JP2003031093A - Electrode structure of electrostatic capacity type proximity sensor - Google Patents

Electrode structure of electrostatic capacity type proximity sensor

Info

Publication number
JP2003031093A
JP2003031093A JP2001214269A JP2001214269A JP2003031093A JP 2003031093 A JP2003031093 A JP 2003031093A JP 2001214269 A JP2001214269 A JP 2001214269A JP 2001214269 A JP2001214269 A JP 2001214269A JP 2003031093 A JP2003031093 A JP 2003031093A
Authority
JP
Japan
Prior art keywords
electrode
spacer
holding member
electrode structure
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001214269A
Other languages
Japanese (ja)
Inventor
Sadao Noda
貞雄 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2001214269A priority Critical patent/JP2003031093A/en
Publication of JP2003031093A publication Critical patent/JP2003031093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve detection performance as well as achieving thin size. SOLUTION: Electrode plates 30, 30 are overlapped on both the top and bottom faces of a spacer 10 having a ring-shape frame 11, and an insulation film 40 is overlapped on those surfaces, and a holding member 50 is formed integrally on the outer circumference of these through injection molding. Since the gap between the electrodes is hollow, the electrostatic capacity is small, and as the electrode plate 30 covered by the insulation film 40 constitutes the outer wall of the electrode structure, the switch becomes thin as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は静電容量型近接スイ
ッチの電極構造体に関する。
TECHNICAL FIELD The present invention relates to an electrode structure of a capacitance type proximity switch.

【0002】[0002]

【従来の技術】静電容量型近接スイッチは例えば半導体
製造工程におけるウエハ検出センサに利用されている。
これは、例えば特開平11−288999号公報に記載
されているように、ウエハを載置するハンドに取り付け
られ、ハンドがウエハを収めたカセット内に進入してウ
エハをすくい上げると、静電容量の変化に基づいてウエ
ハの有無を検出する。
2. Description of the Related Art A capacitance type proximity switch is used, for example, as a wafer detection sensor in a semiconductor manufacturing process.
For example, as disclosed in Japanese Patent Application Laid-Open No. 11-288999, this is attached to a hand on which a wafer is placed, and when the hand enters a cassette containing the wafer and scoops up the wafer, the capacitance of the wafer is changed. The presence or absence of a wafer is detected based on the change.

【0003】その具体的構成は、例えば特開昭62−1
00919号公報に開示されており、図11(A)に示
したような構成である。ここで、1はプラスチックによ
り形成した扁平なケース、2はケース1内に収容したプ
リント基板、3,4はプリント基板2の両面に対向して
形成した検知電極及び遮蔽電極である。
The specific configuration is, for example, Japanese Patent Laid-Open No. 62-1.
It is disclosed in Japanese Patent Laid-Open No. 00919 and has a structure as shown in FIG. Here, 1 is a flat case made of plastic, 2 is a printed circuit board housed in the case 1, and 3 and 4 are detection electrodes and shielding electrodes formed so as to face both surfaces of the printed circuit board 2.

【0004】[0004]

【発明が解決しようとする課題】この種の近接スイッチ
の動作原理は、検知電極3と遮蔽電極4との間の基準容
量C1は一定であるのに対し、検知電極3の対地容量C
2は、検知電極3とウエハ5との間の距離によって大き
く変化するところに基づく(図11(B)参照)。この
ような原理であるから、基準容量C1はできるだけ小さ
く、かつ、対地容量C2を構成する空間の誘電率εはで
きるだけ小さいことが、検出距離やS/N比の問題から
は望ましい。
According to the operating principle of this type of proximity switch, the reference capacitance C1 between the detection electrode 3 and the shield electrode 4 is constant, while the ground capacitance C of the detection electrode 3 is fixed.
2 is based on the fact that it greatly changes depending on the distance between the detection electrode 3 and the wafer 5 (see FIG. 11B). Because of this principle, it is desirable that the reference capacitance C1 be as small as possible and the permittivity ε of the space forming the ground capacitance C2 be as small as possible in view of detection distance and S / N ratio.

【0005】基準容量C1を小さくするには、これはC
1=εS/dにて決まることが良く知られているから、
検知電極3と遮蔽電極4との間の距離dをできるだけ大
きくし、かつ、その間の誘電率εをできるだけ小さくす
ることが必要である。しかし、図11に示した従来構造
では、両電極3,4をプリント基板2の両面に形成して
いるから、電極間距離dは小さくなり、同時にプリント
基板の絶縁板の誘電率ε(ε>1)が乗ぜられてしまう
ため、基準容量C1を十分に小さくすることができな
い。
To reduce the reference capacitance C1, this is C
It is well known that 1 = εS / d, so
It is necessary to make the distance d between the detection electrode 3 and the shield electrode 4 as large as possible and the dielectric constant ε between them as small as possible. However, in the conventional structure shown in FIG. 11, since the electrodes 3 and 4 are formed on both sides of the printed circuit board 2, the distance d between the electrodes becomes small, and at the same time, the dielectric constant ε (ε> of the insulating plate of the printed circuit board). Since 1) is added, the reference capacitance C1 cannot be made sufficiently small.

【0006】一方で、この種の装置にあっては、ウエハ
がカセット内に上下に小さな間隔を開けて収容されてい
るから薄型のハンドが必要とされ、それに伴いウエハ検
出センサの電極構造体も一層の薄型化が要望されてい
る。近年では、例えば電極構造体の厚さを1.5mmに
まですることが要望されることもある。このような薄型
化の要請は、両電極3,4間の距離を狭くする方向であ
るから、検出性能の向上と薄型化とは相反する事情にあ
る。しかも、電極3,4の外側にケース1の外壁1A,
1Aが位置するという事情下では、薄型化に限界があ
る。
On the other hand, this type of apparatus requires a thin hand because the wafers are accommodated in the cassette with a small space in the vertical direction, and accordingly, the electrode structure of the wafer detection sensor is also required. Further thinning is demanded. In recent years, for example, it is sometimes desired that the thickness of the electrode structure be 1.5 mm. Since such a request for thinning is in the direction of reducing the distance between the electrodes 3 and 4, there is a contradiction between improvement in detection performance and thinning. Moreover, on the outside of the electrodes 3 and 4, the outer wall 1A of the case 1
Under the circumstances where 1A is located, there is a limit to thinning.

【0007】本発明は上記事情に鑑みてなされたもの
で、検出性能を向上させつつ、併せて薄型化も可能にで
きる静電容量型近接スイッチの電極構造体を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an electrode structure of a capacitance type proximity switch which can be made thinner while improving detection performance.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明に係る静電容量型近接
スイッチの電極構造体は、一対の電極板が、その外周部
に設けた保持部材によって対向状態に保持されると共
に、各電極板の相手方との対向面とは反対側の面に絶縁
フィルムが積層されている構成としたところに特徴を有
する。
As a means for achieving the above object, in the electrode structure of a capacitance type proximity switch according to the invention of claim 1, a pair of electrode plates are provided on the outer peripheral portion thereof. It is characterized in that it is held in a facing state by the holding member and that an insulating film is laminated on the surface of each electrode plate opposite to the surface facing the other side.

