JP2003028645A - Method for manufacturing tuning fork type angular velocity sensor element - Google Patents

Method for manufacturing tuning fork type angular velocity sensor element

Info

Publication number
JP2003028645A
JP2003028645A JP2001215111A JP2001215111A JP2003028645A JP 2003028645 A JP2003028645 A JP 2003028645A JP 2001215111 A JP2001215111 A JP 2001215111A JP 2001215111 A JP2001215111 A JP 2001215111A JP 2003028645 A JP2003028645 A JP 2003028645A
Authority
JP
Japan
Prior art keywords
tuning fork
vibration
quartz
tuning
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001215111A
Other languages
Japanese (ja)
Other versions
JP4554118B2 (en
Inventor
Satoshi Umeki
三十四 梅木
Takahiro Inoue
孝弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2001215111A priority Critical patent/JP4554118B2/en
Publication of JP2003028645A publication Critical patent/JP2003028645A/en
Application granted granted Critical
Publication of JP4554118B2 publication Critical patent/JP4554118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a tuning fork type angular velocity sensor constituted so as to easily adjust the detuning frequency of tuning fork vibration with sensor (vertical) vibration. SOLUTION: The tuning fork type angular velocity sensor is manufactured through a process for forming metal films as mutually connected masks becoming a plurality of tuning fork-like quartz pieces on both main surfaces of a quartz wafer, a process for forming integrated tuning fork-like quartz pieces by applying outer shape processing to a plurality of the tuning fork-like quartz pieces mutually connected by charging the quartz wafer provided with the masks in an etching liquid, a process for forming a drive electrode for exciting tuning fork vibration and a sensor electrode for exciting vertical vibration by extracting a part of the tuning fork-like quartz pieces from the integrated tuning fork-like quartz pieces, a process for exciting tuning fork vibration and vertical vibration to measure vibration frequency difference, and a process for setting the etching time of the arm parts of the integrated tuning-like quartz pieces from the vibration frequency difference to control the vibration frequency difference between the tuning fork vibration and the vertical vibration.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は位置制御等に適用さ
れる水晶振動子を用いた音叉型角速度センサ素子(音叉
型センサとする)の製造方法を産業上の技術分野とし、
特に音叉振動とコリオリの力による垂直振動との振動周
波数差(離調周波数とする)を容易に制御し得る製造方
法に関する。 【0002】 【従来の技術】(発明の背景)水晶振動子を用いた音叉
型センサは、例えばセラミック振動子に比較して周波数
温度特性等に優れることから注目を浴び、近年になって
実用化に至っている。これらは、自動車の誘導システム
やカメラの手ぶれ防止等に使用され、量産化が進行して
いる。 【0003】(従来技術の一例)第4図は一従来例を説
明する音叉型センサの図である。音叉型センサは、基部
1と一対の腕部2(ab)を有する音叉状水晶片3から
なり、結晶軸(XYZ)のZ軸に主面が概ね直交したZ
板から形成される。但し、長さLはY軸、幅WはX軸、
厚みTはZ軸である。一対の腕部2(ab)の一方には
音叉振動を励振する駆動電極4を、他方にはコリオリの
力を検出するセンサ電極5を有する。駆動電極4及びセ
ンサ電極5は、基部1に設けられた図示しない導出電極
と接続する。これらは、例えば水晶ウェハのエッチング
によって、外形加工及び各電極が形成される。そして、
図示しないベースに基部1を保持して密閉容器内に収容
し、端子を導出していた。 【0004】このようなものでは、第5図の上面図に矢
印で示したように、一方の腕部2aを励振すると屈曲振
動によって水平方向に振動し、他方の腕部2bが共振し
て音叉振動を生ずる。そして、一対の腕部2(ab)に
回転力が加えられると、各腕部2(ab)には互いに反
対方向となる垂直方向の力が生じて同方向に屈曲(垂直
振動)する。そして、他方の腕部2bに設けられたセン
サ電極5によって屈曲振動による電荷を検出し、これに
より回転力を認知する。なお、各腕部内の矢印は印加さ
れる電界方向である。 【0005】このような音叉型センサでは、音叉振動と
垂直振動との振動周波数fd、fsは近いほど感度は高く
なるが、近すぎると例えばS/N比が悪化する。したが
って、音叉振動と垂直振動とは実験に基づく最適な離調
周波数Δf(=fd−fs)をもった振動周波数fd、fs
に設定され、感度及び検出精度を高めている。音叉振動
及び垂直振動の振動周波数fd、fsは、それぞれfd=
k1・W/L2、fs=k2・T/L2で決定される。但
し、k1、k2はそれぞれ固有の周波数定数、Wは腕部2
の幅、Tは同厚みである。 【0006】例えば音叉振動を17KHzとすると、最終
的な離調周波数Δf0は250Hz±50Hz程度に設定され
る。そして、音叉状水晶片3の外形加工時における離調
周波数Δfは300Hz±100Hz程度に設定される。なお、
音叉状水晶片3をベースに保持した後に例えば腕部2
(ab)の先端を削って音叉振動の振動周波数fdを制
御して、最終的な離調周波数Δf0が微調整される。 【0007】 【発明が解決しようとする課題】(従来技術の問題点)
しかしながら、上記構成の音叉型センサでは、理論上で
は、音叉状水晶片3の外形加工時における離調周波数Δ
f1は腕部2(ab)の寸法比(L、W、T)を設定す
ることによって一義的に得られるが、現実的には加工誤
差等に起因して規格内にすることが困難であった。 【0008】(発明の目的)本発明は、離調周波数の調
整を容易にした音叉型センサの製造方法を提供すること
を目的とする。 【0009】 【課題を解決するための手段】本発明は、水晶ウェハを
エッチングして複数の音叉状水晶片を有する一体化音叉
状水晶片(一体化水晶片とする)を形成し、一体化水晶
片から一部の音叉状水晶片を抜き取って駆動電極及びセ
ンサ電極を形成して初期の離調周波数Δf1を測定し、
この初期の離調周波数Δf1に基づいて一体化水晶片の
