JP2003029001A - Liquid crystal lens element - Google Patents

Liquid crystal lens element

Info

Publication number
JP2003029001A
JP2003029001A JP2001215251A JP2001215251A JP2003029001A JP 2003029001 A JP2003029001 A JP 2003029001A JP 2001215251 A JP2001215251 A JP 2001215251A JP 2001215251 A JP2001215251 A JP 2001215251A JP 2003029001 A JP2003029001 A JP 2003029001A
Authority
JP
Japan
Prior art keywords
liquid crystal
lens element
conductive film
crystal lens
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001215251A
Other languages
Japanese (ja)
Inventor
Toshiro Yukinari
俊郎 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaguchiko Seimitsu Co Ltd
Kawaguchiko Seimitsu KK
Original Assignee
Kawaguchiko Seimitsu Co Ltd
Kawaguchiko Seimitsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaguchiko Seimitsu Co Ltd, Kawaguchiko Seimitsu KK filed Critical Kawaguchiko Seimitsu Co Ltd
Priority to JP2001215251A priority Critical patent/JP2003029001A/en
Publication of JP2003029001A publication Critical patent/JP2003029001A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal lens element which can be driven at lower voltage in a hole having a larger diameter. SOLUTION: In the liquid crystal lens element produced by disposing two transparent substrates each having an opaque conductive film with a circular hole formed on the inner surface and then filling the space between the substrates with a liquid crystal with homogeneous alignment, a transparent conductive film having high resistance is formed in the hole of each opaque conductive film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液晶レンズ素子に関
し、更に詳細には、大きさやレンズ特性の自由度を高め
た液晶レンズ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal lens element, and more particularly to a liquid crystal lens element having a high degree of freedom in size and lens characteristics.

【0002】[0002]

【従来の技術】液晶セル基板上の導電膜を円形の穴あき
形状に除去し、配向膜を塗布しラビング処理を行って液
晶分子を一方向に配向させたネマチック液晶セルは、こ
れに閾値以上の電圧を加えると円形パターンの端付近で
液晶分子が最も傾き、パターンの中央部に向かって傾き
が徐々に小さくなる。そしてこの結果、電極の端部での
実効的な屈折率が小さく、円形パターンの中央部に近づ
くほど屈折率が大きくなるような軸対称的な屈折率分布
が生じ、凸レンズ特性が得られることが知られている
(「O plus E」、1998年10月号、第111
8〜1124頁)。
2. Description of the Related Art A nematic liquid crystal cell in which a conductive film on a liquid crystal cell substrate is removed into a circular perforated shape, an alignment film is applied and a rubbing treatment is performed to orient the liquid crystal molecules in one direction is more than a threshold value. When the voltage is applied, the liquid crystal molecules are most inclined near the end of the circular pattern, and the inclination is gradually reduced toward the center of the pattern. As a result, an effective refractive index at the end of the electrode is small, and a refractive index distribution that is axially symmetric such that the refractive index increases toward the center of the circular pattern, and convex lens characteristics can be obtained. Known ("O plus E", October 1998, No. 111)
8-1124).

【0003】そして、上記のような原理を利用した液晶
素子は、電圧印加により光学的特性を大幅に変えること
ができる液晶レンズとして、焦点可変の液晶レンズや、
光ファイバカップリング素子等として開発されつつあ
る。
A liquid crystal element utilizing the above principle is a liquid crystal lens whose optical characteristics can be drastically changed by applying a voltage.
It is being developed as an optical fiber coupling element.

【0004】具体的な従来の液晶レンズの構成は、図1
に模式的に示す通りであり、Aで見るように円形穴あき
形状を形成した不透明電極2を透明基板1の内側に設
け、Bで見るようにこれらの内側に更に配向膜4を設
け、これらの間にホモジニアス配向液晶5を充填するこ
とにより調製される。
A concrete configuration of a conventional liquid crystal lens is shown in FIG.
As shown in A, an opaque electrode 2 having a circular perforated shape is provided inside the transparent substrate 1 as shown in A, and an alignment film 4 is further provided inside these as shown in B. It is prepared by filling a homogeneous alignment liquid crystal 5 between the two.

【0005】しかしながら、従来の液晶レンズでは、液
晶セルの膜厚とも関係するが、レンズ効果を得るための
穴径は数十μmから数百μmであり、その大きさに制限
があった。また、十分なレンズ効果を得るためには、か
なり強い電圧を印加しなければならないという問題もあ
った。
However, in the conventional liquid crystal lens, although related to the film thickness of the liquid crystal cell, the hole diameter for obtaining the lens effect is several tens μm to several hundreds μm, and the size thereof is limited. There is also a problem that a fairly strong voltage must be applied to obtain a sufficient lens effect.