【0009】請求項2の発明は、請求項1の発明におい
て、前記保持部材を、前記電極板の外周縁部に挟まれる
中空の環状枠部を有したスペーサの外周に設けたところ
に特徴を有する。
The invention of claim 2 is characterized in that, in the invention of claim 1, the holding member is provided on an outer periphery of a spacer having a hollow annular frame portion sandwiched by an outer peripheral edge portion of the electrode plate. Have.

【0010】請求項3の発明は、上記請求項2の発明に
おいて、スペーサを環状枠部内に両電極板に挟まれる保
持枠部を一体に形成したところに特徴を有する。
The invention of claim 3 is characterized in that, in the invention of claim 2, a spacer is integrally formed in the annular frame part with a holding frame part sandwiched between both electrode plates.

【0011】請求項4の発明は、請求項2又は3の発明
において、保持部材に、両電極板と保持部材とによって
囲まれる空間を外部に連通させる通気路を形成したとこ
ろに特徴を有する。
A fourth aspect of the invention is characterized in that, in the second or third aspect of the invention, the holding member is formed with an air passage for communicating a space surrounded by both the electrode plates and the holding member to the outside.

【0012】請求項5の発明は、請求項1ないし請求項
4の発明において、前記保持部材内に、独立気泡を含む
発泡樹脂体を両電極板に挟まれるように配置したところ
に特徴を有する。
A fifth aspect of the invention is characterized in that, in the first to fourth aspects of the invention, a foamed resin body containing closed cells is arranged in the holding member so as to be sandwiched between both electrode plates. .

【0013】請求項6の発明は、請求項2ないし5のい
ずれかのものにおいて、スペーサの外周に、その厚さ寸
法よりも小さな厚さ寸法のフィルム支持突条を外周に向
けて突設し、前記絶縁フィルムが前記フィルム支持突条
の両側に重なる状態として前記保持部材をスペーサの外
周を埋めるように射出成型により成型したものであると
ころに特徴を有する。
According to a sixth aspect of the present invention, in any one of the second to fifth aspects, a film supporting ridge having a thickness smaller than a thickness of the spacer is provided on the outer circumference of the spacer so as to project toward the outer circumference. The holding member is formed by injection molding so as to fill the outer circumference of the spacer in a state where the insulating film overlaps both sides of the film supporting ridge.

【0014】請求項7の発明は、請求項2ないし6のい
ずれかのものにおいて、前記保持部材はケーブルを引き
込んで前記電極板に接続する接続スペースを確保するた
めに前記電極板の外周側に膨らみ出る膨出部を形成した
ものであり、前記スペーサの外周に間欠的に係合部を形
成し、この係合部が前記保持部材と係合する形態で射出
成型したところに特徴を有する。
According to a seventh aspect of the present invention, in any one of the second to sixth aspects, the holding member is provided on the outer peripheral side of the electrode plate in order to secure a connection space for pulling in the cable and connecting to the electrode plate. It is characterized in that a bulging portion that bulges out is formed, an engaging portion is intermittently formed on the outer periphery of the spacer, and the engaging portion is injection-molded in a form of engaging with the holding member.

【0015】請求項8の発明は、請求項1ないし7のい
ずれかのものにおいて、電極板と絶縁フィルムとを接着
剤により重ねて接着したところに特徴を有する。
The invention of claim 8 is characterized in that, in any one of claims 1 to 7, the electrode plate and the insulating film are laminated and adhered by an adhesive.

【0016】[0016]

【発明の作用及び効果】請求項1の発明によれば、従来
の扁平型ケース1の外壁1Aに相当する部分に電極板自
体が位置してケース壁面を構成する構造となるから、両
電極板の対向距離を電極構造体の厚さ寸法の最大限に広
げることができる。この結果、両電極板間に生ずる基準
容量C1を小さくできるので、検出距離が長くなり、か
つ、S/N比が大きくなって検出性能を向上させること
ができる。
According to the invention of claim 1, since the electrode plate itself is located in a portion corresponding to the outer wall 1A of the conventional flat type case 1 to form a wall surface of the case, both electrode plates are provided. The facing distance can be maximized in the thickness dimension of the electrode structure. As a result, the reference capacitance C1 generated between both electrode plates can be reduced, so that the detection distance becomes long and the S / N ratio becomes large, so that the detection performance can be improved.

【0017】また、このように電極板で外壁を構成する
ようになっても、電極板の表面には絶縁フィルムが位置
するから電極板が他の導電体に接触して検出不能になる
ことはない。しかも、絶縁フィルムはケースの外壁とは
異なり構造的な応力が生じないから、必要とされる強度
は低くてよく、絶縁が確保できる範囲内で十分に薄くす
ることができる。このことは、電極構造体の全体の厚さ
寸法を薄くできるだけでなく、電極板と被検出体との間
の空間の誘電率εを、厚いケース外壁が存在する場合に
比べて十分に小さくできることを意味するから、検出性
能を一層向上させることができる。
Further, even if the outer wall is constituted by the electrode plate as described above, since the insulating film is located on the surface of the electrode plate, the electrode plate may come into contact with other conductors and become undetectable. Absent. Moreover, since the insulating film does not generate structural stress unlike the outer wall of the case, the required strength may be low, and the insulating film can be made sufficiently thin within a range where insulation can be secured. This means that not only can the overall thickness of the electrode structure be reduced, but the dielectric constant ε of the space between the electrode plate and the object to be detected can be made sufficiently smaller than in the case where a thick case outer wall is present. Therefore, the detection performance can be further improved.

【0018】請求項2の発明では、両電極板の間には真
空に次いで誘電率εが小さい空気が位置することになる
から、両電極間の容量を一層小さくすることができ、検
出性能の向上に一層効果的である。
According to the second aspect of the present invention, the air having the smallest dielectric constant ε is positioned between the two electrode plates next to the vacuum, so that the capacitance between the two electrodes can be further reduced and the detection performance can be improved. More effective.

【0019】請求項3の発明では、両電極板の間に保持
枠部が位置するから、両電極板の間隔を一定にすること
ができ、それらの間の容量の一定化によって検出精度が
高まる。また、この構成の場合、保持枠部に電極板を接
着すると、電極板がより変形しにくくなるので、電極間
容量の一定化に一層効果的である。なお、この場合に
は、誘電率εが空気よりも大きな材料が両電極板間に部
分的に位置することになるが、枠状とすることによりの
両電極板の間の容量C1の上昇は小さく抑えることがで
きる。
According to the third aspect of the invention, since the holding frame portion is located between the two electrode plates, the distance between the two electrode plates can be made constant, and the detection accuracy is improved by making the capacitance between them constant. In addition, in the case of this configuration, if the electrode plate is bonded to the holding frame portion, the electrode plate is less likely to be deformed, so that it is more effective in making the inter-electrode capacitance constant. In this case, a material having a dielectric constant ε larger than air is partially located between the electrode plates, but the increase in the capacitance C1 between the electrode plates due to the frame shape is suppressed to a small level. be able to.