腕部のエッチング時間を設定して、離調周波数Δfを制
御したことを基本的な解決手段とする。 【0010】 【作用】本発明では、一体化水晶片の一部を抜き取った
音叉状水晶片の初期の離調周波数Δf1を測定した後、
音叉腕のエッチング時間を制御するので、離調周波数Δ
fを確実に規格内にする。以下、本発明の一実施例を説
明する。 【0011】 【実施例】第1図乃至第3図は、本発明の一実施例を説
明する音叉型センサの製造工程図である。なお、前従来
例と同一部分には同番号を付与してその説明は簡略又は
省略する。音叉型センサは、前述したようにZ板とした
水晶ウェハ6から形成される。ここでは、先ず、水晶ウ
ェハ6の両主面に金(Au)とした金属膜7をスパッタ
によって形成する。そして、エッチングによって金属膜
7の一部を除去し、水晶ウェハ6の両主面に音叉状水晶
片3となる互いに連結した複数のマスク7aを形成す
る。なお、水晶ウェハ6は直径が約7cmで、音叉状水
晶片3は約300個程度形成される。 【0012】次に、マスク7aを設けた水晶ウェハ6を
エッチング液例えばBHF(バッファードフッ酸)液中
に投入してエッチングし、マスク7a以外の露出部を切
除する。これにより、複数の音叉状水晶片3が連結した
一体化水晶片8を得る。そして、一体化水晶片8をエッ
チング液中から取り出し、例えば中央部及び外周部の5
箇所から音叉状水晶片(モニタ用水晶片とする)3aを
抜き取る。 【0013】次に、モニタ用水晶片3aの主面のマスク
7a(金属膜7、Au)をエッチングして、主面側の駆
動電極4等を形成する。また、モニタ用水晶片3aにお
ける一対の腕部2(ab)の側面にも金属膜7を設け
る。そして、モニタ用水晶片3aを励振して音叉振動及
び垂直振動の振動周波数fd、fsを測定し、初期の離調
周波数Δf1を認知する。 【0014】次に、初期の離調周波数Δf1から、一対
の腕部2(ab)の幅をいくつにすれば即ち側面をどれ
だけエッチング(切除)すれば規格内の離調周波数Δf
が得られるかを算出する。そして、規格内の離調周波数
Δfとするためのエッチング量に応じたエッチング時間
を設定する。 【0015】次に、両主面にマスク7aを有する一体化
水晶片8をエッチング液中に投入して、先に設定された
時間エッチングする。これにより、側面から規定量を切
除して、0.1μmオーダで音叉腕の幅Wを小さくする。そ
して、一体化水晶片8をエッチング液中から取り出し
て、前述同様に新たなモニタ用水晶片3aを抜き取ると
ともに駆動電極4及びセンサ電極5等を形成して第2の
離調周波数Δf2を測定する。 【0016】次に、第2の離調周波数Δf2が規格を満
足していれば、音叉状水晶片3の外形加工を終了する。
そして、第2の離調周波数Δf2が規格外であれば、再
度、規格を満足するエッチング量を算出して一体化水晶
片8を再エッチングする。そして、モニタ水晶片3aが
規格を満足するまで、これらの工程を繰り返す。 【0017】最後に、モニタ用水晶片3aが規格を満足
して一体化水晶片8(各音叉状水晶片3)の外形加工を
終了したら、モニタ用水晶片3aと同様にして一体化水
晶片8の状態で一体的に駆動電極4及びセンサ電極5等
を形成する。そして、一体化水晶片8から、各電極を有
する個々の音叉状水晶片3に分離する。なお、初期の離
調周波数Δf1が規格内であれば、同様に各電極を形成
する。 【0018】このような製造方法であれば、一体化水晶
片8からモニタ用水晶片3aを抜き取り、駆動電極4及
びセンサ電極5等を形成して初期の離調周波数Δf1を
測定する。そして、規格内の離調周波数Δfとなる幅と
の寸法差を算出して、その寸法差に応じたエッチング量
及びエッチング時間を設定する。そして、一体化水晶片
8をエッチングし、規格内の離調周波数となるまで繰り
返す。したがって、各音叉状水晶片3を規格内の離調周
波数Δfに確実に合わせ込める。 【0019】また、この実施例では、腕部2(ab)の
側面をエッチングして幅方向の寸法のみを縮小して、厚
みは一定とする。したがって、音叉振動の振動周波数f
d(=k1・W/L2)のみが低下する方向で変化し、垂
直振動の振動周波数fs(=k2・T/L2)は変化しな
い。これにより、離調周波数Δfを調整しやすい。さら
に、ここでは、一体化水晶片8の中央部及び外周部の5
箇所からモニタ用水晶片3aを抜き取るので、平均的な
エッチング量及び時間を設定できる。 【0020】 【他の事項】上記実施例では、一体化水晶片8の側面を
エッチングして音叉振動の振動周波数を低下させて離調
周波数Δfを調整したが、例えば次のようにしてもよ
い。すなわち、外形加工後に一体化水晶片8の両主面か
らマスク7a(金属膜7)を除去して、マスク7aとし
ての金属膜7を側面に設けて主面をエッチングして離調
周波数Δfを調整してもよい。この場合は、音叉振動の
振動周波数fdを一定として垂直振動の振動周波数fsが
変化する。但し、外形加工時のマスク7aをそのまま使
用できるので、側面をエッチングした方が有利である。 【0021】また、腕部2(ab)の側面又は主面をエ
ッチングするとしたが、外形加工後に腕部2(ab)の
先端面のみを露出して長さ寸法を変化させて離調周波数
Δfを調整してもよい。この場合、音叉振動及び垂直振
動の振動周波数fd=(k1・W/L2)、fs(=k2・
T/L2)はいずれも変化するが、係数k1とk2が異な
るので各振動周波数fd、fsの変化量も異なる。したが
って、離調周波数Δfを調整できる。そして、長さ方向
の変化は長さLの2乗に反比例するので、僅かのエッチ
ング量で周波数変化が大きくなり、調整時間を短縮でき
る。 【0022】また、マスク7aによって音叉の先端部を
斜め方向に露出して例えば各腕部2(ab)の外側の稜
線部から斜め方向にエッチングしてもよい。この場合で
も、各振動周波数fd、fsが変化するので離調周波数Δ
fを調整できる。さらには、各腕部2(ab)の一方の
対角部から他方の対角部に傾斜させて離調周波数Δfを
調整でき、これらは任意に適用できる。 【0023】また、水晶ウェハ6は単板として説明した
が、±X軸方法を逆向きにして2枚の水晶ウェハ6を直
接接合によって貼り合わせた場合でも適用できる(参
照:特開平11-316125号公報)。そして、一方の腕部2
aに駆動電極4を、他方の腕部1bにセンサ電極を設け
たが、各腕部2(ab)に駆動電極4及びセンサ電極5
を設けてもよく、これらは任意に設定できる。 【0024】 【発明の効果】本発明は、一体化水晶片の一部を抜き取
った音叉状水晶片の初期の離調周波数Δf1を測定した
後、音叉腕のエッチング時間を制御するので、離調周波
数Δfを確実に規格内にしてその調整を容易にした音叉
型センサの製造方法を提供できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a tuning fork type angular velocity sensor element (referred to as a tuning fork type sensor) using a quartz oscillator applied to position control and the like. Above technical field,
In particular, the present invention relates to a manufacturing method capable of easily controlling a vibration frequency difference (referred to as a detuning frequency) between a tuning fork vibration and a vertical vibration caused by Coriolis force. (Background of the Invention) A tuning fork type sensor using a quartz oscillator has attracted attention because of its excellent frequency-temperature characteristics as compared with, for example, a ceramic oscillator, and has recently been put to practical use. Has been reached. These are used for automobile guidance systems and camera shake prevention, and are being mass-produced. FIG. 4 is a diagram of a tuning fork type sensor for explaining a conventional example. The tuning fork type sensor is composed of a tuning fork-shaped quartz piece 3 having a base 1 and a pair of arms 2 (ab), and a main surface of which is substantially perpendicular to the Z axis of the crystal axis (XYZ).