【0006】液晶レンズを実用化するためには、より大
きな穴径の液晶レンズが製造できるようにすることが必
要であり、また、駆動電圧を低くすることも求められて
いた。
In order to put the liquid crystal lens into practical use, it was necessary to manufacture a liquid crystal lens having a larger hole diameter, and it was also required to lower the driving voltage.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明は、よ
り大きな穴径で、かつ低い電圧で駆動可能な液晶レンズ
素子の提供をその課題とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a liquid crystal lens element which can be driven with a larger hole diameter and a lower voltage.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく研究を行った結果、液晶レンズ素子に使用
される透明基板において、円形穴あき形状の不透明導電
膜の穴内に高抵抗の透明導電膜を施すことにより、液晶
レンズ素子の穴径を大きくしてもレンズ効果を得ること
ができ、また、駆動電圧も低くすることが可能であるこ
とを見出し、本発明を完成した。
The inventors of the present invention have conducted researches to solve the above-mentioned problems, and as a result, in a transparent substrate used for a liquid crystal lens element, the transparent substrate used for a liquid crystal lens element has a high hole inside an opaque conductive film having a circular shape. By applying a transparent conductive film of resistance, it was found that the lens effect can be obtained even if the hole diameter of the liquid crystal lens element is increased, and the driving voltage can be lowered, and the present invention has been completed. .

【0009】すなわち本発明は、内側表面に不透明導電
膜を円形穴あき形状で形成した2枚の透明基板の間に、
ホモジニアス配向液晶を充填してなる液晶レンズ素子に
おいて、当該不透明導電膜の穴内に高抵抗透明導電膜を
設けたことを特徴とする液晶レンズ素子である。
That is, according to the present invention, an opaque conductive film is formed between two transparent substrates each having a circular perforated shape on the inner surface.
In a liquid crystal lens element filled with a homogeneously aligned liquid crystal, a high resistance transparent conductive film is provided in the hole of the opaque conductive film.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施態様を示す図
面と共に本発明を更に詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the drawings showing the embodiments of the present invention.

【0011】図2は、本発明の液晶レンズ素子の一態様
についての構成を示す模式図である。図中、1から5
は、図1と同様で、1は透明基板、2は不透明導電膜、
3は円形穴あき形状、4は配向膜、5はホモジニアス配
向液晶を示し、6は高抵抗透明導電層膜を示す。
FIG. 2 is a schematic diagram showing the structure of one embodiment of the liquid crystal lens element of the present invention. 1 to 5 in the figure
Is the same as FIG. 1, 1 is a transparent substrate, 2 is an opaque conductive film,
Reference numeral 3 denotes a circular perforated shape, 4 an alignment film, 5 a homogeneous alignment liquid crystal, and 6 a high resistance transparent conductive layer film.

【0012】本発明の液晶レンズ素子は、円形穴あき形
状を有する不透明導電膜2の内側に高抵抗透明導電層膜
6を設けた点に特徴があるものである。この高抵抗透明
導電層膜6は、109Ωcm2から1014Ωcm2 程度の
抵抗値を有するものであり、例えば、SnO2とIn2
3の割合を適切に調整して製造したスズ酸化物−インジ
ウム酸化物膜や、酸化亜鉛(ZnO2)膜を利用するこ
とができる。
The liquid crystal lens element of the present invention is characterized in that the high resistance transparent conductive layer film 6 is provided inside the opaque conductive film 2 having a circular hole shape. The high resistance transparent conductive layer film 6 has a resistance value of about 10 9 Ωcm 2 to 10 14 Ωcm 2 , and for example, SnO 2 and In 2 O
A tin oxide-indium oxide film or a zinc oxide (ZnO 2 ) film manufactured by appropriately adjusting the ratio of 3 can be used.