【0020】請求項4の発明では、両電極板と保持部材
とによって囲まれる空間が通気路を通して外部に連通さ
れる。このため、電極構造体の周囲の温度や圧力変化が
あったとしても、内部の空気の膨張や収縮によって電極
板が変形することがなく、電極板間の距離変動を防止で
きる。
In the invention of claim 4, the space surrounded by both the electrode plates and the holding member is communicated with the outside through the ventilation passage. Therefore, even if there is a change in temperature or pressure around the electrode structure, the electrode plates are not deformed by the expansion and contraction of the air inside, and it is possible to prevent the distance variation between the electrode plates.

【0021】また、請求項5の発明では、両電極板の間
に発泡樹脂体が位置するから、両電極板の間隔を一定に
保持できて検出精度がより高まる。また、この発泡樹脂
体を独立気泡を含むものとしておくことにより、電極構
造体の周囲の温度・圧力変化があっても独立気泡内の圧
力変化に留めることができるので、発泡樹脂体自体の変
形が発生しにくく、電極板の間隔保持に効果的である。
なお、この場合も、電極板を発泡樹脂体に接着しておく
ことが、より好ましい。
Further, in the invention of claim 5, since the foamed resin body is located between the two electrode plates, the distance between the two electrode plates can be kept constant, and the detection accuracy is further improved. In addition, by making this foamed resin body contain closed cells, even if there is a change in temperature and pressure around the electrode structure, it is possible to keep the pressure change in the closed cells, so that the deformation of the foamed resin body itself Is less likely to occur and is effective in maintaining the distance between the electrode plates.
In this case as well, it is more preferable to bond the electrode plate to the foamed resin body.

【0022】請求項6の発明では、保持部材が射出成型
によりスペーサの外周部を埋めるように成型されると
き、射出された樹脂の熱によって絶縁フィルムが軟化し
ながらスペーサのフィルム支持突条の両側に押し付けら
れて密着する。そして、樹脂が冷却されると固化しつつ
成型収縮するため、収縮する保持部材によって絶縁フィ
ルムがスペーサのフィルム支持突条に押さえ付けられて
一層密着性が高まる。また、絶縁フィルムも成型後に全
体に熱収縮するため、電極板との密着性が高まると共
に、平面部のたるみがなくなる。
According to the sixth aspect of the present invention, when the holding member is molded by injection molding so as to fill the outer peripheral portion of the spacer, the insulating film is softened by the heat of the injected resin and both sides of the film supporting ridge of the spacer are softened. It is pressed against and sticks. Then, when the resin is cooled, it solidifies and shrinks during molding, so that the insulating member is pressed against the film supporting ridges of the spacer by the shrinking holding member, and the adhesiveness is further enhanced. Further, since the insulating film also undergoes thermal shrinkage as a whole after molding, the adhesion with the electrode plate is improved and the slack of the flat portion is eliminated.

【0023】なお、この場合、保持部材を構成する樹脂
を、その溶融温度が絶縁フィルムよりも高いものとして
おくと、射出成型時に絶縁フィルムの周縁が溶けて保持
部材と一体化するため、密着性をより高めることができ
る。このための、樹脂の組み合わせとしては、絶縁フィ
ルムとしてABS(アクリロニトリルブタジエンスチレ
ン)樹脂シートを使用し、保持部材用樹脂としてPES
(ポリエーテルサフフォン)を使用できる。これらの樹
脂は非結晶性樹脂であるから明確な融点はないが、AB
Sの射出成形樹脂温度は220℃程度であり、PESの
射出成形樹脂温度は340℃程度である。したがって金
型内に流動したPESの熱により絶縁フィルム先端の熱
を授受しやすい部分が溶融し互いに融合させることがで
きる。なお、絶縁フィルム周縁部の先端を薄く形成して
おけば溶融に必要な熱量が少なくて済み、より融合が図
り得やすい。その他、形状や厚みによって材料の組み合
わせを種々選択することができる。
In this case, if the resin constituting the holding member is made to have a melting temperature higher than that of the insulating film, the peripheral edge of the insulating film is melted during injection molding and integrated with the holding member, so that the adhesiveness is improved. Can be increased. For this purpose, as a combination of resins, an ABS (acrylonitrile butadiene styrene) resin sheet is used as the insulating film, and PES is used as the resin for the holding member.
(Polyether suffphone) can be used. Since these resins are non-crystalline resins, there is no clear melting point.
The injection molding resin temperature of S is about 220 ° C, and the injection molding resin temperature of PES is about 340 ° C. Therefore, the heat of the PES flowing in the mold melts the portions of the tip of the insulating film that are likely to receive and transfer heat, and can fuse them together. If the tip of the peripheral edge of the insulating film is formed thin, the amount of heat required for melting will be small and fusion will be easier to achieve. In addition, various combinations of materials can be selected depending on the shape and thickness.

【0024】また、請求項7の発明では、保持部材には
電極板の外周側に膨らみ出る膨出部が形成され、ここに
ケーブルを引き込んで電極板に接続する接続スペースが
確保されている。このように構造であると、保持部材を
円形等の単純な形状とすることができなくなるため、保
持部材を射出成型した後の冷却収縮時に保持部材が膨出
部の根本部分でスペーサから離れるようになることがあ
る。ところが、この発明のように、スペーサの外周に間
欠的に係合部を形成し、この係合部が保持部材と係合す
る形態で成型することにより、剥がれを未然に防止でき
る。
Further, in the invention of claim 7, the holding member is formed with a bulging portion bulging toward the outer peripheral side of the electrode plate, and a connection space for connecting the cable by drawing the cable therein is secured. With such a structure, the holding member cannot be made into a simple shape such as a circle, so that the holding member is separated from the spacer at the root part of the bulging portion during cooling contraction after injection molding the holding member. May become. However, as in the present invention, peeling can be prevented in advance by intermittently forming the engaging portion on the outer periphery of the spacer and molding the engaging portion so as to engage with the holding member.

【0025】そして、請求項8の発明では、電極板と絶
縁フィルムとが接着剤により接着されているから、電極
板の剛性が高まり、電極板の変形による検知性能の低下
を防止することができる。
Further, in the invention of claim 8, since the electrode plate and the insulating film are adhered to each other by the adhesive, the rigidity of the electrode plate is enhanced and the deterioration of the detection performance due to the deformation of the electrode plate can be prevented. .