Formed from a plate. However, length L is Y axis, width W is X axis,
The thickness T is on the Z axis. One of the pair of arms 2 (ab) has a drive electrode 4 for exciting a tuning fork vibration, and the other has a sensor electrode 5 for detecting Coriolis force. The drive electrode 4 and the sensor electrode 5 are connected to a lead electrode (not shown) provided on the base 1. For these, the outer shape processing and each electrode are formed by, for example, etching of a quartz wafer. And
The base 1 was held in a base (not shown), housed in a closed container, and the terminals were led out. In such a device, as shown by an arrow in the top view of FIG. 5, when one arm 2a is excited, it vibrates in the horizontal direction due to bending vibration, and the other arm 2b resonates to produce a tuning fork. Causes vibration. When a rotational force is applied to the pair of arms 2 (ab), forces in the opposite directions are generated in the arms 2 (ab) to bend (vertical vibration) in the same direction. Then, the electric charge due to the bending vibration is detected by the sensor electrode 5 provided on the other arm 2b, whereby the rotational force is recognized. The arrows in each arm indicate the direction of the applied electric field. In such a tuning fork type sensor, the sensitivity increases as the vibration frequencies fd and fs of the tuning fork vibration and the vertical vibration are closer, but if too close, for example, the S / N ratio deteriorates. Therefore, the tuning fork vibration and the vertical vibration are the vibration frequencies fd and fs having the optimal detuning frequency Δf (= fd−fs) based on the experiment.
To increase sensitivity and detection accuracy. The vibration frequencies fd and fs of the tuning fork vibration and the vertical vibration are respectively fd =
It is determined by the k1 · W / L 2, fs = k2 · T / L 2. Here, k1 and k2 are unique frequency constants, and W is the arm 2
And T have the same thickness. For example, if the tuning fork vibration is 17 KHz, the final detuning frequency Δf 0 is set to about 250 Hz ± 50 Hz. The detuning frequency Δf at the time of processing the outer shape of the tuning fork-shaped crystal blank 3 is set to about 300 Hz ± 100 Hz. In addition,
After holding the tuning fork-shaped quartz piece 3 on the base, for example, the arm 2
The final detuning frequency Δf0 is finely adjusted by controlling the vibration frequency fd of the tuning fork vibration by shaving the end of (ab). (Problems to be Solved by the Invention)
However, in the tuning fork type sensor having the above configuration, theoretically, the detuning frequency Δ
Although f1 can be uniquely obtained by setting the dimensional ratio (L, W, T) of the arm 2 (ab), it is practically difficult to make it within the standard due to a processing error or the like. Was. (Object of the Invention) It is an object of the present invention to provide a method of manufacturing a tuning fork type sensor in which the detuning frequency can be easily adjusted. According to the present invention, a quartz wafer is etched to form an integrated tuning fork crystal piece having a plurality of tuning fork crystal pieces (referred to as an integrated quartz piece). Withdrawing a part of the tuning fork-shaped crystal piece from the crystal piece, forming a drive electrode and a sensor electrode, measuring the initial detuning frequency Δf1,
The basic solution is to control the detuning frequency Δf by setting the etching time of the arm of the integrated crystal piece based on the initial detuning frequency Δf1. According to the present invention, after measuring the initial detuning frequency Δf1 of the tuning fork-shaped quartz piece from which a part of the integrated quartz piece has been extracted,
Since the etching time of the tuning fork arm is controlled, the detuning frequency Δ