【0013】図2に示す態様による液晶レンズ素子の製
造では、透明基板1の全面に、まず、高抵抗透明導電膜
6を設ける。透明基板1としては、フロートガラス、パ
イレックス(登録商標)ガラス、石英ガラス等のガラス
板や、ポリエステル、ポリエチレンテレフタレート等の
透明な高分子基板等公知のものが使用できる。また、こ
の高抵抗透明導電膜6を設ける方法の一つとしては、周
知のITO膜形成法を、SnO2とIn23の割合を所
定の高抵抗値となるよう調整して利用することができ
る。具体的な被膜の形成方法としては、金属塩のスプレ
ー法、真空蒸着法、スパッタリング法、有機物印刷法等
を使用することができる。
In the manufacture of the liquid crystal lens element according to the embodiment shown in FIG. 2, the high resistance transparent conductive film 6 is first provided on the entire surface of the transparent substrate 1. As the transparent substrate 1, known substrates such as glass plates such as float glass, Pyrex (registered trademark) glass and quartz glass and transparent polymer substrates such as polyester and polyethylene terephthalate can be used. Further, as one of the methods for providing the high resistance transparent conductive film 6, a well-known ITO film forming method is used by adjusting the ratio of SnO 2 and In 2 O 3 to a predetermined high resistance value. You can As a specific method for forming the coating film, a metal salt spray method, a vacuum deposition method, a sputtering method, an organic material printing method, or the like can be used.

【0014】次に、この高抵抗透明導電膜6の上に、円
形の穴3を有する円形穴あき形状の不透明導電膜2を形
成する。この不透明導電膜2を、最初から円形穴あき形
状を形成することは難しいので、まず、高抵抗透明導電
膜6の全面に不透明導電膜を形成し、次に、この上にフ
ォトレジストを塗布し、円形穴あき形状をフォトマスク
し、フォトレジストの手法により穴3の部分のみについ
てフォトレジストと不透明導電膜を順次除去すればよ
い。
Next, a circular perforated opaque conductive film 2 having a circular hole 3 is formed on the high resistance transparent conductive film 6. Since it is difficult to form a circular perforated shape in the opaque conductive film 2 from the beginning, first, the opaque conductive film is formed on the entire surface of the high resistance transparent conductive film 6, and then a photoresist is applied on this. The circular perforated shape may be photomasked, and the photoresist and the opaque conductive film may be sequentially removed only in the portion of the hole 3 by a photoresist method.

【0015】この不透明導電膜2としては、抵抗値の低
い金属皮膜が使用され、例えば、銅や金等、5Ωcm2
程度の金属の薄膜が使用される。なお、前記高抵抗透明
導電膜6であるスズ酸化物−インジウム酸化物膜上から
不透明導電膜2を剥離するために使用されるエッチング
剤としては、不透明導電膜2が銅皮膜の場合は、銅のみ
を剥離するアデカケミカAN−8、アデカケミカCE−
1505(共に旭電化(株)製)等が、金皮膜のとき
は、ヨウ化カリ系のエッチャント等が使用される。な
お、上記の円形穴あき形状における穴3の径は、20μ
mから5mm程度であり、500μmから1mm程度で
あることがより好ましい。
As the opaque conductive film 2, a metal film having a low resistance value is used. For example, copper, gold, etc., 5 Ωcm 2
A thin film of metal is used to the extent. When the opaque conductive film 2 is a copper film, copper is used as an etching agent used for peeling the opaque conductive film 2 from the tin oxide-indium oxide film which is the high resistance transparent conductive film 6. ADEKA CHEMICA AN-8 and ADEKA CHEMICA CE-
When 1505 (both manufactured by Asahi Denka Co., Ltd.) and the like are gold films, a potassium iodide-based etchant or the like is used. The diameter of the hole 3 in the circular perforated shape is 20 μm.
It is about m to 5 mm, and more preferably about 500 μm to 1 mm.

【0016】上記のようにして得られた、内側表面に不
透明導電膜2を円形穴あき形状で形成した透明基板1
は、以下、液晶素子作製の常法に従って液晶レンズ素子
とされる。すなわち、2枚の透明基板1は、配向層4を
設けた後、封止部材を用い、一定の間隔を保ちながら不
透明導電膜側2を対向させて液晶セル体を形成し、この
液晶セル体にホモジニアス配向液晶5を充填することに
より液晶レンズ素子が得られる。
A transparent substrate 1 having an opaque conductive film 2 formed in a circular shape on the inner surface, obtained as described above.
Is hereinafter referred to as a liquid crystal lens element in accordance with a conventional method for producing a liquid crystal element. That is, the two transparent substrates 1 are provided with the alignment layer 4 and then a sealing member is used to form the liquid crystal cell body with the opaque conductive film sides 2 facing each other while keeping a constant interval. A liquid crystal lens element is obtained by filling the homogeneously aligned liquid crystal 5 in the above.