【0026】[0026]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて説明する。 <第1実施形態>本発明の第1実施形態を図1ないし図
8によって説明する。10は扁平なスペーサであって、
環状枠部11の一側部から径方向に突出する膨出部であ
る膨出枠部12を備える。膨出枠部12は中央で分断状
態にあり、環状枠部11側を支点にして膨出枠部12の
分断部が開閉するように弾性変形する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. <First Embodiment> A first embodiment of the present invention will be described with reference to FIGS. 10 is a flat spacer,
A bulging frame portion 12 that is a bulging portion that radially projects from one side portion of the annular frame portion 11 is provided. The bulging frame portion 12 is in a divided state at the center, and is elastically deformed so that the dividing portion of the bulging frame portion 12 opens and closes with the annular frame portion 11 side as a fulcrum.

【0027】環状枠部11の内周側には、その環状枠部
11の厚さ寸法よりも僅かに小さな厚さ寸法の電極支持
突条13がほぼ全周にわたって内側に向けて突出してい
る。一方、環状枠部11の外周側には、やはり環状枠部
11の厚さ寸法よりも僅かに小さな厚さ寸法のフィルム
支持突条14が膨出枠部12の外周を含めて全周にわた
って外側に向けて突設されている。また、この環状枠部
11の外周側には、例えば計4個の係合部に相当する係
合突部15が間欠的に突設され、特にそのうちの2個が
膨出枠部12との連結部分に近い根本部分に位置してい
る。
On the inner peripheral side of the annular frame portion 11, an electrode supporting ridge 13 having a thickness dimension slightly smaller than the thickness dimension of the annular frame portion 11 projects inwardly over substantially the entire circumference. On the other hand, on the outer peripheral side of the annular frame portion 11, the film supporting ridges 14 having a thickness dimension slightly smaller than the thickness dimension of the annular frame portion 11 are also outside along the entire periphery including the outer periphery of the bulging frame portion 12. Is projected toward. Further, on the outer peripheral side of the annular frame portion 11, for example, engaging protrusions 15 corresponding to a total of four engaging portions are intermittently projected, and particularly two of them are the bulging frame portion 12. It is located at the root part near the connecting part.

【0028】膨出枠部12は分断部を閉じた形にしてケ
ーブル20の接続スペースを形成するようになってお
り、ここには環状枠部11とは反対側の端部に2つ割の
筒型をなすケーブル導入筒部16が一体に形成されてい
る。なお、このケーブル導入筒部16の内周面には、図
6に示すように、ケーブル20の挿通方向に沿って通気
溝16Aが形成され、環状枠部11内の空間をその通気
溝16A(通気路)を通して外部に連通可能としてい
る。
The bulging frame portion 12 is designed to form a connection space for the cable 20 by closing the dividing portion. Here, the bulging frame portion 12 is divided into two parts at the end opposite to the annular frame portion 11. A tubular cable introduction tubular portion 16 is integrally formed. As shown in FIG. 6, a ventilation groove 16A is formed along the insertion direction of the cable 20 on the inner peripheral surface of the cable introducing tubular portion 16, and the ventilation groove 16A ( It is possible to communicate with the outside through a ventilation path.

【0029】上記環状枠部11には、その上下に円形を
なす2枚の電極板30,30が宛われ、両電極板30,
30によって内周側の電極支持突条13を上下から挟み
付けるようになっている。各電極板30は金属製で同一
形状をなし、外周縁に接続片部31が突設されている。
一方の電極板30の接続片部31にはケーブル20の芯
線21が半田付けされ、他方の電極板30の接続片部3
1にはケーブル20のシールド用編組線22が半田付け
されている。なお、これらの電極板30は各接続片部3
1が前記膨出枠部12内に位置し、かつ、各接続片部3
1が異なる方向を指向するように互いに角度をずらして
配置されている(図2参照)。
Two electrode plates 30 and 30 having a circular shape are provided on the annular frame portion 11 above and below, respectively.
The inner electrode support projections 13 are sandwiched by 30 from above and below. Each electrode plate 30 is made of metal and has the same shape, and a connecting piece portion 31 is projectingly provided on the outer peripheral edge thereof.
The core wire 21 of the cable 20 is soldered to the connection piece portion 31 of the one electrode plate 30, and the connection piece portion 3 of the other electrode plate 30 is soldered.
The shield braided wire 22 of the cable 20 is soldered to the wire 1. In addition, these electrode plates 30 are connected to each connecting piece 3
1 is located in the bulging frame portion 12, and each connecting piece portion 3
1 are arranged at different angles so that they point in different directions (see FIG. 2).

【0030】また、上記各電極板30の表面(スペーサ
10とは反対側の面)には、それぞれ絶縁フィルム40
が上下から積層されている。この絶縁フィルム40は例
えばABS樹脂製であり、図3及び図7に示すようにス
ペーサ10の環状枠部11と膨出枠部12とによって囲
まれる領域をぴったりと覆う形状となっている。この絶
縁フィルム40の外周縁はスペーサ10の外周縁を完全
に覆うだけでなく、スペーサ10の外周側のフィルム支
持突条14の側面をも覆うに至る大きさである。そし
て、その最外周縁は予め薄肉になるように成型されてお
り、図7に示すように、フィルム支持突条14の側面に
ぴったりと密着している。なお、この絶縁フィルム40
の外周縁部は、後述する保持部材50の成型前には図8
に示すようにスペーサ10に重ねたときフィルム支持突
条14の根本部との間に隙間Gを残すような形状に予め
成型されて、その状態で成型型70内にセットされてい
るが(図8参照)、成型後には前述の図7に示すように
ぴったりと密着した状態となるようにしている。
The insulating film 40 is formed on the surface of each electrode plate 30 (the surface opposite to the spacer 10).
Are stacked from above and below. The insulating film 40 is made of ABS resin, for example, and has a shape that exactly covers the region surrounded by the annular frame portion 11 and the bulging frame portion 12 of the spacer 10 as shown in FIGS. 3 and 7. The outer peripheral edge of the insulating film 40 not only completely covers the outer peripheral edge of the spacer 10 but also covers the side surface of the film supporting protrusion 14 on the outer peripheral side of the spacer 10. The outermost peripheral edge of the film is preliminarily molded to be thin, and as shown in FIG. In addition, this insulating film 40
The outer peripheral edge portion of FIG.
As shown in FIG. 5, the film is preliminarily molded in such a shape that a gap G is left between the film supporting ridge 14 and the root of the film supporting ridge 14 when the spacer 10 is overlaid, and is set in the molding die 70 in that state (see FIG. 8)), after the molding, as shown in FIG.