Ensure that f is within specifications. Hereinafter, an embodiment of the present invention will be described. FIG. 1 to FIG. 3 are manufacturing process diagrams of a tuning fork type sensor for explaining an embodiment of the present invention. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted. The tuning fork type sensor is formed from the quartz wafer 6 formed as a Z plate as described above. Here, first, a metal film 7 made of gold (Au) is formed on both main surfaces of the crystal wafer 6 by sputtering. Then, a part of the metal film 7 is removed by etching, and a plurality of interconnected masks 7 a to be the tuning-fork-shaped crystal blank 3 are formed on both main surfaces of the crystal wafer 6. The quartz wafer 6 has a diameter of about 7 cm, and about 300 tuning fork-shaped quartz pieces 3 are formed. Next, the quartz wafer 6 provided with the mask 7a is put into an etching solution, for example, a BHF (buffered hydrofluoric acid) solution, and is etched to remove exposed portions other than the mask 7a. Thus, an integrated crystal blank 8 in which the plurality of tuning fork-shaped crystal blanks 3 are connected is obtained. Then, the integrated crystal blank 8 is taken out of the etching solution and, for example, the central and outer peripheral portions are removed.
A tuning fork-shaped crystal blank (referred to as a monitoring crystal blank) 3a is extracted from the location. Next, the mask 7a (metal film 7, Au) on the main surface of the monitoring crystal blank 3a is etched to form the drive electrode 4 and the like on the main surface. A metal film 7 is also provided on the side surfaces of the pair of arms 2 (ab) in the monitor crystal blank 3a. Then, the monitor crystal blank 3a is excited to measure the vibration frequencies fd and fs of the tuning fork vibration and the vertical vibration, and recognize the initial detuning frequency Δf1. Next, from the initial detuning frequency Δf 1, the width of the pair of arms 2 (ab) should be set to what extent, ie, how much the side surfaces should be etched (cut), and the detuning frequency Δf within the standard can be obtained.
Is calculated. Then, an etching time is set according to the amount of etching for setting the detuning frequency Δf within the standard. Next, an integrated crystal blank 8 having masks 7a on both main surfaces is put into an etching solution and etched for a preset time. Thus, the specified amount is cut off from the side surface, and the width W of the tuning fork arm is reduced on the order of 0.1 μm. Then, the integrated crystal blank 8 is taken out of the etching solution, a new monitoring crystal blank 3a is taken out as described above, and the drive electrode 4 and the sensor electrode 5 are formed, and the second detuning frequency Δf2 is measured. Next, when the second detuning frequency Δf2 satisfies the standard, the outer shape processing of the tuning fork-shaped crystal blank 3 is completed.
If the second detuning frequency Δf2 is out of the standard, the etching amount satisfying the standard is calculated again, and the integrated crystal blank 8 is etched again. These steps are repeated until the monitor crystal blank 3a satisfies the standard. Finally, after the monitor crystal blank 3a satisfies the standard and completes the outer shape processing of the integrated crystal blank 8 (each tuning fork-shaped crystal blank 3), the integrated crystal blank 8 is formed in the same manner as the monitor crystal blank 3a. In this state, the drive electrode 4 and the sensor electrode 5 are integrally formed. Then, it is separated from the integrated crystal blank 8 into individual tuning fork-shaped crystal blanks 3 having respective electrodes. If the initial detuning frequency Δf1 is within the standard, each electrode is formed similarly. According to such a manufacturing method, the monitor crystal blank 3a is extracted from the integrated crystal blank 8, the drive electrode 4 and the