic layer and at least two underlayer ferromagnetic layers between the antiferromagnetic layer and the substrate, The underlayer includes at least one multilayer film composed of first and second underlayer ferromagnetic layers laminated with a first underlayer nonmagnetic layer interposed therebetween, and the underlayer and the antiferromagnetic layer are in contact with each other. And a magnetoresistive effect element.
と接することを特徴とする請求項1記載の磁気抵抗効果
素子。2. The magnetoresistive effect element according to claim 1, wherein the first underlying ferromagnetic layer is in contact with the antiferromagnetic layer.
た前記第1および第2下地強磁性層が反強磁性的に交換
結合しており、前記第1下地非磁性層はRu、Ir、Rh、R
e、Cu、Crのいずれかを含むことを特徴とする請求項1
または2記載の磁気抵抗効果素子。3. The first and second underlayer ferromagnetic layers stacked via the first underlayer nonmagnetic layer are antiferromagnetically exchange-coupled, and the first underlayer nonmagnetic layer is Ru, Ir, Rh, R
2. A material containing any one of e, Cu and Cr.
Alternatively, the magnetoresistive effect element according to the item 2.
化をそれぞれM1、M2、膜厚をそれぞれt1、t2とする
場合、それぞれの積M1×t1とM2×t2は概略同じであ
ることを特徴とする請求項1から3のいずれかに記載の
磁気抵抗効果素子。4. When the saturation magnetizations of the first and second underlayer magnetic layers are M 1 and M 2 and the film thicknesses are t 1 and t 2 , respectively, the respective products M 1 × t 1 and M 2 × The magnetoresistive effect element according to claim 1, wherein t 2 is substantially the same.
たはNi-Fe合金またはCo-Fe合金を含むことを特徴とする
請求項1から4のいずれかに記載の磁気抵抗効果素子。5. The magnetoresistive effect element according to claim 1, wherein the underlayer magnetic layer forming the underlayer contains Ni, a Ni—Fe alloy, or a Co—Fe alloy.
固定磁性層あるいは前記自由磁性層を構成する同じ材料
からなることを特徴とする請求項1から5のいずれかに
記載の磁気抵抗効果素子。6. The magnetoresistive effect according to claim 1, wherein the underlayer magnetic layer forming the underlayer is made of the same material as the pinned magnetic layer or the free magnetic layer. element.
非磁性層、第2下地磁性層、第1下地非磁性層、第1下
地磁性層が積層された構成であり、前記第2下地非磁性
層はTa、Hf、Zr、Ti、W、Nb、Pt、Cr、Au、Cuから選ば
れた少なくとも一種からなることを特徴とする請求項1
から6のいずれかに記載の磁気抵抗効果素子。7. The underlayer has a structure in which a second underlayer nonmagnetic layer, a second underlayer magnetic layer, a first underlayer nonmagnetic layer, and a first underlayer magnetic layer are stacked in this order from the substrate side. The underlayer nonmagnetic layer is made of at least one selected from Ta, Hf, Zr, Ti, W, Nb, Pt, Cr, Au, and Cu.
7. The magnetoresistive effect element according to any one of 1 to 6.
はPt、Ni、Pd、Cr、Rh、Re、Ir、Ruから選ばれる少なく
とも一種以上の元素)であることを特徴とする請求項1
または2に記載の磁気抵抗効果素子。8. The antiferromagnetic layer is an A-Mn alloy (provided that A
Is at least one element selected from Pt, Ni, Pd, Cr, Rh, Re, Ir, and Ru).
Alternatively, the magnetoresistive effect element according to the item 2.
層と、前記交換結合用非磁性層を介して反強磁性的に交
換結合した第1磁性層と第2磁性層を含み、前記交換結
合用非磁性層はRu、Ir、Rh、Re、Cu、Crのいずれかを含
むことを特徴とする請求項1に記載の磁気抵抗効果素
子。9. The pinned magnetic layer further includes a nonmagnetic layer for exchange coupling, a first magnetic layer and a second magnetic layer antiferromagnetically exchange coupled via the nonmagnetic layer for exchange coupling, The magnetoresistive effect element according to claim 1, wherein the non-magnetic layer for exchange coupling contains any one of Ru, Ir, Rh, Re, Cu, and Cr.
抵抗効果素子を構成する前記非磁性層が、Cu、Ag、Au、
CrまたはRuであることを特徴とする磁気抵抗効果素子。10. The non-magnetic layer constituting the magnetoresistive effect element according to claim 1, wherein Cu, Ag, Au,
A magnetoresistive effect element characterized by being Cr or Ru.
抵抗効果素子を構成する前記非磁性層が、Alの酸化物、
窒化物または酸窒化物であることを特徴とする磁気抵抗
効果素子。11. The nonmagnetic layer constituting the magnetoresistive element according to claim 1, wherein the nonmagnetic layer is an Al oxide,
A magnetoresistive effect element characterized by being a nitride or an oxynitride.
気抵抗効果素子の素子の膜面の上下に電極層を配置し、
電流を膜面に垂直に流す構成とすることを特徴とする磁
気抵抗効果素子。12. An electrode layer is arranged above and below a film surface of the magnetoresistive effect element according to claim 1.
A magnetoresistive effect element characterized in that a current is caused to flow perpendicularly to the film surface.
気抵抗効果素子に、更にシールド部を具備してなる磁気
抵抗効果型ヘッド。13. A magnetoresistive head comprising the magnetoresistive element according to claim 1 and a shield portion.
気抵抗効果素子に、更に検知すべき磁界を磁気抵抗素子
部に導入するヨ−クを具備してなる磁気抵抗効果型ヘッ
ド。14. A magnetoresistive head comprising the magnetoresistive element according to claim 1 further comprising a yoke for introducing a magnetic field to be detected into the magnetoresistive element section.
抗効果型ヘッドを用いたことを特徴とする磁気記録装
置。15. A magnetic recording device using the magnetoresistive head according to claim 13.
気抵抗効果素子に、更に情報を読み出すための情報読出
用導体線(センス線)部と、情報を記録するための情報
記録用導体線(ワ−ド線部)とを具備して成る磁気抵抗
効果メモリ−素子。16. A magnetoresistive effect element according to claim 1, further comprising an information reading conductor line (sense line) portion for further reading information, and an information recording conductor for recording information. A magnetoresistive effect memory element comprising a wire (word wire portion).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001216346A JP2003031869A (en) | 2001-07-17 | 2001-07-17 | Magnetoresistive effect element, magnetic head, and magnetic memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001216346A JP2003031869A (en) | 2001-07-17 | 2001-07-17 | Magnetoresistive effect element, magnetic head, and magnetic memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003031869A true JP2003031869A (en) | 2003-01-31 |
Family
ID=19050832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001216346A Pending JP2003031869A (en) | 2001-07-17 | 2001-07-17 | Magnetoresistive effect element, magnetic head, and magnetic memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003031869A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333106A (en) * | 2004-04-20 | 2005-12-02 | Ken Takahashi | Switched-connection element and manufacturing method therefor, and device having switched-connection element |
JP2013247259A (en) * | 2012-05-28 | 2013-12-09 | Mitsubishi Electric Corp | Magnetoresistance effect element, magnetic field detector and physical quantity detector |
KR20160037638A (en) * | 2014-09-29 | 2016-04-06 | 삼성전자주식회사 | Magnetic memory device having a perpendicular magnetic tunnel junction pattern and Method for fabricating the same |
KR20160059297A (en) * | 2014-11-18 | 2016-05-26 | 삼성전자주식회사 | Method of Fabricating MRAM |
JP2017527101A (en) * | 2014-07-07 | 2017-09-14 | インテル・コーポレーション | Spin transfer torque memory (STTM) device with magnetic contacts |
-
2001
- 2001-07-17 JP JP2001216346A patent/JP2003031869A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333106A (en) * | 2004-04-20 | 2005-12-02 | Ken Takahashi | Switched-connection element and manufacturing method therefor, and device having switched-connection element |
JP2013247259A (en) * | 2012-05-28 | 2013-12-09 | Mitsubishi Electric Corp | Magnetoresistance effect element, magnetic field detector and physical quantity detector |
JP2017527101A (en) * | 2014-07-07 | 2017-09-14 | インテル・コーポレーション | Spin transfer torque memory (STTM) device with magnetic contacts |
US10158065B2 (en) | 2014-07-07 | 2018-12-18 | Intel Corporation | Spin-transfer torque memory (STTM) devices having magnetic contacts |
US10580973B2 (en) | 2014-07-07 | 2020-03-03 | Intel Corporation | Spin-transfer torque memory (STTM) devices having magnetic contacts |
KR20160037638A (en) * | 2014-09-29 | 2016-04-06 | 삼성전자주식회사 | Magnetic memory device having a perpendicular magnetic tunnel junction pattern and Method for fabricating the same |
KR102238527B1 (en) * | 2014-09-29 | 2021-04-09 | 삼성전자주식회사 | Magnetic memory device having a perpendicular magnetic tunnel junction pattern and Method for fabricating the same |
KR20160059297A (en) * | 2014-11-18 | 2016-05-26 | 삼성전자주식회사 | Method of Fabricating MRAM |
KR102287755B1 (en) * | 2014-11-18 | 2021-08-09 | 삼성전자주식회사 | Method of Fabricating MRAM |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6639291B1 (en) | Spin dependent tunneling barriers doped with magnetic particles | |
US6567246B1 (en) | Magnetoresistance effect element and method for producing the same, and magnetoresistance effect type head, magnetic recording apparatus, and magnetoresistance effect memory element | |
US6767655B2 (en) | Magneto-resistive element | |
US6747301B1 (en) | Spin dependent tunneling barriers formed with a magnetic alloy | |
JP3660927B2 (en) | Magnetoresistive effect element, magnetoresistive effect type magnetic head, magnetic recording device and magnetoresistive effect type memory device using the same | |
JP3601690B2 (en) | Magnetoresistive element and manufacturing method thereof, magnetoresistive head, magnetic recording device, magnetoresistive memory element | |
JP3954573B2 (en) | Magnetoresistive element, magnetic head, magnetic memory and magnetic recording apparatus using the same | |
CN101183704B (en) | Tunneling magnetoresistance device, its manufacture method, magnetic head and magnetic memory using tmr device | |
KR100372984B1 (en) | Magnetoresistive type magnetic head and magnetic recording and reproducing apparatus | |
JP3085663B2 (en) | Method of writing information to memory element and method of non-destructively reading information from memory element | |
US6258470B1 (en) | Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film | |
JP2003318461A (en) | Magnetoresistance effect element, magnetic head, magnetic memory and magnetic recorder employing it | |
US20060125034A1 (en) | Magnetoresistant device and magnetic memory device further comments | |
KR20090038809A (en) | Ferromagnetic tunnel junction element, method for manufacturing the same, magnetic head, magnetic recording device and magnetic memory device | |
US6943041B2 (en) | Magnetoresistive element and method for producing the same, as well as magnetic head, magnetic memory and magnetic recording device using the same | |
JP2003304012A (en) | Tunnel magnetoresistive element | |
JP4387955B2 (en) | Magnetoresistive effect element | |
JP2001084532A (en) | Manufacture of magnetoresistance effect element | |
JP2004047583A (en) | Magnetoresistance effect element, and magnetic head, magnetic memory, and magnetic recording equipment using the magnetoresistance effect element | |
JP2003318462A (en) | Magnetoresistance effect element and magnetic head and magnetic memory using the element | |
JP2003031869A (en) | Magnetoresistive effect element, magnetic head, and magnetic memory | |
JP2002299725A (en) | Magnetoresistive device | |
JP2004200459A (en) | Tunnel magnetoresistance effect element, magnetic head, magnetic recording device and magnetic memory | |
JP2004079936A (en) | Laminated film having ferromagnetic tunnel junction, manufacturing method thereof, magnetic sensor, magnetic recorder, and magnetic memory unit | |
JP3565484B2 (en) | Exchange coupling film, magnetoresistive element, magnetoresistive head, and method of manufacturing exchange coupling film |