【0031】スペーサ10の外周側には保持部材50が
全周を取り巻くように位置している。これはスペーサ1
0の両側にケーブル20が接続された電極板30,30
と絶縁フィルム40,40とを重ねた状態としてこれら
を射出成形用の成型型70内に配置し、例えばPES樹
脂の射出成型により形成したものである。この保持部材
50の成型時、PES樹脂の射出成型温度は約340℃
であって、絶縁フィルム40を構成するABS樹脂の射
出成型温度である約220℃よりも高いから、絶縁フィ
ルム40が軟化するだけでなく先端部において溶融し、
PES樹脂と混ざり合うことになる。この結果、保持部
材50にぴったりと密着する。また、PES樹脂の冷却
時には、成型収縮が生ずるから、図7に示すように保持
部材50のうちスペーサ10のフィルム支持突条14の
両側に位置する部分51が絶縁フィルム40をフィルム
支持突条14側に押さえ付けるようになり、絶縁フィル
ム40がスペーサ10に密着する。
A holding member 50 is located on the outer peripheral side of the spacer 10 so as to surround the entire circumference. This is spacer 1
Electrode plates 30, 30 with cables 20 connected to both sides of 0
The insulating film 40 and the insulating film 40 are placed in a mold 70 for injection molding, and are formed by injection molding of PES resin, for example. When molding the holding member 50, the injection molding temperature of the PES resin is about 340 ° C.
Since the temperature is higher than about 220 ° C., which is the injection molding temperature of the ABS resin forming the insulating film 40, the insulating film 40 not only softens but also melts at the tip,
Will be mixed with PES resin. As a result, it comes into close contact with the holding member 50. Further, when the PES resin is cooled, molding shrinkage occurs. Therefore, as shown in FIG. 7, the portions 51 of the holding member 50 located on both sides of the film supporting ridge 14 of the spacer 10 cause the insulating film 40 to move to the film supporting ridge 14. Then, the insulating film 40 comes into close contact with the spacer 10.

【0032】なお、上記保持部材50はスペーサ10の
環状枠部11とこれから膨出する膨出枠部12とを一体
に取り巻く形状をしているから、PES樹脂の成型収縮
時に、図2に矢印で示すように、膨出枠部12の根本部
分において保持部材50がスペーサ10から離れようと
する力が作用することがある。これに鑑み、本実施形態
ではスペーサ10に係合突部15を間欠的に形成し、こ
の係合突部15が保持部材50と係合する形態としたか
ら、上述のような力が働いても保持部材50の剥離に至
ることはない。
Since the holding member 50 has a shape that integrally surrounds the annular frame portion 11 of the spacer 10 and the bulging frame portion 12 that bulges from this, the arrow in FIG. As shown by, the force of the holding member 50 tending to separate from the spacer 10 may act on the root portion of the bulging frame portion 12. In view of this, in the present embodiment, the engaging projection 15 is intermittently formed on the spacer 10, and the engaging projection 15 engages with the holding member 50. Therefore, the force as described above acts. However, the holding member 50 is not separated.

【0033】また、保持部材50の射出成型時には、射
出された樹脂の圧力によってスペーサ10の環状枠部1
1を外側から内側に潰すような力が作用するが、この力
は電極板30によって内側から支えられた環状枠部11
により受け止められる。ここで、電極板30は金属製で
あるから圧力を十分に受け止めることができる上に、熱
伝導性に優れるから、環状枠部11の温度上昇を抑えて
その硬度を高く維持させ、総じて環状枠部11の変形を
確実に防止する作用がある。
During the injection molding of the holding member 50, the annular frame portion 1 of the spacer 10 is pressed by the pressure of the injected resin.
A force that crushes 1 from the outside to the inside acts, but this force is applied to the annular frame portion 11 supported from the inside by the electrode plate 30.
Accepted by. Here, since the electrode plate 30 is made of metal, it can sufficiently receive pressure and has excellent thermal conductivity, so that the temperature increase of the annular frame portion 11 is suppressed and the hardness thereof is maintained high. There is an effect of surely preventing the deformation of the portion 11.

【0034】上記構成の本実施形態によれば、図11に
示した従来の扁平型ケース1の外壁1Aに相当する部分
に電極板30,30自体が位置してケース壁面を構成す
る構造となるから、両電極板30,30の対向距離をこ
の電極構造体の厚さ寸法Dの最大限に広げることができ
る。しかも、両電極板30,30間の空間は誘電率が小
さな空気が介在するだけであるから、両電極板30,3
0間に生ずる容量を極めて小さくすることができる。こ
の結果、静電容量型近接センサとして構成したときの検
出距離が長くなり、かつ、S/N比が大きくなって検出
性能を向上させることができる。
According to the present embodiment having the above-described structure, the electrode plates 30 and 30 themselves are located in a portion corresponding to the outer wall 1A of the conventional flat type case 1 shown in FIG. 11 to form a case wall surface. Therefore, the facing distance between the two electrode plates 30 and 30 can be maximized in the thickness dimension D of the electrode structure. Moreover, since air having a small dielectric constant is only present in the space between the two electrode plates 30, 30,
The capacitance generated between zero can be made extremely small. As a result, the detection distance when configured as a capacitance type proximity sensor becomes long, and the S / N ratio becomes large, so that the detection performance can be improved.

【0035】また、このように電極板30で外壁を構成
するようになっても、電極板30の表面には絶縁フィル
ム40が位置するから電極板30が他の導電体に接触し
て検出不能になることはない。しかも、絶縁フィルム4
0は構造部材ではないから、必要とされる強度は低くて
よく、絶縁が確保できる範囲内で十分に薄くすることが
できる。このことは、電極構造体の全体の厚さ寸法Dを
薄くできるだけでなく、電極板30と被検出体(ウエ
ハ)との間の空間の誘電率εを、従来のような厚いケー
ス外壁1Aが存在する場合に比べて十分に小さくできる
ことを意味するから、検出性能を一層向上させることが
できることになる。
Even if the outer wall is constituted by the electrode plate 30 as described above, the insulating film 40 is located on the surface of the electrode plate 30, so that the electrode plate 30 comes into contact with another conductor and cannot be detected. Never be. Moreover, insulating film 4
Since 0 is not a structural member, the required strength may be low, and it can be made sufficiently thin within the range where insulation can be secured. This not only makes it possible to reduce the overall thickness dimension D of the electrode structure, but also makes the permittivity ε of the space between the electrode plate 30 and the object to be detected (wafer) larger than the conventional case outer wall 1A. This means that the detection performance can be further improved because it can be made sufficiently smaller than when it exists.