sensor electrode 5 are formed, and the initial detuning frequency Δf1 is measured. Then, a dimensional difference between the width and the detuning frequency Δf within the standard is calculated, and an etching amount and an etching time corresponding to the dimensional difference are set. Then, the integrated crystal blank 8 is etched and repeated until the detuning frequency falls within the standard. Therefore, each tuning fork-shaped crystal blank 3 can be reliably adjusted to the detuning frequency Δf within the standard. Further, in this embodiment, the side surface of the arm 2 (ab) is etched to reduce only the dimension in the width direction, and the thickness is made constant. Therefore, the vibration frequency f of the tuning fork vibration
Only d (= k 1 · W / L 2 ) changes in the decreasing direction, and the vibration frequency fs (= k 2 · T / L 2 ) of the vertical vibration does not change. This makes it easy to adjust the detuning frequency Δf. Further, here, the central crystal part 8 and the peripheral part
Since the monitoring crystal blank 3a is extracted from the location, an average etching amount and time can be set. In the above embodiment, the detuning frequency Δf is adjusted by lowering the vibration frequency of the tuning fork vibration by etching the side surface of the integrated crystal blank 8. . That is, after the outer shape processing, the mask 7a (metal film 7) is removed from both main surfaces of the integrated crystal blank 8, the metal film 7 as the mask 7a is provided on the side surface, and the main surface is etched to reduce the detuning frequency Δf. It may be adjusted. In this case, the vibration frequency fs of the vertical vibration changes while keeping the vibration frequency fd of the tuning fork vibration constant. However, since the mask 7a at the time of outer shape processing can be used as it is, it is more advantageous to etch the side surface. Although the side surface or the main surface of the arm 2 (ab) is etched, only the tip end surface of the arm 2 (ab) is exposed after the outer shape processing, and the length is changed to change the detuning frequency Δf. May be adjusted. In this case, the vibration frequency of the tuning fork vibration and vertical vibration fd = (k1 · W / L 2), fs (= k2 ·
T / L 2 ) changes, but the coefficients k 1 and k 2 are different, so the amounts of change in the vibration frequencies fd and fs are also different. Therefore, the detuning frequency Δf can be adjusted. Since the change in the length direction is inversely proportional to the square of the length L, the frequency change becomes large with a small etching amount, and the adjustment time can be shortened. Alternatively, the tip of the tuning fork may be obliquely exposed by the mask 7a and etched obliquely from, for example, a ridge line outside each arm 2 (ab). Even in this case, since the respective vibration frequencies fd and fs change, the detuning frequency Δ
f can be adjusted. Further, the detuning frequency Δf can be adjusted by inclining each arm 2 (ab) from one diagonal to the other diagonal, and these can be applied arbitrarily. Although the crystal wafer 6 has been described as a single plate, the invention can also be applied to a case where two ± crystal wafers 6 are bonded by direct bonding with the ± X-axis method reversed (see: Japanese Patent Laid-Open No. 11-316125). Publication). And one arm 2
a, a drive electrode 4 is provided on the other arm 1b, and a sensor electrode 5 is provided on each arm 2 (ab).
May be provided, and these can be arbitrarily set. The present invention measures the initial detuning frequency .DELTA.f1 of a tuning fork crystal blank from which a part of an integrated crystal blank has been extracted, and then controls the etching time of the tuning fork arm. It is possible to provide a method of manufacturing a tuning fork type sensor in which the frequency Δf is reliably set within a standard and its adjustment is facilitated.