【0017】本発明の液晶レンズ素子において用いられ
るホモジニアス配向液晶5の例としては、P型の誘電異
方性を持った正結晶型液晶が挙げられ、具体的には、A
DK1520C(旭電化(株)製)等を使用することが
できる。
An example of the homogeneously aligned liquid crystal 5 used in the liquid crystal lens element of the present invention is a positive crystal type liquid crystal having a P-type dielectric anisotropy.
DK1520C (manufactured by Asahi Denka Co., Ltd.) or the like can be used.

【0018】また、本発明の液晶レンズ素子の製造にお
ける配向処理や、液晶物質の封入、充填方法等も公知の
方法により行えばよく、更に、封止部材としても、エポ
キシ樹脂等や、アクリル系合成樹脂、ベンゾグアナミン
・メラミン・ホルムアルデヒド縮合物、シリカコート合
成樹脂等の公知のものを使用することができる。
Alignment treatment in the production of the liquid crystal lens element of the present invention, encapsulation of the liquid crystal substance, filling method, etc. may be carried out by known methods. Further, as a sealing member, an epoxy resin or an acrylic resin is used. Known materials such as synthetic resins, benzoguanamine / melamine / formaldehyde condensates, and silica-coated synthetic resins can be used.

【0019】なお、以上の説明においては、透明基板1
上に高抵抗透明被膜6、不透明導電膜2を形成し、次い
でフォトレジストを用いて、不透明導電膜2に円形穴あ
き形状を構成する方法を用いているが、この方法のみに
限られず、他の方法によっても本発明を達成できること
はいうまでもない。例えば、透明基板上の全面に不透明
導電膜を形成した後、フォトレジストを用いて、不透明
導電膜上に円形穴あき形状を構成し、その後全面に高抵
抗透明被膜を形成させ、最後にフォトレジスト上の高抵
抗透明被膜をフォトレジストと共に除去する方法等も採
用できる。
In the above description, the transparent substrate 1
A method of forming a high-resistance transparent film 6 and an opaque conductive film 2 on the top and then forming a circular perforated shape in the opaque conductive film 2 by using a photoresist is used, but the method is not limited to this and other methods may be used. It goes without saying that the present invention can also be achieved by the above method. For example, after forming an opaque conductive film on the entire surface of a transparent substrate, a photoresist is used to form a circular perforated shape on the opaque conductive film, then a high resistance transparent film is formed on the entire surface, and finally a photoresist is used. A method of removing the above high resistance transparent film together with the photoresist can also be adopted.

【0020】[0020]

【作用】本発明の液晶レンズ素子は、不透明導電膜の円
形穴あき形状の穴内に、高抵抗透明被膜を形成させたた
め、穴中央部には電界がかかりにくくなる。このため、
穴周辺部と穴中央では、液晶に加わる電界密度の差が大
きくなり、液晶レンズとしてより好ましい屈折率が得ら
れる。
In the liquid crystal lens element of the present invention, since the high resistance transparent coating is formed in the circular hole-shaped hole of the opaque conductive film, the electric field is less likely to be applied to the central portion of the hole. For this reason,
The difference in the electric field density applied to the liquid crystal becomes large between the peripheral portion of the hole and the center of the hole, and a more preferable refractive index as a liquid crystal lens can be obtained.

【0021】[0021]

【実施例】次に実施例を挙げ、本発明を更に詳しく説明
するが、本発明はこれら実施例に何ら制約されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0022】実 施 例 1 液晶レンズ素子の作製:まず、アセチルアセトンインジ
ュームを50%、アセチルアセトンスズを50%の比率
で含み、これらの合計の金属含有率が1.5%になるア
セチルアセトン溶液を作成した。この溶液を、500℃
まで加温したガラス基板に、微細霧にて噴霧させ、IT
O膜を形成させた。得られたITO膜は、厚み1200
オングストロームで、シート抵抗値が、109Ω・cmの
高抵抗膜であった。
Example 1 Preparation of liquid crystal lens element: First, an acetylacetone solution containing acetylacetone indium at a ratio of 50% and acetylacetone tin at a ratio of 50% and having a total metal content of 1.5% was prepared. did. This solution is heated to 500 ° C
The glass substrate that has been heated up to
An O film was formed. The obtained ITO film has a thickness of 1200.
It was a high resistance film having a sheet resistance value of 10 9 Ω · cm in Angstrom.