【0036】なお、静電容量型近接センサとして使用す
る場合には、電極板30と被検出体(ウエハ)との間に
高電圧が印加されることがある。このような場合、絶縁
フィルム40が電極板30をぴったりと覆っておらず、
電極板30や保持部材50との間に僅かな隙間でもある
と、その隙間を通じて放電が発生するおそれがある。こ
の点に鑑み、本実施形態では、保持部材50はスペーサ
10の外周を埋めるようにして射出成型するようにし、
その際に、同時に絶縁フィルム40をスペーサ10のフ
ィルム支持突条14の両側に押さえ付けるようにした。
この結果、保持部材50が成型されるとき、射出された
樹脂の熱によって絶縁フィルム40が軟化しながらスペ
ーサ10のフィルム支持突条14の両側に押し付けられ
て密着する。そして、樹脂が冷却されると固化しつつ成
型収縮するため、収縮する保持部材50によって絶縁フ
ィルム40がスペーサ10のフィルム支持突条14に押
さえ付けられて一層密着性が高まる。また、絶縁フィル
ム40も成型後に全体に熱収縮するため、電極板30と
の密着性が高まると共に、平面部のたるみがなくなる。
この結果、電極板30が絶縁フィルム40によって隙間
なく覆われることになるから、電極板30と被検出体
(ウエハ)との間に放電が発生することを確実に防止す
ることができる。
When used as a capacitance type proximity sensor, a high voltage may be applied between the electrode plate 30 and the object to be detected (wafer). In such a case, the insulating film 40 does not cover the electrode plate 30 exactly,
If there is a slight gap between the electrode plate 30 and the holding member 50, discharge may occur through the gap. In view of this point, in the present embodiment, the holding member 50 is formed by injection molding so as to fill the outer periphery of the spacer 10.
At that time, the insulating film 40 was simultaneously pressed against both sides of the film supporting protrusion 14 of the spacer 10.
As a result, when the holding member 50 is molded, the insulating film 40 is pressed against both sides of the film supporting ridge 14 of the spacer 10 while being softened by the heat of the injected resin. When the resin is cooled, the resin solidifies and shrinks, so that the insulating member 40 is pressed against the film supporting ridges 14 of the spacer 10 by the shrinking holding member 50, and the adhesiveness is further enhanced. In addition, since the insulating film 40 also undergoes thermal contraction as a whole after molding, the adhesiveness with the electrode plate 30 is improved and the slack of the flat portion is eliminated.
As a result, since the electrode plate 30 is covered with the insulating film 40 without any gap, it is possible to reliably prevent the occurrence of discharge between the electrode plate 30 and the detection target (wafer).

【0037】一方で、上述のように絶縁フィルム40に
よって密閉して、スペーサ10と両電極板30,30と
によって囲まれる空間が外気と独立してしまうと、次の
ような問題を生じさせることもある。すなわち、電極構
造体の周囲の温度や圧力変化があると、電極構造体内部
の空気の膨張や収縮によって電極板30が変形し、両電
極板30,30間の距離が変動することがある。両電極
板30,30間によって構成される容量は常に一定であ
ることが検出精度の面から好ましいから、上述のような
電極板30の変形は精度低下を招くのである。
On the other hand, if the space surrounded by the spacer 10 and the electrode plates 30 and 30 is sealed from the outside air by being sealed with the insulating film 40 as described above, the following problems may occur. There is also. That is, if there is a change in temperature or pressure around the electrode structure, the electrode plate 30 may be deformed due to the expansion or contraction of air inside the electrode structure, and the distance between the two electrode plates 30, 30 may fluctuate. Since it is preferable that the capacitance formed between the two electrode plates 30 and 30 is always constant from the viewpoint of detection accuracy, the deformation of the electrode plate 30 as described above causes a decrease in accuracy.

【0038】これに対して本実施形態では、スペーサ1
0の膨出枠部12部分に通気溝16Aを形成してあるか
ら、両電極板30とスペーサ10とによって囲まれる空
間がその通気溝16Aを通して外部に連通され、内外の
圧力差は発生しない。このため、電極板30、30間の
距離は一定に保たれ、検出精度を十分に高く維持するこ
とができる。しかも、このようの通気溝16Aを形成し
ながら、これは膨出枠部12の先端部分に形成していて
電極板30から最も遠い位置にあるから、この通気溝1
6Aを通して放電が発生するおそれはない。
On the other hand, in this embodiment, the spacer 1
Since the ventilation groove 16A is formed in the bulging frame portion 12 of 0, the space surrounded by both electrode plates 30 and the spacer 10 is communicated to the outside through the ventilation groove 16A, and no pressure difference between the inside and the outside is generated. Therefore, the distance between the electrode plates 30, 30 is kept constant, and the detection accuracy can be kept sufficiently high. Moreover, while forming such a ventilation groove 16A, it is formed at the tip portion of the swelling frame portion 12 and is at the farthest position from the electrode plate 30, so this ventilation groove 1
There is no risk of discharge occurring through 6A.

【0039】<第2実施形態>図9は本発明の第2実施
形態を示している。前記第1実施形態との相違はスペー
サ10の構造にあり、その他の構成は第1実施形態と同
様であるから、相違部分のみを説明する。スペーサ10
の環状枠部11内には、ここでは上半部及び過半部にそ
れぞれ逆T字状及びT字状をなすように保持枠部17が
一体成型されている。この保持枠部17は電極支持突条
13と同一の厚さ寸法であり、上下に電極板30を宛う
と、この保持枠部17が電極支持突条13と共に両電極
板30によって挟まれる。
<Second Embodiment> FIG. 9 shows a second embodiment of the present invention. The difference from the first embodiment lies in the structure of the spacer 10, and other configurations are the same as those of the first embodiment, so only the different parts will be described. Spacer 10
In the annular frame portion 11, here, a holding frame portion 17 is integrally formed in the upper half portion and the upper half portion so as to have an inverted T shape and a T shape, respectively. The holding frame portion 17 has the same thickness dimension as the electrode supporting ridges 13, and when the electrode plates 30 are directed vertically, the holding frame portion 17 is sandwiched between the electrode supporting ridges 13 together with the electrode supporting ridges 13.

【0040】このような構成とすると、電極板30が保
持枠部17によって支えられる形態になるから、両電極
板30の互いに接近する方向への撓み変形を防止するこ
とができる。なお、互いに遠ざかる方向への撓み変形も
防止する必要がある場合には、電極板30を保持枠部1
7に接着剤によって接着してもよい。なお、このような
変形防止は、電極板30間の距離を一定化して電極板3
0間の静電容量の一定化、ひいては検出精度の向上に好
ましい。
With this structure, since the electrode plate 30 is supported by the holding frame portion 17, it is possible to prevent the two electrode plates 30 from bending and deforming toward each other. In addition, when it is necessary to prevent the bending deformation in the direction away from each other, the electrode plate 30 is attached to the holding frame portion 1.
It may be bonded to 7 by an adhesive. In addition, in order to prevent such deformation, the distance between the electrode plates 30 is made constant and the electrode plates 3 are prevented.
This is preferable for making the electrostatic capacitance between 0 constant and for improving the detection accuracy.

【0041】また、このようにスペーサ10に保持枠部
17を設けておくと、後から保持部材50を射出成型す
る際に、スペーサ10に作用する圧力を分散して受ける
ことができ、環状枠部11の変形防止に効果的である。
If the holding frame portion 17 is provided on the spacer 10 in this manner, the pressure acting on the spacer 10 can be dispersed and received when the holding member 50 is injection-molded later, so that the annular frame is provided. It is effective in preventing deformation of the portion 11.