【図面の簡単な説明】 【図1】本発明の一実施例を説明する音叉型センサの製
造工程図である。 【図2】本発明の一実施例を説明する音叉型センサの製
造工程図である。 【図3】本発明の一実施例を説明する音叉型センサの製
造工程図である。 【図4】従来例を説明する音叉型センサの図である。 【図5】従来例を説明する音叉型センサの上面図であ
る。 【符号の説明】 1 基部、2 腕部、3 音叉状水晶片、3a モニタ
用水晶片、4 駆動電極、5 センサ電極、6 水晶ウ
ェハ、7 金属膜、7a マスク、8 一体化水晶片.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a manufacturing process diagram of a tuning fork type sensor for explaining one embodiment of the present invention. FIG. 2 is a manufacturing process diagram of a tuning fork type sensor for explaining one embodiment of the present invention. FIG. 3 is a manufacturing process diagram of a tuning fork type sensor for explaining one embodiment of the present invention. FIG. 4 is a diagram of a tuning fork type sensor for explaining a conventional example. FIG. 5 is a top view of a tuning fork type sensor for explaining a conventional example. [Description of Signs] 1 Base, 2 arms, 3 tuning fork-shaped crystal piece, 3a monitoring crystal piece, 4 drive electrode, 5 sensor electrode, 6 crystal wafer, 7 metal film, 7a mask, 8 integrated crystal piece.