【0023】次いで、無電解めっき法により、ニッケル
・銅を、1ミクロン程度の厚みになるよう全面にめっき
した。その後、フォトレジスト(ナガセポジティブレジ
スト3200)をスピンナーで1.5ミクロンの厚みに
塗布し、更に、フォトマスクを用いて、1mmφの部分の
レジストのみを剥離した。この剥離した部分のニッケル
・銅皮膜を、アデカケミカAN−8およびアデカケミカ
CE−1505(旭電化製)を用いてエッチングし、円
状に高抵抗ITO膜を形成した。
Next, nickel / copper was plated on the entire surface by electroless plating to a thickness of about 1 micron. Then, a photoresist (Nagase positive resist 3200) was applied with a spinner to a thickness of 1.5 μm, and further, using a photomask, only the resist of 1 mmφ was peeled off. The nickel / copper coating on the separated portion was etched using ADEKA CHEMICA AN-8 and ADEKA CHEMICA CE-1505 (manufactured by Asahi Denka Co., Ltd.) to form a circular high resistance ITO film.

【0024】さらにその後、SE150(日産化学社
製)を1000オングストロームの厚さに塗布し、乾燥
させた後、ラビング法でホモジニアス配向処理を施し
た。同様に処理した基板を、銅の穴の中心が合うように
配置し、エポキシ接着剤で基板間が20ミクロンになる
ように固定させた。
After that, SE150 (manufactured by Nissan Kagaku Co., Ltd.) was applied to a thickness of 1000 Å, dried, and then subjected to a homogeneous orientation treatment by a rubbing method. Substrates treated in the same manner were placed so that the centers of the copper holes were aligned and fixed with an epoxy adhesive such that the spacing between the substrates was 20 microns.

【0025】最後にその上下基板の間隙にP型液晶物質
ADK1520C(屈折率異方性が、0.20)を入
れ、液晶レンズ素子を作製した。
Finally, a P-type liquid crystal material ADK1520C (having a refractive index anisotropy of 0.20) was put in the gap between the upper and lower substrates to manufacture a liquid crystal lens element.

【0026】実 施 例 2 レンズ効果の確認:実施例1で作製した液晶レンズ素子
について、顕微分光装置OSP−SP200(オリンパ
ス社製)を用い、光路長特性を調べた。光路長特性は液
晶レンズ素子の上下電極間に10から50Vの1kHz
サイン波を加え、このときの光路長を測定することによ
り調べた。
Example 2 Confirmation of lens effect: The optical path length characteristics of the liquid crystal lens element manufactured in Example 1 were examined by using a microspectroscope OSP-SP200 (manufactured by Olympus Corporation). The optical path length characteristic is 10 to 50 V at 1 kHz between the upper and lower electrodes of the liquid crystal lens element.
It was investigated by adding a sine wave and measuring the optical path length at this time.

【0027】この結果、本発明の液晶レンズ素子は、図
1の従来の液晶レンズ素子に比べ、光路長特性の滑らか
なカーブを得られることが明らかになった。また、図1
の従来のレンズ素子では、1mm径のレンズとするため
に25Vの電圧が必要であったが、本発明の液晶レンズ
素子では、1mm径のレンズとするのに必要な電圧は3
Vであった。 参考文献: J.J.A.P Vol.35 No.9A
pp4668〜4672(1996)
As a result, it became clear that the liquid crystal lens element of the present invention can obtain a smooth curve of the optical path length characteristic as compared with the conventional liquid crystal lens element of FIG. Also, FIG.
In the conventional lens element, the voltage of 25 V is required to make a lens having a diameter of 1 mm, but in the liquid crystal lens element of the present invention, the voltage required to make a lens having a diameter of 1 mm is 3
It was V. Reference: JJAP Vol.35 No.9A
pp4668-4672 (1996)

【0028】[0028]