【0042】なお、この保持枠部17の形状はこの実施
形態に示したものに限らず、格子状や蜂の巣状であって
もよく、いかなる密度で形成してもよい。
The shape of the holding frame portion 17 is not limited to that shown in this embodiment, but may be a lattice shape, a honeycomb shape, or any density.

【0043】<第3実施形態>図10は本発明の第3実
施形態を示す。前記第1実施形態との相違は、スペーサ
10内に発泡樹脂体60を挿入したところにあり、その
他の構成は前記第1実施形態と同様である。
<Third Embodiment> FIG. 10 shows a third embodiment of the present invention. The difference from the first embodiment is that the foamed resin body 60 is inserted into the spacer 10, and other configurations are the same as in the first embodiment.

【0044】この発泡樹脂体60は多数の独立気泡を含
む発泡樹脂板からプレスによって円形に打ち抜いたもの
で、その厚さ寸法は電極支持突条13のそれと同一にし
てある。このように発泡樹脂体60をスペーサ10の環
状枠部11内に配置すると、第2実施形態の保持枠部1
7と同様に電極板30の変形防止に効果的である。この
場合も、電極板30を発泡樹脂体60に接着するとより
効果的となる。
The foamed resin body 60 is punched out in a circular shape by pressing from a foamed resin plate containing a large number of closed cells, and the thickness dimension thereof is the same as that of the electrode supporting protrusion 13. When the foamed resin body 60 is thus arranged in the annular frame portion 11 of the spacer 10, the holding frame portion 1 of the second embodiment is arranged.
7 is effective in preventing deformation of the electrode plate 30. Also in this case, it is more effective to bond the electrode plate 30 to the foamed resin body 60.

【0045】また、一般に樹脂の誘電率は空気よりも大
きいから、発泡樹脂により構成した発泡樹脂体60は発
泡していない同樹脂の板よりも誘電率が小さくなるの
で、電極板30間の静電容量(基準容量C1)をより小
さくして検出性能の向上に寄与する。しかも、その際、
独立気泡を含むものとしてあるから、発泡樹脂体60の
周囲の温度・圧力変化があっても独立気泡内の圧力変化
に留めてことができ、発泡樹脂体60自体の変形が発生
しにくく、電極板30の間隔保持に効果的である。
Further, since the dielectric constant of the resin is generally larger than that of air, the foamed resin body 60 made of the foamed resin has a smaller dielectric constant than a plate of the same resin which is not foamed, so that the static electricity between the electrode plates 30 is reduced. The capacitance (reference capacitance C1) is made smaller to contribute to the improvement of detection performance. Moreover, at that time,
Since it includes closed cells, even if there is a change in temperature and pressure around the foamed resin body 60, it can be kept to the pressure change in the closed cells, and the foamed resin body 60 itself is less likely to be deformed. This is effective in maintaining the distance between the plates 30.

【0046】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.

【0047】(1)上記各実施形態では、電極板30と
絶縁フィルム40とは別々の部品として扱うようにした
が、これに限らず、予め両者を接着剤によって積層状態
に一体化しておいてもよく、或いは可撓性ある絶縁フィ
ルムに銅箔を積層一体化したフレキシブルプリント基板
によって電極板と絶縁フィルムとを併せて構成してもよ
い。
(1) In each of the above-mentioned embodiments, the electrode plate 30 and the insulating film 40 are handled as separate parts, but the invention is not limited to this, and both are integrated in advance in a laminated state with an adhesive. Alternatively, the electrode plate and the insulating film may be combined together by a flexible printed board in which a copper foil is laminated and integrated on a flexible insulating film.

【0048】(2)前記各実施形態では、スペーサ10
の外周部に係合突部15を突設したが、これは突部に限
らず、凹部、切り欠き、貫通した孔等であってもよく、
要は、スペーサ10の外周に保持部材50を射出成型す
る際に、樹脂が絡み合って密着性を高める構造としてお
けばよい。なお、上記各実施形態のように係合突部15
としたときには、保持部材50の成型時におけるスペー
サ10の位置決め機能を併せて発揮させることができる
という利点がある。
(2) In each of the above embodiments, the spacer 10
Although the engaging protrusion 15 is provided on the outer peripheral portion of the above, this is not limited to the protrusion, and may be a recess, a notch, a through hole, or the like.
In short, when the holding member 50 is injection-molded on the outer periphery of the spacer 10, the resin may be entangled with each other to enhance the adhesiveness. In addition, as in the above-described respective embodiments, the engaging protrusion 15
In that case, there is an advantage that the positioning function of the spacer 10 at the time of molding the holding member 50 can be exerted together.

【0049】(3)前記各実施形態では、スペーサ10
と保持部材50とで電極板30の外周を保持するように
したが、各実施形態におけるスペーサ10を省略し、例
えばインサート成型によって一対の電極板の外周縁部を
保持部材内に埋設し、もって両電極板を対向状態に保持
するようにしてもよい。
(3) In each of the above embodiments, the spacer 10
Although the outer periphery of the electrode plate 30 is held by the holding member 50 and the holding member 50, the spacer 10 in each embodiment is omitted, and the outer peripheral edge portions of the pair of electrode plates are embedded in the holding member by, for example, insert molding. You may make it hold | maintain both electrode plates in the opposing state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示す全体の分解斜視図FIG. 1 is an overall exploded perspective view showing a first embodiment of the present invention.

【図2】同じく一部破断した平面図FIG. 2 is a plan view of the same, partially broken away.

【図3】同じく縦断面図[FIG. 3] Similarly, a vertical sectional view

【図4】スペーサの平面図FIG. 4 is a plan view of a spacer.

【図5】スペーサの側面図FIG. 5 is a side view of the spacer.

【図6】図2中のVI-VI線で切断した断面図FIG. 6 is a sectional view taken along line VI-VI in FIG.

【図7】電極構造体の部分拡大縦断面図FIG. 7 is a partially enlarged vertical sectional view of an electrode structure.

【図8】保持部材の射出成型時の様子を示す部分拡大縦
断面図
FIG. 8 is a partially enlarged vertical sectional view showing a state during injection molding of a holding member.

【図9】本発明の第2実施形態を示すスペーサの平面図FIG. 9 is a plan view of a spacer showing a second embodiment of the present invention.

【図10】本発明の第3実施形態を示す電極構造体の部
分拡大縦断面図
FIG. 10 is a partially enlarged vertical sectional view of an electrode structure showing a third embodiment of the present invention.

【図11】従来例を示す断面図及び等価回路図FIG. 11 is a sectional view and an equivalent circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

10…スペーサ 11…環状枠部 12…膨出枠部(膨出部) 14…フィルム支持突条(支持突条) 15…係合突部(係合部) 16A…通気溝(通気路) 20…ケーブル 30…電極板 31…接続片部 40…絶縁フィルム 50…保持部材 60…発泡樹脂体 10 ... Spacer 11 ... Ring frame 12 ... Bulging frame portion (bulging portion) 14 ... Film support ridge (support ridge) 15 ... Engagement protrusion (engagement portion) 16A ... Ventilation groove (ventilation path) 20 ... Cable 30 ... Electrode plate 31 ... Connection piece 40 ... Insulating film 50 ... Holding member 60 ... Foamed resin body

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極板が、その外周部に設けた保
持部材によって対向状態に保持されると共に、各電極板
の相手方との対向面とは反対側の面に絶縁フィルムが積
層されていることを特徴とする静電容量型近接スイッチ
の電極構造体。
1. A pair of electrode plates are held in a facing state by a holding member provided on the outer periphery of the pair of electrode plates, and an insulating film is laminated on a surface opposite to a facing surface of each electrode plate. The electrode structure of the capacitance type proximity switch, which is characterized in that
【請求項2】 前記保持部材は、前記電極板の外周縁部
に挟まれる中空の環状枠部を有したスペーサの外周に設
けられていることを特徴とする請求項1記載の静電容量
型近接スイッチの電極構造体。
2. The capacitance type according to claim 1, wherein the holding member is provided on an outer periphery of a spacer having a hollow annular frame portion sandwiched by an outer peripheral edge portion of the electrode plate. Proximity switch electrode structure.
【請求項3】 前記スペーサは、環状枠部内に前記両電
極板に挟まれる保持枠部が一体に形成されていることを
特徴とする請求項2記載の静電容量型近接スイッチの電
極構造体。
3. The electrode structure of the capacitance type proximity switch according to claim 2, wherein the spacer has a holding frame portion which is sandwiched between the electrode plates and is integrally formed in an annular frame portion. .
【請求項4】 前記保持部材には、両電極板と保持部材
とによって囲まれる空間を外部に連通させる通気路が形
成されていることを特徴とする請求項2又は3記載の静
電容量型近接スイッチの電極構造体。
4. The capacitance type according to claim 2, wherein the holding member is formed with an air passage for communicating a space surrounded by both the electrode plates and the holding member to the outside. Proximity switch electrode structure.
【請求項5】 前記保持部材内には、独立気泡を含む発
泡樹脂体が前記両電極板に挟まれるように配置されてい
ることを特徴とする請求項1ないし請求項4記載の静電
容量型近接スイッチの電極構造体。
5. The capacitance according to claim 1, wherein a foamed resin body containing closed cells is arranged in the holding member so as to be sandwiched between the electrode plates. Type proximity switch electrode structure.
【請求項6】 前記スペーサの外周にはその厚さ寸法よ
りも小さな厚さ寸法のフィルム支持突条が外側に向けて
突設され、前記絶縁フィルムが前記フィルム支持突条の
両側に重なる状態で前記保持部材が前記スペーサの外周
部を埋めるように射出成型により成型されたものである
ことを特徴とする請求項2ないし請求項5のいずれかに
記載の静電容量型近接スイッチの電極構造体。
6. A film supporting ridge having a thickness smaller than that of the spacer is provided on the outer periphery of the spacer so as to project outward, and the insulating film overlaps both sides of the film supporting ridge. The electrode structure of the capacitance type proximity switch according to claim 2, wherein the holding member is formed by injection molding so as to fill the outer peripheral portion of the spacer. .
【請求項7】 前記スペーサはケーブルを引き込んで前
記電極板に接続する接続スペースを確保するために前記
電極板の外周側に膨らみ出る膨出部を形成したものであ
り、前記スペーサの外周には間欠的に係合部が形成さ
れ、この係合部が前記保持部材と係合する形態で射出成
型されたものであることを特徴とする請求項2ないし請
求項6のいずれかに記載の静電容量型近接スイッチの電
極構造体。
7. The spacer is formed with a bulging portion that bulges out on the outer peripheral side of the electrode plate in order to secure a connection space for drawing in a cable and connecting to the electrode plate. The statically engaging member according to any one of claims 2 to 6, wherein an engaging portion is formed intermittently, and the engaging portion is injection-molded so as to engage with the holding member. Electrode structure of capacitive proximity switch.
【請求項8】 前記電極板と前記絶縁フィルムとは接着
剤により接着されていることを特徴とする請求項1ない
し請求項7のいずれかに記載の静電容量型近接スイッチ
の電極構造体。
8. The electrode structure of a capacitance type proximity switch according to claim 1, wherein the electrode plate and the insulating film are bonded to each other with an adhesive.
JP2001214269A 2001-07-13 2001-07-13 Electrode structure of electrostatic capacity type proximity sensor Pending JP2003031093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214269A JP2003031093A (en) 2001-07-13 2001-07-13 Electrode structure of electrostatic capacity type proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214269A JP2003031093A (en) 2001-07-13 2001-07-13 Electrode structure of electrostatic capacity type proximity sensor

Publications (1)

Publication Number Publication Date
JP2003031093A true JP2003031093A (en) 2003-01-31

Family

ID=19049119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214269A Pending JP2003031093A (en) 2001-07-13 2001-07-13 Electrode structure of electrostatic capacity type proximity sensor

Country Status (1)

Country Link
JP (1) JP2003031093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105472A (en) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd Cooker with touch key
JP2009057175A (en) * 2007-08-31 2009-03-19 Ricoh Co Ltd Sheet stacking device and image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105472A (en) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd Cooker with touch key
JP4591025B2 (en) * 2004-10-05 2010-12-01 パナソニック株式会社 Cooker with touch keys
JP2009057175A (en) * 2007-08-31 2009-03-19 Ricoh Co Ltd Sheet stacking device and image forming device

Similar Documents

Publication Publication Date Title
US8124271B2 (en) Secondary battery
US9231236B2 (en) Battery pack
KR101113381B1 (en) Battery pack
JP2003308815A (en) Battery pack and its manufacturing method
JP2005123197A (en) Secondary battery and manufacturing method of secondary battery
KR101342603B1 (en) Battery pack
JP6268911B2 (en) Sealing body for sealed electrochemical devices
US8835043B2 (en) Battery pack
CN101740800A (en) Battery pack
KR100876266B1 (en) Rechargeable battery
JP2015072880A5 (en)
JP4980599B2 (en) Battery pack case
US7986031B2 (en) Resin molding part and manufacturing method thereof
JP2007073203A (en) Battery pack
JP2012134027A (en) Sealed battery
US8394528B2 (en) Lithium polymer battery
JP2003031093A (en) Electrode structure of electrostatic capacity type proximity sensor
CN105609699A (en) Rechargeable battery
JP3762683B2 (en) Battery pack with built-in current interrupt device
JP5187726B2 (en) Battery pack and manufacturing method thereof
JP2003282047A (en) Current shut-off element and battery pack having this current shut-off element built-in
JP5258813B2 (en) Battery pack
JP2000260421A (en) Pressure sensitive circuit breaking mechanism of battery
CN103996802A (en) Battery pack
JP2009129845A (en) Battery pack and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710