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成13年7月31日(2001.7.3
1) 【手続補正1】 【補正対象書類名】図面 【補正対象項目名】図5 【補正方法】変更 【補正内容】 【図5】
────────────────────────────────────────────────── ───
[Procedure amendment] [Date of submission] July 31, 2001 (2001.7.3)
1) [Procedure amendment 1] [Document name to be amended] Drawing [Item name to be amended] Fig. 5 [Correction method] Change [Content of amendment] [Fig. 5]

Claims (1)

【特許請求の範囲】 【請求項1】基部と一対の腕部を有する音叉状水晶片か
らなり、前記一対の腕部を音叉振動させて互いに反対方
向の垂直振動によってコリオリの力を検出してなる音叉
型角速度センサ素子の製造方法において、水晶ウェハの
両主面に複数の音叉状水晶片となる互いに連結したマス
クとしての金属膜を形成する工程と、前記マスクを設け
た水晶ウェハをエッチング液に投入して互いに連結した
複数の音叉状水晶片に外形加工して一体化音叉状水晶片
を形成する工程と、前記一体化音叉状水晶片から一部の
音叉状水晶片を抜き取って前記音叉振動を励振する駆動
電極と前記垂直振動を励振するセンサ電極を形成する工
程と、前記音叉振動と前記垂直振動とを励振して振動周
波数差を測定する工程と、前記振動周波数差から前記一
体化音叉状水晶片における腕部のエッチング時間を設定
し、前記音叉振動と前記垂直振動との振動周波数差を制
御したことを特徴とする音叉型角速度センサ素子の製造
方法。
Claims: 1. A tuning fork-shaped crystal piece having a base and a pair of arms, wherein the pair of arms are vibrated by a tuning fork to detect Coriolis force by vertical vibrations in opposite directions. Forming a metal film as a mask connected to each other as a plurality of tuning fork-shaped quartz pieces on both main surfaces of the quartz wafer, and etching the quartz wafer provided with the mask with an etching solution. Forming a plurality of tuning fork-shaped quartz pieces connected to each other to form an integrated tuning fork-shaped quartz piece; and extracting a part of the tuning fork-shaped quartz piece from the integrated tuning-fork-shaped quartz piece to form the tuning fork. Forming a drive electrode for exciting vibration and a sensor electrode for exciting the vertical vibration, exciting the tuning fork vibration and the vertical vibration to measure a vibration frequency difference, and calculating the vibration frequency difference from the vibration frequency difference. A method of manufacturing a tuning-fork type angular velocity sensor element, wherein an etching time of an arm portion of an integrated tuning-fork-shaped crystal piece is set to control a vibration frequency difference between the tuning fork vibration and the vertical vibration.
JP2001215111A 2001-07-16 2001-07-16 Method of manufacturing tuning fork type angular velocity sensor element Expired - Fee Related JP4554118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215111A JP4554118B2 (en) 2001-07-16 2001-07-16 Method of manufacturing tuning fork type angular velocity sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215111A JP4554118B2 (en) 2001-07-16 2001-07-16 Method of manufacturing tuning fork type angular velocity sensor element

Publications (2)

Publication Number Publication Date
JP2003028645A true JP2003028645A (en) 2003-01-29
JP4554118B2 JP4554118B2 (en) 2010-09-29

Family

ID=19049812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215111A Expired - Fee Related JP4554118B2 (en) 2001-07-16 2001-07-16 Method of manufacturing tuning fork type angular velocity sensor element

Country Status (1)