【作用】図1に示す従来の液晶レンズ素子の場合には、
印加電圧をかけていくに従い不透明導電膜周辺での電界
分布は、不透明導電膜端近傍で最も大きく、パターンの
中央部に近くなると共に小さくなるように形成される。
この電界分布による液晶セルのラビング方向の断面にお
ける液晶分子配列、すなわちダイレクター分布の電界分
布に従い形成される。従来の液晶レンズ素子のように不
透明導電膜だけで形成された場合には、電極間距離の数
倍までしか電界は形成されず、液晶分子のダイレクター
の向きを変形させられる領域は、不透明導電膜端近傍
の、100から200μm程度である。そのため大きな
径のパターンでの屈折率分布を変形させることが難し
く、大きな径の液晶レンズ素子の製造は実質的に困難で
あった。また、電界分布密度も不透明導電膜端近傍では
強く、離れるに従い急激に弱くなり、屈折率分布のもな
べ底型の分布になっていた。
In the case of the conventional liquid crystal lens element shown in FIG.
As the applied voltage is applied, the electric field distribution around the opaque conductive film is formed to be the largest near the end of the opaque conductive film, and become smaller near the center of the pattern.
The liquid crystal molecules are formed according to the electric field distribution of the director distribution, that is, the liquid crystal molecule alignment in the cross section of the liquid crystal cell in the rubbing direction due to the electric field distribution. In the case of using only an opaque conductive film like a conventional liquid crystal lens element, an electric field is formed only up to several times the distance between electrodes, and the region where the direction of the director of liquid crystal molecules can be deformed is opaque conductive. It is about 100 to 200 μm near the edge of the film. Therefore, it is difficult to deform the refractive index distribution in a pattern having a large diameter, and it is substantially difficult to manufacture a liquid crystal lens element having a large diameter. Also, the electric field distribution density was strong near the edge of the opaque conductive film, and became weaker as the distance increased, and the refractive index distribution was a pan-bottom type distribution.

【0029】これに対し、穴の部分に高抵抗透明導電膜
を配置した本発明の液晶レンズ素子では、不透明導電膜
間に印加電圧をかけていくに従い、不透明導電膜周辺に
発生する電位分布が、不透明導電膜端近傍と、パターン
中央部間での変化が緩やかになり液晶分子のダイレクタ
ーの傾き分布も、これに伴い緩やかな変化になった。結
果的には、ダイレクター分布見た場合、従来の液晶レン
ズ素子に比べ、サインカーブに近い分布になった。
On the other hand, in the liquid crystal lens element of the present invention in which the high resistance transparent conductive film is arranged in the hole portion, the potential distribution generated around the opaque conductive film is increased as the applied voltage is applied between the opaque conductive films. The change between the edge of the opaque conductive film and the center of the pattern became gentle, and the inclination distribution of the directors of the liquid crystal molecules also changed accordingly. As a result, the director distribution has a distribution closer to a sine curve as compared with the conventional liquid crystal lens element.

【0030】[0030]

【発明の効果】本発明の液晶レンズ素子は、円形穴あき
形状の穴周辺部と穴中央での、液晶に加わる電界密度の
差が大きくなり、穴径を大きくしても液晶レンズとして
作用する。また、液晶レンズとするための駆動電圧を下
げることが可能となり、更に、駆動電圧を変えることに
よりレンズの特性を変えることが可能となる。更にま
た、より好ましい屈折率が得られる。
The liquid crystal lens element of the present invention has a large difference in the electric field density applied to the liquid crystal between the peripheral portion and the center of the hole having a circular perforated shape, and functions as a liquid crystal lens even if the hole diameter is increased. . Further, it becomes possible to reduce the driving voltage for forming the liquid crystal lens, and further it is possible to change the characteristics of the lens by changing the driving voltage. Furthermore, a more preferable refractive index can be obtained.

【0031】従って、本発明の液晶レンズ素子は、コン
パクトディスクプレーヤー、DVDプレーヤー、パソコ
ン等のCD−ROMの読み込み、書き込みに用いられる
ピックアップ部等に有利に利用することができるもので
ある。
Therefore, the liquid crystal lens element of the present invention can be advantageously used for a pickup portion used for reading and writing a compact disc player, a DVD player, a CD-ROM of a personal computer and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の液晶レンズ素子を模式的に示す図面で
ある。図中、Aは、透明基板および不透明導電膜の形状
を示し、Bは液晶レンズ素子の構成を示す。
FIG. 1 is a drawing schematically showing a conventional liquid crystal lens element. In the figure, A shows the shapes of the transparent substrate and the opaque conductive film, and B shows the configuration of the liquid crystal lens element.

【図2】 本発明液晶レンズ素子を模式的に示す図面で
ある。図中、Aは、透明基板、高抵抗透明導電膜および
不透明導電膜の形状を示し、Bは液晶レンズ素子の構成
を示す。
FIG. 2 is a drawing schematically showing a liquid crystal lens element of the present invention. In the figure, A shows the shapes of the transparent substrate, the high resistance transparent conductive film and the opaque conductive film, and B shows the configuration of the liquid crystal lens element.

【符号の説明】[Explanation of symbols]

1 … … 透明基板 2 … … 不透明導電膜 3 … … 円形穴あき形状 4 … … 配向膜 5 … … ホモジニアス配向液晶 6 … … 高抵抗透明導電層膜 以 上 1 ……… Transparent substrate 2 ……… Opaque conductive film 3 ……… Circular perforated shape 4 ... Alignment film 5 ... Homogeneous alignment liquid crystal 6 ... High resistance transparent conductive layer film that's all

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内側表面に不透明導電膜を円形穴あき形
状で形成した2枚の透明基板の間に、ホモジニアス配向
液晶を充填してなる液晶レンズ素子において、当該不透
明導電膜の穴内に高抵抗透明導電膜を設けたことを特徴
とする液晶レンズ素子。
1. A liquid crystal lens element comprising a transparent substrate having an inner surface on which an opaque conductive film is formed in the shape of a circular hole and filled with a homogeneously aligned liquid crystal. A liquid crystal lens element comprising a transparent conductive film.
【請求項2】 高抵抗透明導電膜が、109Ωcm2から
1014Ωcm2 の抵抗値を有するものである請求項第1
項記載の液晶レンズ素子。
2. The high resistance transparent conductive film has a resistance value of 10 9 Ωcm 2 to 10 14 Ωcm 2 .
Item 3. A liquid crystal lens element according to the item.
【請求項3】 高抵抗透明導電膜が、スズ酸化物−イン
ジウム酸化物膜または酸化亜鉛膜である請求項第1項ま
たは第2項記載の液晶レンズ素子。
3. The liquid crystal lens element according to claim 1, wherein the high resistance transparent conductive film is a tin oxide-indium oxide film or a zinc oxide film.
【請求項4】 不透明導電膜が、10-2Ωcm2から1
9Ωcm2 の抵抗値を有するものである請求項第1項
ないし第3項の何れかの項記載の液晶レンズ素子。
4. The opaque conductive film comprises 10 −2 Ωcm 2 to 1
The liquid crystal lens element according to any one of claims 1 to 3, which has a resistance value of 09 Ωcm 2 .
【請求項5】 不透明導電膜が、銅または金の薄膜であ
る請求項第1項ないし第4項の何れかの項記載の液晶レ
ンズ素子。
5. The liquid crystal lens element according to any one of claims 1 to 4, wherein the opaque conductive film is a thin film of copper or gold.
【請求項6】 不透明導電膜に形成した円形穴あき形状
の円の穴径が、20μmから5mmである請求項第1項
ないし第5項記載の液晶レンズ素子。
6. The liquid crystal lens element according to claim 1, wherein a circular hole-shaped circle formed on the opaque conductive film has a hole diameter of 20 μm to 5 mm.
JP2001215251A 2001-07-16 2001-07-16 Liquid crystal lens element Pending JP2003029001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215251A JP2003029001A (en) 2001-07-16 2001-07-16 Liquid crystal lens element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215251A JP2003029001A (en) 2001-07-16 2001-07-16 Liquid crystal lens element

Publications (1)

Publication Number Publication Date
JP2003029001A true JP2003029001A (en) 2003-01-29

Family

ID=19049930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215251A Pending JP2003029001A (en) 2001-07-16 2001-07-16 Liquid crystal lens element

Country Status (1)

Country Link
JP (1) JP2003029001A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024678A (en) * 2003-06-30 2005-01-27 Asahi Glass Co Ltd Polarization control element
KR100832897B1 (en) 2007-05-10 2008-05-28 삼성전기주식회사 Liquid crystal lens and manufacturing method thereof
JP2010044266A (en) * 2008-08-14 2010-02-25 Akita Prefecture Liquid crystal optical device
JP2011017742A (en) * 2009-07-07 2011-01-27 Akita Prefecture Low-voltage drive liquid crystal lens
JP2012058746A (en) * 2011-10-31 2012-03-22 Akita Prefecture Liquid crystal optical lens
CN102981343A (en) * 2012-11-21 2013-03-20 京东方科技集团股份有限公司 Convertible lens and preparation method thereof, as well as two-dimensional and three-dimensional display surface substrate and display device
WO2013140870A1 (en) * 2012-03-19 2013-09-26 日本電気硝子株式会社 Liquid-crystal lens
JP2014032313A (en) * 2012-08-03 2014-02-20 Nippon Electric Glass Co Ltd Method of producing liquid crystal element, and liquid crystal element
CN110275363A (en) * 2019-06-21 2019-09-24 大连海事大学 A kind of low aberrations mode electrode liquid crystal lens
JP2022058422A (en) * 2018-09-21 2022-04-12 クーパーヴィジョン インターナショナル リミテッド Flexible, adjustable refractive power liquid crystal cells and lenses
US11860470B2 (en) 2017-08-11 2024-01-02 Coopervision International Limited Flexible liquid crystal cells and lenses

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024678A (en) * 2003-06-30 2005-01-27 Asahi Glass Co Ltd Polarization control element
KR100832897B1 (en) 2007-05-10 2008-05-28 삼성전기주식회사 Liquid crystal lens and manufacturing method thereof
JP2010044266A (en) * 2008-08-14 2010-02-25 Akita Prefecture Liquid crystal optical device
JP2011017742A (en) * 2009-07-07 2011-01-27 Akita Prefecture Low-voltage drive liquid crystal lens
JP2012058746A (en) * 2011-10-31 2012-03-22 Akita Prefecture Liquid crystal optical lens
US9436033B2 (en) 2012-03-19 2016-09-06 Nippon Electric Glass Co., Ltd. Liquid-crystal lens
WO2013140870A1 (en) * 2012-03-19 2013-09-26 日本電気硝子株式会社 Liquid-crystal lens
JP2013195675A (en) * 2012-03-19 2013-09-30 Nippon Electric Glass Co Ltd Liquid crystal lens
CN104126146A (en) * 2012-03-19 2014-10-29 日本电气硝子株式会社 Liquid-crystal lens
TWI563314B (en) * 2012-03-19 2016-12-21 Nippon Electric Glass Co
JP2014032313A (en) * 2012-08-03 2014-02-20 Nippon Electric Glass Co Ltd Method of producing liquid crystal element, and liquid crystal element
CN102981343B (en) * 2012-11-21 2015-01-07 京东方科技集团股份有限公司 Convertible lens and preparation method thereof, as well as two-dimensional and three-dimensional display surface substrate and display device
US9191653B2 (en) 2012-11-21 2015-11-17 Boe Technology Group Co., Ltd. Switch cell and manufacturing method thereof, display panel, and display device
CN102981343A (en) * 2012-11-21 2013-03-20 京东方科技集团股份有限公司 Convertible lens and preparation method thereof, as well as two-dimensional and three-dimensional display surface substrate and display device
US11860470B2 (en) 2017-08-11 2024-01-02 Coopervision International Limited Flexible liquid crystal cells and lenses
JP2022058422A (en) * 2018-09-21 2022-04-12 クーパーヴィジョン インターナショナル リミテッド Flexible, adjustable refractive power liquid crystal cells and lenses
CN110275363A (en) * 2019-06-21 2019-09-24 大连海事大学 A kind of low aberrations mode electrode liquid crystal lens

Similar Documents

Publication Publication Date Title
JP2003029001A (en) Liquid crystal lens element
JPH0236930B2 (en)
KR20000035416A (en) Dimmer, optical device and electrical device, and manufacturing method thereof
JP2000347216A (en) Liquid crystal display device and its production
JPH0279308A (en) Electrode forming method
JPH07248489A (en) Liquid crystal optical modulator
US5572345A (en) Liquid crystal device for preventing short circuiting therein
JPH09120069A (en) Oriented-film formation of liquid crystal display device
JP2000206515A (en) Light controlling body, optical device, electric device and production of the same
WO2023004874A1 (en) Method for preparing domain wall memory, and domain wall memory
JP4529407B2 (en) Refractive index distribution control optical element
JPH01142617A (en) Cell for liquid crystal display element and its production
JPH11194350A (en) Liquid crystal display element and manufacture therefor
JPS6031117A (en) Optical modulating element and its manufacture
JP2620066B2 (en) Liquid crystal device
JPS60119525A (en) Method for controlling orientation of liquid crystal
JPS62280721A (en) Ferroelectric liquid crystal display panel
JPS61243613A (en) Formation of transparent conducting layer
KR20230163110A (en) Transparent electrode film, apparatus for manufacturing transparent electrode film by selectively transferring an electrode and method thereof
JPH0369923A (en) Electrooptical element
JP2761581B2 (en) Liquid crystal device
KR20130070555A (en) Liquid crystal orientation method and liquid crystal device
JP2562024B2 (en) Liquid crystal device manufacturing method
JPH08248368A (en) Production of liquid crystal optical element, thin film type liquid crystal optical element for optical waveguide and waveguide type optical device
JPS63252308A (en) Manufacture of transparent conducting film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212