Country Link
JP (1) JP4554118B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096493A1 (en) * 2004-03-30 2005-10-13 Citizen Watch Co., Ltd. Quartz oscillator manufacturing method and quartz oscillator
JP2009150678A (en) * 2007-12-19 2009-07-09 Citizen Holdings Co Ltd Method of manufacturing gyro sensor element
JP2014195134A (en) * 2013-03-28 2014-10-09 Citizen Finetech Miyota Co Ltd Method of manufacturing quartz resonator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175710A (en) * 1989-12-04 1991-07-30 Murata Mfg Co Ltd Manufacture of piezoelectric resonator
JPH05308238A (en) * 1992-04-28 1993-11-19 Seiko Electronic Components Ltd Production of tuning fork type crystal vibrator
JPH07139953A (en) * 1993-11-19 1995-06-02 Toyota Central Res & Dev Lab Inc Method for adjusting frequency of angular-velocity detecting element and angular-velocity detecting element
JPH08105748A (en) * 1994-10-06 1996-04-23 Murata Mfg Co Ltd Angular velocity sensor, its resonance-frequency adjusting method and its manufacture
JPH0955636A (en) * 1995-08-10 1997-02-25 Toshiba Corp Frequency adjustment method for surface acoustic wave element and device therefor
JPH10153433A (en) * 1996-09-24 1998-06-09 Seiko Epson Corp Piezoelectric gyro sensor
JP2000156620A (en) * 1998-11-19 2000-06-06 Japan Radio Co Ltd Center frequency adjustment method for surface acoustic wave device and production of the device
JP2000295060A (en) * 1999-04-01 2000-10-20 Kyocera Corp Surface acoustic wave device and its frequency adjusting method
JP2001102654A (en) * 1999-10-01 2001-04-13 Toyo Commun Equip Co Ltd Method and device for manufacturing ultrathin piezoelectric resonator original plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175710A (en) * 1989-12-04 1991-07-30 Murata Mfg Co Ltd Manufacture of piezoelectric resonator
JPH05308238A (en) * 1992-04-28 1993-11-19 Seiko Electronic Components Ltd Production of tuning fork type crystal vibrator
JPH07139953A (en) * 1993-11-19 1995-06-02 Toyota Central Res & Dev Lab Inc Method for adjusting frequency of angular-velocity detecting element and angular-velocity detecting element
JPH08105748A (en) * 1994-10-06 1996-04-23 Murata Mfg Co Ltd Angular velocity sensor, its resonance-frequency adjusting method and its manufacture
JPH0955636A (en) * 1995-08-10 1997-02-25 Toshiba Corp Frequency adjustment method for surface acoustic wave element and device therefor
JPH10153433A (en) * 1996-09-24 1998-06-09 Seiko Epson Corp Piezoelectric gyro sensor
JP2000156620A (en) * 1998-11-19 2000-06-06 Japan Radio Co Ltd Center frequency adjustment method for surface acoustic wave device and production of the device
JP2000295060A (en) * 1999-04-01 2000-10-20 Kyocera Corp Surface acoustic wave device and its frequency adjusting method
JP2001102654A (en) * 1999-10-01 2001-04-13 Toyo Commun Equip Co Ltd Method and device for manufacturing ultrathin piezoelectric resonator original plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096493A1 (en) * 2004-03-30 2005-10-13 Citizen Watch Co., Ltd. Quartz oscillator manufacturing method and quartz oscillator
JPWO2005096493A1 (en) * 2004-03-30 2008-02-21 シチズンホールディングス株式会社 Quartz crystal manufacturing method and crystal resonator
US7394326B2 (en) 2004-03-30 2008-07-01 Citizen Holdings Co., Ltd. Quartz oscillator manufacturing method and quartz oscillator
JP4658925B2 (en) * 2004-03-30 2011-03-23 シチズンホールディングス株式会社 Manufacturing method of crystal unit
JP2009150678A (en) * 2007-12-19 2009-07-09 Citizen Holdings Co Ltd Method of manufacturing gyro sensor element
JP2014195134A (en) * 2013-03-28 2014-10-09 Citizen Finetech Miyota Co Ltd Method of manufacturing quartz resonator

Also Published As

Publication number Publication date
JP4554118B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4305623B2 (en) Oscillator and vibratory gyroscope
JP4288914B2 (en) Resonant device manufacturing method
JP3941736B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic apparatus using quartz crystal device
JPH0362208B2 (en)
JPH0643179A (en) Acceleration sensor and manufacture of said sensor
JP4010218B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2003028645A (en) Method for manufacturing tuning fork type angular velocity sensor element
JP4305625B2 (en) Oscillator and signal generator for physical quantity measurement
JP2004226181A (en) Oscillation gyroscope
JPH10163505A (en) Semiconductor inertia sensor and its manufacture
JP2008141307A (en) Piezoelectric vibrator, its manufacturing method, and physical quantity sensor
JP2017207283A (en) Manufacturing method for vibration element
JPH10103961A (en) Temperature characteristic adjusting method for vibration gyroscope
JPH10270719A (en) Semiconductor inertia sensor and its production
JP2007306471A (en) Quartz-crystal oscillator, its manufacturing method, and physical quantity sensor
JPH10178181A (en) Manufacture of semiconductor inertial sensor
JPH10256568A (en) Manufacture of semiconductor inertial sensor
JP3188929B2 (en) Adjustment method of vibrating body resonance frequency of vibrating gyroscope
JP2003207338A (en) Vibrator for vibration-type gyroscope and vibration-type gyroscope
JP3856108B2 (en) Vibrating gyroscope vibrator and vibrating gyroscope
JP5353651B2 (en) Manufacturing method of angular velocity sensor
JP2008017261A (en) Tuning fork type piezoelectric vibrating chip, and sensor oscillation circuit and manufacturing method thereof
JP2001330440A (en) Tuning fork-type angular velocity sensor
JP4441729B2 (en) Electronics
JP4067044B2 (en) Oscillator and vibratory gyroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees